
BaWA: Automatic Optimizing Pruning Metric for Large Language Models
with Balanced Weight and Activation

Lian Liu 1 2 3 4 Xiandong Zhao 1 Guanchen Li 1 Dong Li 1 Mengdi Wang 2 3 Yinhe Han 2 3 Xiaowei Li 2 4

Ying Wang 2 3

Abstract
One-shot post-training pruning enhances the de-
ployment of billion-scale large language mod-
els (LLMs), with the pruning metric playing a
pivotal role in determining which weights to re-
move. However, existing metrics underperform
due to their reliance on a simple symbolic com-
bination of weights and activations, overlooking
imbalanced weight magnitudes and the dispropor-
tionate influence of activation outliers. To over-
come these limitations, we introduce BaWA, a
novel pruning metric that systematically Balances
Weight and Activation distributions for more ef-
fective pruning. BaWA introduces two key inno-
vations: magnitude normalization, which miti-
gates weight imbalance across channels for fairer
pruning decisions, and outlier regularization,
which reduces the impact of activation outliers,
ensuring more appropriate channel prioritization.
To further enhance its effectiveness, BaWA in-
corporates an efficient and automatic framework
for optimizing normalization and regularization
hyperparameters. Extensive experiments validate
BaWA as a state-of-the-art (SOTA) pruning met-
ric. For instance, applying BaWA to induce 2:4
sparsity in Mistral-7B reduces perplexity in lan-
guage comprehension by 2.49 and improves aver-
age downstream task accuracy by 3.08%, outper-
forming the previous SOTA method Wanda.

1. Introduction
The remarkable performance of large language models
(LLMs)(qwe, 2024; Dettmers et al., 2022; Touvron et al.,

1Advanced Micro Devices, Inc 2Institute of Computing Tech-
nology, CAS, China 3University of Chinese Academy of Sciences,
Beijing, China 4Zhongguancun Laboratory. Correspondence to:
Ying Wang <wangying2009@ict.ac.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2023a;b) has revolutionized AI research, demonstrating
exceptional capabilities across diverse and complex tasks.
However, their vast parameter sizes, often in the billions,
pose significant hardware constraints, limiting their practi-
cal deployment, especially in resource-constrained environ-
ments (Liu et al., 2025b). To mitigate this challenge, model
compression techniques such as quantization(Dettmers et al.,
2022; Xiao et al., 2023; Lin et al., 2023; Yuan et al., 2023;
Frantar et al., 2023; Shao et al., 2023; Liu et al., 2024;
2025a) and pruning (Li et al., 2023a; Kwon et al., 2022;
Frantar & Alistarh, 2022; Xia et al., 2023) have been ex-
plored to reduce resource demands while maintaining perfor-
mance. This paper focuses on unstructured pruning, which
compresses models by zeroing out weights and benefits
from sufficient hardware acceleration supports.

Due to the scale of LLMs, one-shot post-training pruning
has gained attention for its ability to efficiently remove
weights without relying on gradient backpropagation or
fine-tuning (Frantar & Alistarh, 2023; Sun et al., 2023;
Zhang et al., 2024; Dong et al.). While effective, existing
methods remain constrained by suboptimal pruning metrics.
At the cost of additional mask training, MaskLLM (Fang
et al.) demonstrated that a well-designed pruning metric
enables weight sparsity with minimal performance loss.
However, existing one-shot LLM pruning methods, such
as Wanda (Sun et al., 2023) and Pruner-Zero (Dong et al.),
rely on a simple symbolic combination of weights and ac-
tivations to determine pruning decisions. While intuitive,
they overlook the heterogeneity in weights and activations,
leading to suboptimal pruning masks and significant perfor-
mance degradation in pruned models. We summarize the
key factors that influence pruning effectiveness as follows:

Imbalanced Weight Magnitude Distribution. LLMs’
weight magnitudes distribution is imbalanced, with certain
input or output channels exhibiting abnormally large or
small magnitudes. This imbalance leads to sub-optimal
pruning decisions, as weights within a channel are either
predominantly preserved or pruned, regardless of their ac-
tual importance to the model’s performance.

Disproportionate Influence of Outliers. A few activation
outliers can disproportionately inflate a channel’s norm,

1

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

leading to biased pruning. For instance, fewer than 1% of
outliers can increase a channel’s norm by over 5×, causing
excessive pruning of outlier-free channels.

To address these limitations, we propose BaWA, a novel
pruning mask selection method that systematically Balances
the contributions of Weight and Activation distributions.
BaWA introduces two key innovations. Firstly, to address
the imbalanced weight magnitude distribution, BaWA nor-
malizes the weight magnitudes across both input and output
channels, contributing to a fairer pruning mask selection.
Furthermore, to mitigate the disproportionate influence of
outliers, BaWA introduces learnable power factors that con-
trol the impact of outliers on the pruning metric, ensuring
that channels without outliers are not unevenly penalized.
Moreover, BaWA employs a zeroth-order gradient-based
optimization strategy to efficiently and automatically search
for the optimal hyper-parameters of normalization and reg-
ularization, enabling the method to identify better pruning
masks in just a few minutes. Notably, the reliable pruning
metric provided by BaWA is orthogonal to conventional
weight adjustment methods, and the combination of the
two can bring better pruning outcomes. Through extensive
experiments, we demonstrate that BaWA significantly out-
performs existing state-of-the-art pruning methods across
a variety of LLMs and language benchmarks. For instance,
applying BaWA to induce 2:4 sparsity in Mistral-7B reduces
language comprehension perplexity by 2.49 and improves
average downstream task accuracy by 3.08% compared to
the previous SOTA method Wanda.

In summary, the key contributions of this paper are:

• A comprehensive analysis of the limitations of current
pruning metrics, highlighting the bias introduced by
the symbolic combination of weight and activation.

• The introduction of BaWA, a novel pruning metric that
balances weight and activation distributions through
magnitude normalization and outlier regularization.

• An efficient optimization strategy for identifying op-
timal hyper-parameters for normalization and regular-
ization, enabling BaWA to achieve superior pruning
performance with minimal computational overhead.

• Experimental results demonstrate that BaWA success-
fully improves the performance of pruned LLMs com-
pared to the state-of-the-art (SOTA) pruning methods.

2. Background & Motivation
2.1. LLM Pruning

The growing complexity of Transformer-based language
models, which now scale to hundreds of billions of parame-
ters, has intensified the demand for effective and efficient

model pruning methods (Hassibi et al., 1993; Han et al.,
2015b). These methods can be broadly categorized into
structured and unstructured pruning.

Structured pruning (An et al., 2024; Xia et al.; Ma et al.,
2023) removes entire substructures or weight groups—such
as layers (Ling et al., 2024), FFN neurons (Ma et al., 2023),
MHA heads, or embedding dimensions (Sreenivas et al.,
2024)—enabling hardware-agnostic efficiency gains. How-
ever, due to its coarse-grained nature, structured pruning
often leads to significant accuracy degradation, typically
limiting the applicable sparsity ratio to 15%–30%. Post-
pruning fine-tuning can help recover performance at higher
sparsity levels.

In contrast, unstructured pruning (Frantar & Alistarh, 2023;
Sun et al., 2023) eliminates individual weight elements and
stores them in a compressed format. When combined with
decompression techniques (for memory optimization) or
hardware acceleration (e.g., 2:4 sparse tensor cores), un-
structured sparsity can also deliver substantial efficiency
improvements. Thanks to its fine-grained approach, unstruc-
tured pruning generally preserves model accuracy more ef-
fectively, allowing sparsity ratios exceeding 50%—or even
stricter patterns like 2:4 sparsity. Further training techniques,
such as PEFT (Lu et al., 2024) and STE (Ma et al., 2024),
can also enhance pruned models.

Given these advantages, this paper focuses on optimizing
unstructured pruning metrics.

2.2. Pruning Metric

The one-shot post-training pruning process primarily com-
prises two stages: pruning mask selection and weight re-
construction. Previous studies (Frantar & Alistarh, 2023;
Li et al., 2023b; Liu et al., 2021) mainly focus on efficient
weight reconstruction methodologies, while simply select-
ing the pruning mask based on weight magnitude. However,
due to the presence of outliers, a larger magnitude does not
necessarily indicate greater importance for a weight. As
a result, directly pruning weights based solely on weight
magnitude can result in the removal of important weights
and lead to a significant performance drop for pruned LLMs.
In fact, the effectiveness of pruning in large language mod-
els (LLMs) critically depends on the pruning metric (Li
et al., 2023a; Frantar & Alistarh, 2023; Fang et al.), which
quantifies the importance of each weight and guides the de-
cision of which weights to remove. A well-designed pruning
metric is essential for maintaining model performance after
pruning, as it directly influences the quality of the pruned
model.

As presented in Table 1, current pruning metrics utilize
the symbolic combination of weight (Han et al., 2015a),
activation (Sun et al., 2023; Zhang et al., 2024) and even

2

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 1: The existing pruning metrics tailored for LLMs.
SC denotes the symbolic combination operation, G denotes
the gradient, and σ denotes the min-max scaling operation.

Method Pruning Metric S SC

Mangnitude |Wij | ✓

Wanda |Wij | · ||Xj ||2 ✓

GBLM-Pruner |Wij | · ||Gj ||2 ✓

Pruner-Zero ||Wij | × |Wij || × σ(|Gj |) ✓

BaWA (1

||Wj ||
θ1
2

+ 1

||Wi||
θ2
2

) · |Wij | · ||Xj ||θ32 ✗

gradient (Dong et al.; Das et al., 2023) to determine the
importance of weights. For example, Wanda defines the
pruning metric as:

Sij = |Wij | · ||Xj ||2, (1)

where W ∈ RCout×Cin is the weight of a linear layer and
X ∈ RB·Q×Cin is the input activation with batch size B
and sequence length Q. | · | is the absolute value operator
and ||Xj ||2 represents the ℓ2 norm of jth features aggre-
gated across B · Q different tokens. Wanda prunes those
weights that have lower final scores S. GBLM-Pruner (Das
et al., 2023) further utilizes gradient to adjust the pruning
metric; however, the improved performance is limited. To
improve the pruning performance, Pruner-Zero (Dong et al.)
proposes an automatic framework for searching symbolic
pruning metrics using genetic programming.

2.3. Motivation

However, existing pruning metrics rely on simplistic, sym-
bolic combinations of weight, activation, and gradient val-
ues, failing to account for the intricate and heterogeneous
distributions of weights and activations in LLMs. This over-
sight often leads to sub-optimal pruning decisions, resulting
in significant performance degradation and inefficiencies in
model compression.

To address this gap, we conduct a comprehensive analysis
and visualization of weight and activation distributions in
LLaMA-7B, as illustrated in Figure 1. Our investigation
reveals two critical phenomena that challenge conventional
assumptions and motivate the development of a more robust
pruning methodology:

Imbalanced Distribution of Weight Magnitude in LLM.
Recent studies on LLM compression often assume that
weights follow a normal distribution, leading many to over-
look the nuanced analysis of weight distributions (Xiao
et al., 2023; Yin et al., 2023; Shao et al., 2023). However,
as demonstrated in Figure 1a and 1b, weight magnitudes
exhibit significant imbalances across channels. Specifically,
certain input or output channels contain weights that are

either abnormally large or small, creating a skewed distri-
bution. This imbalance results in a scenario where most
weights within a channel are either entirely preserved or
pruned during compression. For unstructured and N:M
sparsity, this concentration of pruning decisions on spe-
cific channels leads to sub-optimal sparsity patterns, as the
pruning process fails to account for the heterogeneity in
weight importance. This observation underscores the need
for a pruning metric that explicitly considers the imbalanced
nature of weight distributions, rather than relying on over-
simplified assumptions.

Disproportionate Impact of the Small Set of Outliers.
When constructing pruning metrics, existing methods such
as Wanda (Equation 1) compute channel-wise norms (e.g.,
the ℓ2-norm) to evaluate the importance of weights. How-
ever, our analysis reveals that a small subset of outliers in
activations can disproportionately influence these norm val-
ues. As shown in Figure 1c, even when outliers constitute
less than 1% of a channel’s activations, they can inflate the
channel’s norm value by up to 5× compared to the average.
This disproportionate impact introduces significant bias into
the pruning metric, as channels with outliers are erroneously
prioritized for preservation, while others are undervalued.
Consequently, pruning decisions based on such metrics be-
come skewed, leading to sub-optimal sparsity patterns and
degraded model performance.

It is necessary to mention that the two phenomena are widely
present in various LLMs (qwe, 2024; Jiang et al., 2023; Tou-
vron et al., 2023b). Consequently, we argue that a balanced
pruning metric must consider both the weight magnitude
distribution and the impact of outliers in activations. Such
a metric should normalize the weight magnitudes across
channels to mitigate the effects of imbalanced distributions
and regulate the influence of outliers to ensure a fair eval-
uation of each weight’s importance. By balancing these
factors, a more accurate and effective pruning metric can be
developed, enabling better pruning decisions and improved
model performance.

3. Methods
3.1. Magnitude Normalization

According to our observation in Section 2.3, the weight val-
ues of different channels (including both input and output
channels) are quite different. Consequently, when establish-
ing the pruning metric, it is imperative to consider not only
the per-channel norm values of activation but also the norm
values within the weight. This comprehensive considera-
tion ensures a more balanced approach to determining the
pruning mask, which is critical for maintaining the pruning
performance. We present the details of the input and output
channel normalization as follows.

3

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Weight Distribution

0
1000

2000
3000

4000

Output Channel 0

1000

2000

3000
4000

Inp
ut

Cha
nn

el

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

M
ag

ni
tu

de

0.012

0.013

0.014

0.015

0.016

0.017

0.018

(a) layers.10.self attn.o proj

Weight Distribution

0
1000

2000
3000

4000

Output Channel 0

1000

2000

3000
4000

Inp
ut

Cha
nn

el

0.00
0.02

0.04

0.06

0.08

0.10

0.12

M
ag

ni
tu

de

0.012

0.014

0.016

0.018

(b) layers.10.self attn.v proj

Activation Distribution

0
1000

2000
3000

4000

Channel Index 0

500

1000

1500
2000

Tok
en

 In
de

x

0
1

2

3

4

5

6

M
ag

ni
tu

de

0.04

0.06

0.08

0.10

(c) layers.10.self attn.k proj

Figure 1: The visualization of the weight and activation magnitude distribution in the 10th layer of LLaMA-7B. The z-axis
of the 3-D figure represents the magnitude of the weights and activations. Observations: (1) The distributions vary greatly
not only across the channel dimension of activations but also across the input and output channel dimensions of weights.
The three figures below demonstrate that the norms of different channels vary significantly. (2) The norm of one channel is
often heavily influenced by outliers, despite their small proportion. Figure (c) is particularly notable, demonstrating that
several outliers lead to a significant norm. ⋆ denotes outliers.

Input Channel Normalization. In contrast to the activa-
tion values, the magnitude of weight exhibits a relatively
more gradual variation. Consequently, as presented in Equa-
tion (1), compared to the weight magnitude |Wij |, the pro-
posed pruning metric in Wanda mainly focuses on capturing
the fluctuations in activation values ||Xj ||2. This strategy
emphasizes that the dynamic range of activation is more
susceptible to outliers, which can significantly influence the
pruning performance. However, our observations indicate
that the per-channel norm value within the weights also ex-
hibits considerable variation. Therefore, we argue that the
pruning metric should not be exclusively skewed towards
outliers in activation. It is equally important to take into
account the magnitude of weights themselves. Accordingly,
we introduce the ℓ2-norm weight value for each input chan-
nel to mitigate the excessive focus on activation values. We
incorporate input channel normalization and redefine the
pruning metric as outlined below.

S
(ICN)
ij = |Wij | ·

1

||Wj ||2
· ||Xj ||2. (2)

Output Channel Normalization. Recent studies have
revealed that outliers tend to occur in specific channels
of activation (Yuan et al., 2023; Hooper et al., 2024; Yao
et al., 2022). We notice that the presence of outliers in
specific channels is closely related to the magnitude of
weights across different output channels. Therefore, for
these channels, it is critical to pay attention to the inher-
ent magnitude of the original weights. Building on these
insights, we propose output channel normalization, a tech-
nique that leverages the ℓ2-norm of weight values for each
output channel to alleviate the undue emphasis on activation
values. Especially when the ℓ2-norm of an output channel
is substantially large, our proposed pruning metric shifts

its focus more towards the magnitude of the weight val-
ues themselves. The pruning metric with output channel
normalization is as follows:

S
(OCN)
ij =

1

||Wi||2
· |Wij | · ||Xj ||2. (3)

It is important to note that during unstructured and N:M
pruning, we often prune each output channel by the same
sparsity ratio, rendering the consideration of output channel
normalization alone unproductive. Therefore, we need to
jointly consider input normalization and output channel
normalization to form the final magnitude normalization
metric S(MN)

ij = S
(ICN)
ij +S

(OCN)
ij . As illustrated in Figure

2a, adopting magnitude normalization helps to make the
distribution of pruning mask more balanced on different
channels, improving the performance of pruned LLMs.

3.2. Outlier Regularization

Our analysis in Section 2.3 has revealed that a small set
of outliers can significantly influence the norm value of a
channel. According to our evaluation, when using Wanda as
the pruning metric for LLaMA-7B (Touvron et al., 2023a),
a considerable number of channels were eliminated across
various layers (even exceeding 10% in specific layers). That
is to say, when adopting the typical norm value of each
channel as a part of the pruning metric, channels devoid of
outliers are susceptible to being inadvertently compromised
during the pruning process (Zhang et al., 2024), as illustrated
in the left part of Figure 2b.

The outlier values have been unduly emphasized in the prun-
ing process (Wei et al., 2023). It is necessary to reduce
the proportion of weights pruned from channels that do
not contain outliers. To address this, we propose a novel

4

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

-1.1

0.5

-2.2

0.8

1.3

-0.7

2.0

-0.6

0.7

-1.8

1.2

-2.8

6.9

-3.2

2.63 2.56 2.35 8.14

3.35

1.32

7.73

3.56

 𝑊𝑖𝑗

0.75

0.57

1.12

0.53

0.89

0.80

1.04

0.40

0.51

0.99

0.85

1.18

1.74

1.29

0.71 0.700.6 0.8 2.6

12.2

6.6

18.8

3.2

8.1

5.4 4.8

5.1 9.4 4.5 1.5

1.13

3.98

2.15

6.13

1.48

3.82

2.12 1.22

1.27 0.982.7 1.2

 𝑊𝑖𝑗 ⋅ 𝑋𝑗 2

 𝑋𝑗 2
 2.26 3.07 2.12 1.22 𝑋𝑗 2

𝜃

𝜃=0.5

5.6

11.2

4.1 5.6

4.2

10.4

2.48

4.97

1.84 1.81

3.43

8.45

(a) Magnitude Normalization (b) Outlier Regularization

 𝑊𝑗 2

 𝑊𝑖 2 1

 𝑊𝑖 2
 ⋅ |𝑊𝑖𝑗 | + |𝑊𝑖𝑗 | ⋅

1

 𝑊𝑗 2

Figure 2: Illustration of our proposed magnitude normalization and outlier regularization methods. The leftmost figure
represents the naı̈ve pruning approach, which prunes weights with smaller magnitudes to satisfy the 2:4 constraints. The
changed pruned positions are highlighted with red boxes. (a) magnitude normalization re-evaluates the importance of weight
magnitude by considering the effect of norm values across input and output channel dimensions. (b) Outlier regularization
suppresses the effect of larger activation norms and leads to different weight pruning masks.

strategy, outlier regularization, to reduce the impact of out-
liers. Outlier regularization aims to diminish the variability
in magnitude across different channels, thereby ensuring a
more equitable and balanced pruning strategy. Specifically,
when defining the pruning metric, we introduce a novel
pruning parameter θ, to serve as the power factor for the
norm value. Specifically, the pruning metric with outlier
regularization can be modified as:

S
(OR)
ij = |W |ij · ||Xj ||θ2. (4)

The proportion of unreasonable norm values generated by
outliers is not solely present in activation. As revealed in
previous work (Nrusimha et al., 2024), outliers also exist in
the distribution of weight values. Therefore, we apply out-
lier regularization not only to the norm of activation but also
to the per-channel norm values of the weights. Incorporating
the two methods previously discussed, we can formulate the
final pruning metric, BaWA, as follows:

Sij = (|Wij | ·
1

||Wj ||θ12︸ ︷︷ ︸
input channel normalization

+
1

||Wi||θ22
· |Wij |︸ ︷︷ ︸

output channel normalization

)·||Xj ||θ32 ,

(5)
where θ1, θ2, and θ3 represent the power factors for the input
channel, output channel, and activation norm, respectively.

3.3. Efficient Power Factor Search

Based on the proposed pruning metric in Equation (5), each
linear layer has three power factors, θ1, θ2, and θ3, to
be determined. As different layers often exhibit various
distributions, the optimal values for the three factors may
vary accordingly. As the number of layers increases, the
search space expands exponentially, resulting in an ineffi-
cient search process. We introduce the design of an efficient
search method from two perspectives: search target and

parameter optimization algorithm. According to our evalua-
tion, the proposed efficient search process can be completed
in about 16 minutes for LLaMA2-70B within a single GPU.

Search Target. A straightforward way to prevent the
search space from growing exponentially is to replace the
global search target with a local search target. Previous
works (Frantar & Alistarh, 2023; Nagel et al., 2020; Fran-
tar & Alistarh, 2022; Hassibi et al., 1993) optimize the
pruning loss layer-by-layer, reducing the search space from
CL to C · L. C represents the search complexity for one
layer and L is the number of linear layers in one model.
However, this approach may lack consideration of the in-
teraction between layers. Other works (Shao et al., 2023;
Li et al., 2020) employ the idea of block-wise optimization
to incorporate interaction between layers within a single
block. Each transformer block is structurally identical and
relatively independent, making it well-suited for holistic
optimization. Suppose a Transformer block contains m lin-
ear layer, the search space is Cm · L/m. We formulate the
search target as follows:

Θ∗ = argmin
Θ

L(Θ;X), (6)

L(Θ;X) = ∥RMSNorm (F(W;X))

−RMSNorm (F(W⊙M;X))∥22 , (7)
M = S > topk(S), (8)

where F represents the computation of a single transformer
block, which contains a self-attention and a feed-forward
network. W is the weights for m linear layers and X is
the input activation of the block. Θ consists of m sets of
(θ1, θ2, θ3). The pruning mask M is determined by our prun-
ing metric S in Equation (5), where weights with smaller
pruning metric are pruned by topk function. The symbol

5

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

⊙ represents the element-wise multiplication, and || · ||2 is
the ℓ2 norm function. Different blocks may exhibit varying
sensitivities to pruning, resulting in significant fluctuations
in pruning error across blocks. To address this issue, we
adopt the RMSNorm (Touvron et al., 2023a) after the out-
put feature O, containing n elements, to balance the error
disparities among different transformer blocks:

RMSNorm(O) =
oi

RMS(O)
,

where RMS(O) =

√√√√ 1

n

n∑
i=1

o2i .

(9)

We demonstrate the effectiveness of this error normalization
strategy in Appendix 4.5.

Parameter Optimization Algorithm. The reliance on em-
pirical or grid search strategies (Zhang et al., 2024; Lin et al.,
2023), while common, can become inefficient as the search
space expands. Gradient-based optimization is another typi-
cal strategy for parameter tuning, especially in the studies
of neural network compression (Li et al., 2020; Nagel et al.,
2020; Shao et al., 2023). Unfortunately, obtaining M in-
volves a non-differentiable topk function, which poses an
obstacle to computing the gradient of power factors.

Recent studies utilize a zeroth-order optimizer to enable non-
differentiable parameter tuning, while also conserving GPU
memory and improving efficiency (Malladi et al., 2024;
Spall, 1992). Motivated by this research, we use a zeroth-
order optimizer to estimate the corresponding gradient for
each power factor. Specifically, the gradients of Θ can be
described as:

∇̂L(Θ;X) =
L(Θ + ϵz;X)− L(Θ− ϵz;X)

2ϵ
z

≈ zz⊤∇L(Θ;X).

(10)

Here, L denotes the error loss in Equation 6, z is a sampled
data that satisfies z ∼ N (0, Id), and ϵ is the perturbation
scale. Id is an identity matrix with the dimension d = 3m,
as each layer has three power factors to be determined. Fol-
lowing setting in MeZO (Malladi et al., 2024), ϵ in our
experiments is set as 0.01. We perturb the power factors
at each step and obtain the corresponding gradients. We
then update them based on these gradients. It is often nec-
essary to repeat this iteration process times to efficiently
converge to the optimal solution. The details on updating
these parameters are shown in Algorithm 2 of Appendix E.

4. Experiments
4.1. Experimental Setup

Power Factor Search. Due to the presence of numerous
outliers in the activation distribution and only a minimal
number of outlier values in the weights, we empirically ini-
tialize the power factors for the weight norm as 1, while 0.5
for the activation norm. To optimize these pruning param-
eters, we utilize a typical SGD optimizer without weight
decay. The learning rate is set as 0.2. Following the setting
in Omniquant (Shao et al., 2023), we employ a calibration
dataset consisting of 128 randomly selected 2048-token seg-
ments from C4 (Raffel et al., 2020). We set the batch size
as 16 with only 2 epochs for the optimization process. We
further explore the different optimization settings in our eval-
uation. The whole optimization process can be completed in
about 16 minutes for LLaMA2-70B (Touvron et al., 2023b)
within a single GPU, which is less than that of SparseGPT.

Models and Evaluation. We evaluate BaWA on widely
adopted LLMs, including LLaMA (7B-65B) (Touvron et al.,
2023a), LLaMA2 (7B-70B), Mistral-7B (Jiang et al., 2023)
and Qwen2-72B (qwe, 2024). We measure the perfor-
mance of pruned models on seven zero-shot tasks. We
further evaluate the five-shot performance of MMLU in the
Appendix. For zero-shot evaluation, we use seven tasks
from EleutherAI LM Harness (Gao et al., 2021), including
HellaSwag (Clark et al., 2018), PIQA (Bisk et al., 2020),
ARC (Clark et al., 2018), BoolQ (Clark et al., 2019), RTE
and Winogrande. Following previous works on LLM com-
pression (Frantar & Alistarh, 2023; Xiao et al., 2023), we
also evaluate the perplexity on the WikiText-2 (Merity et al.,
2016).

Baselines. We compare BaWA with various methods in-
cluding (1) Magnitude-based pruning (Han et al., 2015b)
that discards weights based on their magnitudes. (2)
SparseGPT (Frantar & Alistarh, 2023) that utilizes second-
order Hessian inverses to ascertain unimportant weights.
(3) Wanda (Sun et al., 2023) that removes weights with
the smallest magnitudes multiplied by the corresponding
input activation norms. Moreover, we also compare BaWA
with diverse existing pruning metrics, as depicted in Table
1, that use the symbolic combination of weight, activation
and gradients to demonstrate the necessity of a balanced
distribution of weight and activation.

4.2. Language Modeling

4.2.1. BAWA ON VARYING SPARSITY.

We investigate the efficacy of BaWA when pruning LLMs
with varying pruning rates. Table 2 shows that BaWA per-
forms better than Wanda at different sparsity levels. Particu-
larly, this improvement becomes increasingly evident as the

6

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 2: WikiText-2 perplexity performance of BaWA and Wanda for different LLMs at varying sparsity rates.

LLaMA-7B LLaMA-13B LLaMA2-70B Qwen2-72B

Sparsity 60% 70% 80% 60% 70% 80% 60% 70% 80% 60% 70% 80%

Wanda 10.57 74.79 4.80e3 8.69 51.94 4.95e3 4.97 10.23 149.76 6.26 9.00 40.50
BaWA 10.00 57.84 3.95e3 7.67 33.83 4.10e3 4.56 8.71 125.71 6.03 8.17 31.89

sparsity level grows. For instance, we can achieve a reduc-
tion of 16.95 and 18.11 for LLaMA1-7B and 13B models
under 70% sparsity. For large models such as LLaMA2-
70B and Qwen2-72B, BaWA can still achieve a reduction
of 24.05 and 8.61 under 80% sparsity compared to Wanda.

Table 3: WikiText-2 perplexity of various pruned LLMs
for N:M sparsity. We compare BaWA with existing
prune-only methods, including Magnitude (Han et al.,
2015a), Wanda (Sun et al., 2023), GBLM (Das et al.,
2023), RIA (Zhang et al., 2024) and Pruner-Zero (Dong
et al.), as well as weight reconstruction methods, includ-
ing SparseGPT (Frantar & Alistarh, 2023), DSnoT (Zhang
et al., 2023) and ADMM-Iter (Boža, 2024). We further com-
bine BaWA with the SOTA weight reconstruction method
ADMM-Iter, denoted as BaWA+ADMM. In our evaluation,
bold denotes the best performance and underline denotes
the second best performance.

LLaMA2 Mistral Qwen2

Method Sparsity 13B 70B 7B 72B
Dense 0% 4.57 3.12 5.25 4.94
Magnitude 4:8 6.76 5.54 9.21 8.14
SparseGPT 4:8 6.60 4.59 8.07 5.97
Wanda 4:8 6.55 4.47 8.41 5.86
GBLM 4:8 6.54 4.49 8.31 5.85
RIA 4:8 6.29 4.37 8.27 5.81
Pruner-Zero 4:8 6.75 4.45 8.11 5.85
DSnoT 4:8 6.43 4.41 7.93 5.79
ADMM-Iter 4:8 6.37 4.35 7.79 5.77
BaWA 4:8 6.16 4.32 7.54 5.74
BaWA + ADMM 4:8 6.07 4.24 7.36 5.65
Magnitude 2:4 8.33 6.33 13.57 8.15
SparseGPT 2:4 8.32 5.40 10.52 6.51
Wanda 2:4 8.27 5.16 12.37 6.31
GBLM 2:4 8.80 5.47 10.97 6.39
RIA 2:4 7.77 5.11 10.51 6.28
Pruner-Zero 2:4 7.41 4.81 10.49 6.33
DSnoT 2:4 8.09 5.11 10.24 6.26
ADMM-Iter 2:4 7.78 5.19 10.29 6.21
BaWA 2:4 7.13 4.84 9.88 6.14
BaWA + ADMM 2:4 7.04 4.71 9.53 6.01

4.2.2. PERPLEXITY WITH N:M SPARSITY.

As presented in Table 3, we compare the perplexity of var-
ious pruned LLMs with existing LLM pruning methods.
As one can notice, BaWA consistently achieves better per-
formance when compared with the other strong baselines
without introducing weight reconstruction. Specifically, em-
ploying BaWA as the pruning metric achieves up to a 1.23
reduction in perplexity in the 2:4 sparsity (LLaMA2-13B)
relative to Wanda. This result suggests that exact and ef-
fective sparse sub-networks exist for LLMs, and finds the
appropriate metric is non-trivial but important for LLM prun-
ing. Furthermore, BaWA can also combine with existing
weight reconstruction pruning methods. As our experimen-
tal results depict, BaWA + ADMM can achieve the best
performance. We also present more evaluations on diverse
LLMs and sparse patterns in Appendix B.

4.3. Zero-Shot Tasks

We further compare BaWA with baselines on 7 typical zero-
shot tasks. As shown in Table 10, we present the mean
zero-shot accuracy of the pruned models within the LLaMA,
LLaMA2 families, Mistral-7B and Qwen2-72B (the detailed
performance of each task can be found in Table 11 and Table
12). We implement the lm-eval-harness (Gao et al., 2021)
for all zero-shot tasks, with the report including both the
accuracy results on each benchmark and the overall average
accuracy. As it illustrates, BaWA consistently outperforms
Wanda. For LLaMA2-70B, the pruned model under 50%
sparsity achieves better accuracy than the original dense
model. In certain cases, SparseGPT achieves higher accu-
racy than our proposed BaWA, suggesting that weight re-
construction can further enhance the performance of pruned
LLMs. Fortunately, our proposed pruning metric method
can seamlessly integrate with novel weight reconstruction
techniques (Zhang et al., 2023; Kwon et al., 2022), which
will be detailed in Appendix F.

4.4. Ablation Study

In this paper, we introduce multiple strategies to achieve a
balanced orchestration of weight and activation. To verify
the efficacy of each strategy, we conducted a comprehensive
ablation study, as shown in Table 5. We evaluate the im-
pact of magnitude normalization and outlier regularization

7

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 4: Mean zero-shot accuracies (%) of pruned LLaMA, LLaMA2, Mistral-7B and Qwen2-72B models on 7 zero-shot
tasks. BaWA performs competitively against the prior best methods SparseGPT and Wanda.

LLaMA LLaMA2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B Mistral-7B Qwen2-72B
Dense - 0% 59.99 62.59 65.38 66.97 59.71 63.03 67.08 64.30 69.82
Magnitude ✗ 50% 46.94 47.61 53.83 62.74 51.14 52.77 60.93 55.87 60.66
SparseGPT ✓ 50% 54.94 58.61 63.09 66.30 56.24 60.57 67.28 59.34 68.11
Wanda ✗ 50% 55.13 59.33 63.60 66.67 56.24 60.04 67.03 58.93 66.41
BaWA ✗ 50% 55.27 59.97 64.12 67.21 57.02 60.67 67.81 60.17 69.11

Table 5: Ablation study on our proposed methods. We propose several strategies to improve the pruning mask metric
for LLMs. We evaluate the performance improvements provided by these strategies, respectively. Only adopting Output
Channel Normalization does not alter the pruning position, so we don’t present its experimental results.

LLaMA2 & Qwen2 (50%) LLaMA2 & Qwen2 (4 : 8) LLaMA2 & Qwen2 (2 : 4)

Method 13B 70B 72B 13B 70B 72B 13B 70B 72B
Wanda 5.56 3.98 5.48 6.55 4.47 5.86 8.27 5.16 6.31
Input Channel Normalization 5.47 3.89 5.48 6.38 4.42 5.84 7.93 5.13 6.30
Magnitude Normalization 5.45 3.88 5.44 6.27 4.41 5.81 7.74 5.04 6.27
Outlier Regularization (0.5) 5.46 3.90 5.46 6.20 4.39 5.77 7.54 4.95 6.21
BaWA w/o Automatic Search 5.45 3.88 5.43 6.27 4.41 5.80 7.74 5.05 6.23
BaWA w/ Automatic Search 5.42 3.84 5.41 6.16 4.32 5.74 7.13 4.84 6.14

on LLaMA2-13B, LLaMA2-70B and Qwen2-72B, respec-
tively. The power factor is set as 0.5 for the outlier regular-
ization. Compared to Wanda, both magnitude normalization
and outlier regularization reduce perplexity to some extent.
Specifically, magnitude normalization has a greater impact
on performance improvement in unstructured pruning, while
outlier regularization has a more significant effect on per-
plexity under N:M sparsity conditions. It is noteworthy that
even without careful search, our BaWA method can easily
outperform Wanda. Furthermore, automating the search for
the power factors Θ consistently reduces model perplexity.
As presented in Appendix C, different transformer blocks,
different linear layers, and different sparse patterns prefer
quite different power factors. It is necessary to find the
appropriate pruning parameters for every linear layer.

Power Factor Analysis. We further analyze how different
power factor settings affect the pruning performance. As
shown in Table 6, different power factor settings exhibit
significant sensitivity (±24.1% PPL variance). Additionally,
the optimized power factor setting effectively reduces per-
plexity by 12.3% compared to the best-fixed scale (θ=0.5).

4.5. Effectiveness Analysis

Roubustness Analysis. We analyze the impact of sample
size on the performance of the pruned model for LLaMA2-
13B. As depicted in Figure 3, it is evident that BaWA is
almost insensitive to the number of samples. Even with

1 2 4 8 16 32 64 128 256 512

Calibration Sample

5.50

5.75

6.00

6.25

6.50

6.75

7.00

7.25

Pr
ep

le
xi

ty

SparseGPT
Wanda
BaWA

Figure 3: The robustness
analysis of pruning methods
on calibration samples.

2 3 4 5 6 7 8 9 10

Epochs

6.21

6.22

6.23

6.24

6.25

6.26

6.27

Pr
ep

le
xi

ty

lr=0.01
lr=0.05
lr=0.2
lr=1.0

Figure 4: Effect analysis on
learning rate (lr) and epochs
for parameter optimization.

only one sample, satisfactory results could be achieved.
The remarkable robustness exhibited by BaWA primarily
stems from the outlier regularization strategy we proposed,
which effectively suppresses the impact of anomalies in the
sampling process on the pruning results. We further analyze
the performance variance when adopting different random
seeds, as illustrated in Appendix D.

Hyper-Parameter Exploration We also compare results
under different hyper-parameter conditions to investigate
the impact of varying hyper-parameters (learning rate and
epochs) on the search outcomes during the parameter op-
timization process. As shown in Figure 4, we notice that
when the learning rate is small (≤ 0.2), perplexity decreases
as the number of epochs increases. However, a minimal
learning rate leads to slow convergence, significantly im-

8

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 6: Power Factor Analysis.

Scaling Strategy θ1 (Input) θ2 (Output) θb (Activation) PPL ∆ vs. Best Fixed (Fixed at 0.5)

Fixed Scales θ = 0.1 0.1 0.1 0.1 8.92 +24.1%
Fixed Scales θ = 0.5 0.5 0.5 0.5 7.18 +0% (baseline)
Fixed Scales θ = 1.0 1.0 1.0 1.0 7.53 +4.9%
BaWA Optimized 0.42 0.51 0.38 6.30 -12.3%

proving the search cost. Conversely, a larger learning rate
makes maintaining a sustained model perplexity reduction
with increased epochs difficult. Therefore, in this paper, we
set the learning rate at 0.2 and use only epoch = 2 for pa-
rameter search. While larger epochs could further enhance
the performance of the pruned LLM, the additional search
cost makes such an attempt unnecessary.

Table 7: Time overhead with BaWA for pruning LLaMA-2
model family. The performance is evaluated on a single
NVIDIA A100 40GB GPU.

Method 7B 13B 70B
Wanda 0.4 s 0.8s 2.2 s
SparseGPT 3.1 min 5.2 min 22.3 min
BaWA w/o Search 0.5 s 0.8 s 2.4 s
BaWA w/ Search 1.9 min 3.7 min 16.2 min

Pruning Overhead. We further analyze the computing cost
of BaWA. Following Wanda (Sun et al., 2023), we report
the time of total parameter optimization and pruning. Table
7 shows the quantitative wall-clock overhead evaluated on
a single NVIDIA A100 GPU. We have evaluated the opti-
mization overhead of BaWA on different models, both with
and without parameter search. As shown in Table 7, one
can obtain a high-performance pruned LLM within seconds.
As depicted in Section 4.4, BaWA can easily outperform
SOTA methods even without automatic optimization. Cer-
tainly, searching for suitable pruning parameters requires
several minutes, which costs less optimization time than
SparseGPT. For instance, approximately 16 minutes are
needed on a single A100 GPU to search for appropriate pa-
rameters for the LLaMA-2-70B model. Therefore, users can
adaptively adjust the strategy for parameter search based on
their computational resources with limited searching costs.

Sensitivity Analysis on Loss Function. Figure 5 compares
the loss across different layers for Wanda and BaWA on
LLaMA2-13B. The loss value is evaluated according to
Equation (6). It reveals that the initial layers exhibit smaller
losses, indicating lower sensitivity and a reduced need for
meticulous selection of pruning metrics. Conversely, the
later layers demonstrate significant loss differentiation based
on the choice of pruning strategies. Similarly, this suggests
that using lower learning rates for parameter search in the

0 5 10 15 20 25 30 35 40
Layers

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

Wanda
BaWA

Figure 5: The loss value for different layers

initial layers can further reduce the loss in BaWA. Therefore,
by finely adjusting the hyper-parameters during the search
process, we hope to achieve better performance than the
results reported in this paper.

5. Conclusion
In this work, we propose an improved pruning mask selec-
tion strategy for pruning LLMs. Our insight is that existing
works ignore the imbalanced distribution in LLMs. To this
end, we propose a novel algorithm, BaWA, which introduces
magnitude normalization and outlier regularization to alle-
viate the impact of imbalanced distributions in both weight
and activation. By introducing several learnable pruning pa-
rameters, BaWA typically discovers more effective pruning
masks and enhances the existing pruning method. As the
introduced parameters are non-differentiable, we carefully
employ a forward-forward optimization strategy to find the
solution efficiently. It is worth noting that the optimiza-
tion process is highly efficient, requiring only 2 minutes for
LLaMA2-7B and 16 minutes for LLaMA2-70B, for exam-
ple. Experimental results demonstrate that BaWA is efficient
and superior to existing methods across various language
benchmarks under the same sparse ratio.

9

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Acknowledgments
We sincerely thank the anonymous reviewers for their in-
sightful suggestions. Furthermore, we thank Lu Tian and
Emad Barsoum from AMD for valuable discussions on the
proposed metric design. This work was partially supported
by the National Key R&D Program of China (Grant No.
2023YFB4404400) and the National Natural Science Foun-
dation of China (Grant No. 62222411). Ying Wang is the
corresponding author (wangying2009@ict.ac.cn).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Qwen2 technical report. 2024.

An, Y., Zhao, X., Yu, T., Tang, M., and Wang, J. Fluctuation-
based adaptive structured pruning for large language mod-
els. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Bisk, Y., Zellers, R., Gao, J., Choi, Y., et al. Piqa: Reasoning
about physical commonsense in natural language. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Boža, V. Fast and optimal weight update for pruned large
language models. arXiv preprint arXiv:2401.02938,
2024.

Clark, C., Lee, K., Chang, M.-W., Kwiatkowski, T., Collins,
M., and Toutanova, K. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A.,
Schoenick, C., and Tafjord, O. Think you have solved
question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Das, R. J., Ma, L., and Shen, Z. Beyond size: How gradients
shape pruning decisions in large language models. arXiv
preprint arXiv:2311.04902, 2023.

Dettmers, T., Lewis, M., Belkada, Y., and Zettlemoyer, L.
Gpt3. int8 (): 8-bit matrix multiplication for transformers
at scale. Advances in Neural Information Processing
Systems, 35:30318–30332, 2022.

Dong, P., Li, L., Tang, Z., Liu, X., Pan, X., Wang, Q., and
Chu, X. Pruner-zero: Evolving symbolic pruning metric

from scratch for large language models. In Forty-first
International Conference on Machine Learning.

Fang, G., Yin, H., Muralidharan, S., Heinrich, G., Pool, J.,
Kautz, J., Molchanov, P., and Wang, X. Maskllm: Learn-
able semi-structured sparsity for large language models.
In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems.

Frantar, E. and Alistarh, D. Optimal brain compression:
A framework for accurate post-training quantization and
pruning. Advances in Neural Information Processing
Systems, 35:4475–4488, 2022.

Frantar, E. and Alistarh, D. Sparsegpt: Massive language
models can be accurately pruned in one-shot. In Inter-
national Conference on Machine Learning, pp. 10323–
10337. PMLR, 2023.

Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. Gptq:
Accurate post-training quantization for generative pre-
trained transformers. In The Eleventh International Con-
ference on Learning Representations, 2023.

Gao, L., Tow, J., Biderman, S., Black, S., DiPofi, A., Foster,
C., Golding, L., Hsu, J., McDonell, K., Muennighoff,
N., et al. A framework for few-shot language model
evaluation. Version v0. 0.1. Sept, pp. 8, 2021.

Han, S., Mao, H., and Dally, W. J. Deep compres-
sion: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015a.

Han, S., Pool, J., Tran, J., and Dally, W. Learning both
weights and connections for efficient neural network.
Advances in neural information processing systems, 28,
2015b.

Hassibi, B., Stork, D. G., and Wolff, G. J. Optimal brain
surgeon and general network pruning. In IEEE interna-
tional conference on neural networks, pp. 293–299. IEEE,
1993.

Hendrycks, D., Burns, C., Basart, S., Critch, A., Li, J., Song,
D., and Steinhardt, J. Aligning ai with shared human
values. Proceedings of the International Conference on
Learning Representations (ICLR), 2021a.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021b.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

10

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Kwon, W., Kim, S., Mahoney, M. W., Hassoun, J., Keutzer,
K., and Gholami, A. A fast post-training pruning frame-
work for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

Li, Y., Gong, R., Tan, X., Yang, Y., Hu, P., Zhang, Q., Yu,
F., Wang, W., and Gu, S. Brecq: Pushing the limit of
post-training quantization by block reconstruction. In
International Conference on Learning Representations,
2020.

Li, Y., Niu, L., Zhang, X., Liu, K., Zhu, J., and Kang, Z.
E-sparse: Boosting the large language model inference
through entropy-based n: M sparsity. arXiv preprint
arXiv:2310.15929, 2023a.

Li, Y., Yu, Y., Zhang, Q., Liang, C., He, P., Chen, W., and
Zhao, T. Losparse: Structured compression of large lan-
guage models based on low-rank and sparse approxima-
tion. In International Conference on Machine Learning,
pp. 20336–20350. PMLR, 2023b.

Lin, J., Tang, J., Tang, H., Yang, S., Dang, X., and
Han, S. Awq: Activation-aware weight quantization
for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Ling, G., Wang, Z., and Liu, Q. Slimgpt: Layer-wise
structured pruning for large language models. Advances
in Neural Information Processing Systems, 37:107112–
107137, 2024.

Liu, L., Xu, Z., He, Y., Wang, Y., Li, H., Li, X., and Han, Y.
Drift: Leveraging distribution-based dynamic precision
quantization for efficient deep neural network acceler-
ation. In Proceedings of the 61st ACM/IEEE Design
Automation Conference, pp. 1–6, 2024.

Liu, L., Cheng, L., Ren, H., Xu, Z., Pan, Y., Wang, M., Li,
X., Han, Y., and Wang, Y. Comet: Towards practical
w4a4kv4 llms serving. In Proceedings of the 30th ACM
International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume
2, pp. 131–146, 2025a.

Liu, L., Zhao, S., Li, B., Ren, H., Xu, Z., Wang, M., Li, X.,
Han, Y., and Wang, Y. Make llm inference affordable
to everyone: Augmenting gpu memory with ndp-dimm.
In 2025 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pp. 1751–1765.
IEEE, 2025b.

Liu, S., Chen, T., Chen, X., Shen, L., Mocanu, D. C., Wang,
Z., and Pechenizkiy, M. The unreasonable effectiveness
of random pruning: Return of the most naive baseline for
sparse training. In International Conference on Learning
Representations, 2021.

Lu, X., Zhou, A., Xu, Y., Zhang, R., Gao, P., and Li, H.
Spp: sparsity-preserved parameter-efficient fine-tuning
for large language models. In Proceedings of the 41st In-
ternational Conference on Machine Learning, pp. 33254–
33269, 2024.

Ma, D., Chen, L., Wang, P., Xu, H., Li, H., Sun, L., Zhu,
S., Fan, S., and Yu, K. Sparsity-accelerated training for
large language models. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 14696–14707,
2024.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Malladi, S., Gao, T., Nichani, E., Damian, A., Lee, J. D.,
Chen, D., and Arora, S. Fine-tuning language models
with just forward passes. Advances in Neural Information
Processing Systems, 36, 2024.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. In International Conference on
Learning Representations, 2016.

Mihaylov, T., Clark, P., Khot, T., and Sabharwal, A. Can a
suit of armor conduct electricity? a new dataset for open
book question answering. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 2381–2391, 2018.

Nagel, M., Amjad, R. A., Van Baalen, M., Louizos, C.,
and Blankevoort, T. Up or down? adaptive rounding for
post-training quantization. In International Conference
on Machine Learning, pp. 7197–7206. PMLR, 2020.

Nrusimha, A., Mishra, M., Wang, N., Alistarh, D., Panda,
R., and Kim, Y. Mitigating the impact of outlier channels
for language model quantization with activation regular-
ization. arXiv preprint arXiv:2404.03605, 2024.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21
(140):1–67, 2020.

Sakaguchi, K., Bras, R. L., Bhagavatula, C., and Choi, Y.
Winogrande: An adversarial winograd schema challenge
at scale. Communications of the ACM, 64(9):99–106,
2021.

11

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Shao, W., Chen, M., Zhang, Z., Xu, P., Zhao, L., Li, Z.,
Zhang, K., Gao, P., Qiao, Y., and Luo, P. Omniquant:
Omnidirectionally calibrated quantization for large lan-
guage models. In The Twelfth International Conference
on Learning Representations, 2023.

Spall, J. C. Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. IEEE
transactions on automatic control, 37(3):332–341, 1992.

Sreenivas, S. T., Muralidharan, S., Joshi, R., Chochowski,
M., Mahabaleshwarkar, A. S., Shen, G., Zeng, J., Chen,
Z., Suhara, Y., Diao, S., et al. Llm pruning and distilla-
tion in practice: The minitron approach. arXiv preprint
arXiv:2408.11796, 2024.

Sun, M., Liu, Z., Bair, A., and Kolter, J. Z. A simple and
effective pruning approach for large language models.
In The Twelfth International Conference on Learning
Representations, 2023.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp.
353–355, 2018.

Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., and
Liu, X. Outlier suppression+: Accurate quantization of
large language models by equivalent and effective shifting
and scaling. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp.
1648–1665, 2023.

Xia, H., Zheng, Z., Li, Y., Zhuang, D., Zhou, Z., Qiu, X.,
Li, Y., Lin, W., and Song, S. L. Flash-llm: Enabling
cost-effective and highly-efficient large generative model
inference with unstructured sparsity. Proceedings of the
VLDB Endowment, 17(2):211–224, 2023.

Xia, M., Gao, T., Zeng, Z., and Chen, D. Sheared llama:
Accelerating language model pre-training via structured
pruning. In The Twelfth International Conference on
Learning Representations.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Yao, Z., Yazdani Aminabadi, R., Zhang, M., Wu, X., Li,
C., and He, Y. Zeroquant: Efficient and affordable post-
training quantization for large-scale transformers. Ad-
vances in Neural Information Processing Systems, 35:
27168–27183, 2022.

Yin, L., Wu, Y., Zhang, Z., Hsieh, C.-Y., Wang, Y., Jia, Y.,
Pechenizkiy, M., Liang, Y., Wang, Z., and Liu, S. Out-
lier weighed layerwise sparsity (owl): A missing secret
sauce for pruning llms to high sparsity. In Conference on
Parsimony and Learning (Recent Spotlight Track), 2023.

Yuan, Z., Niu, L., Liu, J., Liu, W., Wang, X., Shang, Y., Sun,
G., Wu, Q., Wu, J., and Wu, B. Rptq: Reorder-based post-
training quantization for large language models. arXiv
preprint arXiv:2304.01089, 2023.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. Hellaswag: Can a machine really finish your sentence?
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 4791–4800,
2019.

Zhang, Y., Zhao, L., Lin, M., Yunyun, S., Yao, Y., Han, X.,
Tanner, J., Liu, S., and Ji, R. Dynamic sparse no training:
Training-free fine-tuning for sparse llms. In The Twelfth
International Conference on Learning Representations,
2023.

Zhang, Y., Bai, H., Lin, H., Zhao, J., Hou, L., and Can-
nistraci, C. V. Plug-and-play: An efficient post-training
pruning method for large language models. In The Twelfth
International Conference on Learning Representations,
2024.

12

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

A. Hardware Efficiency

Table 8: GEMM Speedup with 2:4 sparsity for one transformer block of LLaMA-65B. The performance is evaluated on a
single NVIDIA A100 40GB GPU.

Layer Dense GEMM Sparse GEMM Speedup
Q/K/V 0.270 ms 0.163 ms 1.66×
Att Out 0.097 ms 0.072 ms 1.35×
Up/Gate 0.487 ms 0.285 ms 1.71×
Down 0.247 ms 0.176 ms 1.40×

To illustrate the enhanced efficiency of pruned LLMs, we present the actual speedup on different operators for LLaMA-65B
on a single A100 40GB GPU. Due to the lack of support for the 4:8 sparsity pattern in NVIDIA Ampere architecture, we
only measure the latency of GEMM with 2:4 sparsity. As shown in Table 8, the model pruned by BaWA achieves 1.58×
speedup over dense FP16 GEMM baseline for the token generation stage. It is noteworthy that pruned LLMs can achieve
acceleration not only on GPUs but also on modern CPUs such as AMD Ryzen 7 PRO 5850U.

B. Detailed Results

Table 9: WikiText perplexity of various pruned LLMs. BaWA performs competitively against prior best methods SparseGPT
and Wanda, specifically for N:M sparsity.

LLaMA LLaMA2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B Mistral-7B Qwen2-72B
Dense - 0% 5.68 5.09 4.77 3.56 5.12 4.57 3.12 5.25 4.94
Magnitude ✗ 50% 17.29 20.21 7.54 5.90 14.89 6.37 4.98 7.87 7.84
SparseGPT ✓ 50% 7.22 6.21 5.31 4.57 6.51 5.63 3.98 6.46 5.51
Wanda ✗ 50% 7.26 6.15 5.24 4.57 6.42 5.56 3.98 6.54 5.48
BaWA ✗ 50% 7.08 6.01 5.06 4.40 6.23 5.37 3.84 6.39 5.41
Magnitude ✗ 4:8 16.84 13.84 7.62 6.36 16.48 6.76 5.54 9.21 8.14
SparseGPT ✓ 4:8 8.61 7.40 6.17 5.38 8.12 6.60 4.59 8.07 5.97
Wanda ✗ 4:8 8.57 7.40 5.97 5.30 7.97 6.55 4.47 8.41 5.86
BaWA ✗ 4:8 8.08 6.89 5.62 4.94 7.36 6.16 4.32 7.54 5.74
Magnitude ✗ 2:4 42.13 18.37 9.10 7.11 54.59 8.33 6.33 13.57 8.15
SparseGPT ✓ 2:4 11.00 9.11 7.16 6.28 10.17 8.32 5.40 10.52 6.51
Wanda ✗ 2:4 11.53 9.58 6.90 6.25 11.02 8.27 5.16 12.37 6.31
BaWA ✗ 2:4 10.32 7.94 6.37 5.61 9.93 7.13 4.84 9.88 6.14

Results on WikiText2. Table 9 shows the WikiText2 perplexity on various LLMs with different sparsity configurations,
including 50% sparsity, 2:4 and 4:8 sparse patterns. As one can notice, BaWA always achieves the best performance on
diverse LLMs and sparse patterns.

Results on Zero-Shot Tasks. For zero-shot results in Section 4.3, the seven evaluated zero-shot tasks are: BoolQ (Clark
et al., 2019), RTE (Wang et al., 2018), HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Easy
and Challenge (Clark et al., 2018), and OpenbookQA (Mihaylov et al., 2018). In this section, we also present the mean
zero-shot accuracies of pruned LLMs under N:M sparsity, as shown in Table 10. To offer a more nuanced demonstration
of the advantages of BaWA across various datasets, we present the performance evaluations for each zero-shot task of
LLaMA2-13B and Mistral-7B, as shown in Table 11 and 12. Compared to Wanda and SparseGPT, BaWA demonstrates
more consistent performance across various tasks, indicating its robustness. Additionally, BaWA shows high accuracy in the
ARC tests, suggesting its strong adaptability to the task. Overall, utilizing BaWA can effectively enhance the precision of
pruned LLMs in zero-shot tasks.

Results on MMLU Validation. To further validate the adaptability of BaWA across diverse datasets, we conduct additional

13

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 10: Mean zero-shot accuracies (%) of pruned LLaMA, LLaMA2, Mistral-7B and Qwen2-72B models on 7 zero-shot
tasks. BaWA performs competitively against the prior best methods SparseGPT and Wanda.

LLaMA LLaMA2

Method Weight Update Sparsity 7B 13B 30B 65B 7B 13B 70B Mistral-7B Qwen2-72B
Dense - 0% 59.99 62.59 65.38 66.97 59.71 63.03 67.08 64.30 69.82
Magnitude ✗ 50% 46.94 47.61 53.83 62.74 51.14 52.77 60.93 55.87 60.66
SparseGPT ✓ 50% 54.94 58.61 63.09 66.30 56.24 60.57 67.28 59.34 68.11
Wanda ✗ 50% 55.13 59.33 63.60 66.67 56.24 60.04 67.03 58.93 66.41
BaWA ✗ 50% 55.27 59.97 64.12 67.21 57.02 60.67 67.81 60.17 69.11
Magnitude ✗ 4:8 46.03 50.53 53.53 62.17 50.64 52.89 60.28 54.25 60.15
SparseGPT ✓ 4:8 52.80 55.99 60.79 64.87 53.80 59.18 65.84 56.51 66.42
Wanda ✗ 4:8 52.76 56.09 61.00 64.97 52.49 58.00 66.06 55.31 66.76
BaWA ✗ 4:8 53.12 56.33 61.62 65.64 53.65 58.38 66.31 57.24 67.34
Magnitude ✗ 2:4 44.73 48.00 53.16 61.28 45.58 49.20 59.95 49.68 60.39
SparseGPT ✓ 2:4 50.60 53.22 58.91 62.57 50.94 54.36 63.89 50.88 66.57
Wanda ✗ 2:4 48.53 52.30 59.21 62.84 48.75 53.19 64.14 50.15 66.16
BaWA ✗ 2:4 49.91 53.33 59.87 62.90 49.98 54.61 65.03 53.23 67.29

Table 11: Detailed analysis on zero-shot tasks for LLaMA2-13B.

Method Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg
Dense 0% 80.61 65.34 60.00 72.37 79.41 48.37 35.20 63.04
Magnitude 50% 57.71 55.6 54.43 65.35 70.58 38.31 27.40 52.77
SparseGPT 50% 81.38 66.06 56.09 71.51 75.20 41.72 32.00 60.57
Wanda 50% 81.28 60.65 57.05 70.64 75.76 42.75 32.20 60.04
BaWA 50% 80.76 57.76 56.87 70.72 76.56 44.62 32.00 60.67
Magnitude 4:8 63.39 57.76 53.97 64.72 68.52 35.84 26.00 52.89
SparseGPT 4:8 80.58 64.62 51.94 71.98 73.70 40.87 30.60 59.18
Wanda 4:8 79.60 60.06 52.32 69.53 73.95 40.36 30.20 58.00
BaWA 4:8 80.12 62.45 53.58 68.35 74.07 38.91 31.20 58.38
Magnitude 2:4 65.81 53.79 50.12 62.12 57.53 31.83 23.20 49.20
SparseGPT 2:4 77.89 55.26 46.97 69.40 69.37 35.03 26.60 54.36
Wanda 2:4 75.26 56.68 46.43 66.77 68.35 34.47 24.4 53.19
BaWA 2:4 78.26 56.32 48.5 66.93 70.79 35.49 26.00 54.61

tests on the MMLU dataset (Hendrycks et al., 2021a;b). As shown in Table 13, we compared the performance of various
methods on the MMLU dataset. Specifically, we have evaluated the 5-shot performance on the LLaMA-30B model, with
unstructured 50%, 4:8 and 2:4 sparsity. The experimental results indicate that, on average, BaWA achieves higher accuracy
than existing SOTA methods. This further confirms the effectiveness of BaWA, and effectively demonstrates that pruned
models are task-agnostic and generalizable to any downstream task.

C. Visualization
We have selected several different layers from LLaMA2-7B and analyzed the power factor parameters obtained through
BaWA, as detailed in Table 14, 15 and 16. As one can notice in Table 14, the parameters for the weights were consistently
close to 1, which is attributed to the absence of outliers in the weight distribution, thus negating the need for a lower
power factor to suppress outliers. Additionally, we can note that the parameters for transformer block 2 are closer to 0.5
compared to blocks 15 and 28, which is due to the lower loss in the earlier layers requiring less significant parameter
adjustments, which satisfies our observation in Figure 5. Similarly, we have also observed that different operators exhibit
distinct tendencies in the selection of activation power factors. For instance, the parameter for Mlp DOWN is notably higher
than other values, which substantiates that the proportion of activation outliers in Mlp DOWN is lower.

14

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 12: Detailed analysis on zero-shot tasks for Mistral-7B.

Method Sparsity BoolQ RTE HellaSwag WinoGrande ARC-e ARC-c OBQA Avg
Dense 0% 83.43 67.51 61.25 73.80 80.83 50.43 32.80 64.30
Magnitude 50% 71.13 55.96 56.63 66.30 72.60 41.30 27.20 55.87
SparseGPT 50% 83.06 58.12 55.82 72.06 75.59 42.75 28.00 59.34
Wanda 50% 82.91 58.12 55.18 71.27 74.66 43.17 27.20 58.93
BaWA 50% 83.21 63.54 56.17 70.56 75.42 43.26 29.00 60.17
Magnitude 4:8 74.37 56.68 53.72 65.11 68.69 36.95 24.20 54.25
SparseGPT 4:8 79.11 60.65 51.64 68.67 71.93 37.97 25.60 56.51
Wanda 4:8 75.32 63.90 50.32 67.80 70.41 35.84 23.60 55.31
BaWA 4:8 81.25 65.70 52.36 68.27 71.80 36.69 24.60 57.24
Magnitude 2:4 62.65 55.60 48.74 61.88 66.75 31.14 21.00 49.68
SparseGPT 2:4 71.41 54.15 46.61 64.48 66.62 32.08 20.80 50.88
Wanda 2:4 67.80 57.76 44.61 63.93 64.98 30.97 21.00 50.15
BaWA 2:4 74.16 60.65 46.78 66.61 67.00 33.02 24.40 53.23

Table 13: MMLU performance of LLaMA-30B with unstructured 50%, 4:8 and 2:4 sparsity.

Method Sparsity Humanities Other Social Sciences Stem Avg
Dense 0% 56.00 64.31 67.47 47.00 58.33
Magnitude 50% 38.02 47.12 47.22 35.49 41.48
Wanda 50% 48.65 59.16 59.57 42.63 52.02
SparseGPT 50% 50.69 57.68 59.18 41.58 52.05
BaWA 50% 49.27 58.77 61.16 43.64 52.71
Magnitude 4:8 27.61 32.89 33.77 31.27 30.95
Wanda 4:8 43.57 54.20 53.33 40.72 47.42
SparseGPT 4:8 44.82 54.29 54.18 39.15 47.70
BaWA 4:8 44.06 54.23 55.05 39.77 47.76
Magnitude 2:4 28.84 34.86 35.72 31.11 32.19
Wanda 2:4 38.30 43.39 45.95 36.28 40.65
SparseGPT 2:4 39.68 44.60 46.52 36.23 41.49
BaWA 2:4 41.82 44.35 47.25 36.54 41.82

Table 14: Visualization of the parameters acquired for different transformer blocks on LLaMA2-7B with unstructured 50%
sparsity.

Transformer Block-2 Transformer Block-15 Transformer Block-28

Operator θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Attn Q 1.00 1.00 0.43 1.00 1.00 0.32 0.99 1.00 0.38
Attn K 0.98 0.97 0.44 0.98 0.99 0.38 0.98 1.00 0.34
Attn V 0.97 1.12 0.37 1.02 1.06 0.35 1.02 1.08 0.33
Attn O 1.01 0.97 0.43 1.02 0.99 0.37 1.00 0.98 0.35
Mlp GATE 0.98 1.01 0.43 1.02 0.99 0.37 1.00 0.98 0.35
Mlp UP 0.95 0.95 0.32 1.00 1.00 0.35 1.01 0.96 0.38
Mlp DOWN 1.04 1.06 0.54 1.00 0.99 0.48 0.99 0.98 0.45

15

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 15: Visualization of the parameters acquired for different transformer blocks on LLaMA2-7B with semi-structured 4:8
sparsity.

Transformer Block-2 Transformer Block-15 Transformer Block-28

Operator θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Attn Q 0.52 0.48 0.41 0.54 0.43 0.30 0.52 0.48 0.36
Attn K 0.49 0.41 0.45 0.56 0.61 0.37 0.48 0.49 0.32
Attn V 0.53 0.59 0.36 0.52 0.49 0.38 0.54 0.58 0.32
Attn O 0.59 0.51 0.41 0.53 0.52 0.36 0.52 0.72 0.34
Mlp GATE 0.55 0.53 0.42 0.43 0.52 0.36 0.48 0.62 0.36
Mlp UP 0.51 0.49 0.29 0.49 0.56 0.38 0.49 0.55 0.39
Mlp DOWN 0.41 0.54 0.51 0.52 0.58 0.41 0.56 0.61 0.42

Table 16: Visualization of the parameters acquired for different transformer blocks on LLaMA2-7B with semi-structured 2:4
sparsity.

Transformer Block-2 Transformer Block-15 Transformer Block-28

Operator θ1 θ2 θ3 θ1 θ2 θ3 θ1 θ2 θ3

Attn Q 0.42 0.45 0.41 0.34 0.58 0.25 0.48 0.41 0.34
Attn K 0.41 0.46 0.40 0.51 0.56 0.32 0.45 0.44 0.32
Attn V 0.51 0.51 0.36 0.43 0.62 0.31 0.51 0.50 0.31
Attn O 0.53 0.58 0.40 0.42 0.52 0.34 0.47 0.51 0.32
Mlp GATE 0.51 0.51 0.38 0.46 0.53 0.36 0.42 0.51 0.25
Mlp UP 0.42 0.46 0.28 0.44 0.54 0.32 0.43 0.51 0.31
Mlp DOWN 0.39 0.51 0.50 0.48 0.51 0.40 0.51 0.52 0.38

We then compare the power factors acquired from different sparsity patterns, as indicated in Table 14, 15, and 16. It is
noteworthy that when we adopt semi-structured N:M sparsity, the power factors for weight can be greatly reduced. This is
due to the more similar distributions among adjacent channels, as revealed in Figure 1. Furthermore, the power factor for
activation should be lower when adopting BaWA on N:M sparsity.

D. Robustness Analysis
In this part, we perform a robustness analysis for different pruning methods. Here, our focus is primarily on the pruning
process of BaWA, rather than the parameter search process. As shown in Table 17, we report the mean and standard
deviation under 5 random seeds for sparse LLaMA1 and LLaMA2 family models at 50% and 60% sparsity. As one can

Table 17: WikiText-2 perplexity performance of BaWA for sparse LLaMA-1 and LLaMA2 family models at 50% and 60%
sparsity. We report the mean and standard deviation under 5 random seeds. Note that, when the standard deviation is less
than 0.01, we denote it as 0.00, with the sign *. However, the actual standard deviation is not equal to zero.

LLaMA-1 LLaMA2

Method Sparsity 7B 13B 30B 7B 13B
Dense 0% 5.68 (±0.00) 5.09 (±0.00) 4.77 (±0.00) 5.12 (±0.00) 4.57 (±0.00)
SparseGPT 50% 7.26 (±0.04) 6.24 (±0.04) 5.33 (±0.03) 6.52 (±0.04) 5.63 (±0.01)
Wanda 50% 7.25 (±0.03) 6.15 (±0.01) 5.24 (±0.03) 6.44 (±0.01) 5.57 (±0.03)
BaWA 50% 7.05 (±0.03) 5.95 (±0.01) 5.01 (±0.01) 6.23* (±0.00) 5.37* (±0.00)
SparseGPT 60% 10.34 (±0.14) 8.44 (±0.15) 6.69 (±0.03) 0.58 (±0.11) 7.71 (±0.11)
Wanda 60% 10.62 (±0.05) 8.72 (±0.03) 6.54 (±0.01) 9.91 (±0.01) 7.87 (±0.07)
BaWA 60% 9.80 (±0.02) 7.60(±0.01) 6.15 (±0.01) 8.78 (±0.01) 6.80(±0.01)

16

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Algorithm 1 PyTorch code for the pruning process of BaWA

W: weight matrix (C_out, C_in);
X: input matrix (N * L, C_in);
Θ: learned parameters for BaWA;
s: desired sparsity level, between 0 and 1;
def prune(W, X, Θ, s):
θ1, θ2, θ3 = Θ
w_norm = weight_normalization(W, θ1, θ2)
act_metric = X.norm(p=2, dim=0) ** θ3
metric = w_norm.abs() * act_metric

_, sorted_idx = torch.sort(metric, dim=1)
pruned_idx = sorted_idx[:,:int(C_in * s)]
W.scatter_(dim=1, index=pruned_idx, src=0)
return W

def weight_normalization(W, θ1, θ2):
W_row_norm = W.norm(p=2, dim=-1)
W_col_norm = W.norm(p=2, dim=0)
row_metric = (1/W_row_norm) ** θ1
col_metric = (1/W_col_norm) ** θ2
return W * (row_metric + col_metric)

Algorithm 2 Pytorch code for the proposed zeroth-order
optimization

layer: the specific transformer block that
needs to be optimized;

inputs: the sampled input data for
optimization;

fouts: the output data of dense transformer
block;

Θ: learned parameters for BaWA;

def zo_optimizer(layer, inputs, fouts, Θ):
z = torch.normal(mean=0, std=1)
Θ = zo_update(Θ, 1, ϵ, z)
loss1 = lossfunc(layer, inputs, fouts)
Θ = zo_update(Θ, -2, ϵ, z)
loss2 = lossfunc(layer, inputs, fouts)
Θ = zo_update(Θ, 1, ϵ, z)
grad = ((loss1 - loss2) / 2
Θ = zo_update(Θ, lr, grad, z)

def zo_update(Θ, lr, grad, z):
for θ in Θ:
θ -= lr * grad * z

return Θ

notice, compared with previous methods, the standard deviation is lower, indicating its robustness under different random
seeds.

E. Code Details
In this section, we further present the code details for implementing BaWA, enabling readers to easily replicate the
experimental results reported. The code for BaWA’s pruning process and parameter optimization is shown in Algorithm 1
and 2, respectively.

The pruning process of BaWA can be implemented and integrated seamlessly within a single forward pass of the LLM
model, can presented in Algorithm 1. Given a pre-trained LLM, we compute our pruning metric from the initial to the
final layers of the network. After pruning a preceding layer, the subsequent layer receives updated input activations, based
on which its pruning metrics will be computed. As one can notice, the complexity of the pruning process of BaWA is
O(d2hidden), which is the same as Wanda. dhidden denotes the channel dimension of the hidden layer.

However, we also introduce a parameter optimization stage in BaWA, which uses a zeroth-order optimizer to adjust the
corresponding power factors in Equation (6). As Algorithm 2 shows, the entire parameter optimization process requires two
times loss computations and four times parameter updates. Each loss computation requires one forward pass. Therefore, the
complexity of the whole parameter optimization process is consistent with the complexity of the model inference process,
which is O(BQ · d3hidden). Here, B denotes the batch size and Q denotes the sequence length.

F. Weight Reconstruction with Efficient Pruning Mask
As mentioned in Section 2, the pruning process can be divided into two stages, including pruning mask selection and weight
reconstruction. Our evaluation demonstrates that BaWA presents a high-performance pruning mask metric, which can
preserve the performance of original LLMs without introducing any weight update. It is trivial to combine BaWA with
other weight reconstruction methods to achieve better pruning performance. Consequently, we adopt two novel weight
reconstruction methods, DS⊘T (Zhang et al., 2023) and ADMM-Iter (Boža, 2024). DS⊘T introduces a novel weight
connection reconstruction strategy that iteratively grows and prunes weight connection based on their proposed metric.
ADMM-Iter views the weight update process as an ADMM problem and solves it by iteratively adjusting the weight data
that are not masked. We use two different pruning metrics, Wanda and BaWA, and compare their pruning results, as shown
in Table 18.

17

BaWA: Automatic Optimizing Pruning Metric for Large Language Models with Balanced Weight and Activation

Table 18: Weight reconstruction strategies with efficient pruning mask achieve better performance.

LLaMA LLaMA2

Method Sparsity 7B 13B 30B 65B 7B 13B 70B
Wanda w/ DS⊘T 50% 7.12 6.08 5.12 4.54 6.31 5.48 3.95
BaWA w/ DS⊘T 50% 6.97 5.94 5.01 4.37 6.28 5.42 3.87
Wanda w/ ADMM-Iter 50% 7.06 6.07 5.18 4.51 6.33 5.52 3.95
BaWA w/ ADMM-Iter 50% 6.91 5.93 4.98 4.37 6.22 5.33 3.81

Wanda w/ DS⊘T 4:8 8.45 7.25 5.91 5.26 7.83 6.47 4.43
BaWA w/ DS⊘T 4:8 8.01 6.83 5.65 4.93 7.36 6.19 4.35
Wanda w/ ADMM-Iter 4:8 8.13 6.97 5.73 5.17 7.71 6.41 4.40
BaWA w/ ADMM-Iter 4:8 7.96 6.76 5.63 4.95 7.34 6.11 4.31

Wanda w/ DS⊘T 2:4 10.89 9.05 6.76 6.14 10.46 8.09 5.11
BaWA w/ DS⊘T 2:4 10.21 7.91 6.42 5.69 9.84 7.08 4.86
Wanda w/ ADMM-Iter 2:4 9.90 8.47 6.72 6.23 9.89 7.94 5.19
BaWA w/ ADMM-Iter 2:4 9.71 7.86 6.39 5.60 9.75 7.04 4.71

It is worth noting that using BaWA as the pruning metric achieves superior LLM performance compared to the adoption of
Wanda. Furthermore, the performance of pruned LLMs is enhanced with the addition of a weight reconstruction strategy
beyond what is achieved by pruning mask alone in most cases. This underscores the complementary nature of the two phases:
an effective pruning mask can significantly improve pruning performance, while an appropriate weight reconstruction
strategy can further refine the results in post-training pruning.

18

