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Abstract. This paper describes our submissions to the HECKTOR
2025 challenge, which addresses three tasks: (1) tumor and lymph node
segmentation, (2) recurrence-free survival prediction, and (3) HPV status
classification. For Task 1, we trained a baseline UNet and refined the final
model using stochastic weight averaging and small lesion removal. For
Task 2, we employed a lightweight 3D ResNet18 that combines PET, CT,
segmentation masks, and clinical metadata, optimized with a Cox loss.
For Task 3, we extended the segmentation model with a classification
head and metadata integration. Cross-validation results were promising,
performance on the preliminary validation set was however lower, under-
lining the challenges of generalization in multi-center cohorts. Code and
trained models are available at |github.com/JakobDexl/ HECKTOR25.
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1 Introduction

Head and neck cancers are a diverse group of tumors that affect anatomically
complex regions essential for breathing, swallowing, and speech. Despite ad-
vances in radiotherapy, chemotherapy, and targeted agents, treatment failure and
disease recurrence remain common, leading to poor survival outcomes, particu-
larly in advanced stages [2]. Clinical decision-making is typically based on imag-
ing, histopathology, and staging systems, but these approaches only partly cap-
ture the biological and clinical heterogeneity of the disease. Additional biomark-
ers such as HPV status provide valuable prognostic information but are not yet
consistently integrated into practice.

Recent progress in machine learning has demonstrated the potential of mul-
timodal approaches that combine imaging and clinical data for segmentation,
risk prediction, and biomarker classification. However, most studies are limited
by small and homogeneous cohorts, restricting reproducibility and generaliza-
tion. The HECKTOR 2025 challenge addresses this gap by providing a large,
multi-center dataset of PET/CT images and clinical annotations. It enables sys-
tematic benchmarking across three tasks: tumor and lymph node segmentation,
recurrence-free survival prediction, and HPV status classification. In this pa-
per, we describe our methods for each task and report results obtained on the
provided datasets.
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2 Methods

2.1 Data

The challenge training dataset consists of 680 patients collected across seven
institutions. For Task 2 and Task 3, smaller subsets were used, containing 522 and
542 cases, respectively. In Task 2, survival outcomes included 417 uncensored and
105 censored events. In Task 3, HPV status was strongly imbalanced, with 484
HPV-positive cases (90%) and 58 HPV-negative cases (10%). The preliminary
validation set contained 128 patients for Task 1, 276 for Task 2, and 123 for
Task 3. Further details on data collection and distribution are available in [7].

2.2 Preprocessing

All scans were cropped to a window size of 288 using the official preprocessing
scripts. Data augmentation was performed with TrivialAugment [6], applying a
single transformation per sample. We used affine transformations (random rota-
tions within +15°, scaling in [0.9,1.2]) and intensity augmentations (gamma ad-
justment, Gaussian noise, blurring). After augmentation, volumes were cropped
to (192,192,192). With low probability, the crop center was sampled randomly;
otherwise, it was aligned with a foreground mask. Multimodal inputs were han-
dled by concatenating CT and PET volumes.

2.3 Training and Evaluation

Models were trained using the Adam optimizer with a learning rate of 1 x 1074,
Training lasted 500 epochs, evaluation and model selection followed the chal-
lenge metrics described in [7]. For Task 1, we used a small validation set of
36 samples to maximize training data. For Tasks 2 and 3, we employed 5-fold
cross-validation. Models for Task 1 were selected based on a combined score of
average Dice Similarity Coefficient (DSC) for primary tumor, aggregated DSC
for lymph nodes, and F1-score for lymph nodes. Models for Task 2 were selected
by concordance index (c-index), and models for Task 3 by balanced accuracy.
All training runs were executed on two Nvidia A100 GPUs in parallel. Batch
sizes are stated per GPU.

2.4 Task-Specific Approaches

Task 1: Tumor Segmentation. We used a compact MONAI DynUNet [I]. The
model was trained with DiceCE loss and a batch size of 2. The best checkpoint
was refined with stochastic weight averaging (SWA) []. As post-processing, le-
sions smaller than 100 voxels were removed.
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PET Prediction GT

Fig. 1. Maximum intensity projections (MIP) of the PET, predicted mask, and ground
truth. PET volumes are shown with center=3 and window=7. Primary tumors are col-
ored in green, lymph node masks are yellow. Predictions generally exhibit smoother
boundaries. Row one shows a case without primary tumor and the hallucinated pre-
diction. Row two shows an error where a small lymph node is misclassified as primary
tumor. Row three shows a larger lymph node divided into two smaller predicted nodes.
The last row shows a good-performing case.
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Task 2: Survival Prediction. We employed a lightweight 3D ResNet18 encoder
[8] with PET, CT, ground-truth masks, and clinical metadata (HPV status,
tobacco and alcohol consumption, age, gender, performance status, treatment,
and M-stage) as input. Metadata were encoded with a two-layer MLP and fused
with image features before classification. Missing values were set to —1, and age
was z-normalized. The model was trained using the negative Cox partial log-
likelihood, similar to DeepSurv [5]. For stability, predicted risks were centered,
sorted by survival time, and aggregated via cumulative log-sum-exp. The final
loss was the negative average contribution of observed events. A batch size of
16 ensured sufficient event signal per update. The final submission used the best
fold model. Additionally, we used the Task 1 segmentation model for mask input
and the inferred HPV status from a single-fold Task 3 model.

Task 3: Combined Segmentation and Classification. The segmentation model
from Task 1 was extended with a wide linear bottleneck head for HPV predic-
tion. Metadata (age, gender, tobacco and alcohol consumption) were incorpo-
rated as in Task 2. Training used a combination of DiceCE loss for segmentation
and binary cross-entropy for classification, with a batch size of 4. The minor-
ity class was oversampled, and each batch included two HPV-positive and two
HPV-negative cases. For the final submission, the segmentation decoder was re-
moved for efficiency, and cross-validation models were ensembled by averaging
prediction logits.

Table 1. Results for Task 3 cross-validation and preliminary validation of the ensemble.

F1 F2 F3 F4 F5 Val
Balanced Accuracy|0.8443|0.8753(0.8622(0.8681|0.9201|0.7085

3 Results

Our segmentation model achieved a mean DSC of 0.7057, an aggregated DSC of
0.7726, and an Fl-score of 0.7520 on the test set. SWA improved the mean DSC
for primary tumor by ~0.030 and the F1l-score by ~0.060, at the cost of a slight
decrease in aggregated DSC for lymph nodes (—0.005). On the preliminary set,
we achieved a mean DSC of 0.7431, an aggregated DSC of 0.7219, and an F1-
score of 0.6502. Figure [I] shows qualitative segmentation results. Predictions
were generally solid, though boundary accuracy was often not accurate and
predictions appeared smoother than in the ground truth. Larger lymph nodes
were sometimes split into smaller components. In two test cases without primary
tumors, the model hallucinated small primary tumors adjacent to lymph nodes.

The best-performing Task 2 fold achieved a c-index of 0.7442, but perfor-
mance dropped to 0.4458 on the preliminary validation.
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Task 3 results are shown in Table [1} Performance dropped substantially on
the preliminary set. We also submitted only the best fold (F5), which achieved
a balanced accuracy of 0.6158 showing that ensembling drastically improved
performance.

4 Discussion

The presented methods for Task 1 and Task 3 achieved promising results on pre-
liminary validation. Our overall strategy was to keep models simple. Initially, we
aimed to train a single multitask model, but stability issues prevented this. The
multitask model resembled the Task 3 architecture with an additional survival
head. However, the large model size limited batch size, destabilizing the Cox loss.
Consequently, we opted for task-specific models, e.g., a lightweight ResNet18 for
Task 2.

Task 2 performed much worse on preliminary validation. We attribute this to
reliance on perfect ground-truth masks and HPV status during training, whereas
the final submission used predicted masks and HPV status. Moreover, HPV
inference relied on a single fold model instead of an ensemble, further degrading
performance. This error propagation likely explains the large drop.

For Task 3, performance differed between local cross-validation and prelim-
inary validation. Two possible factors may explain this. First, a label shift may
exist between training and validation sets, as hinted by dataset distribution dif-
ferences [7]. Second, metadata stratification was not considered, despite known
correlations (e.g., higher HPV incidence in men than in women) [3].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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