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The landscape of deterministic and stochastic
optimal control problems: One-shot Optimization

versus Dynamic Programming
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Abstract— Optimal control problems can be solved via a
one-shot (single) optimization or a sequence of optimiza-
tion using dynamic programming (DP). However, the com-
putation of their global optima often faces NP-hardness,
and thus only locally optimal solutions may be obtained
at best. In this work, we consider the discrete-time finite-
horizon optimal control problem in both deterministic and
stochastic cases and study the optimization landscapes
associated with two different approaches: one-shot and DP.
In the deterministic case, we prove that each local mini-
mizer of the one-shot optimization corresponds to some
control input induced by a locally minimum control policy
of DP, and vice versa. However, with a parameterized pol-
icy approach, we prove that deterministic and stochastic
cases both exhibit the desirable property that each local
minimizer of DP corresponds to some local minimizer of
the one-shot optimization, but the converse does not nec-
essarily hold. Nonetheless, under different technical as-
sumptions for deterministic and stochastic cases, if there
exists only a single locally minimum control policy, one-
shot and DP turn out to capture the same local solution.
These results pave the way to understand the performance
and stability of local search methods in optimal control.

Index Terms— Optimal Control, Landscape, One-shot op-
timization, Dynamic programming

I. INTRODUCTION

Dynamic Programming (DP) has been widely used in a
variety of fields with a rich theoretical foundation and many
mathematical and algorithmic aspects [2], [3]. One classic area
of DP is to solve optimal control problems, with applications
in communication systems [4], inventory control [5], power-
train control [6], and many more. Furthermore, many recent
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A preliminary version of this paper has appeared in 2021 American
Control Conference, New Orleans, USA, May 25-28, 2021 [1]. The
previous version mainly discussed the deterministic problem with control
inputs, while this journal version has significantly extended the results
to include both the deterministic and the stochastic problems under a
parameterized policy to study a closed-loop system. To address the
parameterized problem, our new notion of a local minimizer of the one-
shot optimization optimizes the objective function over the parameters
modeling the inputs. Furthermore, the notion of a locally minimum
control policy of DP is replaced with a local minimizer of DP, which
considers a neighborhood in the parameter space instead of the action
space. These new notions enable the investigation of the stochastic
dynamics as a finite-dimensional problem.

successes in artificial intelligence, especially in reinforcement
learning (RL) [7], [8], are also deeply rooted in DP. In the
challenging domain of classic Atari 2600 games, the work
[9] has demonstrated that the Q-learning method based on the
generalized policy iteration along with a deep neural network
as the function approximator for the Q-values surpasses the
performance of all previous algorithms and achieves a level
comparable to that of a professional human games tester.

Despite a strong theoretical framework of DP, the exact
solutions of large-scale optimal control problems are often
impossible to obtain using DP in practice [7]. Apart from
suffering the “curse of dimensionality” when the state space
is large, solving DP accurately could also be highly complex.
The reason is that DP requires solving optimization sub-
problems to global optimality, and the computation of their
global optima is NP-hard in general, due to the non-linearity
of the dynamics and the non-convexity of the cost function.

Therefore, although DP theory relies on global optimization
solvers, practitioners routinely use local optimization solvers
based on first- and second-order numerical algorithms. As a
result, the theoretical guarantee of DP could break down as
soon as a non-global local solution is found in any of the
sub-problems. Understanding the performance of local search
methods for non-convex problems has been a focal area in
machine learning in recent years. This is performed under the
notion of spurious solution, which refers to a local minimum
that is not a global solution. The specific application areas are
neural networks [10], [11], deep learning [12], [13], mixtures
of regressions [14], [15], matrix sensing/recovery [16]–[19],
phase retrieval [15], [20], and online optimization [21], [22].

Recently, there has been an increasing interest in under-
standing the global convergence of exact or approximate
DP algorithms in policy gradient methods for RL, such as
projected policy gradient, natural policy gradient, and mirror
descent with or without regularizers [23]–[27]. Prior to them,
the work [28] identified some general algorithm-independent
properties of the policy gradient method by establishing a
direct connection between policy gradient (one-shot) and pol-
icy iteration (DP) objectives. They showed that the global
convergence of the policy gradient method is guaranteed if
the policy iteration objectives have no sub-optimal stationary
points. However, the literature lacks a rigorous analysis of the
spurious solutions of the DP method.

In this paper, we analyze the spurious solutions of the DP
method by focusing on the following fundamental question:
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What if the globally optimal solution of each sub-problem of
DP is replaced with a solution obtained by a local search
method? A challenge in this analysis is that policy optimiza-
tion even towards the spurious solutions can be problematic
if the action space is continuous [29]. One can think of the
policy iteration with function approximation [30] where the
Q-function approximation error is zero. This is a reasonable
assumption since a close-to-zero error can be obtained with
a sufficiently rich and expressive policy class such as deep
neural networks, which naturally yields the existence of the
local minimizer of DP. That motivates our analysis on the
comparison between the solutions of one-shot method and DP
if they are only solved to the spurious local minimizers, and
hence, our algorithm-agnostic study offers a clear understand-
ing on the landscapes for the optimal control problem without
considering the secondary issue of the approximation error.

We focus on both deterministic and stochastic discrete-time
finite-horizon optimal control problems whose goal is to find
an optimal input sequence minimizing the total cost subject
to the dynamics. One approach to solving the problem is by
formulating it as a one-shot optimization problem, a single
entire-period problem, and another approach is using the DP
to formulate it as a sequential decision-making problem with
multiple single-period sub-problems and solve it in a backward
way. Although it is known that the one-shot method and the
DP method return the same globally optimal control sequence
for the deterministic optimal control problem [3], it is not yet
known what would occur if the global optimizer needed for
solving each sub-optimization problem in DP is replaced by a
local optimizer. In our work, we compare the two optimization
landscapes: one induced by the DP method based on local
search algorithms, and the other induced by its corresponding
one-shot optimization based on local search methods.

Contribution and Outline. We address the relationship
between the two landscapes holistically for three types of
control systems:

1. In Section II, we first study deterministic systems under a
non-parameterized policy. We introduce the notion of locally
minimum control policy of DP and prove that under some
mild conditions, each (spurious) local minimizer of the one-
shot optimization corresponds to the control input induced by
a (spurious) locally minimum control policy of DP, and vice
versa. This indicates that DP with local search can successfully
solve the optimal control problem to global optimality if and
only if the one-shot problem is free of spurious solutions.

2. In Section III, we analyze deterministic systems under
a parameterized policy. The necessity to study this problem
arises in RL algorithms, where the control policy used by DP
is parameterized by neural networks or other means. Thus, we
generalize the results of Section II to optimization with respect
to the parameters rather than the control inputs themselves.
We prove that each local minimizer of DP corresponds to
some local minimizer of the one-shot optimization, whereas its
converse may not hold. Moreover, we show that if there exists
only a single locally minimum control policy with a specific
parameterized policy class, namely a linear combination of
independent basis functions, each local minimizer of the one-
shot optimization corresponds to a local minimizer of DP.

TABLE I
THEOREMS AND THE CORRESPONDING ASSUMPTIONS WITH RESULTS.

Assumptions
Theorems Deterministic Deterministic + Stochastic +

Parameterized Parameterized
1 2 3 4 5 6 7 8 9

Convex action space ◦
parameter space ◦
C1 ◦ ◦ ◦

Policy C2 ◦
class Defined by ◦ ◦Definition 13

contains a single
locally minimum ◦ ◦
control policy

Interior policy ◦ ◦
Strict local minimizer ◦ ◦
Continuous Random state ◦
Large parameter space ◦

Result

DP to one-shot ◦ ◦ ◦
DP to one-shot ◦ ◦ ◦(stationarity)
one-shot to DP ◦ ◦ ◦

3. In Section IV, we extend the result to stochastic systems
under a parameterized policy. The stochasticity brings up the
challenge to handle an uncountable number of realizations
of random variables. We show that surprisingly a similar
relationship in the deterministic parameterized problem holds.
For both cases, we conclude that the optimization landscape of
the one-shot problem is more complex than its DP counterpart
in terms of the number of spurious solutions. This implies that
if the one-shot problem has a low complexity, so does the DP
problem. Another result says that if the DP problem has a
very low complexity, the same holds for the one-shot problem.
In this paper, our notion of “complexity” of an optimization
problem is based on the number of spurious local minima.
For example, convex optimization problems have very low
complexity in light of having no spurious solutions. However,
problems with an exponential number of spurious solutions are
hard to solve [31]. Note that a reformulation of an optimization
problem via a change of variables does not normally change
the number of local minima, which justifies why the number
of spurious solutions can serve as a complexity measure.

Finally, concluding remarks are provided in Section V.
Table I summarizes the main results of the paper.

In various applications arising in machine learning and
model-free approaches for which the model is unknown and
simulations are expensive, DP is the only viable choice
compared to the one-shot optimization approach. Hence, it
is essential to understand when DP combined with a local
search solver works. The results of this paper explain that the
success of DP is closely related to the optimization landscape
of a single optimization problem. For instance, the success
of the DP method highly depends on the number of spurious
solutions of the one-shot optimization problem.

Notation. Let R denote the set of real numbers. We use
B(c, r) to denote the open ball centered at c with radius r
and use B̄(c, r) to denote the closure of B(c, r). The notation
x ∈ A \ B means that x is in the set A but not in the set
B. Let ∥ · ∥ denote the Euclidean norm and ∥ · ∥F denote the
Frobenius norm. Let ∇xf(x, y) denote the gradient of f(x, y)
with respect to x and ∇2

xf(x) denote the Hessian of f(x). For
the matrix K, K ≻ 0 means that K is positive definite. The
notation Cn means that the function is n-times continuously
differentiable. The notation E denotes the expectation operator.
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II. DETERMINISTIC PROBLEM

A. Problem Formulation
Consider a general discrete-time finite-horizon deterministic

optimal control problem with n time steps:

min
u0,...,un−1∈A

n−1∑
i=0

ci(xi, ui) + cn(xn)

s.t. xi+1 = fi(xi, ui), i = 0, . . . , n− 1,

x0 is given,

(P1)

where xi ∈ RN is the state at time i and ui is the control
input at time i that is constrained to be in an action space
A ⊆ RM . The state transition is governed by the dynamics
fi : RN×RM → RN . Each time instance i is associated with a
stage cost ci : RN ×RM → R or the terminal cost cn : RN →
R. Given an initial state x0, the goal of the optimal control
problem is to find an optimal control input (u0, . . . , un−1)
minimizing the sum of the stage costs and the terminal cost.
In this paper, the dynamics fi and the cost functions ci are
assumed to be at least twice continuously differentiable over
RN ×RM , and the action space A is assumed to be compact.

The optimal control problem can be solved by two common
approaches. The first approach directly solves (P1) as a one-
shot optimization problem that simultaneously solves for all
variables. To simplify the analysis, we eliminate the equality
constraints in (P1) via the notation C(xk;uk, . . . , un−1) de-
fined as the cost-to-go started at the time step k with the initial
state x and control inputs uk, . . . , un−1. In other words,

C(x) = cn(x),

C(x;uk, . . . , un−1) = ck(x, uk)

+ C(fk(x, uk);uk+1, . . . , un−1),

for k = 0, . . . , n− 1. The one-shot optimization problem (P1)
can be equivalently written as

min
u0,...,un−1∈A

C(x0;u0, . . . , un−1). (P2)

The second approach to solving the optimal control problem
is based on DP. Let Jk(xk) denote the optimal cost-to-go at
the time step k with the initial state xk, i.e.,

Jk(xk) = min
uk,...,un−1∈A

C(xk;uk, . . . , un−1)

Then, Jk can be computed in a backward fashion from the
time step n− 1 to time 0 through the following recursion:

Jn(x) = cn(x),

Jk(x) = min
u∈A

{ck(x, u) + Jk+1(fk(x, u))}, (P3)

for k = 0, . . . , n−1. It is worth noting that (P3) yields a set of
functions that solve the problem for all initial states, whereas
(P1) produces a vector specific to a given x0. The optimal cost
J0(x0) equals the optimal objective value of (P1).

However, due to the non-convexity of the function, it is
generally NP-hard to obtain globally optimal solutions of (P3)
for all states and at all times. Specifically, when using the
DP to solve the optimal control problem (P1), the first step
is to compute minu∈A{cn−1(xn−1, u) + cn(fn−1(xn−1, u))}

for every xn−1 ∈ RN , which requires solving nonconvex
optimization problems if the cost function or the dynamic is
nonconvex. Since these intermediate problems are normally
solved via local search methods, the best expectation is to
obtain a local minimizer for un−1 as a function of x ∈ RN ,
denoted by the policy πn−1(x). As a result, instead of working
with truly optimal cost-to-go functions, one may arrive at a
sub-optimal cost-to-go at time n− 1 as follows:

Jπ
n−1(xn−1) = cn−1(xn−1,πn−1(xn−1))+

cn(fn−1(xn−1, πn−1(xn−1))),

which is obtained based on the local minimizer πn−1(x). Sub-
sequently, it is required to solve the optimal decision-making
problem minu∈A{cn−2(xn−2, u)+Jπ

n−1(fn−2(xn−2, u))} for
every xn−2 ∈ RN . By repeating this procedure in a backward
fashion toward the time step 0, we obtain a group of policy
functions πk and sub-optimal cost-to-go functions Jπ

k for
k = 0, . . . , n− 1. Given the initial state x0, let

u∗
0 = π0(x0), x∗

1 = f0(x0, u
∗
0), u∗

1 = π1(x
∗
1), x∗

2 = f1(x
∗
1, u

∗
1)

. . .

u∗
n−1 = πn−1(x

∗
n−1), x∗

n = fn(x
∗
n−1, u

∗
n−1),

be the control inputs and the states induced by the policies
π0, . . . , πn−1. Then, (u∗

0, . . . , u
∗
n−1) is a sub-optimal solution

to the original optimal control problem (P1) with the sub-
optimal objective value Jπ

0 (x0). This motivates us to define
locally minimum control policies based on solving (P3) to
local optimality.

Definition 1: Given a control policy π = (π0, . . . , πn−1),
the associated Q-functions Qπ

k (·, ·) and cost-to-go functions
Jπ
k (·) under the policy π are defined in a backward way from

the time step n− 1 to 0 through the following recursion:
Jπ
n (x) = cn(x),

Qπ
k (x, u) = ck(x, u) + Jπ

k+1(fk(x, u)), k = 0, . . . , n− 1,

Jπ
k (x) = Qπ

k (x, πk(x)), k = 0, . . . , n− 1.

Definition 2 (local minimizer): A vector (u∗
0, . . . , u

∗
n−1) is

said to be a local minimizer of the one-shot optimization
problem (P2) if there exists ϵ > 0 such that

C(x0, u
∗
0, . . . , u

∗
n−1) ≤ C(x0, ũ0, . . . , ũn−1)

for all ũi ∈ B(u∗
i , ϵ)∩A where i = 0, . . . , n− 1. It is further

called a spurious (non-global) local minimizer of the one-shot
optimization problem if C(x0, u

∗
0, . . . , u

∗
n−1) > J0(x0).

Definition 3 (locally minimum control policy): A control
policy π = (π0, . . . , πn−1) is said to be a locally minimum
control policy of DP if for all k ∈ {0, . . . , n − 1} and for
all x ∈ RN , the policy πk(x) is a local minimizer of the
Q-function Qπ

k (x, ·), meaning that there exists ϵ∗k(x) > 0
such that

Qπ
k (x, πk(x)) ≤ Qπ

k (x, ũ), ∀ũ ∈ B(πk(x), ϵ
∗
k(x)) ∩A.

It is further called a spurious locally minimum control policy
of DP if Jπ

0 (x0) > J0(x0).
In the following subsections, we will show that in the

deterministic problem, both approaches capture the same local
solutions under mild assumptions.
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B. Local minimizers: From DP to one-shot optimization
It is well-known that the input sequence induced by a

globally minimal control policy is a global minimizer of the
one-shot problem [3]. In this subsection, we will show that the
input sequence induced by a spurious locally minimum control
policy of DP also corresponds to a spurious local minimizer
of the one-shot problem if some mild conditions are satisfied.

Theorem 1: Assume that A is convex. Consider a (spurious)
locally minimum control policy π = (π0, . . . , πn−1), and
let the corresponding input and state sequences associated
with the initial state x0 be denoted as (u∗

0, . . . , u
∗
n−1) and

(x∗
0, . . . , x

∗
n). If πk is twice continuously differentiable in a

neighborhood of x∗
k and ∇2

uQ
π
k (x

∗
k, u

∗
k) ≻ 0 for all k ∈

{0, . . . , n− 1}, then (u∗
0, . . . , u

∗
n−1) is also a (spurious) local

minimizer of the one-shot problem.
Proof: First, we will use induction to find positive

numbers δ0, . . . , δn and ϵ0, . . . , ϵn−1 such that

∇2
uQ

π
k (x, u) ≻ 0, (1)

πk(x) ∈ B(u∗
k, ϵk), (2)

fk(x, u) ∈ B(x∗
k+1, δk+1), (3)

for every x ∈ B(x∗
k, δk), u ∈ B(u∗

k, ϵk) ∩ A, and k ∈
{0, . . . , n−1}. At the base step k = n, we choose an arbitrary
δn > 0. At the induction step, since fk is continuous and
∇2

uQ
π
k is continuous at (x∗

k, u
∗
k), there exist δk > 0 and ϵk > 0

such that both (1) and (3) are satisfied for all x ∈ B(x∗
k, δk)

and u ∈ B(u∗
k, ϵk) ∩A. Moreover, as πk is continuous at x∗

k,
(2) will be satisfied by further reducing δk.

For every (ũ0, . . . , ũn−1) with ũk ∈ B(u∗
k, ϵk) ∩ A, let

(x̃0, . . . , x̃n) be its corresponding state sequence (note that
x̃0 = x0). It follows from (3) that x̃k ∈ B(x∗

k, δk) for all
k ∈ {0, . . . , n− 1}, which together with (2) implies that

πk(x̃k) ∈ B(u∗
k, ϵk), ∀k ∈ {0, . . . , n− 1}.

In light of (1), Qπ
k (x̃k, ·) is a convex function on the convex

set B(u∗
k, ϵk) ∩ A. Because πk(x̃k) ∈ B(u∗

k, ϵk) ∩ A is a
local minimizer of the function Qπ

k (x̃k, ·), it must be a global
minimizer of this function over B(u∗

k, ϵk) ∩ A. Thus, for
k ∈ {0, . . . , n− 1}, we have

ck(x̃k, ũk) + Jπ
k+1(x̃k+1) = Qπ

k (x̃k, ũk) ≥ Qπ
k (x̃k, πk(x̃k))

= Jπ
k (x̃k).

By adding all of the above inequalities, one can obtain

C(x0; ũ0, . . . , ũn−1) ≥ Jπ
0 (x0) = C(x0;u

∗
0, . . . , u

∗
n−1),

which shows that (u∗
0, . . . , u

∗
n−1) is a local minimizer of the

one-shot problem. Also, if π is a spurious locally minimum
control policy of DP, namely, Jπ

0 (x0) > J0(x
∗
0), then

C(x0;u
∗
0, . . . , u

∗
n−1) = Jπ

0 (x0) > J0(x0).

As a result, (u∗
0, . . . , u

∗
n−1) is also a spurious local minimizer

of the one-shot problem.
Remark 1: By taking the contrapositive, one can imme-

diately conclude that the DP method cannot produce any
spurious locally minimum control policies that satisfy the
regularity conditions in Theorem 1 as long as the one-shot
problem has no spurious local minima.

C. Stationary points: From DP to one-shot optimization
In this subsection, we will show that the induced controlled

input of a locally minimum control policy of DP corresponds
to a stationary point of the one-shot problem, under some
conditions milder than the assumptions of Theorem 1.

Definition 4: Given a set S and a continuously differen-
tiable function g, a point s∗ ∈ S is said to be a stationary
point of the optimization problem mins∈S g(s) if

−∇sg(s
∗) ∈ NS(s

∗),

where NS(s
∗) denotes the normal cone of the set S at the

point s∗ [32].
We branch off into two specific notions of stationarity below.

Definition 5 (Stationary point): A vector of control inputs
(u∗

0, . . . , u
∗
n−1) is said to be a stationary point of the one-

shot optimization if for all k ∈ {0, . . . , n − 1}, it holds that
−∇uk

C(x0;u
∗
0, . . . , u

∗
n−1) ∈ NA(u

∗
k).

Definition 6 (Stationary control policy): A control policy
π = (π0, . . . , πn−1) is said to be a stationary control policy
of DP if for all k ∈ {0, . . . , n − 1} and for all x ∈ RN , it
holds that −∇uQ

π
k (x, πk(x)) ∈ NA(πk(x)).

Now, we will prove that a stationary control policy (which
involves a locally minimum control policy) implies a stationary
point of the one-shot optimization under mild assumptions. Let
Dπ

k (x) be the Jacobian matrix of πk(·) at point x, Df,x
k (x, u)

be the Jacobian matrix of the function fk(·, u) at point x while
viewing u as a constant, and Df,u

k (x, u) be the Jacobian matrix
of fk(x, ·) at point u while viewing x as a constant.

Theorem 2: Consider a stationary control policy π =
(π0, . . . , πn−1), and let the associated input and state se-
quences with the initial state x0 be denoted as (u∗

0, . . . , u
∗
n−1)

and (x∗
0, . . . , x

∗
n). If for every k ∈ {0, . . . , n− 1}:

1) πk is continuously differentiable in a neighborhood of x∗
k,

2) either πk(x
∗
k) is in the interior of A or Dπ

k (x
∗
k) = 0,

then (u∗
0, . . . , u

∗
n−1) is a stationary point of the one-shot

optimization.
Proof: First, we will apply induction to prove that

∇xJ
π
k (x

∗
k) = ∇xC(x∗

k;u
∗
k, . . . , u

∗
n−1) (4)

holds for k ∈ {0, . . . , n}. The base step k = n is obvious. For
the induction step, observe that

∇xQ
π
k (x, u) = ∇xck(x, u) +Df,x

k (x, u)T∇xJ
π
k+1(fk(x, u)),

∇xJ
π
k (x) = ∇x[Q

π
k (x, πk(x))]

= ∇xQ
π
k (x, πk(x)) +Dπ

k (x)
T∇uQ

π
k (x, πk(x)).

Therefore,

∇xJ
π
k (x

∗
k) = ∇xck(x

∗
k, u

∗
k) +Df,x

k (x∗
k, u

∗
k)

T∇xJ
π
k+1(x

∗
k+1)

+Dπ
k (x

∗
k)

T∇uQ
π
k (x

∗
k, u

∗
k).

(5)
If u∗

k is in the interior of A, we have ∇uQ
π
k (x

∗
k, u

∗
k) = 0 by

stationarity. Otherwise, by the assumption, we have Dπ
k (x

∗
k) =

0. In either case, the last term of (5) is zero. Meanwhile,

∇xC(x;u∗
k, . . . , u

∗
n−1)

= ∇xck(x, u
∗
k) +∇x[C(fk(x, u

∗
k);u

∗
k+1, . . . , u

∗
n−1)]

= ∇xck(x, u
∗
k) +Df,x

k (x, u∗
k)

T∇xC(fk(x, u
∗
k);u

∗
k+1, . . . , u

∗
n−1).
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Now, (4) can be obtained by taking x = x∗
k in the above

equality and then combining it with the induction hypothesis
and (5). Finally, for k ∈ {0, . . . , n− 1}, one can write

∇uk
C(x0;u

∗
0, . . . , u

∗
n−1)

= ∇uck(x
∗
k, u

∗
k) +Df,u

k (x∗
k, u

∗
k)

T∇xC(x∗
k+1;u

∗
k+1, . . . , u

∗
n−1)

= ∇uck(x
∗
k, u

∗
k) +Df,u

k (x∗
k, u

∗
k)

T∇xJ
π
k+1(x

∗
k+1)

= ∇uQ
π
k (x

∗
k, u

∗
k),

in which the second equality is due to (4). Since u∗
k is a

stationary point of Qπ
k (x

∗
k, ·), −∇uQ

π
k (x

∗
k, u

∗
k) ∈ NA(u

∗
k).

Thus, −∇uk
C(x0;u

∗
0, . . . , u

∗
n−1) ∈ NA(u

∗
k), which proves

that (u∗
0, . . . , u

∗
n−1) is a stationary point of the one-shot

optimization.

D. Local minimizers: From one-shot optimization to DP

In this subsection, we will show that each strict local
minimizer of the one-shot problem is induced by a locally
minimum control policy π of DP. Before proving the theorem,
we first provide the following useful lemma.

Lemma 1: Given a function g : RN × A → R, a point
x∗ ∈ RN and a number ϵ > 0, if u∗ ∈ A is a strict local
minimizer of the function g(x∗, ·) and g is continuous in a
neighborhood of (x∗, u∗), then there exist δ > 0 and a function
h : B(x∗, δ) → A such that h(x∗) = u∗ and that the following
statements hold for all x ∈ B(x∗, δ):

1) h(x) is a local minimizer of g(x, ·).
2) h(x) ∈ B(u∗, ϵ).
3) The function g(x, h(x)) is continuous at x.

Proof: The proof is given in [1] (see Lemma 1).
Theorem 3: If the one-shot problem has a (spurious) strict

local minimizer (u∗
0, . . . , u

∗
n−1), then there exists a (spurious)

locally minimum control policy π of DP with the property that
πk(x

∗
k) = u∗

k for all k ∈ {0, . . . , n − 1}, where (x∗
0, . . . , x

∗
n)

is the state sequence associated with the (spurious) solution of
the one-shot problem.

Proof: Let (u∗
0, . . . , u

∗
n−1) be a strict local minimizer of

the one-shot problem. There exists ϵ > 0 such that

C(x0;u
∗
0, . . . , u

∗
n−1) < C(x0;u0, . . . , un−1), (6)

for every control sequence (u0, . . . , un−1) ̸= (u∗
0, . . . , u

∗
n−1)

with the property that ui ∈ B(u∗
i , ϵ)∩A for i = 0, . . . , n− 1.

In what follows, we will prove by a backward induction that
there exist policies π0, . . . , πn−1, positive numbers δ0, . . . , δn,
and corresponding cost-to-go functions Jπ

0 , . . . , J
π
n such that

they jointly satisfy the following properties:
1) πk(xk) is a local minimizer of the function Qπ

k (xk, ·)
for all xk ∈ RN .

2) πk(x
∗
k) = u∗

k.
3) For all xk ∈ B(x∗

k, δk), it holds that

πk(xk) ∈ B(u∗
k, ϵ), fk(xk, πk(xk)) ∈ B(x∗

k+1, δk+1).

4) Jπ
k is lower semi-continuous on RN and continuous on

B(x∗
k, δk).

For the base step k = n, we choose an arbitrary δn > 0
and notice that Jπ

n (x) = cn(x), implying that Jπ
n is always

continuous. For k < n, assume that πk+1, . . . , πn−1 and
δk+1, . . . , δn with the above properties have been found.

First, by the continuity of fk, there exist δ′k > 0 and 0 <
ϵk < ϵ such that

fk(xk, uk) ∈ B(x∗
k+1, δk+1), ∀(xk, uk) ∈ Sk, (7)

where Sk = B(x∗
k, δ

′
k)× (B(u∗

k, ϵk) ∩A).
Since Qπ

k (xk, uk) = ck(xk, uk) + Jπ
k+1(fk(xk, uk)) and

Jπ
k+1 is continuous on B(x∗

k+1, δk+1), Qπ
k is continuous on

Sk. Next, for every ũk ∈ B(u∗
k, ϵk) ∩A, if we define

x̃k+1 = fk(x
∗
k, ũk), ũk+1 = πk+1(x̃k+1),

x̃k+2 = fk+1(x̃k+1, ũk+1), ũk+2 = πk+2(x̃k+2),

. . .

x̃n−1 = fn−2(x̃n−2, ũn−2), ũn−1 = πn−1(x̃n−1),

by applying (7) and then the third property above repeatedly,
we arrive at

ũi ∈ B(u∗
i , ϵ) ∩A, ∀i ∈ {k + 1, . . . , n− 1}.

When ũk ̸= u∗
k, it follows from (6) and the second property

above that

Qπ
k (x

∗
k, ũk) = C(x∗

k; ũk, . . . , ũn−1)

= C(x0;u
∗
0, . . . , u

∗
k−1, ũk, . . . , ũn−1)−

k−1∑
i=0

ci(x
∗
i , u

∗
i )

> C(x0;u
∗
0, . . . , u

∗
n−1)−

k−1∑
i=0

ci(x
∗
i , u

∗
i )

= C(x∗
k;u

∗
k, . . . , u

∗
n−1) = Qπ

k (x
∗
k, u

∗
k).

As a result, u∗
k is a strict local minimizer of Qπ

k (x
∗
k, ·).

Applying Lemma 1 to the function Qπ
k with x∗

k and ϵk, one
can find 0 < δk < δ′k and a function hk : B(x∗

k, δk) → A
such that hk(x

∗
k) = u∗

k and that the following statements hold
for every xk ∈ B(x∗

k, δk):
1) hk(xk) is a local minimizer of Qπ

k (xk, ·).
2) hk(xk) ∈ B(u∗

k, ϵk) ⊆ B(u∗
k, ϵ), which together with

(7) implies that
fk(xk, hk(xk)) ∈ B(x∗

k+1, δk+1).
3) The function Qπ

k (xk, hk(xk)) is continuous at xk.
Let πk be the extension of the function hk by setting πk(xk)

to be any global minimizer of the lower semi-continuous
function Qπ

k (xk, ·) over the compact set A if xk /∈ B(x∗
k, δk).

Obviously, πk satisfies the first three properties. To verify the
last property, observe that

Jπ
k (xk) =

{
Qπ

k (xk, hk(xk)), if xk ∈ B(x∗
k, δk),

Hk(xk), otherwise,

in which Hk(xk) = minu∈A Qπ
k (xk, u), and therefore Jπ

k is
continuous on the set B(x∗

k, δk). In addition, note that Jπ
k+1

and thus Qπ
k is lower semi-continuous, while A is compact.

Hence, it follows from the Berge maximum theorem [33] that
Hk is also lower semi-continuous on RN , which implies that
Jπ
k is lower semi-continuous on RN \ B̄(x∗

k, δk). For every
point x̄k on the boundary of B(x∗

k, δk), since Hk is lower
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semi-continuous at x̄k, for every ϵ̄ > 0 there exists δ̄ > 0
such that

Jπ
k (xk) ≥ Hk(xk) > Hk(x̄k)− ϵ̄ = Jπ

k (x̄k)− ϵ̄

holds for all xk ∈ B(x̄k, δ̄). Therefore, Jπ
k is also lower semi-

continuous at x̄k.
By the first and second properties, π = (π0, . . . , πn−1) is a

locally minimum control policy of DP. Also, if (u∗
0, . . . , u

∗
n−1)

is a spurious local minimizer of the one-shot problem, then
Jπ
0 (x0) = C(x0;u

∗
0, . . . , u

∗
n−1) > J0(x0), which implies that

π is also a spurious locally minimum control policy of DP.
Remark 2: Theorem 3 shows that, under mild conditions,

DP is a reformulation from a single one-shot optimization
problem to a sequence of optimization problems that preserves
local minimizers. By taking the contrapositive of Theorem
3, one can immediately obtain the result that the one-shot
problem has no spurious strict local minimizers as long as
DP has no spurious locally minimum control policies.

Remark 3: Pontryagin’s minimum principle implies that a
global minimizer of the one-shot problem achieves a global op-
timality of each DP problem minimizing Hamiltonian. One can
restrict the domain to apply the principle to a local minimizer
of the one-shot problem; it achieves a local optimality of u∗

k for
each DP problem if Jπ

k are evaluated at the associated state
x⋆
k. Theorem 3 is a generalization of Pontryagin’s principle

in the sense that from each local minimizer of the one-
shot problem, we obtain a locally minimum control policy
instead of u∗

k; i.e., a set of functions that achieves a local
optimality of every DP problem for all x ∈ RN . We further
require a “strict” local minimizer of the one-shot problem to
ensure that a local optimality is obtained at all points in the
neighborhood of x⋆

k. Meanwhile, one can now anticipate that
Theorem 1 would correspond to the converse of Pontryagin’s
principle. The principle provides sufficient conditions for the
one-shot problem if we have a convex action space, convex
cost functions, and linear dynamics [3], [34]. In contrast,
Theorem 1 assumes a convex action space but still has general
nonlinear transition dynamics. Theorem 1 instead requires a
locally “strictly” convex Q-functions (Hamiltonian) for each
DP sub-problem. The connection between our results and
Pontryagin’s principle suggests the possibility of the extension
of the above results to the continuous-time setting.

Remark 4: In fact, all results of our paper can be naturally
generalized to the continuous-time setting, but the analysis
is left as future work due to space restrictions. To outline
the pathway for generalization, note that the Hamilton-Jacobi-
Bellman equation for a given continuous-time system can be
obtained from developing a discrete-time model, obtaining
the Bellman equation for that model, and then closing the
gap between the continuous-time and discrete-time system via
taking a limit [3]. Moreover, the infinite-horizon case is also
treated in [3] as the stationary limit of a finite-horizon problem,
which again allows us to extend our results to the infinite-
horizon case.

Considering Theorems 1 and 3 altogether, one can conclude
that under mild conditions, each local minimizer of the one-
shot optimization corresponds to some control input induced
by a locally minimum control policy, and vice versa.

(a) Example 1 (b) Example 2

Fig. 1. Landscape of the one-shot optimization: (a) Each local minimizer
is equivalent to a set of control inputs induced by each locally minimum
control policy. (b) (0, 0) is a control input induced by a locally minimum
control policy but not a local minimizer of the one-shot optimization.
However, it is indeed a stationary point of the one-shot optimization.

E. Numerical Examples
To effectively demonstrate the results of this section via

visualization, we will provide two low-dimensional examples.
Example 1: Consider an optimal control problem with the

control constraint A = [−10, 10] and

c0(x, u) = 0,

c1(x, u) =
1

4
u4 − 3x+ 4

3
u3 +

3x2 + 8x+ 3

2
u2

− x(x+ 1)(x+ 3)u+ exp (x4),

c2(x) = 0, f0(x, u) = x+ u, f1(x, u) = x+ u.

At the initial state x0 = 0, the one-shot problem is written as

min
u0∈A,u1∈A

{1

4
u4
1 −

3u0 + 4

3
u3
1 +

3u2
0 + 8u0 + 3

2
u2
1

− u0(u0 + 1)(u0 + 3)u1 + exp (u4
0)
}
.

This one-shot optimization problem has 3 spurious local mini-
mizers (−0.523,−0.523), (−0.523, 2.477), (0.938, 0.938) and
the globally optimal minimizer (0.938, 3.938). The landscape
of this objective function is shown in Fig. 1a.

The optimal control problem can also be solved sequentially
by DP. At the time step 1, the Q-function is Qπ

1 (x, u1) =
c1(x, u1), which has the maximum point x + 1, the spurious
local minimizer x and the global minimizer x + 3. One can
choose between the two different continuous policies

π1(x) =

{
x, |x| ≤ 10,

10 · sgn(x), otherwise,

or

π1(x) =

{
x+ 3, −13 ≤ x ≤ 7,

10 · sgn(x), otherwise,

where sgn(x) denotes the sign of x. The first policy has the
cost-to-go function Jπ

1 (x) = − 1
12 (3x

4 + 16x3 + 18x2) +
exp(x4) for |x| ≤ 10 and the second policy has Jπ

1 (x) =
− 1

12 (3x
4 + 16x3 + 18x2 + 27) + exp(x4) for −13 ≤ x ≤ 7.

At the time step 0 and the initial state x0 = 0, the Q-function
is Qπ

0 (0, u0) = Jπ
1 (u0). For the first policy, the Q-function

has a spurious local minimizer at u0 = −0.523 and a global
minimum at u0 = 0.938. If we choose π0(0) = −0.523, then
the induced input under π of DP is (−0.523,−0.523) and if
we choose π0(0) = 0.938, then the induced input under π
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of DP is (0.938, 0.938). Both of these input sequences are
spurious local minimizers of the one-shot problem.

The Q-function of the second policy has a spurious lo-
cal minimizer at u0 = −0.523 and a global minimum at
u0 = 0.938. If we choose π0(0) = 0.938, then the locally
minimum control policy π is non-spurious and its induced
input (0.938, 3.938) is the global minimizer of the one-shot
problem. However, if we choose π0(0) = −0.523, then π is
spurious and its induced input (−0.523, 2.477) is the spurious
minimizer of the one-shot problem.

In this example, one can observe that each strictly local
minimizer of the one-shot problem corresponds to a locally
minimum control policy of DP, which validates the result
of Theorem 3. In addition, it can be noticed that since
∇2

uQ
π
0 (0,−0.523) and ∇2

uQ
π
0 (0, 0.938) are both strictly pos-

itive for each of the two policies, Theorem 1 clearly holds.
Example 2: Consider the problem in Example 1 but change

c1(x, u) to 1
4u

4 − x
3u

3 − x2u2 + exp (x4). At the initial state
x0 = 0, the one-shot problem can be written as

min
u0∈A,u1∈A

{1

4
u4
1 −

u0

3
u3
1 − u2

0u
2
1 + exp (u4

0)
}
.

It has 3 stationary points (0, 0) and ((log( 83 ))
1
4 , 2(log( 83 ))

1
4 )

and (−(log( 83 ))
1
4 ,−2(log( 83 ))

1
4 ). The latter two are the global

minimizers of this one-shot problem. For (0, 0), we take u0 =
u1 = ϵ and use the Taylor expansion of the exponential func-
tion to arrive at 1

4ϵ
4− 1

3ϵ
4−ϵ4+exp (ϵ4) = − 1

12ϵ
4+1+o(ϵ4),

which is strictly less that 1 for sufficiently small values of ϵ.
This implies that (0, 0) is not a local minimizer of the one-shot
problem. The landscape of this objective function is shown
in Fig. 1b. It can also be solved sequentially by DP. For the
initial state x0, it has 3 different induced input sequences under
the locally minimum control policy: (log( 83 ))

1
4 , 2(log( 83 ))

1
4 ),

(−(log( 83 ))
1
4 ,−2(log( 83 ))

1
4 ) and (0, 0). The first two points

are the global minimizers of the one-shot problem but (0, 0)
is not a local minimizer of the one-shot problem.

In this example, ∇2
uQ

π
1 (0, 0) = ∇2

uc1(0, 0) = 0 violates
the assumptions in Theorem 1, and thus (0, 0) is not a local
minimizer of the one-shot problem. This clarifies the role of
the regularity conditions needed in the theorem. On the other
hand, Qπ

1 (x, ·) has three stationary control policies 0,−x, 2x.
Consistent with Theorem 2, (0, 0) is a saddle point (which is
a stationary point) of the one-shot optimization.

III. DETERMINISTIC PROBLEM UNDER A
PARAMETERIZED POLICY

A. Problem Formulation

In Section II, the one-shot optimization approach is referred
to as an open-loop control, in the sense that it determines all
the control inputs at once, only given an initial state. On the
other hand, the dynamic programming approach is referred to
as a closed-loop control, in the sense that the control input of
each time step is the function of the output of the previous step
[3]. In this section, we formulate both approaches to a closed-
loop control. To achieve this, we can replace the control inputs
of the one-shot optimization with a parameterized policy. We
still optimize over a vector at once, which means that it can be

solved in a one-shot fashion. However, this method becomes
a type of closed-loop control in the sense that a function of
both the parameters at each step and the output of the previous
step determines the control input [35]. Also, it is reasonable to
adopt such parameterized policies for dynamic programming
as well, which would still be a closed-loop control. Note that
both approaches now optimize over a set of parameters so that
they can be directly compared in terms of their landscapes.
This motivates us to modify Definitions 1, 2, 3, 5, and 6 to
incorporate parameterized policies.

Definition 7: Given a parameter space Θ and a compact
action space A, let µθ(·) : RN → A be a bounded real-
valued function parameterized by θ ∈ Θ, which satisfies the
continuity assumption that for all ϵ > 0, there exists δ > 0
such that

∥θ − θ′∥ < δ ⇒ sup
x∈RN

∥µθ(x)− µθ′(x)∥ < ϵ. (8)

Now, we modify the deterministic problems (P1), (P2), and
(P3) to a discrete-time finite-horizon deterministic optimal
control problem under a parameterized policy as follows:

min
θ0,...,θn−1∈Θ

n−1∑
i=0

ci(xi, µθi(xi)) + cn(xn)

s.t. xi+1 = fi(xi, µθi(xi)), i = 0, . . . , n− 1,

x0 is given.
(PP1)

Definition 8: Given a control policy parameter vector π =
(θ0, . . . , θn−1), the associated Q-functions Qπ

k (·, ·) and cost-
to-go functions Jπ

k (·) under the policy π are defined in a
backward way from the time step n − 1 to the time step 0
through the following recursion:

Jπ
n (x) = cn(x),

Qπ
k (x, µθ(x)) = ck(x, µθ(x)) + Jπ

k+1(fk(x, µθ(x))),

k = 0, . . . , n− 1,

Jπ
k (x) = Qπ

k (x, µθk(x)), k = 0, . . . , n− 1.

Then, the one-shot optimization problem (PP1) can be equiv-
alently written as

min
π=(θ0,...,θn−1)∈Θn

Jπ
0 (x0) (PP2)

and DP approach can be written as the following backward
recursion:
Jn(x) = cn(x),

Jk(x) = min
θ∈Θ

{ck(x, µθ(x)) + Jk+1(fk(x, µθ(x)))}, (PP3)

for k = 0, . . . , n − 1. Note that π was previously defined
as a control policy (π0, .., πn−1), but we use the equivalent
definition (θ0, ..., θn−1) in the parameterized case. We also
call it control policy parameter vector alternatively.

Definition 9 (local minimizer of the one-shot optimization):
A control policy parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said

to be a local minimizer of the one-shot optimization if there
exists ϵ > 0 such that

Jπ
0 (x0) ≤ J π̃

0 (x0)

for all π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ) ∩ Θ) × · · · ×
(B(θ∗n−1, ϵ) ∩Θ).
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Definition 10 (local minimizer of DP): A control policy
parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said to be a local

minimizer of DP if for all k ∈ {0, . . . , n − 1} and for all
x ∈ RN , the policy parameter θ∗k is a local minimizer of
Qπ

k (x, µ(·)(x)), meaning that there exists ϵ∗k > 0 such that
Qπ

k (x, µθ∗
k
(x)) ≤ Qπ

k (x, µθ̃(x)), ∀θ̃ ∈ B(θ∗k, ϵ
∗
k) ∩Θ. (9)

Definition 11 (Stationary point of the one-shot optimization):
A control policy parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said

to be a stationary point of the one-shot optimization if for all
k ∈ {0, . . . , n− 1}, it holds that −∇θkJ

π
0 (x0) ∈ NΘ(θ

∗
k).

Definition 12 (Stationary point of DP): A control policy
parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said to be a stationary

point of DP if for all k ∈ {0, . . . , n− 1} and for all x ∈ RN ,
it holds that −∇θkQ

π
k (x, µθ∗

k
(x)) ∈ NΘ(θ

∗
k).

Remark 5: By comparing (P2) with (PP2) as well as
comparing Definition 2 with Definition 9, notice that
one-shot optimization now considers Jπ

0 (x0) instead of
C(x0; θ0, . . . , θn−1), since the two definitions are equivalent
when the parameterized policy is incorporated.

We can compare Definition 10 with the following definition:

∀k ∈ {0, . . . , n− 1}, ∀x ∈ RN , ∃ϵ∗k(x) > 0 such that
Qπ

k (x, µθ∗
k
(x)) ≤ Qπ

k (x, ũ), ∀ũ ∈ B(µθ∗
k
(x), ϵ∗k(x)) ∩A,

(10)
Definition 10 considers the open ball centered at the policy

parameter in the parameter space, while (10) considers the
corresponding open ball in the action space. Proposition 1
establishes the relationship between these definitions.

Proposition 1: If an arbitrary control policy parameter vec-
tor π = (θ∗0 , . . . , θ

∗
n−1) satisfies (10) with infx∈RN ϵ∗k(x) > 0

for all k ∈ {0, . . . , n− 1}, then it is a local minimizer of DP.
Proof: Since infx∈RN ϵ∗k(x) > 0, by the continuity

assumption, for every k ∈ {0, . . . , n− 1}, there exists δk > 0
such that

∥θ − θ∗k∥ < δk ⇒ sup
x∈RN

∥µθ(x)− µθ∗
k
(x)∥ < inf

x∈RN
ϵ∗k(x)

That is, for all θ ∈ B(θ∗k, δk) ∩ Θ, ∥µθ(x) − µθ∗
k
(x)∥ <

ϵ∗k(x) for all x ∈ RN . Notice that Definition 7 implies that
µθ(x) ∈ A for all x ∈ RN . Thus, it holds for all x ∈ RN that

θ ∈ B(θ∗k, δk) ∩Θ ⇒ µθ(x) ∈ B(µθ∗
k
(x), ϵ∗k(x)) ∩A.

Thus, given a control policy parameter vector satisfying
(10), for all k ∈ {0, . . . , n − 1} and for all x ∈ RN , (9)
holds if one substitutes ϵ∗k with δk. This completes the proof.

Remark 6: The converse of Proposition 1 does not hold.
For example, suppose there exists ϵ∗k > 0 such that µθ(x)
takes the same value for all θ ∈ B(θ∗k, ϵ

∗
k) ∩ Θ. While this

control policy satisfies the continuity assumption, θ∗k is clearly
a local minimizer of DP, which satisfies (9). However, it is even
possible that µθ∗

k
(x) is a strict local maximizer of Qπ

k (x, ·).
Note that the condition infx∈RN ϵ∗k(x) > 0 is necessary for

Proposition 1. Thus, the proposition implies that if we use
our notion of a local minimizer of DP, we no longer need to
assume infx∈RN ϵ∗k(x) > 0 while establishing the relationship
from DP to one-shot optimization, which was the case in
the (non-parameterized) deterministic case presented in our
conference paper (see Theorem 2 in [1]).

B. From DP to one-shot optimization
In this subsection, we will show that in the determinis-

tic case with a parameterized policy, each local minimizer
(stationary point) of DP directly corresponds to some local
minimizer (stationary point) of the one-shot optimization.

Theorem 4: Consider a local minimizer of DP π =
(θ∗0 , ..., θ

∗
n−1). Then, π is also a local minimizer of the one-

shot optimization.
Proof: Since (θ∗0 , ..., θ

∗
n−1) is a local minimizer of DP,

there exist ϵ∗0, . . . , ϵ
∗
n−1 > 0 such that

Jπ
0 (x0) = Qπ

0 (x0, µθ∗
0
(x0)) ≤ Qπ

0 (x0, µθ̃0
(x0))

= c0(x0, µθ̃0
(x0)) +Qπ

1 (x̃1, µθ∗
1
(x̃1))

(x̃1 = f0(x0, µθ̃0
(x0)))

≤ c0(x0, µθ̃0
(x0)) +Qπ

1 (x̃1, µθ̃1
(x̃1))

= c0(x0, µθ̃0
(x0)) + c1(x̃1, µθ̃1

(x̃1)) +Qπ
2 (x̃2, µθ∗

2
(x̃2))

(x̃2 = f1(x̃1, µθ̃1
(x̃1)))

≤ · · · ≤ J π̃
0 (x0)

where π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ
∗
0) ∩ Θ) × · · · ×

(B(θ∗n−1, ϵ
∗
n−1) ∩Θ).

Choose ϵ = min{ϵ∗0, . . . ϵ∗n−1}. Then, Jπ
0 (x0) ≤ J π̃

0 (x0) for
all π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ)∩Θ)×· · ·× (B(θ∗n−1, ϵ)∩
Θ). This completes the proof.

Theorem 5: Consider a stationary point of DP π =
(θ∗0 , ..., θ

∗
n−1). Let the corresponding state sequence be

(x∗
0, . . . x

∗
n). If for every k ∈ {0, . . . , n− 1}, µθk(xk) is con-

tinuously differentiable with respect to θk in a neighborhood
of (x∗

k, θ
∗
k), then π is also a stationary point of the one-shot

optimization.
Proof: Notice that ∇θkJ

π
0 (x0) = ∇θkJ

π
k (x

∗
k) =

∇θkQ
π
k (x

∗
k, µθ∗

k
(x∗

k)). Thus, −∇θkJ
π
0 (x0) ∈ NΘ(θ

∗
k) for all

k ∈ {0, . . . , n− 1}, which means that π is a stationary point
of the one-shot optimization.

Remark 7: The converse of Theorem 5 clearly does not
hold since one can generally find a point x ∈ RN such that
∇θkQ

π
k (x

∗
k, µθ∗

k
(x∗

k)) ̸= ∇θkQ
π
k (x, µθ∗

k
(x)).

C. From one-shot optimization to DP
In this subsection, we first show that a local minimizer of

the one-shot optimization does not necessarily correspond to
a local minimizer of DP; i.e., the converse of Theorem 4 does
not hold. Then, with Remark 7, it is clear that the optimization
landscape of the one-shot optimization is more complex than
that of DP. As a by-product, if the one-shot problem has a low
complexity, so does the DP problem.

To develop a clear counterexample, we restrict the pa-
rameterized policy to a certain class as given below, which
automatically satisfies the continuity assumption defined in
Definition 7.

Definition 13: Define our parameterized policy to be a lin-
ear combination of arbitrary linearly independent basis func-
tions, while satisfying Definition 7; i.e., Given m functions
fi : RN → RM , i = 1, . . . ,m and θ = [s1, . . . , sm]T ∈ Θ,

µθ(x) =

m∑
i=1

sifi(x) ∈ A, (11)
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where there does not exist (s̃1, . . . , s̃m) ̸= 0 such that for all x
in any set of non-zero measure, the following equation holds
[36]:

m∑
i=1

s̃ifi(x) = 0. (12)

Remark 8: Since a set of isolated points is a set of measure
zero, it is exempt from determining the independence of
basis functions. When x has a continuous distribution, the
independence of basis functions implies that if (12) holds for
all x in the support of the distribution, s̃1 = · · · = s̃m = 0.
When x has a discrete distribution, since a set of all the
possible values of x is a set of measure zero, the independence
of basis functions does not guarantee s̃1 = · · · = s̃m = 0 even
if (12) holds for all possible values of x.

Applications of a parameterized policy defined by Definition
13 arise in a piecewise polynomial function as well as a
stochastic control. The usefulness of the parameterized policy
also manifests within Representer theorem [37]: a linear com-
bination of kernels fully represents the solution of minimizing
empirical risk. It switches the optimization problem in infinite-
dimensional function space to finding the finite number of
coefficients. The minimum number of parameters needed is
the number of data points, which is generally much greater
than the dimension of the output. Applying this to our pa-
rameterized policy, the number of parameters m needs to be
greater than the dimension of the action M to cover all data
points. For the remainder of this section, we call a policy
satisfying m > M as an overparameterized policy.

We now provide some evidence to refute the converse of
Theorem 4, specifically if the parameterized policy class is a
linear combination of basis functions. It turns out that a local
minimizer of the one-shot optimization does not necessarily
imply a local minimizer of DP in the overparameterized case.

Proposition 2: Consider an overparameterized policy class
defined by Definition 13. Let π = (θ∗0 , . . . , θ

∗
n−1) be a local

minimizer of DP. If there exists at least one k ∈ {0, . . . , n−1}
such that θ∗k is in the interior of Θ, then there exists an infinite
number of local minimizers of the one-shot optimization
corresponding to each local minimizer of DP.

Proof: Consider the state sequence (x∗
0, . . . , x

∗
n) induced

by a local minimizer of DP π. Let k be an index for
which θ∗k is in the interior of Θ. Then, one can express the
action taken at step k as µθ∗

k
(x∗

k) =
∑m

i=1 s
∗
i fi(x

∗
k) with

θ∗k = (s∗0, s
∗
1, . . . , s

∗
m) by Definition 13. Since the policy is

overparameterized, m is greater than the dimension of the
action M . Now, consider the matrix equation[

f0(x
∗
k) f1(x

∗
k) . . . fm(x∗

k)
]
θk = µθ∗

k
(x∗

k), (13)

where θk is an m × 1 vector variable, and let F ∗
k denote the

first matrix in the left-hand side, which is an M ×m constant
matrix given by x∗

k. (13) has at least one solution: θ∗k.
The dimension of the null space of F ∗

k is greater than 0
due to m > M . We take any nonzero element v from the
null space. Then, for all δ ∈ R, θ∗k + δv satisfies (13). Since
θ∗k is in the interior of Θ, one can pick ϵ1 > 0 such that
B(θ∗k, ϵ1) ⊂ Θ. Thus, for 0 ≤ δ ≤ ϵ1

∥v∥ , θ∗k + δv ∈ B(θ∗k, ϵ1)
preserves the state and action sequence associated with θ∗k due
to (13). The induced cost is also indeed preserved.

By Theorem 4, π is a local minimizer of the one-shot opti-
mization. Now, we select ϵ2 > 0 such that Jπ

0 (x0) ≤ J π̃
0 (x0)

for all π̃ = (θ∗0 , . . . , θ̃k, . . . , θ
∗
n−1) where θ̃k ∈ B(θ∗k, ϵ2)∩Θ.

Let ϵ := min{ϵ1, ϵ2} > 0. Then, for 0 ≤ δ ≤ ϵ
2∥v∥ , we have

B(θ∗k + δv, δ∥v∥) ⊂ B(θ∗k, ϵ). Since θ∗k + δv preserves the
induced cost, (θ∗0 , . . . , θ

∗
k+δv, . . . , θ∗n−1) is a local minimizer

of the one-shot optimization for all 0 ≤ δ ≤ ϵ
2∥v∥ . This

completes the proof.
Proposition 2 implies that for every k ∈ {0, . . . , n− 1}, θk

of a “strict” local minimizer of the one-shot optimization does
not lie in the interior of Θ. Thus, one can think of constructing
a strict local minimizer by restricting the area of Θ. It turns out
that given a strict local minimizer of the one-shot optimization
and the induced input sequence, no other points can retrieve
the same input sequence if Θ is convex.

Lemma 2: Consider a strict local minimizer of the one-
shot optimization π = (θ∗0 , . . . , θ

∗
n−1). Let (x∗

0, . . . , x
∗
n) be

the induced state sequence. Suppose that Θ is convex and the
parameterized policy is defined by Definition 13. Then, π is
the unique control policy parameter vector that achieves the
input sequence (µθ∗

0
(x∗

0), . . . , µθ∗
n−1

(x∗
n−1)).

Proof: For every k ∈ {0, . . . , n − 1}, µθ(x
∗
k) =∑mk

i=1 sifi(x
∗
k) where θ = (s1, . . . , smk

). Let θ∗k =
(s∗1, . . . , s

∗
mk

). Since π is a strict local minimizer of the one-
shot optimization, µθ(x

∗
k) ̸= µθ∗

k
(x∗

k) in the neighborhood of
θ∗k if θ ̸= θ∗k; i.e., there exists ϵ > 0 such that

{θ ∈ B(θ∗k, ϵ) ∩Θ :

mk∑
i=1

sifi(x
∗
k) = µθ∗

k
(x∗

k)} = {θ∗k}. (14)

Assume that there exists θ̃ ̸= θ∗k such that
∑mk

i=1 s̃ifi(x
∗
k) =

µθ∗
k
(x∗

k) where θ̃ = (s̃1, . . . , s̃mk
). Then, for λ ∈ [0, 1],

one can obtain
∑mk

i=1(λs
∗
i + (1 − λ)s̃i)fi(x

∗
k) = µθ∗

k
(x∗

k) by
linearity and λθ∗k+(1−λ)θ̃ ∈ Θ by convexity. Letting λ → 1,
one can construct an element of the left-hand side of (14)
distinct from θ∗k. By contradiction, θ∗k is the unique point that
achieves µθ∗

k
(x∗

k).
Note that Lemma 2 does not necessarily imply that a strict

local minimizer of the one-shot optimization is a local min-
imizer of DP even if Θ is convex. A simple counterexample
can be constructed by considering the 1-step problem

c0(x, µθ(x)) =
1

4
µθ(x)

4 − 1

3
(x2 + 2x)µθ(x)

3+

1

2
(2x3 + x− 1)µθ(x)

2 − (x4 − x3 + x2 − x)µθ(x),

c1(x, µθ(x)) = 0, f0(x, µθ(x)) = x+ µθ(x).

with the parameterized policy µθ(x) = d1x + d2 where θ =
(d1, d2) and Θ = {(d1, d2) : 1 ≤ 2d1−d2 ≤ 3, 1 ≤ 2d1+d2 ≤
3} which is convex. At the initial state x0 = 1, the one-shot
problem can be written as

min
(d1,d2)∈Θ

{
1

4
(d1 + d2)

4 − (d1 + d2)
3 + (d1 + d2)

2

}
.

Each vector (d1, d2) ∈ Θ which satisfies d1 + d2 =
0 or d1 + d2 = 2 is a local minimizer of the one-shot
optimization. Since {(d1, d2) : d1 + d2 = 0}∩Θ = {(1,−1)}
and {(d1, d2) : d1 + d2 = 2} ∩ Θ = {(1, 1)}, we have
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(a) Domain (b) Landscape

Fig. 2. The domain and the landscape of the one-shot optimization for
a deterministic parameterized problem: (a) The gray-colored area is the
domain of the parameter space. The intersection between the dotted
lines and the domain is {(1, 1), (1,−1)}. (b) Both (1, 1) and (1,−1)
are a strict local minimizer of the one-shot optimization but only (1,−1)
is a local minimizer of DP.

(1,−1) and (1, 1) as strict local minimizers of the one-shot
optimization. On the other hand, since ∇θQ

π
0 (x, µθ(x)) =

∇θc0(x, µθ(x)) = [g(x, θ)x, g(x, θ)]T where g(x, θ) =
(µθ(x) − (x2 + 1))(µθ(x) − x)(µθ(x) − (x − 1)), a local
minimizer of DP should be the parameter that yields µθ(x) =
x−1 or µθ(x) = x2+1 for all x ∈ RN . Since a linear policy
cannot contain x2+1, (1,−1) ∈ Θ is the only local minimizer
of DP. Thus, (1, 1) is a strict local minimizer of the one-shot
optimization but not a local minimizer of DP. Fig. 2 shows
the domain and the landscape of the one-shot optimization.

In light of the above counterexample, one can think of the
situation where the parameterized policy contains every locally
minimum control policy of DP (see Definition 3). It turns out
that if such a situation is possible, given a convex parameter
space, each strict local minimizer of the one-shot optimization
is a local minimizer of DP under the following assumptions.

Assumption 1: Given a local minimizer of the one-shot
optimization π, let (x∗

0, . . . , x
∗
n) be the associated state se-

quence. Then, for all k ∈ {0, . . . , n− 1}, the M ×m matrix
[f0(x

∗
k) f1(x

∗
k) . . . fm(x∗

k)] has a full row rank.
Assumption 2: Assume that A ⊆ ∩n

k=1µΘ(x
∗
k), where

µΘ(x
∗
k) is the image of Θ through µθ(x

∗
k) : Θ → A.

Lemma 3: Assume that Θ is convex. Consider a strict local
minimizer of the one-shot optimization π = (θ∗0 , . . . , θ

∗
n−1).

Suppose that the parameterized policy defined by Definition
13 satisfies Assumptions 1 and 2. If the parameterized policy
class contains every locally minimum control policy of DP and
at least one of the locally minimum control policies satisfies
infx∈RN ϵ∗k(x) > 0 for all k ∈ {0, . . . , n − 1}, then π is a
local minimizer of DP.

Proof: Let (x∗
0, . . . , x

∗
n) be the state sequence associ-

ated with π. Recall that Jπ
0 (x0) =

∑k−1
i=0 ci(x

∗
i , µθ∗

i
(x∗

i )) +
Qπ

k (x
∗
k, µθ∗

k
(x∗

k)). One can fix all parameters except θ∗k to de-
rive that Jπ

0 (x0)−Jπ′

0 (x0) = Qπ
k (x, µθ∗

k
(x))−Qπ

k (x, µθ′
k
(x)),

where π′ = (θ∗0 , . . . , θ
∗
k−1, θ

′
k, θ

∗
k+1, . . . , θ

∗
n−1). Thus, a local

minimizer of the one-shot optimization π implies that for all
k ∈ {0, . . . , n− 1}, there exists ϵ∗k > 0 such that

Qπ
k (x

∗
k, µθ∗

k
(x∗

k)) ≤ Qπ
k (x

∗
k, µθ̃(x

∗
k)), ∀θ̃ ∈ B(θ∗k, ϵ

∗
k) ∩Θ.

(15)

Now, let F ∗
k be the M × m matrix

[f0(x
∗
k) f1(x

∗
k) . . . fm(x∗

k)], where its smallest singular
value is denoted by σ∗

k. Given an arbitrary direction v ∈ RM ,
one can take a point uv that is farthest from µθ∗

k
(x∗

k) in the
direction of v since the action space A is compact. Let δv be
the value that achieves uv = µθ∗

k
(x∗

k) + δvv. By Assumption
2, there exists θv ∈ Θ satisfying uv = µθv (x

∗
k), and by

Definition 13, µθv (x
∗
k) is defined by F ∗

k θv .
Case 1 δv = 0: There does not exist δ > 0 such that µθ∗

k
(x∗

k)+
δv ∈ A.
Case 2 δv > 0 and θv ∈ B(θ∗k, ϵ

∗
k): Due to the linearity of

policy and the convexity of Θ, there exists θδ ∈ B(θ∗k, ϵ
∗
k)∩Θ

such that µθδ(x
∗
k) = µθ∗

k
(x∗

k) + δv for all 0 < δ < δv .
Case 3 δv > 0 and θv /∈ B(θ∗k, ϵ

∗
k): Consider µθ∗

k
(x∗

k) +
ϵ∗k

2∥θv−θ∗
k∥
(µθv (x

∗
k) − µθ∗

k
(x∗

k)). The corresponding parameter
is definitely in B(θ∗k, ϵ

∗
k) ∩ Θ by the linearity of policy and

the convexity of Θ. Then, as in Case 2, there exists θδ ∈
B(θ∗k, ϵ

∗
k) ∩ Θ such that µθδ(x

∗
k) = µθ∗

k
(x∗

k) + δv for all
0 < δ <

ϵ∗k
2∥θv−θ∗

k∥
δv .

In Case 3, notice that ∥ ϵ∗k
2∥θv−θ∗

k∥
(µθv (x

∗
k) − µθ∗

k
(x∗

k))∥ =
ϵ∗k
2 · ∥F

∗
k (θv−θ∗

k)∥
∥θv−θ∗

k∥
≥ ϵ∗k

2 σ
∗
k > 0, where the last inequality is from

Assumption 1 and the second last inequality is from the basic
property of singular value [38].

Considering all three cases, ũ ∈ B(µθ∗
k
(x∗

k),
ϵ∗k
2 σ

∗
k) ∩ A

implies that at least one corresponding parameter for each ũ
is in B(θ∗k, ϵ

∗
k) ∩Θ. Thus, one can notice that (15) implies

Qπ
k (x

∗
k, µθ∗

k
(x∗

k)) ≤ Qπ
k (x

∗
k, ũ), ∀ũ ∈ B(µθ∗

k
(x∗

k),
ϵ∗k
2
σ∗
k)∩A.

(16)
We select an arbitrary locally minimum control policy ϕ =

(ϕ0, . . . , ϕn−1) with the property that infx∈RN ϵ∗k(x) > 0.
Let π̃ = (π̃0, . . . , π̃n−1) be the policy such that for all
k ∈ {0, . . . , n− 1},

π̃k(xk) =

{
µθ∗

k
(x∗

k), if xk = x∗
k,

ϕk(xk), otherwise.

Such π̃ is also a locally minimum control policy by (16).
This implies that the parameterized policy contains π̃. Also, π̃
achieves the same input sequence (µθ∗

0
(x∗

0), . . . , µθ∗
n−1

(x∗
n−1))

as the strict local minimizer π. Therefore, by Lemma 2, µθ∗
k
=

π̃k holds. Since infx∈RN ϵ∗k(x) induced by ϕk is greater than
0, infx∈RN ϵ∗k(x) induced by π̃k is also greater than 0. Then,
by Proposition 1, π = (θ∗0 , . . . , θ

∗
n−1) is a local minimizer of

DP.
Remark 9: With a given set of parameters (θ∗0 , . . . , θ

∗
n−1),

there exists only one associated state sequence for the de-
terministic parameterized problem. Assumptions 1 and 2 are
thus only required for that specific state sequence, where one
can readily check the assumptions in advance with known
dynamics, parameter space, action space, and policy class.
Assumption 1 is a type of regularity condition, which can
be regarded as the extension of an overparameterized policy.
Assumption 2 implies that Θ should be large enough to contain
relevant parameters to cover the action space A. Since µθ(x)
is designed to be in A by Definition 7, Assumption 2 is
equivalent to saying that A = µΘ(x

∗
0) = · · · = µΘ(x

∗
n).
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Meanwhile, suppose that there exist two different locally
minimum control policies in a set of non-zero measure, mean-
ing that at some step k, π1(x) ̸= π2(x) for all x ∈ I where
I is a set of non-zero measure. Then, there exists an infinite
number of locally minimum control policies made up of π1

and π2 by alternating between π1(x) and π2(x) along x ∈ I ,
and the parameterized policy class cannot contain all these
policies. We now present the situation that the parameterized
policy contains every locally minimum control policy of DP.

Theorem 6: Assume that Θ is convex. Consider a
strict local minimizer of the one-shot optimization π =
(θ∗0 , . . . , θ

∗
n−1). Suppose that the parameterized policy defined

by Definition 13 satisfies Assumptions 2 and 1. If there exists
only a single locally minimum control policy of DP ϕ =
(ϕ0, . . . , ϕn−1) and the parameterized policy class contains
ϕ, then π is a local minimizer of DP.

Proof: Let ϕ′ = (θ′0, . . . , θ
′
n−1) be the parameters

associated with ϕ. For all k ∈ {0, . . . , n− 1} and for all x ∈
RN , ϕk(x) is the unique local minimizer of Qϕ′

k (x, u). Having
no spurious local minima implies that infx∈RN ϵ∗k(x) = ∞ >
0. Moreover, the parameterized policy class contains every
locally minimum control policy of DP. Since these facts satisfy
the preconditions of Lemma 3, this completes the proof.

Considering both Theorem 4 and 6, one can conclude that
under the assumptions of Theorem 6, a local minimizer of DP
is equivalent to a local minimizer of the one-shot optimization.

IV. STOCHASTIC PROBLEM UNDER A
PARAMETERIZED POLICY

A. Problem Formulation
In this section, we will show that the results obtained for the

deterministic problem under a parameterized policy also hold
for the stochastic problem under a parameterized policy. Since
we now take the expectation of the sum of the costs over the
trajectories, the issue of strictness, as in Proposition 2, does
not take place. Before presenting the theorems, we first define
the problem setting in the stochastic case.

Definition 14: Given a complete probability space
(Ω,F ,P), let x0 be a F-measurable, RN -valued random
variable, which has an initial distribution ρ. Also, let wk

be an F-measurable, RW -valued random variable for all
k ∈ {0, . . . , n − 1} such that x0, w0, . . . , wn−1 are mutually
independent. The state transition is now governed by the
dynamics fi : RN × A × RW → RN , i = 0, . . . , n − 1. The
dynamics are again defined to be at least twice continuously
differentiable.

Now, we modify the deterministic problems under a param-
eterized policy, i.e., (PP1), (PP2), and (PP3), to a discrete-
time finite-horizon stochastic optimal control problem under a
parameterized policy:

min
θ0,...,θn−1∈Θ

Ex0,w0,...,wn−1

[ n−1∑
i=0

ci(xi, µθi(xi)) + cn(xn)

]
,

where xi+1 = fi(xi, µθi(xi), wi), i = 0, . . . , n− 1.
(SP1)

Notice that for stochastic problems, x0 may not be given as a
point, but has an initial distribution ρ. Afterwards, xi+1 is a
random variable induced by (x0, w0, . . . , wi).

Definition 15: Given a control policy parameter vector π =
(θ0, . . . , θn−1), the associated Q-functions Qπ

k (·, ·) and cost-
to-go functions Jπ

k (·) under the policy π are defined in a
backward way from the time step n − 1 to the time step 0
through the following recursion:
Jπ
n (x) = cn(x),

Qπ
k (x, µθ(x)) = Ewk

[ck(x, µθ(x)) + Jπ
k+1(fk(x, µθ(x), wk))],

k = 0, . . . , n− 1,

Jπ
k (x) = Qπ

k (x, µθk(x)), k = 0, . . . , n− 1.

Then, the one-shot optimization problem (SP1) can be equiv-
alently written as

min
π=(θ0,...,θn−1)∈Θn

Ex0
[Jπ

0 (x0)], (SP2)

as long as the cost functions ci, i = 0, . . . , n−1, are uniformly
bounded, due to the product measure Theorem and Fubini’s
Theorem [39]. In the remainder of the paper, we assume that
the two problems are equivalent.

The DP approach can be written as the following backward
recursion:
Jn(x) = cn(x),

Jk(x) = min
θ∈Θ

{Ewk
[ck(x, µθ(x)) + Jk+1(fk(x, µθ(x), wk))]},

k = 0, . . . , n− 1.
(SP3)

Definition 16 (local minimizer of the one-shot optimization):
A control policy parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said

to be a local minimizer of the one-shot optimization if there
exists ϵ > 0 such that

Ex0 [J
π
0 (x0)] ≤ Ex0 [J

π̃
0 (x0)]

for all π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ) ∩ Θ) × · · · ×
(B(θ∗n−1, ϵ) ∩Θ).

Definition 17 (Stationary point of the one-shot optimization):
A control policy parameter vector π = (θ∗0 , . . . , θ

∗
n−1) is said

to be a stationary point of the one-shot optimization if for all
k ∈ {0, . . . , n−1}, it holds that −∇θkEx0

[Jπ
0 (x0)] ∈ NΘ(θ

∗
k).

While the one-shot method aims for optimizing the expec-
tation over all steps in the stochastic dynamics, DP studies
optimizing Q-function at every step both in the deterministic
and stochastic cases. Since we have modified the definition
of Q-function to incorporate the expectation, it is natural that
the definition of a local minimizer (stationary point) of DP is
exactly the same as Definition 10 (12).

B. From DP to one-shot optimization
In this subsection, we will show that, in the stochastic case

with a parameterized policy, each local minimizer (stationary
point) of DP directly corresponds to some local minimizer
(stationary point) of the one-shot optimization, just as in the
deterministic case. However, it turns out that for the stationary
points, the policy needs to be continuously differentiable with
respect to both states and parameters since the expectation is
over all trajectories rather than a single trajectory.

Theorem 7: Consider a local minimizer of DP π =
(θ∗0 , ..., θ

∗
n−1). Then, π is also a local minimizer of the one-

shot optimization.
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Proof:
Since (θ∗0 , ..., θ

∗
n−1) is a local minimizer of DP, there exist

ϵ∗0, . . . , ϵ
∗
n−1 > 0 such that

Ex0 [J
π
0 (x0)] = Ex0 [Q

π
0 (x0, µθ∗

0
(x0))] ≤ Ex0 [Q

π
0 (x0, µθ̃0

(x0))]

= Ex0
[c0(x0, µθ̃0

(x0)) + Ew0
[Qπ

1 (x̃1, µθ∗
1
(x̃1))]]

(x̃1 = f0(x0, µθ̃0
(x0), w0))

≤ Ex0
[c0(x0, µθ̃0

(x0)) + Ew0
[Qπ

1 (x̃1, µθ̃1
(x̃1))]]

= Ex0
[c0(x0, µθ̃0

(x0)) + Ew0
[c1(x̃1, µθ̃1

(x̃1))

+ Ew1 [Q
π
2 (x̃2, µθ∗

2
(x̃2))]]]

(x̃2 = f1(x̃1, µθ̃1
(x̃1), w1))

≤ · · · ≤ Ex0,w0,...,wn−1
[J π̃

0 (x0)]

where π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ
∗
0) ∩ Θ) × · · · ×

(B(θ∗n−1, ϵ
∗
n−1)∩Θ). The last inequality is due to the assump-

tion that the two problems (SP1) and (SP2) are equivalent.
Choose ϵ = min{ϵ∗0, . . . ϵ∗n−1}. Then, Jπ

0 (x0) ≤ J π̃
0 (x0) for

all π̃ = (θ̃0, . . . , θ̃n−1) ∈ (B(θ∗0 , ϵ)∩Θ)×· · ·× (B(θ∗n−1, ϵ)∩
Θ). This completes the proof.

Now, let Dµ
x(θ) be the Jacobian matrix of µ(·)(x) at point

θ, Df,x
k (x, µθ(x), w) be the Jacobian matrix of the function

fk(·, µθ(·), w) at point x while viewing θ as a constant,
and similarly Df,θ

k (x, µθ(x), w) be the Jacobian matrix of
fk(x, µ(·)(x), w) at point θ while viewing x as a constant.

Theorem 8: Consider a stationary point of DP π =
(θ∗0 , . . . , θ

∗
n−1). If for all k ∈ {0, . . . , n− 1},

1) µθk(x
∗
k) is continuously differentiable with respect to θk

in a neighborhood of θ∗k for all x∗
k ∈ RN ;

2) µθ∗
k
(xk) is continuously differentiable with respect to xk

everywhere,
then π is a stationary point of the one-shot optimization.

Proof:
First, we will apply induction to prove that for every k ∈

{1, ..., n}, Jπ
k (x) is continuously differentiable. For the base

step, Jπ
n (x) = cn(x) is continuously differentiable. For the

induction step, observe that

∇xJ
π
k (x) = ∇x[Q

π
k (x, µθ∗

k
(x))]

= ∇x[ck(x, µθ∗
k
(x)) +

∫
Ω

Jπ
k+1(fk(x, µθ∗

k
(x), wk))dp(wk)]

= ∇x[ck(x, µθ∗
k
(x))] +

∫
Ω

∇x[J
π
k+1(fk(x, µθ∗

k
(x), wk))]dp(wk)

= ∇x[ck(x, µθ∗
k
(x))]

+

∫
Ω

Df,x
k (x, µθ∗

k
(x), wk)

T∇xJ
π
k+1(fk(x, µθ∗

k
(x), wk))dp(wk).

This observation is based on the existence and continu-
ity of the Jacobian matrix Df,x

k (x, µθ∗
k
(x), wk) due to as-

sumption 2, continuity of ∇xJ
π
k+1(fk(x, µθ∗

k
(x), wk)) due

to the induction step, and therefore the continuity of
∇x[J

π
k+1(fk(x, µθ∗

k
(x), wk))]. This allows us to interchange

integration and differentiation in the second equality by Leib-
niz’s integration rule.

Now, for k ∈ {0, ..., n− 1}, observe that

∇θkQ
π
k (xk, µθ∗

k
(xk))

= ∇θk [c(xk, µθ∗
k
(xk)) +

∫
Ω

Jπ
k+1(fk(xk, µθ∗

k
(xk), wk))dp(wk)]

= Dµ
xk
(θ∗k)

T∇µc(xk, µθ∗
k
(xk))

+

∫
Ω

Df,θ
k (xk, µθ∗

k
(xk), wk)

T∇xJ
π
k+1(fk(xk, µθ∗

k
(xk), wk))dp(wk),

which is valid because for k ∈ {1, ..., n}, Jπ
k (x) is contin-

uously differentiable and assumption 1 implies the existence
and continuity of Dµ

xk
(θ∗k) and Df,θ

k (xk, µθ∗
k
(xk), wk). Thus,

∇θkQ
π
k (xk, µθk(xk)) is continuous in a neighborhood of θ∗k

for all xk ∈ RN . Then, for k ∈ {0, ..., n− 1},

∇θkEx0
[Jπ

0 (x0)] =∫
RN

∫
Ω

· · ·
∫
Ω

∇θkQ
π
k (xk, µθ∗

k
(xk))dp(wk−1)...dp(w0)dp(x0),

Now, note that NΘ(θ
∗
k) is nonempty, closed, and convex

[32]. By the definition of a stationary point of DP, we have
−∇θkQ

π
k (xk, µθ∗

k
(xk)) ∈ NΘ(θ

∗
k) for all xk ∈ RN . To prove

by contradiction, assume that −∇θkEx0 [J
π
0 (x0)] /∈ NΘ(θ

∗
k).

Let ak denote the dimension of θk. By the separating hyper-
plane theorem, there exist p ∈ Rak and α ∈ R such that

−pT∇θkQ
π
k (xk, µθ∗

k
(xk)) < α < −pT∇θkEx0

[Jπ
0 (x0)],

for all xk ∈ RN . Then, observe that

− pT∇θkEx0
[Jπ

0 (x0)]

= −pT
∫
RN

∫
Ω

· · ·
∫
Ω

∇θkQ
π
k (xk, µθ∗

k
(xk))dp(wk−1)...dp(x0)

=

∫
RN

∫
Ω

· · ·
∫
Ω

−pT∇θkQ
π
k (xk, µθ∗

k
(xk))dp(wk−1)...dp(x0)

<

∫
RN

∫
Ω

· · ·
∫
Ω

−pT∇θkEx0 [J
π
0 (x0)]dp(wk−1)...dp(x0)

= −pT∇θkEx0 [J
π
0 (x0)],

which is a contradiction. Thus, −∇θkEx0
[Jπ

0 (x0)] ∈ NΘ(θ
∗
k),

which shows that π = (θ∗0 , ..., θ
∗
n−1) is a stationary point of

the one-shot optimization.

C. From one-shot optimization to DP
In this subsection, we first show that a local minimizer (sta-

tionary point) of the one-shot optimization does not necessarily
correspond to a local minimizer (stationary point) of DP; i.e.,
the converse of Theorem 7 and that of Theorem 8 do not hold.
Then, the optimization landscape of the one-shot optimization
is more complex than that of DP. In other words, if the one-
shot problem has a low complexity, so does the DP problem.

To provide a counterexample, we use the basic parameter-
ized policy that follows Definition 13: µθk(x) = akx + bk,
where θk = (ak, bk). Consider the 2-step problem

x0 = 0, c0(x, µθ0(x)) = 0,

f0(x, µθ0(x), w0) = x+ a0x+ b0 + w0,

c1(x, µθ1(x)) =
1

4
(a1x+ b1)

4 − 1

2
(a1x+ b1)

2 + x2,

f1(x, µθ1(x), w1) = x+ a1x+ b1 + w1,

c2(x, µθ2(x)) = 0 where w0, w1
iid∼ Uniform

(
−

√
5

3
,

√
5

3

)
,
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Fig. 3. Landscape of the one-shot optimization for a stochastic param-
eterized problem: b0 is fixed to 0 in the figure. (a1, b1) = (±1, 0),
(0,±1) are strict local minimizers of the one-shot optimization but only
(0,±1) is a local minimizer of DP.

where Θ = [−2, 2]× [−2, 2]. The associated one-shot problem
can be written as

min
−2≤b0,a1,b1≤2

Ew0

[
1

4
{a1(b0 + w0) + b1}4

− 1

2
{a1(b0 + w0) + b1}2 + (b0 + w0)

2

]
It turns out that there are 9 stationary points of the

one-shot optimization in the interior of Θ: (b0, a1, b1) =
(0,±0.7071,±0.4082), (0,±1, 0), (0, 0,±1), (0, 0, 0). Among
them, there are 4 strict local minimizers of the one-shot
optimization: (0,±1, 0), (0, 0,±1). On the other hand, consid-
ering ∇θ1c1(x, µθ1(x)) = [g(x, a1, b1)x, g(x, a1, b1)] where
g(x, a1, b1) = (a1x+ b1)(a1x+ b1 − 1)(a1x+ b1 + 1), there
are 3 stationary points of DP: (0, 0,±1), (0, 0, 0) and 2 strict
local minimizers of DP: (0, 0,±1). This verifies that a local
minimizer (stationary point) of DP is indeed a local minimizer
(stationary point) of the one-shot optimization but not the
other way around. Fig. 3 shows the landscape of the one-shot
optimization when b0 is fixed to 0.

Now, we present the specific case that a local minimizer
of the one-shot optimization implies a local minimizer of
DP, similar to Theorem 6. The preconditions of theorems
are similar in the sense that they both consider the case
when DP has a very low complexity in the sense that there
is no spurious local minima at each step of DP. The main
difference between the theorems comes from whether we
consider a single trajectory or the expectation over infinitely
many trajectories. We consider this in the view of stationarity.
(see Definitions 6, 11, and 12)

Assumption 3: There exists only a single stationary control
policy ϕ = (ϕ0, . . . , ϕn−1) which is also a locally minimum
control policy in the interior of A for all x ∈ RN . The
parameterized policy defined by Definition 13 contains ϕ, with
the associated parameters denoted by ϕ′ = (θ′0, . . . , θ

′
n−1).

Theorem 9: Assume that Assumption 3 holds. Consider
a local minimizer of the one-shot optimization π =
(θ∗0 , . . . , θ

∗
n−1) in the interior of Θn. If x∗

k is a continuous
random variable for all k ∈ {0, . . . , n−1}, where (x∗

0, . . . , x
∗
n)

is the random state process associated with π, then π is a local
minimizer of DP.

Proof: Since ϕ is a single locally minimum control
policy, Qϕ′

k (x, u) has no spurious local minima for all k ∈

{0, . . . , n − 1}. Thus, by Proposition 1, the corresponding
infx∈RN ϵ∗k(x) = ∞ > 0 makes ϕ′ be a local minimizer of
DP.

Consider a stationary point of the one-shot optimization π =
(θ∗0 , . . . , θ

∗
n−1) in the interior of Θn. We will now prove by a

backward induction that π should always be ϕ′; i.e., θ∗k = θ′k
for all k ∈ {0, . . . , n− 1}.

For the base step, at step n − 1, since the parameterized
policy contains ϕn−1, it can be expressed as ϕn−1(x) =∑m

i=1 sifi(x), where fi : RN → RM , i = 1, . . . ,m, fi(x) =
[fi1(x), . . . , fiM (x)]T and θ′n−1 = (s1, . . . , sm) ∈ Θ. Notice
that Qϕ′

n−1(x, µθ′
n−1

(x)) = Qπ
n−1(x, µθ′

n−1
(x)) since θ′n−1 is

the final parameter of the whole system to determine the
control inputs and the state transition. Now, observe that

∇µQ
ϕ′

n−1(x, µθ′
n−1

(x)) = ∇µQ
π
n−1(x, µθ′

n−1
(x)) = 0

and µθ′
n−1

(x) is the unique solution for ∇µQ
ϕ′

n−1(x, ·) = 0
since µθ′

n−1
(x) is the unique stationary point located within the

interior of A due to Assumption 3. This yields the following
expression with µθ(x) = (u1, . . . , uM )T :

∇µQ
ϕ′

n−1(x, µθ(x)) = ∇µQ
π
n−1(x, µθ(x))

=

 (u1 −
∑m

i=1 sifi1(x)) · g1(x, θ)
...

(uM −
∑m

i=1 sifiM (x)) · gM (x, θ)

 ,

where gj(x, θ), j = 1, . . . ,M , are nonnegative at θ = θ′n−1

and positive at all the other points since ϕ′ is a local minimizer
of DP that yields the unique stationary control policy ϕ.

Now, let µθ∗
n−1

(x) be
∑m

i=1 difi(x) where θ∗n−1 =
(d1, . . . , dm). Observe that according to the chain rule, the
following expression holds:

∇θn−1Q
π
n−1(x, µθ∗

n−1
(x))T

= ∇µQ
π
n−1(x, µθ∗

n−1
(x))TDµ

x(θ
∗
n−1) (17)

=

 (
∑m

i=1(di − si)fi1(x)) · g1(x, θ∗n−1)
...

(
∑m

i=1(di − si)fiM (x)) · gM (x, θ∗n−1)


T  f11(x) · · · fm1(x)

...
. . .

...
f1M (x) · · · fmM (x)


Now, notice that ∇θn−1Ex0 [J

π
0 (x0)] = 0 since π is a

stationary point of the one-shot optimization in the interior
of Θn. Then, observe that

∇θn−1
Ex0

[Jπ
0 (x0)]

= ∇θn−1
Ex0,w0,...,wn−2

[Qπ
n−1(x

∗
n−1, µθ∗

n−1
(x∗

n−1))] (18)

= Ex0,w0,...,wn−2 [∇θn−1Q
π
n−1(x

∗
n−1, µθ∗

n−1
(x∗

n−1))] = 0.

The second equality comes from Qπ
n−1(x, µθ(x)) being dif-

ferentiable with respect to the parameters due to the linearity
of the policy defined by Definition 13. Now, we substitute
(17) into (18) to derive an m-dimensional vector equation,
and multiply (dk − sk) with kth component as follows:

Ex0,w0,...,wn−2

[ M∑
j=1

(dk − sk)fkj(x
∗
n−1)·

m∑
i=1

(di − si)fij(x
∗
n−1) · gj(x∗

n−1, θ
∗
n−1)

]
= 0,
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for all k = 1, . . . ,m. We sum up the m equations and
rearrange the terms to derive the following equation:

M∑
j=1

Ex0,w0,...,wn−2

[( m∑
i=1

(di−si)fij(x
∗
n−1)

)2

·

gj(x
∗
n−1, θ

∗
n−1)

]
= 0. (19)

The term inside the expectation is always nonnegative regard-
less of the distribution of x0, w0, . . . , wn−2. Now, suppose
that θ∗n−1 ̸= θ′n−1; i.e., di ̸= si for some i ∈ {1, . . . ,m}.
Then, we have gj(·, θ∗n−1) to be strictly positive. As a result,
for (19) to be satisfied,

∑m
i=1(di − si)fij(x

∗
n−1) should be

0 for every j ∈ {1, . . . ,M} for all possible values of xn−1.
Recall from Remark 8 to note that it is impossible to satisfy
(19) since x∗

n−1 is a continuous random variable and the
policy is defined by Definition 13, i.e., a linear combination
of some independent basis functions. Thus, di = si for all
i ∈ {1, . . . ,m}, which means θ∗n−1 = θ′n−1.

For the induction step, assume that θ∗k = θ′k. Again,
Qϕ′

k (x, µθk(x)) = Qπ
k (x, µθk(x)) holds, and thus one can

apply the same logic as the base step to obtain θ∗k−1 = θ′k−1.
Thus, π = ϕ′ holds, which implies that π is a local

minimizer of DP since ϕ′ is a local minimizer of DP.
Remark 10: The results of both Theorems 6 and 9 state

that a local minimizer of the one-shot optimization is indeed
a local minimizer of DP under the common assumption
that no spurious local minima exist at each step of DP. By
taking the contrapositive, one can observe that under such a
condition, there is at most one local minimizer of the one-shot
optimization, indicating that no spurious local minima exist;
i.e., if DP has a very low complexity, the same holds for the
one-shot problem.

Remark 11: To determine the form of ∇µQ
ϕ′

n−1(x, u), it
was necessary to argue that µθ′

n−1
(x) should be the unique

solution for ∇µQ
ϕ′

n−1(x, u) = 0. For this to be true, there
should certainly be only a single stationary control policy,
which necessitates Assumption 3. In fact, it may be difficult to
satisfy the precondition that a single stationary control policy
should be in the interior of A for all x ∈ RN . Instead, we can
relax this condition to apply only within the domain of x; i.e.,
the set of values that at least one of the states x0, x1, . . . , xn

can take. For example, if the state space is finite, satisfying
the condition becomes relatively straightforward.

Remark 12: The challenging part of a backward induction
in the proof arises from the fact that the state at step k is fully
determined by the previous steps but one cannot look at the
previous steps in the backward induction. Thus, the main idea
of the proof leverages equation (19), which incurs the fact that
θ∗k = θ′k regardless of the distribution of x0, w0, . . . , wk−1.
Thus, we only need the assumption that there is a single
stationary control policy with respect to the given distribution
of x0, w0, . . . , wn−1. This is a big improvement from the
work [28] (see Condition 4 of Section 5.4) in the sense that
Condition 4 needs no sub-optimal stationary point with respect
to any possible distribution.

Now, we present the pictorial example of Theorem 9.
Consider the example of 2-step problem presented above in

Fig. 4. Landscape of the one-shot optimization under the assumptions
of Theorem 9: b0 is fixed to 0 in the figure. (a1, b1) = (1, 0.5) is the
only stationary point (local minimizer) of DP and also the only stationary
point (local minimizer) of the one-shot optimization.

Fig. 3, but modify c1(x, µθ1(x)) to 1
4 (a1x+b1−x−0.5)4+x4.

The associated one-shot problem can be written as

min
−2≤b0,a1,b1≤2

Ew0

[
1

4
{(a1−1)(b0+w0)+b1−0.5}4+(b0+w0)

4

]
(π0, π1) = (0, x+0.5) is the only locally minimum control

policy, and the parameterized policy class contains this policy
as (b0, a1, b1) = (0, 1, 0.5). Clearly, it is a local minimizer
of DP. It turns out that the corresponding one-shot problem
also has a single stationary point (0, 1, 0.5), which is also a
local minimizer of the one-shot optimization. Fig. 4 shows the
landscape of the one-shot optimization when b0 is fixed to 0.

Considering both Theorems 7 and 9, one can conclude that
under the assumptions of Theorem 9, a local minimizer of DP
is equivalent to a local minimizer of the one-shot optimization.

D. Numerical Experiments
In this subsection, we will present a high-dimensional

experiment on the classical linear quadratic regulator (LQR):

fk(xk, uk) = Akxk +Bkuk, k = 0, . . . , n− 1, x0 ∼ D,

ck(xk, uk) = x⊤
k Qkxk + u⊤

k Rkuk, k = 0, . . . , n− 1,

uk = Kkxk, k = 0, . . . , n− 1, cn(xn) = x⊤
nQnxn,

whose goal is to find the optimal parameters: K0, . . . ,Kn−1.
To solve the problem using DP, we use Xpress Optimizer
v9.3.0 [40]. To solve the problem in a one-shot fashion, we
use Gurobi Optimizer v11.0.0 [41] with the tolerance of 10−4.

Let K∗
k,DP and K∗

k,OS denote an observed local solution
of the kth step parameter Kk obtained by DP and the one-
shot problem, respectively. We aim to determine whether each
local solution of DP corresponds to some local solutions of
the one-shot problem, and vice versa. One can verify this by
first solving DP or the one-shot problem and then providing
its solution as the initial parameter values when solving its
counterpart. This method is often referred to as “warm start.”
We expect to observe unchanged values from the initial guess
if there is indeed a correspondence. Let K∗

k,DP→OS (K∗
k,OS→DP)

denote the solution of Kk obtained by the one-shot problem
(DP) using warm start with DP (one-shot) solution as an initial
guess. The initial distribution D introduces the stochasticity
to the system and induces the states to be continuous random
variables, which obeys the assumption of Theorem 9.
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TABLE II
RELATIONSHIP BETWEEN DP AND ONE-SHOT SOLUTIONS OF LQR

Numerical difference
Scenario (a) Unconstrained (b) Constrained

∥K∗
0,DP − K∗

0,DP→OS∥F /∥K∗
0,DP∥F 0 0

∥K∗
1,DP − K∗

1,DP→OS∥F /∥K∗
1,DP∥F 0 0

∥K∗
0,OS − K∗

0,OS→DP∥F /∥K∗
0,OS∥F 2.901·10−6 5.399·10−4

∥K∗
1,OS − K∗

1,OS→DP∥F /∥K∗
1,OS∥F 2.291·10−5 3.156

We perform 20 experiments for xk ∈ R3 and uk ∈ R4 with
n = 30. We randomly generate Ak and Bk, whose entries
are all in [−100, 100]. We also generate Qk = QQT and
Rk = RRT + 100I , where all entries of Q and R are in
[−20, 20] and I denotes the identity matrix. D is the normal
distribution with the expectation 201 and the variance V V T ,
where 1 denotes the vector of ones and all entries in V are
in [−200, 200]. We consider two scenarios: (a) unconstrained
and (b) constrained by the last-step (nonconvex) condition
KT

n−1Kn−1 ⪰ 10000I , where ⪰ denotes the Loewner partial
ordering (roughly speaking, this condition ensures that the
controller has a high gain). Table II shows whether the
correspondence holds between the solutions of DP and the
one-shot problem using warm start under the two scenarios,
presenting the results of the average of 20 experiments.

It turns out that for both scenarios, one can observe that a
solution of DP corresponds to each solution of one-shot prob-
lem since the one-shot solver directly identifies DP solution as
a local solution of the one-shot problem without any numerical
update. This implication supports the findings of Theorem 7.

However, whether a one-shot solution implies some DP
solutions depends on the problem setting. Our experiment for
the unconstrained case shows that a solution of the one-shot
problem indeed corresponds to that of DP, implying with the
above result that a one-shot solution is equivalent to a DP
solution. Previous studies have shown the global convergence
of this one-shot problem by proving that LQR satisfies the
gradient dominance property, even though the problem is gen-
erally nonconvex [42], [43]. Our general approach alternatively
observes the DP counterparts: Since every DP sub-problem of
LQR has no spurious local minima, our experiment implies
that the one-shot LQR problem also has none of them and
achieves the global convergence, which supports Theorem 9.

On the other hand, the nonconvex constraint on Kn−1

creates spurious solutions for the (n−1)th DP, independent of
whether the (n−2)th, . . . , 0th DP steps have any spurious local
minima. Our experiment for the constrained case shows that
having spurious local minima at the (n− 1)th DP propagates
backward to K1, where the solver fails to guarantee that
an observed local minimum of the one-shot optimization
corresponds to that of DP. This illustrates that the landscape
of the one-shot problem has a higher complexity than its DP
counterpart, which was also shown in Fig. 2b and Fig. 3. This
result serves as a counterexample of the converse of Theorems
7 and 8, and it implies that a single high-complexity DP step
affects the landscape of the one-shot problem.

V. CONCLUSION

In this paper, we studied the optimization landscape of the
optimal control problems via two different formulations: one-
shot optimization aimed at solving for all input values at the
same time, and DP method aimed at finding the input values
sequentially. For the deterministic problem, we proved that
under some mild conditions, each local minimizer of the one-
shot optimization corresponds to an input sequence induced by
some locally minimum control policy of DP, and vice versa.

To help better understand the quality of the local solutions
obtained by reinforcement learning algorithms, we incorpo-
rated exact parameterized policies into the optimal control
problem for both deterministic and stochastic dynamics. We
showed that if the one-shot problem has a low complexity, so
do the corresponding DP sub-problems, indicating the success
of DP methods. Moreover, under the condition that there exists
only a single locally minimum control policy, with different
technical assumptions, both deterministic and stochastic cases
yield that a local minimizer of the one-shot optimization is
equivalent to a local minimizer of DP.

We focused on the discrete-time finite-horizon optimal
control problem in this work. A natural future direction would
be to extend this work to the continuous-time and infinite-
horizon cases, which was discussed in Remark 4. For safety-
critical systems, state constraints may also be enforced, with
recursive feasibility being crucial to guarantee the success of
DP. One may also want to extend the parameterized policy
class beyond a linear combination of basis functions, such as
composite functions widely used in deep neural networks.
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