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Abstract

Live-cell microscopy routinely provides massive amount of time-lapse images of complex
cellular systems under various physiological or therapeutic conditions. However, this wealth
of data remains difficult to interpret in terms of causal effects. Here, we describe
CausalXtract, a flexible computational pipeline that discovers causal and possibly time-lagged
effects from morphodynamic features and cell-cell interactions in live-cell imaging data.
CausalXtract methodology combines network-based and information-based frameworks,
which is shown to discover causal effects overlooked by classical Granger and Schreiber
causality approaches. We showcase the use of CausalXtract to uncover novel causal effects in
a tumor-on-chip cellular ecosystem under therapeutically relevant conditions. In particular,
we find that cancer associated fibroblasts directly inhibit cancer cell apoptosis,
independently from anti-cancer treatment. CausalXtract uncovers also multiple antagonistic
effects at different time delays. Hence, CausalXtract provides a unique computational tool to
interpret live-cell imaging data for a range of fundamental and translational research
applications.

eLife assessment

In this fundamental study, the authors describe a new data processing pipeline that
can be used to discover causal interactions from time-lapse imaging data. The utility
of this pipeline was convincingly illustrated using tumor-on-chip ecosystem data.
The newly developed pipeline could be used to better understand cell-cell
interactions and could also be applied to perform temporal causal discovery in other
areas of science, meaning this work could potentially have a wide range of
applications.

https://doi.org/10.7554/eLife.95485.1.sa2

Live-cell imaging microscopy commonly produces extensive amounts of time-lapse images of
cellular systems, which can be segmented to extract morphodynamic features and interactions of
individual cells under increasingly complex and physiologically relevant conditions. However, this
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wealth of information remains largely under-exploited due to a lack of methods and tools able to
discover causal effects from spatio-temporal correlations under well-controlled experimental
conditions.

CausalXtract addresses this need by integrating an advanced live-cell image feature extraction tool
with a reliable and scalable causal discovery method, Fig. 1     , in order to learn temporal causal
networks from live-cell time-lapse imaging data, Fig. 2     .

Results and Discussion

CausalXtract feature extraction and causal discovery modules
CausalXtract’s live-cell image feature extraction module (Cell-Hunter+), Fig. 1b     , is based on
CellHunter software1      and consists in three steps: detection, tracking and feature extraction of
live cells within time-lapse video images. First, automatic localization/segmentation of cells (e.g.
tumor and immune cells) is performed with the Circular Hough Transform (CHT) algorithm2      to
estimate the cell centers and radii. Second, cell trajectories along the frames are constructed by
linking the positions detected at the previous time step through Munkres’ algorithm for Optimal
sub-pattern Assignment Problems (OAPs)3     . Finally, relevant descriptors related to the shape,
motility, and state of the cells, as well as cell-cell interactions are quantified from each cell
trajectory (Methods).

CausalXtract’s temporal causal discovery module (tMIIC), Fig. 1c     , is adapted from the causal
discovery method, MIIC4     –6     , which learns contemporaneous causal networks (i.e. when
temporal information is not available) for a broad range of biological or biomedical data, from
single-cell transcriptomic and genomic alteration data4     ,7      to medical records of patients5     ,6     .
Live-cell time-lapse imaging data contain, however, information about cellular dynamics, which
can in principle facilitate the discovery of novel cause-effect functional processes, based on the
assumption that future events cannot cause past ones. To this end, CausalXtract’s discovery
module, tMIIC, reconstructs time-unfolded causal networks, where each variable is represented by
several nodes at different relative time points9     , Fig. 1c     . Such a time-unfolded network
framework10     –13      is required to account for the temporal correlation between successive time
steps in time series data. We benchmarked tMIIC on synthetic datasets resembling the real-world
data of interest analyzed in this study (i.e. number of time steps, network size and degree
distribution) and found that it matches or outperforms state-of-the-art methods, while running
order of magnitudes faster on datasets of biologically relevant size including tens to hundreds of
thousands time steps, Supplementary Figs. 1     -4     .

CausalXtract’s temporal network framework goes beyond the seminal concept of temporal
causality originally proposed by Granger14      for linear time series without reference to graphical
models and later extended to non-linear dynamics by Schreiber15     ,16     . In particular, Granger-
Schreiber causality is in fact too restrictive and may overlook actual causal effects, that can be
uncovered by graph-based causal discovery methods, Supplementary Fig. 5      (Methods, Theorem
1). In addition, Granger-Schreiber causality has long been known to infer spurious causal
associations based on time delays, by excluding the presence of latent common causes a priori9     .
CausalXtract circumvents these limitations by combining graph-based and information-based
approaches (Methods), while including contemporary and time-delayed effects of unobserved
latent variables, that are ubiquitous in cell biology data (e.g. the latent effects of cell cycle phases
on cellular features and responses).

https://doi.org/10.7554/eLife.95485.1
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Fig. 1

CausalXtract pipeline.

a, Live-cell tumor ecosystem reconstituted ex vivo1      using the tumor-on-chip technology (Methods). b, CausalXtract’s live-
cell image feature extraction module (CellHunter+). The tracking of cancer and immune cells and of their mutual interactions
is illustrated in Supplementary Movies 1-3, in absence or presence of cell division and apoptosis event. c, CausalXtract’s
temporal causal discovery module (tMIIC) learns a temporal causal network from the features extracted in (b). See Methods
for CausalXtract’s implementation details and theoretical foundations. A step-by-step notebook of CausalXtract pipeline is
provided with the source code.

https://doi.org/10.7554/eLife.95485.1
https://doi.org/10.7554/eLife.95485.1
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Fig. 2

Application of CausalXtract to time-lapse images of tumor ecosystems reconstituted ex vivo1     .

a, Summary causal network inferred by CausalXtract. The underlying time-unfolded causal network is shown on
Supplementary Fig. 7     . Red (resp. blue) edges correspond to positive (resp. negative) associations. Bidirected dashed
edges represent the effect of unobserved (latent) common causes. Annotations on edges correspond to time delays in time-
steps (1 ts = 2 min). The inferred network is largely robust to variations in sampling rate (δτ) and maximum lag (τ),
Supplementary Fig. 8     . Here δτ = 7 ts and τ = 84 ts are chosen automatically by CausalXtract, Supplementary Fig. 8b     . b,
The CAF presence subnetwork highlighting the direct causal effects of CAFs on cancer cells. In particular, CausalXtract
uncovers that CAFs directly inhibit cancer cell apoptosis independently from treatment, which has not been reported so far. c,
The treatment subnetwork highlighting the direct causal effects of treament on cancer cells. In particular, CausalXtract
uncovers that treatment increases cancer cell perimeter, which has not been reported either. d, The eccentricity-area
subnetwork highlighting multiple direct and possibly antagonistic time-lagged effects, notably, between cell division and
eccentricity and between cell apoptosis and area, as discussed in main text.

https://doi.org/10.7554/eLife.95485.1
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Application to tumor-on-chip cellular ecosystems
We showcase CausalXtract with the analysis of time-lapse images of a tumor ecosystem
reconstituted ex vivo using the tumor-on-chip technology, Fig. 1a     . These live-cell time-lapse
images come from a proof-of-concept study1      which demonstrated the effects of an anti-cancer
drug (the monoclonal antibodies trastuzumab, brand name Herceptin, used to treat HER2+ breast
cancers) on a reconstituted tumor microenvironment including cancer cells, immune cells, cancer-
associated fibroblasts (CAF), and endothelial cells (Methods). However, a comprehensive
extraction and analysis of cellular morphodynamic features and interactions remained
unexplored.

To this end, cellular features such as cell geometry, velocity, division, apoptosis, cell-cell transient
interactions and persistent contacts were first extracted from the raw images using CausalXtract’s
feature extraction module, Fig. 1b      and Supplementary Fig. 6     . Then, a time-unfolded causal
network, Supplementary Fig. 7     , and the corresponding summary causal network, Fig. 2a     ,
were reconstructed between extracted cellular features, cell-cell interactions and therapeutic
conditions using CausalXtract’s temporal causal discovery module, Fig. 1c     .

CausalXtract inferred network, Fig. 2a     , uncovers novel biologically relevant findings, in
addition to confirming known results fxrom earlier studies. In particular, CausalXtract discovers
that CAFs directly inhibit cancer cell apoptosis, independently from anti-cancer treatment, Fig.
2b     , while earlier studies reported that CAFs merely reduced the effect of treatment1     .
CausalXtract also discovers that treatment increases cancer cell perimeter, Fig. 2c     , which has
not been reported so far either. In addition, CausalXtract confirms known results from earlier
studies. In particular, it recovers that treatment increases cancer cell apoptosis and the number of
cancer-immune interactions, as well as decreases the division rate of cancer cells, Fig. 2c     .
Likewise, CausalXtract recovers that CAFs stimulate cancer cell migration and increase their area,
Fig. 2b     .

Interestingly, CausalXtract identifies also multiple and possibly antagonistic effects with different
time delays. For instance, CausalXtract recovers several antagonistic relations between
morphodynamic features such as cell division and eccentricity or cell apoptosis and area, Fig.
2d     . Indeed, the late phases of cell division are associated to a marked increase in eccentricity
(red edge) but preceded by a net decrease in eccentricity, two to three hours before cytokinesis
(blue edges), once the decision to divide has been made (i.e. the probable latent cause) and the cell
is actually duplicating its biological materials (prophase), Fig. 2d     . Likewise, the area change
upon apoptosis is predicted to first decrease soon after apoptosis (blue edge) before eventually
increasing upon cell lysis (red edge), Fig. 2d     . These results are robust to variations in sampling
rate, Supplementary Fig. 8     .

All in all, CausalXtract is a flexible pipeline which uncovers novel and possibly time-lagged causal
relations between cellular features under controlled conditions (e.g. drug). CausalXtract uniquely
combines live-cell feature extraction with information theory and causal discovery approaches. It
consists of two independent computational modules, conceived to warrant interoperability with
alternative live-cell segmentation and tracking methods or alternative temporal causal discovery
methods.

CausalXtract opens up new avenues to analyze live-cell imaging data for a range a fundamental
and translational research applications, such as the use of tumor-on-chips to screen
immunotherapy responses on patient-derived tumor samples. With the advent of virtually
unlimited live-cell image data, flexible hypothesis-free interpretation methods are much
needed17      and we believe that CausalXtract can bring unique insights based on causal discovery
to interpret such informationrich live-cell imaging data.

https://doi.org/10.7554/eLife.95485.1
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Materials and Methods

Tumor-on-chip preparation and live-cell microscopy
Videos analyzed in the present study refer to biological experiments emulating a 3D breast tumor
ecosystem1     . All tumor-on-chip experiments have a central endothelium compartment
containing endothelial cells (primary human umbilical vein endothelial cells, HUVECs) and two
lateral chambers filled with biomimetic hydrogel (collagen type I at 2.3 mg/mL) seeded with
cancer cells (HER2+ breast cancer BT474 cell line) and immune cells (peripheral blood
mononuclear cells, PBMCs) from healthy donors, Fig. 1a     . Four experimental conditions were
considered depending on the presence or absence of breast cancer-associated fibroblasts (CAF cell
line Hs578T) and drug treatment (trastuzumab, Herceptin). Videos were acquired by inverted
motorized Leica microscopes with a frame rate of 2 minutes for up to 48h (1440 frames). Fig. 1b     
shows a crop frame with cancer cells, PBMCs and CAFs. Each video was cropped into multiple
small 300×300 pixel videos (referred to as crops in the following), each of which represented a
field of view at subsequent time frames containing a “main” cancer cell (MCC) initially placed at
the center of the image, some PBMC immune cells, other cancer cells and possibly CAFs within the
surrounding of the MCC depending on the experimental conditions. 36 video crops of up to 1440
frames were analyzed (46,935 frames in total) corresponding to 9 video crops per experimental
conditions.

CausalXtract’s live-cell image feature extraction module
The live-cell image feature extraction module (CellHunter+), Fig. 1b     , extends the CellHunter
software1      and consists in three steps: detection, tracking and feature extraction of live cells
within timelapse video images. First, cell detection is based on the segmentation of circular-shaped
objects using CHT2      with radii set around the theoretical radii of the two cell populations (rim = 4
px for immune cells and rca = 14 px for MCCs with a pixel resolution 1 px = 0.645 μm1). Then, cell
tracking is performed by linking cells detected at the ith frame to cells located at the (i + 1)th frame
within a maximum distance from the detected cell candidate. While the motions of both MCCs and
immune cells ressemble random walks with time-varying drift and volatility, these two cell types
exhibit different motility characteristics1     . Hence, different maximum distances are considered
for the two cell populations: it was set to 40 px for MCCs and to 20 px for immune cells. For each
cell population, an OAP using the Munkres algorithm3      is solved: the globally best possible
pairing among located objects is based on an assignment cost equal to the inverse of the distance
between pairs of cell candidates at the ith and (i + 1)th frames. Cell appearing/disappearing and cell
overlaps due to projection errors of the 3D scene in the 2D domain are also handled. Finally,
cellular morphodynamic features and cell-cell interaction features are extracted at successive
positions along each trajectory. For each MCC, 15 descriptors were extracted, Supplementary Fig.
6     , and classified into four main categories: cell shape, motility, state, and interaction descriptors.

Shape descriptors

The active contour algorithm implemented in Matlab18      was used to segment the MCC
boundaries on each video crop frame. Taking as input a frame representing the ith snapshot of the
tth MCC, it returns a binary image, where the MCC is represented by a white region. From the
binary image, the shape properties of the region occupied by each MCC were extracted using the
Matlab regionprops algorithm. The resulting descriptors of the extracted shape are listed below:

area indicates the number of pixels composing the region. The equivalent diameter of the
tth MCC in the ith frame is defined as .
perimeter represents the distance along the MCC boundary.

https://doi.org/10.7554/eLife.95485.1
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circularity is defined as 4 · area · π/perimeter2     , which is equal to 1 when the region is
perfectly circular.
eccentricity denotes the eccentricity of the ellipse with the same second moments as the
region. The value is equal to 1 when the region is a line and to 0 when the region is a circle.
instantaneous shape change is defined as, , corresponding to the difference in
absolute value of the equivalent diameters between the ith and (i − 1)th frames of the tth

MCC.

Motility descriptors

The positions  and  of the tth MCC in the ith and (i − 1)th frames were compared using
the Euclidean distance d(·) to define the following motility parameters:

instantaneous cancer velocity19      is defined as , where Δt is the time interval
between two consecutive frames.
net displacement19      indicates the resultant distance between the initial and current
positions of the tth MCC, .
directionality19      is defined as the ratio of net displacement, , and curvilinear
distance, . It measures the persistence of motion and ranges from 0 for confined
cells to 1 for cells moving perfectly straight in one direction.

State descriptors

They record apoptosis or division events:

apoptosis indicates if the MCC has died during the experiment. It is set to ‘No’ as long as the
cell has not died and becomes ‘Yes’ for the remaining frames after the cell undergoes
apoptosis.
division indicates if the MCC has divided during the experiment. It is set to ‘No’ as long as
the cell has not divided and becomes ‘Yes’ for the remaining frames after the cell divides.

Interaction descriptors

Interactions between MCCs and immune cells were defined with respect to two radii around each
MCC, r1 = rim + rca + 2 = 20 px and r2 = 2 × (rim + rca) = 36 px1     . Hence, r1 refers to MCC and
immune cells in actual physical contact, while r2 refers to MCC and immune cells in close vicinity.
Then, for each sample the following interaction features were defined:

number of cancer-immune interactions (r2) corresponds to the number of immune cells
within the interaction radius r2 around the MCC on that frame.
number of cancer-immune interactions (r1) corresponds to the number of immune cells in
close contact with the MCC on that frame.
minimal cancer-immune distance (r2) is the minimum distance between the MCC and the
immune cells within a radius r2.
mean immune velocity (r2) is the mean instantaneous velocity norm of the immune cells
within the interaction radius r2 around the MCC.
mean immune velocity (r1) is the mean instantaneous velocity norm of the immune cells in
close contact with the MCC.

Overview of causal discovery methods for non-temporal data
Traditional causal discovery methods20     ,21      aim to learn causal networks from datasets of
independent samples by proceeding through successive steps. They first learn structural
constraints in the form of unconditional or conditional independence between variables and

https://doi.org/10.7554/eLife.95485.1
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remove the corresponding edges from an initial fully connected network. The second step then
consists in orienting some of the retained edges based on the signature of causality in
observational data. This corresponds to orienting three-variable “v-structure” motifs as, X → Z ←
Y, whenever the edge X − Y has been removed without conditioning on the variable Z, which
implies that Z cannot be a cause of X nor Y. This does not guarantee, however, that X (or Y) is an
actual cause of Z, which also requires to rule out the possibility that the edge between X and Z (or
Y and Z) might originate from a latent common cause, L, unobserved in the dataset, i.e. X ⤎ L ⤏ Z.
In addition, classical causal discovery methods are prone to spurious conditional independences,
which lead to many false negative edges and limit the accuracy of inferred orientations. The
recent causal discovery method, MIIC4     –6     , which combines constraint-based and information-
based principles, learns more robust causal graphical models by first collecting iteratively
significant information contributors before assessing conditional independences. In practice,
MIIC’s strategy limits spurious conditional independences which improves its edge sensitivity and
orientation reliability compared to traditional constraint-based methods4     –6     . In addition, MIIC
can handle missing data5      and also heterogeneous multimodal data, by analyzing continuous and
categorical variables on the same footing, based on a mutual information supremum principle for
finite dataset5     ,6     . Last, MIIC distinguishes genuine causal relations from putative and latent
causal effects6     , that are ubiquitous in real-world applications.

CausalXtract’s causal discovery module for time series data
In order to analyze time series datasets, CausalXtract’s causal discovery module (tMIIC) aims to
learn a time-unfolded graph, Gt, where each variable is represented by a series of nodes associated
to its value at different relative time points, Fig. 1c     . Such a timeunfolded network
framework10     –13      is required to account for the temporal correlation between successive
samples in time series data. Assuming that the dynamics can be considered stationary (see
Benchmarking of CausalXtract’s causal discovery module section, below), the time-unfolded graph,
𝒢t, should be translationally invariant over time and can be assigned a periodic structure a priori.
In addition, Gt can be restricted to a few time steps from the running time, t, back to a maximum
time lag, t ′ τ, since nodes at future time points (t’ > t) cannot a priori influence the observed data at
current or previous time points (t’⩽ t), Fig. 1c     . The maximum time lag τ should be chosen so as
to have little effect on the final graphical model, which can be achieved for instance by setting τ to
twice the average relaxation time of the variables of the dataset. In practice, we may also limit the
number of time points ν in Gt by introducing a time increment δτ between consecutive time
points, which leads to ν = τ/δτ time-lagged layers in 𝒢t.

Such a compact periodic graphical representation over a sliding temporal window is learned with
tMIIC, which extends MIIC causal discovery method to analyze time series data. First, tMIIC
identifies all necessary edges involving at least one contemporaneous node at time t, Fig. 1c     .
Once these time-lagged and contemporaneous necessary edges have been identified, they are
simply duplicated at earlier time points to enforce the translational invariance of 𝒢t skeleton.
Time-lagged edges are then pre-oriented with a first arrowhead pointing towards the future,
considering that current time points cannot cause earlier events. Then, contemporaneous and
time-lagged edges can be further oriented using MIIC orientation probability scores applied to 𝒢t,
which may also uncover a second arrowhead (backward in time) for time-lagged edges. This
corresponds to time-lagged latent causal effects from unobserved common causes, Fig. 1c     .

Learning such structural models including latent variables from time series data was first
proposed for time-lagged effects10      and subsequently extended to contemporaneous effects11     

by adapting the constraint-based FCI method allowing for latent variables21     . While traditional
constraint-based methods suffer from poor recall, the recent PCMCI12      / PCMCI+22      method
improves recall by introducing ad hoc conditioning rules for auto-correlated time series. By
contrast, tMIIC does not require any ad hoc conditioning rules, as it relies on the same robust
information-theoretic strategy as MIIC to limit spurious independence and improve edge recall.
tMIIC also captures time-lagged and contemporaneous effects due to latent variables.

https://doi.org/10.7554/eLife.95485.1
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Relation to Granger-Schreiber temporal causality
The concept of temporal causality was originally formulated by Granger14      without reference to
any graphical model by comparing linear autoregression with or without past values of possible
causal variables. This was later extended to non-linear relations by Schreiber15     ,16      using the
notion of Transfer Entropy, TX→Y, which can be expressed in terms of multivariate conditional
information,

where  and  denote the sets of variables,  and , taken at earlier time points t’ than
t.

While Eq. 1      is asymmetric upon X/Y permutation, a simple comparison of Transfer Entropy
asymmetry (e.g. TX→Y > TY → ⩾ 0) does not necessarily translate into causal direction as this
asymmetry is also expected for non-causal relations. Interestingly, this is in fact the absence of
Transfer Entropy in one direction (e.g. TZ→X ≈ 0) which suggests the possibility of a causal relation
in the opposite direction, X → Z, as in the case of v-structures in graph-based causal discovery
methods, provided that a latent common cause can be excluded between the two variables (as
discussed above).

We clarify in Theorem 1 below this relation between temporal causality without reference to any
structural model (Eq. 1     ) and structural causality entailed by time-unfolded causal graphical
models (𝒢 t). This highlights the common foundations of temporal and structural causalities
beyond their seemingly unrelated definitions.

Theorem 1.

[TY →X = 0 implies temporal (2 var + t) v-structures] If Xt is adjacent to Yt in 𝒢 t and
, then for all  adjacent to Yt in 𝒢 t, with t’ < t, there is a temporal (2

var+t) v-structure, , in 𝒢 t, Supplementary Fig. 5a     .

Proof : if , then all pairs  should be unconnected (assuming
‘faithfulness’, i.e. no coincidental cancellation of effects) and all unshielded triples 
should be temporal v-structures, , as  in TY →X◻

Note, however, that the converse of Theorem 1 is not true: a temporal v-structure does not imply a
vanishing Transfer Entropy, as shown with the counterexample in Supplementary Fig. 5b     . As a
result, the presence of a temporal v-structure,  in 𝒢 t, does not necessarily imply a
vanishing transfer entropy, TY →X = 0, as long as there remains an edge between any  and Xt, as
in the example in Supplementary Fig. 5b     . Hence, Granger-Schreiber causality is in fact too
restrictive and may miss actual causal effects, which can be uncovered by structural causal
discovery methods like tMIIC. In addition, Granger-Schreiber causality is also known to infer
spurious causal associations by excluding the presence of latent common causes a priori. By
constrast, CausalXtract’s causal discovery module includes time-delayed as well as synchronous
effects originating from unobserved latent variables, as discussed above.

Benchmarking of CausalXtract’s causal discovery module
The performance of CausalXtract’s causal discovery module (tMIIC) has been assessed using
Tigramite package22     , which provides different methods to learn temporal causal networks from
time series data. We compared tMIIC to two methods capable of orienting contemporaneous edges
(PC and PCMCI+) and tested three different kernels for estimating mutual information (Parcorr,
GPDC and KNN).

https://doi.org/10.7554/eLife.95485.1
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Benchmark networks and datasets have been chosen to resemble the real-world data analyzed in
this study (i.e. similar number of time steps, network size and degree distribution) and include a
large range of linear and non-linear relations between variables.

A first series of datasets was generated for a 15 node benchmark network (Supplementary Fig.
1a     ) with linear combinations of contributions inspired by the Tigramite package,
Supplementary Table 1     . Running times and scores (Precision, Recall, F-score) have been
averaged over 10 datasets (Supplementary Fig. 1b     ) and show that tMIIC scores are at par with
PC and PCMCI+ using GPDC or KNN kernels but that tMIIC runs orders of magnitude faster, which
enables to use tMIIC on much larger datasets of biological interest including a few tens or
hundreds of thousands samples. Only PC or PCMCI+ using ParCorr kernel match tMIIC running
speed but with significantly lower scores, as Fscores level off around 0.6-0.7 at large sample size,
while tMIIC Fscore exceeds 0.9 (Supplementary Fig. 1b     ).

Importantly, increasing the number of time-lagged layers from τ = 2 (as in the actual model,
Supplementary Fig. 1a     ) to 5 or 10 layers in the inferred time-unfolded network
(Supplementary Fig. 2     ) leads to very similar network reconstructions for simulated stationary
data. This demonstrates tMIIC insensitivity to an overestimated maximum lag for the reconstituted
network. Interestingly, however, when the generated data is no longer stationary, increasing the
number of layers leads to multiple self-loops at non-stationary variables, whilst the rest of the
network remains relatively unaffected (Supplementary Fig. 3     ). It demonstrates that
CausalXtract’s causal discovery module is robust to the presence of non-stationary variables but
requires long-time range interactions, and therefore multiple timelagged layers, to account for
these non-stationary dynamics at specific variables. This striking observation on benchmark
networks is also consistent with the multiple self-loops observed for a number of non-stationary
variables in the real-world application on cellular ecosystems, Fig. 2a      and Supplementary Fig.
6     .

A second series of more complex datasets was also generated for another 15 node benchmark
network (Supplementary Fig. 4a     ) with non-linear combinations of contributors,
Supplementary Table 2     . Here, tMIIC tends to outperform both PC and PCMCI+, in terms of
Recall and Fscores, while remaining orders of magnitude faster compared to GPDC and KNN
kernels. Only PC or PCMCI+ using ParCorr kernel match tMIIC running speed but with significantly
lower scores (i.e. Fscores level off around 0.4-0.5 at large sample size, while tMIIC Fscore exceeds
0.8). This demonstrates that CausalXtract’s causal discovery module (tMIIC) is both a reliable and
scalable method to discover complex temporal causal relations in very large time series datasets
including a few hundred thousand samples.

Data availability

The original live-cell time-lapse image data and extracted crops are available at: https://doi.org/10
.5281/zenodo.7755699     .

Code availability

The source code of the CausalXtract pipeline is available at: https://github.com/miicTeam
/CausalXtract     . It includes a demo R markdown notebook of CausalXtract pipeline, which
reproduces step-by-step the results reported in the manuscript, Fig. 2     , starting from the original
live-cell time-lapse images of the tumor-on-chip ecosystem, Fig. 1a     . Tigramite package used for
benchmark comparison is available at: https://github.com/jakobrunge/tigramite     

https://doi.org/10.7554/eLife.95485.1
https://doi.org/10.5281/zenodo.7755699
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https://github.com/jakobrunge/tigramite
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Supplementary Fig. 1

Benchmark assessment of CausalXtract’s causal discovery
module (tMIIC) using generated time series datasets.

a, Example of a 15 node causal network to generate benchmark time series datasets based on linear combinations of
contributions, Supplementary Table 1     . Examples of temporal causal networks reconstructed by tMIIC based on 100, 1,000
or 10,000 simulated time steps. b, Running times and scores (Precision, Recall, Fscore) averaged over 10 datasets and
compared to PC and PCMCI+ methods using different kernels (GPDC, KNN, ParCorr); tMIIC is at par with PC and PCMCI+
scores using GPDC and KNN kernels but runs orders of magnitude faster. Only ParCorr kernel matches tMIIC running speed
but with significantly lower scores at large sample size, see Methods.
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Supplementary Fig. 2

CausalXtract insensitivity to an overestimated maximum lag τ.

a, Example of a temporal causal network model with a maximum lag τ = 2. Corresponding temporal causal networks inferred
by CausalXtract’s causal discovery module (tMIIC), from 1,000 time step stationary time series (Supplementary Table 1     ),
while assuming different maximum lags τ = 2, 5 or 10. b, Running times and scores (Precision, Recall, Fscore) of tMIIC
temporal causal network reconstructions for τ = 2, 5 or 10, averaged over ten stationary time series of 10 to 105 time steps.
Overestimating the maximum lag τ has little impact on the reconstructed networks, as long as the time series are stationary,
as demonstrated in Supplementary Fig. 3     .
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Supplementary Fig. 3

CausalXtract sensitivity to non-stationary variables.

a, Example of a temporal causal network model (τ = 2) with a low frequency periodic input (T = 100) applied to X8 and a time-
linear trend applied to X13. Corresponding temporal causal networks inferred by tMIIC from 1,000 time step time series
(Supplementary Table 1     ) including non-stationary inputs to X8 and X13. Increasing the maximum lag from τ = 2 to τ = 5 or
10 leads to the appearence of multiple self-loops, which result from the non-stationary dynamics of X8 and X13, whilst the
rest of the network remains largely unaffected. b, Running times and scores (Precision, Recall, Fscore ignoring X8 and X13
self-loops) of tMIIC causal network reconstructions for τ = 2, 5 or 10, averaged over ten time series of 10 to 105 time steps.
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Supplementary Fig. 4

Benchmark assessment of CausalXtract’s causal discovery
module (tMIIC) using more complex time series datasets.

a, Example of a 15 node causal network to generate more complex benchmark time series datasets based on non-linear
combinations of contributions, Supplementary Table 2     . Examples of temporal causal networks reconstructed by tMIIC
based on 100, 1,000 or 10,000 simulated time steps. b, Running times and scores (Precision, Recall, Fscore) averaged over 10
datasets and compared to PC and PCMCI+ methods using different kernels (GPDC, KNN, ParCorr); tMIIC outperforms both PC
and PCMCI+, in terms of Recall and Fscores, while running orders of magnitude faster, except for the ParCorr kernel, which
leads, however, to significantly lower scores at large sample size.
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Supplementary Fig. 5

Time-unfolded causal network framework and relation to Granger-Schreiber temporal causality.

a, A vanishing Transfer Entropy, i.e. , implies i) the absence of (dashed) edge between Xt and any
, with t’ < t, and ii) if Xt is adjacent to Yt, the presence of temporal (2-variable + time) v-structures, , for all
 adjacent to Yt, with t’ < t (Methods, Theorem 1). These results can be readily extended to include the presence of other

observed variables, , by redefining Transfer Entropy as, , which discards contributions
from indirect paths through other observed variables, , By contrast, the presence of a temporal (2-variable + time) v-
structure,  does not imply a vanishing Transfer Entropy, as long as there remains an edge between any 
and Xt. It implies that Granger-Schreiber temporal causality is in fact too restrictive and may overlook actual causal effects,
which can be uncovered by graph-based causal discovery methods like CausalXtract’s causal discovery module (tMIIC).
Hence, CausalXtract’s time-unfolded network framework, combining graph-based and information-based approaches, sheds
light on the common foundations of the seemingly unrelated graph-based causality and Granger-Schreiber temporal
causality, while clarifying their actual differences and limitations.
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Supplementary Fig. 6

Time series of cellular features extracted from the tumor ecosystems.

Example of time series of cellular features extracted by CausalXtract’s feature extraction module (CellHunter+) from the
tumor ecosystems analyzed in this study, Fig. 1a     . It includes two experimental control parameters (i.e. treatment and CAF
presence) and 15 cellular features extracted every 2 minutes over a period of two days. Continuous features are highlighted
for one trajectory (traj.18), while categorical features are shown for all trajectories.

https://doi.org/10.7554/eLife.95485.1
https://doi.org/10.7554/eLife.95485.1


Franck Simon et al., 2024 eLife. https://doi.org/10.7554/eLife.95485.1 18 of 24Franck Simon et al., 2024 eLife. https://doi.org/10.7554/eLife.95485.1 18 of 24

Supplementary Fig. 7

Time-unfolded causal network inferred by CausalXtract.

a, Time-unfolded causal network assuming stationary dynamics of cellular ecosystems implying translational time invariance
of the inferred causal network. b, Only edges involving at least one contemporaneous variables (i.e. at time t) need to be
tested for conditional independence by tMIIC and the remaining edges are then duplicated at all previous time steps before
assigning orientations when time-lagged latent variables are taken into account, Fig. 1c     . Variables retaining multiple self-
loops with different time-delays correspond to non-stationary variables in Supplementary Fig. 6     , in agreement with
benchmarks from simulated data including non-stationary variables, Supplementary Fig. 3     .
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Supplementary Fig. 8

Robustness of CausalXtract’s temporal causal networks to variations in sampling rate.

Summary causal networks inferred by CausalXtract using different sampling rates (δτ). a, δτ = 8 ts and τ = 80 ts, in time step
units (1 ts = 2 min). b, δτ = 7 ts, and τ = 84 ts, as chosen automatically by CausalXtract based on the average relaxation time
across the 15 monitored variables, τR = 40 ts, which defines a maximum lag τ = 2 τR = 80 ts. Given a total number of (time-
lagged and -unlagged) nodes, chosen to be around 200 nodes for computational efficiency, it leads to 13 temporal layers (ν +
1 = 200/15 ≃ 13) and a lag increment δτ = τ/ν ≃ 7 ts. This summary causal network corresponds to Fig. 2a     . c, δτ = 5 ts and τ
= 60 ts, corresponding to τ = ν · δτ with ν + 1 = 13 temporal layers, as in (b).
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Supplementary Table 1

15 nodes model.
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Supplementary Table 2

15 nodes model with combinations.
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Reviewer #1 (Public review):

Summary:

This paper presents a data processing pipeline to discover causal interactions from time-lapse
imaging data, and convicingly illustrates it on a challenging application for the analysis of
tumor-on-chip ecosystem data.

The core of the discovery module is the original tMIIC method of the authors, which is shown
in supplementary material to compare favourably to two state-of-the-art methods on
synthetic temporal data on a 15 nodes network.

Strengths:

This paper tackles the problem of learning causal interactions from temporal data which is
an open problem in presence of latent variables.

The core of the method tMIIC of the authors is nicely presented in connection to Granger-
Schreiber causality and to the novel graphical conditions used to infer latent variables and
based on a theorem about transfer entropy.

tMIIC compares favourably to PC and PCMCI+ methods using different kernels on synthetic
datasets generated from a network of 15 nodes.

A full application to tumor-on-chip cellular ecosystems data including cancer cells, immune
cells, cancer-associated fibroblasts, endothelial cells and anti cancer drugs, with convincing
inference results with respect to both known and novel effects between those components
and their contact.
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The code and dataset are available online for the reproducibility of the results.

Weaknesses:

The references to "state-of-the-art methods" concerning the inference of causal networks
should be more precise by giving citations in the main text, and better discussed in general
terms, both in the first section and in the section of presentation of CausalXtract. It is only in
the legend of the figures of the supplementary material that we get information.

Of course, comparison on our own synthetic datasets can always be criticized but this is
rather due to the absence of common benchmark and I would recommend the authors to
explicitly propose their datasets as benchmark to the community.

https://doi.org/10.7554/eLife.95485.1.sa1

Reviewer #2 (Public review):

Summary:

The authors propose a methodology to perform causal (temporal) discovery. The approach
appears to be robust and is tested in the different scenarios: one related with live-cell
imaging data, and another one using synthetic (mathematically defined) time series data.
They compare the performance of their findings against another well-know method by using
metrics like F-score, precision and recall,

Strengths:

Performance, robustness, the text is clear and concise, The authors provide the code to
review.

Weaknesses:

One concern could be the applicability of the method in other areas like climate, economy.
For those areas, public data are available and might be interesting to test how the method
performs with this kind of data.

https://doi.org/10.7554/eLife.95485.1.sa0
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