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ABSTRACT

We study the cost of overfitting in noisy kernel ridge regression (KRR), which we
define as the ratio between the test error of the interpolating ridgeless model and
the test error of the optimally-tuned model. We take an “agnostic” view in the
following sense: we consider the cost as a function of sample size for any target
function, even if the sample size is not large enough for consistency or the target is
outside the RKHS. We analyze the cost of overfitting under a Gaussian universality
ansatz using recently derived (non-rigorous) risk estimates in terms of the task
eigenstructure. Our analysis provides a more refined characterization of benign,
tempered and catastrophic overfitting (cf. Mallinar et al., 2022).

1 INTRODUCTION

The ability of large neural networks to generalize, even when they overfit to noisy training data
(Neyshabur et al., 2015; Zhang et al., 2017; Belkin et al., 2019), has significantly challenged our
understanding of the effect of overfitting. A starting point for understanding overfitting in deep
learning is to understand the issue in kernel methods, possibly viewing deep learning through their
kernel approximation (Jacot et al., 2020). Indeed, there is much progress in understanding the effect
of overfitting in kernel ridge regression and ridge regression with Gaussian data. It has been shown
that the test error of the minimal norm interpolant can approach Bayes optimality and so overfitting
is “benign” (Bartlett et al., 2020; Muthukumar et al., 2020; Koehler et al., 2021; Wang et al., 2021;
Donhauser et al., 2022). In other situations such as Laplace kernels and ReLU neural tangent kernels,
the interpolating solution is not consistent but also not “catastrophically” bad, which falls into an
intermediate regime called “tempered” overfitting (Mallinar et al., 2022).

However, the perspective taken in this line of work differs from the agnostic view of statistical
learning. These results typically focus on asymptotic behavior and consistency of a well-specified
model, asking how the limiting behavior of interpolating learning rules compares to the Bayes error
(the smallest risk attainable by any measurable function of the feature x). In contrast, the agnostic
PAC model (Vapnik & Chervonenkis, 1971; Haussler, 1992; Shalev-Shwartz & Ben-David, 2014)
does not require any assumption on the conditional distribution of the label y. In particular, the
conditional expectation E[y|x] is not necessarily a member of the hypothesis class and it does not
need to have small Hilbert norm in the Reproducing Kernel Hilbert Space (RKHS). Instead, the
learning rule is asked to find a model whose test risk can compete with the smallest risk within the
hypothesis class, which can be quite high if no predictor in the hypothesis class can attain the Bayes
error. In these situations, the agnostic PAC model can still provide a meaningful learning guarantee.

Furthermore, we would like to isolate the effect of overfitting (i.e. underregularizing, and choosing to
use a predictor that fits the noise, instead of compromising on empirical fit and choosing a predictor
that balances empirical fit with complexity or norm) from the difficulty of the learning problem
and appropriateness of the model irrespective of overfitting (i.e. even if we were to not overfit and
instead optimally balance empirical fit and norm, as in ridge regression). A view which considers
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only the risk of the overfitting rule (e.g. Mallinar et al., 2022) confounds these two issues. Instead, we
would like to study the direct effect of overfitting: how much does it hurt to overfit and use ridgeless
regression compared to optimally tuned ridge regression.

In this paper, we take an agnostic view to the direct effect of overfitting in (kernel) ridge regression.
Rather than comparing the asymptotic risk of the interpolating ridgeless model to the Bayes error,
we compare it to the best ridge model in terms of population error as a function of sample size, and
we measure the cost of overfitting as a ratio. We show that the cost of overfitting can be bounded
by using only the sample size and the effective ranks of the covariance, even when the risk of the
optimally-tuned model is high relative to the Bayes error. Our analysis applies to any target function
(including ones with unbounded RKHS norm) and recovers the matching upper and lower bounds
from Bartlett et al. (2020), which allows us to have a more refined understanding of the benign
overfitting. In addition to benign overfitting, we show that the amount of “tempered” overfitting
can also be understood using the cost of interpolation, and we derive the necessary and sufficient
condition for “catastrophic” overfitting (Mallinar et al., 2022). Combining these results leads to a
refined notion of benign, tempered, and catastrophic overfitting (focusing on the difference versus the
optimally tuned predictor), and a characterization as a function of sample size n based on computing
the effective rank rk at some index k. We further apply our results to the setting of inner product
kernels in the polynomial regime (Ghorbani et al., 2021; Mei et al., 2022; Misiakiewicz, 2022) and
recover the multiple descent curve.

2 PROBLEM FORMULATION

Let X be an abstract input space and K : X × X → R a positive semi-definite kernel1.

2.1 BI-CRITERION OPTIMIZATION IN KRR

Given a data set Dn consisting of (x1, y1), ..., (xn, yn) ∈ X × R sampled from some unknown
joint distribution D, in order to find a predictor with good test error R(f), we solve the bi-criterion
optimization:

min
f∈H

R̂(f), ∥f∥H (1)

where ∥f∥H is the Hilbert norm in the RKHS and the test error and training error (in square loss) of
a predictor f is given by

R(f) := E
[
(f(x)− y)2

]
and R̂(f) :=

1

n

n∑
i=1

(f(xi)− yi)
2.

The Pareto-frontier of the bi-criterion problem (1) corresponds to the regularization path {f̂δ}δ≥0

given by the sequence of problems:

f̂δ = argmin
f∈H

R̂(f) +
δ

n
∥f∥2H.

By the representation theorem, f̂δ has the explicit closed form:

f̂δ(x) = K(Dn, x)
T (K(Dn, Dn) + δIn)

−1
Y (2)

where K(Dn, x) ∈ Rn,K(Dn, Dn) ∈ Rn×n, Y ∈ Rn are given by [K(Dn, x)]i = K(xi, x),
[K(Dn, Dn)]i,j = K(xi, xj) and [Y ]i = yi. The interpolating “ridgeless” solution (minimal norm
interpolant) is the extreme Pareto point and obtained by taking δ → 0+:

f̂0 = argmin
f∈H:R̂(f)=0

∥f∥H.

Even though f̂0 has the minimal norm among all interpolants, the norm of f̂0 will still be very large
because it needs to memorize all the noisy training labels. In this paper, we are particularly interested
in the generalization performance of the ridgeless solution f̂0, which minimizes the training error in
the bi-criterion problem (1) too much.

1i.e.: (i) ∀x, x′ ∈ X , K(x, x′) = K(x′, x), and (ii) ∀n ∈ N, x1, ..., xn ∈ X , c1, ..., cn ∈ R, it holds that∑n
i=1

∑n
j=1 cicjK(xi, xj) ≥ 0.
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2.2 MERCER’S DECOMPOSITION

Though the setting for KRR is very generic, we can understand it as (linear) ridge regression. By
Mercer’s theorem (Mercer, 1909), the kernel admits the decomposition

K(x, x′) =
∑
i

λiϕi(x)ϕ(x
′) (3)

where ϕi : X → R form a complete orthonormal basis satisfying Ex[ϕi(x)ϕj(x)] = 1 if i = j and
0 otherwise, and the expectation is taken with respect to the marginal distribution of x given by D.
For example, if X = {x1, ..., xM} has finite cardinality M and x is uniformly distributed over X ,
then (3) can be found by the spectral decomposition of the matrix K(X ,X ) ∈ RM×M given by
[K(X ,X )]i,j = K(xi, xj). When x is uniformly distributed over the sphere in Rd or the boolean
hypercube {−1, 1}d, then {ϕi} can be taken to be the spherical harmonics or the Fourier-Walsh
(parity) basis. In the case that K is the Gaussian kernel or polynomial kernel, the eigenvalues {λi}
has closed-form expression in terms of the modified Bessel function or the Gamma function (Minh
et al., 2006).

Therefore, instead of viewing the feature x as an element of X , we can consider the potentially
infinite-dimensional real-valued vector ψ(x) = (

√
λ1ϕ1(x),

√
λ2ϕ2(x), ...) and denote the design

matrix Ψ = [ψ(x1), ψ(x2), ...]
T . Then we can write K(x, x′) = ⟨ψ(x), ψ(x′)⟩ and understand the

predictor in (2) as

f̂δ(x) = ψ(x)TΨT (ΨΨT + δIn)
−1Y

= ⟨ŵδ, ψ(x)⟩

where ŵδ = ΨT (ΨΨT + δIn)
−1Y is simply the ridge regression estimate with respect to the data set

(Ψ, Y ). For a predictor f of the form f(x) = ⟨w,ψ(x)⟩, its Hilbert norm is given by ∥f∥H = ∥w∥2.

The Bayes-optimal target function is f∗(x) = E(x,y)∼D[y|x]. We may expand this function in the
kernel eigenbasis as f∗(x) =

∑
i viϕi(x), where {vi} are eigencoefficients. Let the noise level be

σ2 = E(x,y)∼D[(y − f∗(x))
2].

2.3 CLOSED-FORM RISK ESTIMATE FOR (KERNEL) RIDGE REGRESSION

A great number of recent theoretical works have converged on a powerful set of closed-form equations
which estimate the test risk of KRR in terms of task eigenstructure (Hastie et al., 2019; Wu & Xu,
2020; Jacot et al., 2020; Canatar et al., 2021; Loureiro et al., 2021; Mel & Ganguli, 2021; Richards
et al., 2021). We shall use the risk estimate from these works as our starting point. These equations
rely on (some variant of) the following Gaussian design ansatz:
Assumption 1 (Gaussian design ansatz). When sampling (x, ·) ∼ D, the eigenfunctions are either
Gaussian in the sense that ψ(x) ∼ N (0, diag({λi})), or else we have Gaussian universality in the
sense that the expected test risk is unchanged if we replace ψ(x) with ψ̃(x), where ψ̃ is Gaussian in
this manner.

Remarkably, Assumption 1 appears to hold even for many real datasets: predictions computed for
Gaussian design agree excellently with kernel regression experiments with real data (Canatar et al.,
2021; Simon et al., 2021; Wei et al., 2022). We will take Assumption 1 henceforth.

We now state the “omniscient risk estimate” presented by this collection of works.2 First, let the
effective regularization constant κδ be the unique nonnegative solution to∑

i

λi
λi + κδ

+
δ

κδ
= n. (4)

Using κδ , we can define

Li,δ =
λi

λi + κδ
and Eδ =

n

n−
∑

i L2
i,δ

, (5)

2We adopt the notation of Simon et al. (2021), but the risk estimates of all mentioned works are equivalent.
We take the term “omniscient risk estimate” from Wei et al. (2022).
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where we refer to Li,δ as the learnability of mode i and Eδ as the overfitting coefficient. The expected
test risk over datasets is then given approximately by

R(f̂δ) ≈ R̃(f̂δ) := Eδ

(∑
i

(1− Li,δ)
2v2i + σ2

)
. (6)

The “≈” in (6) can be given several meanings. Firstly, it becomes an equivalence in an appropriate
asymptotic limit in which n and the number of eigenmodes in a given eigenvalue range both grow
proportionally large (Hastie et al., 2019; Bach, 2023). Secondly, with fixed task eigenstructure, the
error incurred can be bounded by a decaying function of n (Cheng & Montanari, 2022). Thirdly,
numerical experiments attest that the error is small even at quite modest n (Canatar et al., 2021;
Simon et al., 2021). For the rest of this paper, we will simply treat it as an equivalence, formally
proving facts about the omniscient risk estimate R̃(f̂δ). Thus, our results follow by analyzing the
expression from (6).

3 COST OF OVERFITTING

The sensible and traditional approach to learning using a complexity penalty, such as the Hilbert
norm ∥f∥H, is to use a Pareto point (point on the regularization path) of the bi-criteria problem (1)
that minimizes some balanced combination of the empirical risk and penalty (the “structural risk”) so
as to ensure small population risk. Assumptions about the problem can help us choose which Pareto
optimal point, i.e. what value of the tradeoff parameter δ, to use. Simpler and safer is to choose this
through validation: calculate the Pareto frontier (aka regularization path) on half the training data set,
and choose among these Pareto points by minimizing the “validation error” on the held-out half of
the training set. Here we do not get into these details, and simply compare to the best Pareto point:

R(f̂δ∗) = inf
δ≥0

R(f̂δ).

Although we cannot find f̂δ∗ exactly empirically, it is useful as an oracle, and studying the gap versus
this ideal Pareto point provides an upper bound on the gap versus any possible Pareto point (i.e. with
any amount of “ideal” regularization). And in practice, as well as theoretically, a validation approach
as described above will behave very similar to f̂δ∗ . We therefore define the cost of overfitting as the
(multiplicative) gap between the interpolating predictor f̂0 and the optimaly regularized f̂δ∗ :
Definition 1. Given any data distribution D over X × R and sample size n ∈ N, we define the cost
of overfitting as

C(D, n) := R(f̂0)

infδ≥0R(f̂δ)
, and its prediction based on (6) : C̃(D, n) := R̃(f̂0)

infδ≥0 R̃(f̂δ)

It is possible to directly analyze R(f̂0) and R(f̂δ∗) (or their predictions based on (6)) in order to study
the cost of overfitting. However, any bound on R(f̂0) or R(f̂δ∗) will necessarily depend on the target
function. Instead, we show that there is a much simpler argument to bound the cost of overfitting.
Theorem 1. Consider E0 defined in (5) with δ = 0, then it holds that

C̃(D, n) ≤ E0. (7)

Proof. Observe that

R̃(f̂δ∗) = inf
δ≥0

Eδ

(∑
i

(1− Li,δ)
2v2i + σ2

)
≥ inf

δ≥0

∑
i

(1− Li,δ)
2v2i + σ2

=
∑
i

(1− Li,0)
2v2i + σ2

where we use the fact that (1− Li,δ)
2 decreases as κδ decreases, and κδ decreases as δ decreases.

The proof concludes by observing
∑

i(1− Li,0)
2v2i + σ2 = R̃(f̂0)/E0.
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Indeed, (4) and (5) used to define E0 does not depend on the target coefficients. It is also
straightforward to check that if vi = 0, then R̃(f̂0) = E0σ2 and R̃(f̂δ∗) = σ2 by choosing δ∗ = ∞,
and C̃(D, n) = E0 for any n. This shows that (7) is the tightest agnostic bound on the cost of
overfitting:

∀P (x) E0 = sup
P (y|x)

C̃(D, n)

where E0 on the left-hand-side depends only on the marginal P (x), while C̃(D, n) depends on both
the marginal P (x) and the conditional P (y|x).
More generally, it is clear that we have the lower bound

C̃(D, n) ≥ E0
σ2

R̃(f̂δ∗)

due to the non-negativity of v2i in (6). Thus, from the above and Theorem 1, we have σ2

R̃(f̂δ∗ )
≤

C̃(D,n)
E0

≤ 1. Therefore, if σ2

R̃(f̂δ∗ )
→ 1 as n → ∞, namely, the optimal-tuned ridge is consistent,

then C̃(D,n)
E0

→ 1. That is, in this case E0 precisely captures the cost of overfitting.

If the optimal-tuned ridge is not consistent, (7) might be a loose upper bound on C̃(D, n). However,
under our assumption, even in this case E0 still captures the qualitative noisy overfitting behavior
in the following sense: If limn→∞ E0 = 1, we have benign overfitting, i.e. C̃ → 1, regardless of
the target; If limn→∞ E0 = ∞ and σ2 > 0, then we have catastrophic overfitting, i.e. C̃ → ∞,
regardless of the target; If 1 < limn→∞ E0 <∞ then overfitting is either benign or tempered.

Finally, we note that the argument in the proof of Theorem 1 shows something more: for any
δ ≤ δ∗, it holds that R̃(f̂δ) ≤ EδR̃(f̂δ∗) ≤ E0R̃(f̂δ∗). Therefore, the quantity E0 bounds the cost of
overfitting not only for the interpolating solution, but also for any ridge model with a sufficiently
small regularization parameter δ. Consequently, if E0 is close to one, then the risk curve will become
flat once all of the signal is fitted (for example, see Figure 1 of Zhou et al. (2021)), exhibiting the
double descent phenomenon instead of the classical U-shape curve (Belkin et al., 2019). Similar
results on the flatness of the generalization curve are proven in Tsigler & Bartlett (2020) and Zhou
et al. (2021).

3.1 BENIGN OVERFITTING

In this section, we discuss when E0 can be close to 1 and so overfitting is benign. Note that the target
coefficients play no role at all in our analysis. To further upper bound the cost of overfitting, we will
introduce the notion of effective rank (Bartlett et al., 2020).
Definition 2. The effective ranks of a covariance matrix with eigenvalues {λi}∞i=1 in descending
order are defined as

rk =

∑
i>k λi

λk+1
and Rk :=

(∑
i>k λi

)2∑
i>k λ

2
i

.

The two effective ranks are closely related to each other by the relationship rk ≤ Rk ≤ r2k and
are equal if Σ is the identity matrix (Bartlett et al., 2020). Roughly speaking, the minimal norm
interpolant can approximate the target in the span of top k eigenfunctions and use the remaining
components of x to memorize the residual. A large effective rank ensures that the small eigenvalues
of Σ are roughly equal to each other and so it is possible to evenly spread out the cost of overfitting
into many different directions. More precisely, we show the following finite-sample bound on E0,
which decreases to 1 as n increases if k = o(n) and Rk = ω(n):
Theorem 2. For any k < n, it holds that

E0 ≤
(
1− k

n

)−2(
1− n

Rk

)−1

+

. (8)

The conditions that k = o(n) and Rk = ω(n) are two key conditions for benign overfitting in
linear regression (Bartlett et al., 2020). They require an additional assumption that r0 = o(n) for
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consistency, which is sufficient for the consistency of the optimally tuned model when the target is
well-specified. Our Theorem 2 provides a more refined understanding of benign overfitting: at a
finite sample n, if we can choose a small k such that Rk is large relative to n, then the interpolating
ridgeless solution is nearly as good as the optimally tuned model, regardless of whether the optimally
tuned model can learn the target. Furthermore, we also recover a version of the matching lower bound
of Theorem 4 in Bartlett et al. (2020), though our proof technique is completely different and simpler
since we have a closed-form expression. Since E0 =

(
1− 1

n

∑
i L2

i,0

)−1
, it suffices to lower bound

1
n

∑
i L2

i,0.
Theorem 3. Fix any b > 0. If there exists k < n such that n ≤ k + brk, then let k be the first such
integer. Otherwise, pick k = n. It holds that

1

n

∑
i

L2
i,0 ≥ max

{
1

(b+ 1)2

(
1− k

n

)2
n

Rk
,

(
b

b+ 1

)2
k

n

}
. (9)

For simplicity, we can take b = 1 in the lower bound above. We see that E0 cannot be close to 1
unless k is small relative to n. Even if k is small, the first term in (9) requires n/Rk to be small.
Conversely, if both k/n and n/Rk are small, then we can apply Theorem 2 to show that E0 is close
to 1 and we have identify the necessary and sufficient condition for E0 → 1.
Corollary 1. For any n ∈ N, let kn be the first integer k < n such that n ≤ k + rk. Then E0 → 1 if
and only if

lim
n→∞

kn
n

= 0 and lim
n→∞

n

Rkn

= 0. (10)

Though Corollary 1 is stated as an asymptotic result, the spectrum is allowed to change with the
sample size n and the target function plays no role in condition (10). Next, we apply our results to
some canonical examples where overfitting is benign.
Example 1 (Benign covariance from Bartlett et al. (2020)).

λi = i−1 log−α i for some α > 0.

In this case, we can estimate∑
i>k

λi ≥
∫ ∞

k+1

1

x logα x
dx =

1

(α− 1) logα−1(k + 1)∑
i>k

λ2i ≤ 1

k + 1

∫ ∞

k

1

x log2α x
dx =

1

(k + 1)(2α− 1) log2α−1(k)

and so

Rk ≥ (k + 1)(2α− 1) log2α−1(k)

(α− 1)2 log2α−2(k + 1)
= Θ (k log k) .

Then by choosing k = Θ
(

n√
logn

)
, we have k = o(n) and Rk = ω(n) because Rk

n = Θ(log1/2 n).

Example 2 (Junk features from Zhou et al. (2020)).

λi =


1 if i ≤ dS
1
dJ

if dS + 1 ≤ i ≤ dS + dJ
0 if i > dS + dJ .

In this case, it is routine to check Rk = dJ by choosing k = dS . Letting dS = o(n) and dJ = ω(n),
Theorem 2 shows that E0 → 1.

Finally, we show our bound (8) also applies to isotropic features in the proportional regime even
though overfitting is not necessarily benign.
Example 3 (Isotropic features in the proportional regime).

λi =

{
1 if i ≤ d

0 otherwise
for d = γn and γ > 1.
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In this case, it is easy to check that rk = d − k and so k + rk = d > n and kn = 0. The first
condition in (10) holds because kn/n = 0. However, the second condition in (10) does not hold
because Rk = d− k and n/Rkn

= 1/γ > 0. Plugging in k = 0 to Theorem 2, we obtain

E0 ≤
(
1− n

d

)−1

=
γ

γ − 1
.

The above upper bound is tight when vi = 0 because it is well-known that in the proportional regime
(for example, see Hastie et al. (2019) and Zhou et al. (2021)), it holds that

lim
n→∞

R(f̂0) = σ2 γ

γ − 1
.

3.2 TEMPERED OVERFITTING

Theorem 2 allows us to understand the cost of overfitting when it is benign. However, it is not
informative when no k < n satisfies Rk > n. In Theorem 4 below, we provide an estimate for the
amount of “tempered” overfitting based on the ratio k/rk over a finite range of indices.

Theorem 4. Fix any ϵ ∈ (0, n/r0) and consider kl, ku ∈ N given by

kl :=max {k ≥ 0 : k + ϵrk ≤ n}
ku :=min {k ≥ 0 : k + rk ≥ (1 + ϵ−1)n}.

Then it holds that

E0 ≤ (1 + ϵ)2 · max
kl≤k<ku

(
λk+1

λk+2
+

1

ϵ

k + 1

rk − 1

)
. (11)

To interpret (11), we first suppose that the spectrum {λi} does not change with n and has infinitely
many non-zero eigenvalues (which is the case in Example 1, 4 and 5 below). For any fixed ϵ > 0, kl
must increases as n increases. If k is large, then it is usually the case that λk+1 ≈ λk or the ratio is
bounded. Letting ϵ = 1, we can understand (11) as E0 ≲ 1 + k

rk
.

In particular, if rk = Ω(k), then E0 is bounded and overfitting cannot be catastrophic. Conversely,
we show that overfitting is catastrophic when rk = o(k) in section 3.3 below. Therefore, the
condition limk→∞ k/rk = ∞ is both necessary and sufficient for catastrophic overfitting: E0 →
∞. Furthermore, we argue that (11) is also sufficient for benign overfitting in some settings: if
limk→∞ k/rk = 0, then we have limn→∞ E0 ≤ (1 + ϵ)2 for any ϵ > 0, and thus E0 → 1.

Example 4 (Power law decay from Mallinar et al. (2022)).

λi = i−α for some α > 1.

In this case, we can estimate

1

(α− 1)(k + 1)α−1
=

∫ ∞

k+1

x−α dx ≤
∑
i>k

λi ≤
∫ ∞

k

x−α dx =
1

(α− 1)kα−1

1

(2α− 1)(k + 1)2α−1
=

∫ ∞

k+1

x−2α dx ≤
∑
i>k

λ2i ≤
∫ ∞

k

x−2α dx =
1

(2α− 1)k2α−1

and so (
k

k + 1

)
(α− 1) ≤ k

rk
≤
(

k

k + 1

)α−1

(α− 1).

Therefore, we have limk→∞ k/rk = α− 1 and so E0 ≲ α, which agrees with Mallinar et al. (2022).
We remark that the Laplace kernel and ReLU NTK restricted to the hypersphere have power law
decay (Geifman et al., 2020).

3.3 CATASTROPHIC OVERFITTING

We first state a generic non-asymptotic lower bound on E0 =
(
1− 1

n

∑
i L2

i,0

)−1
and then discuss

the implication for catastrophic overfitting as n increases.
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Theorem 5. For any k ≥ n, it holds that

1

n

∑
i

L2
i,0 ≥ n

k

(
k − n

k − n+ rk

)2

. (12)

For any ϵ > 0, if rk = o(k) and we consider k = (1 + ϵ)n, then it is straightforward from (12) that
limn→∞

1
n

∑
i L2

i,0 ≥ (1 + ϵ)−1. Since the choice of ϵ is arbitrary, we have limn→∞
1
n

∑
i L2

i,0 = 1
and so E0 → ∞.
Example 5 (Exponential decay).

λi = e−i.

In this case, we can estimate ∑
i>k

λi ≤
∫ ∞

k

e−x dx = e−k

and rk ≤ e and rk/k → 0. Theorem 5 implies that overfitting is catastrophic, as expected from
Mallinar et al. (2022).

Since Theorem 3, 4 and 5 are agnostic and non-asymptotic, we can use them to obtain an elegant
characterization of whether overfitting is benign, tempered, or catastrophic, resolving an open
problem3 raised by Mallinar et al. (2022):
Theorem 6. Suppose that the spectrum {λi} is fixed as n increases and contains infinitely many
non-zero eigenvalues.

(a) If limk→∞ k/rk = 0, then overfitting is benign: limn→∞ E0 = 1.

(b) If limk→∞ k/rk ∈ (0,∞), then overfitting is tempered: limn→∞ E0 ∈ (1,∞).

(c) If limk→∞ k/rk = ∞, then overfitting is catastrophic: limn→∞ E0 = ∞.

4 APPLICATION: INNER-PRODUCT KERNELS IN THE POLYNOMIAL REGIME

In this section, we consider KRR with inner-product kernels in the polynomial regime (Ghorbani
et al., 2021; Mei et al., 2022; Misiakiewicz, 2022). Let’s take the distribution of x to be uniformly
distributed over the hypersphere in Rd or the boolean hypercube. Denote V≤l−1 to be the subspace
of all polynomials of degree ≤ l− 1 and B(d, l) = Θd(d

l) to be the dimension of the subspace Vl of
degree-l polynomials orthogonal to V≤l−1. Moreover, denote P≤⌊l⌋ to be the projection onto V≤⌊l⌋
and P>⌊l⌋ to be the projection onto its complement. Let {Yks}k≥0,s∈[B(d,k)] be the polynomial basis
with respect to D (e.g. spherical harmonics or parity functions).

Inner-product kernels. Consider kernels of the form K(x, x′) = hd(⟨x, x′⟩/d), then it admits the
eigendecompositon in the polynomial basis:

K(x, x′) =

∞∑
k=0

∑
s∈[B(d,k)]

µd,k(h)

B(d, k)
Yks(x)Yks(x

′).

We also expand the target in the kernel eigenbasis and define f∗(x) :=
∑∞

k=0

∑
s∈[B(d,k)] vksYks(x).

Interestingly, the eigenvalues of K with respect to D have a block diagonal structure. The block
diagonal structure is a consequence of the rotation-invariance of the distribution of x.

Polynomial regime. Consider the regime n ≍ dl where l is not an integer. We will choose k in
Theorem 2 to include the first ⌊l⌋ blocks. Then

k =

⌊l⌋∑
k=0

B(d, k) = Θ

 ⌊l⌋∑
k=0

dk

 = Θ
(
d⌊l⌋
)
= o(n).

3See footnote 11 in their paper. The settings they consider (e.g., clause (a) of Theorem 3.1 with δ > 0)
always satisfy R̃(f̂δ∗) = σ2 and so limn→∞ R̃(f̂0) = limn→∞ E0 · σ2.
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and

Rk =

(∑
k>⌊l⌋

∑
s∈[B(d,k)]

µd,k(h)
B(d,k)

)2
∑

k>⌊l⌋
∑

s∈[B(d,k)]

(
µd,k(h)
B(d,k)

)2 ≥

(∑
k>⌊l⌋ µd,k(h)

)2
∑

k>⌊l⌋ µd,k(h)2
·B(d, ⌈l⌉)

≥ B(d, ⌈l⌉) = Ω(d⌈l⌉) = ω(n).

Hence, the cost of overfitting is small when l is bounded away from the integers. To obtain a bound
on the error of the ridgeless solution, it suffices to analyze the error of the optimally regularized
model, which can be easily done with uniform convergence. Using the predictions from Simon et al.
(2021), we can also recover a type of uniform convergence known as “optimistic rate” (Panchenko,
2002; Srebro et al., 2010; Zhou et al., 2021), which is suitable for the square loss.

Theorem 7. Fix any k ∈ N and let ϵ =
√
(k2 + 2kn)/n2. For any δ ≥ 0, it holds that

(1− ϵ)

√
R̃(f̂δ)−

√
R̂(f̂δ) ≤

√
(
∑

i>k λi)∥f̂δ∥2H
n

.

Note that the error of the predictor P≤⌊l⌋f
∗ is approximately

σ2 +
∑
k>⌊l⌋

∑
s∈[B(d,k)]

v2i = σ2 + ∥P>⌊l⌋f
∗∥2. (13)

and we can tune δ∗ to match the training error of f̂δ∗ to (13) and the Hilbert norm satisfies ∥f̂δ∥H ≤
∥P≤⌊l⌋f

∗∥H because f̂δ is Pareto-optimal. Moreover, the expected norm of the feature is

∑
k>⌊l⌋

∑
s∈[B(d,k)]

µd,k(h)

B(d, k)
=
∑
k>⌊l⌋

µd,k(h),

and so if ∥P≤⌊l⌋f
∗∥2H ·

(∑
k>⌊l⌋ µd,k(h)

)
= o(n), then limn→∞ R̃(f̂δ∗) ≤ σ2 + ∥P>⌊l⌋f

∗∥2. In
Ghorbani et al. (2021) and Mei et al. (2022), it is shown that the above is not just an upper bound. In
fact, it holds that limn→∞R(f̂0) = σ2 + ∥P>⌊l⌋f

∗∥2 and our application is tight in this case.

5 CONCLUSION

Understanding the effect of overfitting is a fundamental problem in statistical learning theory. Contrary
to the traditional intuition, prior works have shown that predictors that interpolate noisy training
labels can achieve nearly optimal test error when the data distribution is well-specified. In this paper,
we extend these results to the agnostic case and we use them to develop a more refined understanding
of benign, tempered, and catastrophic overfitting. To the best of our knowledge, our work is the first
to connect the complex closed-form risk predictions and the effective rank introduced by Bartlett
et al. (2020) to establish a simple and interpretable learning guarantee for KRR. As we can see
in Corollary 1 and Theorem 6, the effective ranks play a crucial role in the analysis and tightly
characterize the cost of overfitting in many settings.

An interesting future direction may be asking whether our results extend to other settings, such as
kernel SVM, since our theory is agnostic to the target. We hope that the theory of KRR and ridge
regression with Gaussian features can lead us toward a better understanding of generalization in
neural networks.
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A SUPPLEMENTAL PROOFS

In the appendix, we give proofs of all results from the main text. Our proofs are very self-contained
and only use elementary results such as the Cauchy-Schwarz inequality.

A.1 UPPER BOUNDS

The main challenge for analyzing E0 from equation (5) is that the effective regularization κ0 is defined
by the non-linear equation (4), which does not have a simple closed-form solution. However, the
following lemma can provide an estimate for κ0 in terms of the effective rank.

Lemma 1. For any k ∈ N, it holds that

κ0 ≥
(
1− n

Rk

) ∑
i>k λi

n
and κ0 ≥ λk+1

(
k + rk
n

− 1

)
. (14)

Moreover, for any k < n, it holds that

κ0 <

(
1− k

n

)−1 ∑
i>k λi

n
.

Proof. From the Cauchy-Schwarz inequality, we show that(∑
i>k

λi

)2

=

(∑
i>k

√
λi

λi + κ0

√
λi(λi + κ0)

)2

≤

(∑
i>k

λi
λi + κ0

)(∑
i>k

λi(λi + κ0)

)

≤

(∑
i

λi
λi + κ0

)(∑
i>k

λi(λi + κ0)

)

= n

(∑
i>k

λ2i + κ0
∑
i>k

λi

)
.

Rearranging in terms of κ0 proves the first inequality. Moreover, it holds that

n =
∑
i≤k

λi
λi + κ0

+
∑
i>k

λi
λi + κ0

≥ kλk+1

λk+1 + κ0
+

∑
i>k λi

λk+1 + κ0
.

which can be rearranged to the second lower bound. Finally, observe that

n =
∑
i

λi
λi + κ0

< k +

∑
i>k λi

κ0

and rearranging concludes the proof of the last inequality.

In particular, when there exists k such that k = o(n) and Rk = ω(n), then κ0 ≈
∑

i>k λi/n. Using
lemma 1, we can show Theorem 2.

Theorem 2. For any k < n, it holds that

E0 ≤
(
1− k

n

)−2(
1− n

Rk

)−1

+

. (8)
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Proof. For any δ ≥ 0, by the definition (4), we have

n− δ

κδ
=
∑
i

λi
λi + κδ

≤
∑
i≤k

λi
λi + κδ

+
∑
i>k

√
λi

λi + κδ

√
λi

≤ k +

√∑
i>k

λi
(λi + κδ)2

∑
i>k

λi.

Rearranging, we get (
n− k − δ

κδ

)2
∑

i>k λi
≤
∑
i>k

λi
(λi + κδ)2

. (15)

At the same time, we can use the definition (4) again and (15) to show that

1− 1

n

∑
i

L2
i,δ =

1

n

∑
i

[
λi

λi + κδ
−
(

λi
λi + κδ

)2
]
+

δ

nκδ

=
κδ
n

∑
i

λi
(λi + κδ)2

+
δ

nκδ

≥ κδ
n

(
n− k − δ

κδ

)2
∑

i>k λi
+

δ

nκδ
.

(16)

Plugging in δ = 0 and Lemma 1, we have

E0 =

(
1− 1

n

∑
i

L2
i,0

)−1

≤

(
κ0
n

(n− k)
2∑

i>k λi

)−1

=

(
1− k

n

)−2(
1− n

Rk

)−1

provided that Rk > n.

Using the second part of equation (14), we can show a similar bound that depends rk, which is
smaller than Rk, but has a better dependence on k.
Theorem 8. For any k < n, it holds that

E0 ≤
(
1− k

n

)−1(
1− n

k + rk

)−1

+

.

Proof. For i ≥ k + 1, it holds that λi ≤ λk+1 and so by Lemma 1, we have

κ0
λi + κ0

≥ κ0
λk+1 + κ0

≥
k+rk
n − 1
k+rk
n

= 1− n

k + rk
.

Finally, by equation (4), we have

E−1
0 =

1

n

∑
i

λi
λi + κ0

κ0
λi + κ0

≥ 1

n

∑
i≥k+1

λi
λi + κ0

κ0
λi + κ0

≥
(
1− k

n

)(
1− n

k + rk

)
.

Taking the inverse on both hand side concludes the proof.

Finally, we prove Theorem 4. The proof goes through a different argument to avoid the dependence
on 1− k/n because we might need to choose k = Ω(n) when overfitting is tempered.
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Theorem 4. Fix any ϵ ∈ (0, n/r0) and consider kl, ku ∈ N given by

kl :=max {k ≥ 0 : k + ϵrk ≤ n}
ku :=min {k ≥ 0 : k + rk ≥ (1 + ϵ−1)n}.

Then it holds that

E0 ≤ (1 + ϵ)2 · max
kl≤k<ku

(
λk+1

λk+2
+

1

ϵ

k + 1

rk − 1

)
. (11)

Proof. If ϵ ≤ n/r0, then it is clear that k = 0 satisfies k + ϵrk ≤ n. It is also clear that choosing
k ≥ (1+ ϵ−1)n satisfies k+ rk ≥ (1+ ϵ−1)n because rk ≥ 0. Then both kl and ku are well-defined.
To show that both are finite, we observe that kl ≤ kl + ϵrkl

≤ n by definition and ku ≤ (1 + ϵ−1)n
because it is defined as the minimum k.

Next, let k∗ be the smallest integer such that λk∗ ≤ ϵκ0. We will show that k∗ is also well defined
and k∗ ∈ [kl + 2, ku + 1]. Note that for any k < n, we can apply Lemma 1 to show

ϵκ0 < ϵ

∑
i>k λi

n− k
=

ϵrk
n− k

λk+1.

Therefore, by our definition of kl and k∗, it holds that λkl+1 > ϵκ0 ≥ λk∗ . Since the eigenvalues are
sorted, it must hold that k∗ > kl + 1. On the other hand, for any k ∈ N, we also apply Lemma 1 to
show

ϵκ0 ≥ λk+1ϵ

(
k + rk
n

− 1

)
By our definition of ku and k∗, it holds that λku+1 ≤ ϵκ0 and so k∗ ≤ ku +1. Finally, since we have
λi ≤ λk∗ ≤ ϵκ0 for all i ≥ k∗ and λk∗−1 > ϵκ0, we can check that

E−1
0 = 1− 1

n

∑
i

L2
i,0 =

κ0
n

∑
i

λi
(λi + κ0)2

≥ κ0
n

∑
i≥k∗

λi
(λi + κ0)2

≥ 1

(1 + ϵ)2
1

nκ0

∑
i≥k∗

λi >
ϵ

(1 + ϵ)2
1

n

∑
i≥k∗−1 λi − λk∗−1

λk∗−1

=
ϵ

(1 + ϵ)2
rk∗−2 − 1

n
.

Recall that k∗ − 1 ≥ kl + 1 and so by definition of kl, we have k∗ − 1 + ϵrk∗−1 > n. Therefore, it
holds that

E0 <
(1 + ϵ)2

ϵ

k∗ − 1 + ϵrk∗−1

rk∗−2 − 1

= (1 + ϵ)2
[
λk∗−1

λk∗
+

1

ϵ

(k∗ − 2) + 1

rk∗−2 − 1

]
.

where in the last step we use

rk∗−2 − 1 =

∑
i>k∗−2 λi

λk∗−1
− 1 =

∑
i>k∗−1 λi

λk∗−1

=
λk∗

λk∗−1
rk∗−1.

The rest follows from the fact that k∗ − 2 ∈ [kl, ku − 1].

A.2 LOWER BOUNDS

We will now prove two lower bound for E0.
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Theorem 3. Fix any b > 0. If there exists k < n such that n ≤ k + brk, then let k be the first such
integer. Otherwise, pick k = n. It holds that

1

n

∑
i

L2
i,0 ≥ max

{
1

(b+ 1)2

(
1− k

n

)2
n

Rk
,

(
b

b+ 1

)2
k

n

}
. (9)

Proof. First, suppose that there exists k < n such that n ≤ k + brk and let k be the first such integer.
Then we can rearrange n ≤ k + brk into

λk+1 ≤ b

∑
i>k λi

n− k
,

and since λi ≤ λk+1 for i > k, we apply the above and equation (14) of Lemma 1 to show that∑
i

L2
i,0 ≥

∑
i>k

(
λi

λi + κ0

)2

≥
∑

i>k λ
2
i(

b
∑

i>k λi

n−k +
∑

i>k λi

n−k

)2 =
n

(b+ 1)2

(
1− k

n

)2
n

Rk
.

Moreover, by the definition of k, we must have n > k − 1 + brk−1 which can be rearranged to

λk > b

∑
i>k−1 λi

n− k + 1
≥ bκ0

by equation (14) of Lemma 1 again. Then for any i ≤ k, we have λi ≥ λk > bκ0 and so κ0 < λi/b.
Therefore, we have ∑

i

L2
i,0 ≥

∑
i≤k

(
λi

λi + κ0

)2

≥ k

(
b

b+ 1

)2

.

Finally, if there is no such k, then the first inequality is trivial. Moreover, we have n > n− 1+ brn−1

which rearranges to λn ≥ b
∑

i>n−1 λi > bκ0. Therefore, by all i ≤ n, we have λi ≥ λn > bκ0 and
the rest of the proof is the same.

Theorem 5. For any k ≥ n, it holds that

1

n

∑
i

L2
i,0 ≥ n

k

(
k − n

k − n+ rk

)2

. (12)

Proof. By the Cauchy-Schwarz inequality, we have

n =
∑
i>k

λi
λi + κ0

+
∑
i≤k

λi
λi + κ0

≤
∑

i>k λi

κ0
+

√
k

√√√√∑
i≤k

(
λi

λi + κ0

)2

.

By Lemma 1, we have κ0 ≥ λk+1

(
k+rk
n − 1

)
. Combine with above, we obtain

n ≤ nrk
k + rk − n

+
√
k

√√√√∑
i≤k

(
λi

λi + κ0

)2

.

Rearranging gives us

n√
k

k − n

k + rk − n
≤

√√√√∑
i≤k

(
λi

λi + κ0

)2

,

which implies that

1

n

∑
i

L2
i,0 ≥ 1

n

∑
i≤k

(
λi

λi + κ0

)2

≥ n

k

(
k − n

k + rk − n

)2

.
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A.3 TAXONOMY OF OVERFITTING

Theorem 6. Suppose that the spectrum {λi} is fixed as n increases and contains infinitely many
non-zero eigenvalues.

(a) If limk→∞ k/rk = 0, then overfitting is benign: limn→∞ E0 = 1.

(b) If limk→∞ k/rk ∈ (0,∞), then overfitting is tempered: limn→∞ E0 ∈ (1,∞).

(c) If limk→∞ k/rk = ∞, then overfitting is catastrophic: limn→∞ E0 = ∞.

Proof. We will show each clause separately.

(a) For any ϵ > 0, we can pick k = ϵn in Theorem 2 and obtain the following:

E0 ≤ 1

(1− ϵ)2

(
1− 1

ϵ

k

Rk

)−1

.

Since we have ∑
i>k

λ2i ≤ λk+1

∑
i>k

λi =⇒ Rk ≥ rk,

we can send n→ ∞ and k/Rk ≤ k/rk → 0. Therefore, it holds that

lim
n→∞

E0 ≤ 1

(1− ϵ)2
.

Since the choice of ϵ > 0 can be made arbitrarily small, we have the desired conclusion by
taking ϵ→ 0.

(b) If {k/rk} converges to a non-zero constant, then the sequence must be bounded. In particular,
there exists M > 0 such that rk < kM for all k. If we let b = 1/(3M) in Theorem 3, then
for all k ≤ n/2, it holds that

k + brk < k(1 + bM) ≤ 1 + bM

2
n ≤ 2n

3
< n.

Then we need to choose k > n/2 in Theorem 3 and
1

n

∑
i

L2
i,0 ≥ 1

2(1 + 3M)2

and so limn→∞ E0 > 1.

Similarly, there also exists m > 0 such that rk > mk for all k. Then by choosing

k =
√

1
1+mn and Theorem 8, we have

E0 ≤
(
1− k

n

)−1(
1− 1

1 +m

n

k

)−1

=

(
1− 1√

1 +m

)−2

<∞.

(c) We will apply Theorem 5. For any ϵ > 0, choose k = (1 + ϵ)n, we get

1

n

∑
i

L2
i,0 ≥ 1

1 + ϵ

(
1− rk

k

1 + ϵ

ϵ

)2

Therefore, if rk = o(k), then

lim
n→∞

1

n

∑
i

L2
i,0 ≥ 1

1 + ϵ

However, since the choice of ϵ is arbitrary, then we can send ϵ→ 0. The desired conclusion
follows by E0 =

(
1− 1

n

∑
i L2

i,0

)−1
.

Remark 1. As mentioned in the main text, it is also possible to use Theorem 4 to show the upper
bounds in the proof of Theorem 6 above. For simplicity, we use a different argument here by applying
Theorem 2 and 8.
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B UNIFORM CONVERGENCE

In this appendix, we show that the predictions from Simon et al. (2021) can establish a type of uniform
convergence guarantee known as “optimistic rate” (Panchenko, 2002; Srebro et al., 2010) along the
ridge path, which maybe of independent interest. We briefly mention the uniform convergence result
in section 4 of the main text.

In particular, the tight result from Zhou et al. (2021) avoids any hidden multiplicative constant
and logarithmic factor present in previous works and can be used to establish benign overfitting.
However, their proof techniques depend on the Gaussian Minimax Theorem (GMT) and are limited
to the setting of Gaussian features. We recover their result in Theorem 7 here with a (non-rigorous)
calculation that extends beyond the Gaussian case.

B.1 FORMULA FOR TRAINING ERROR AND HILBERT NORM

We first provide closed-form expression for the training error and Hilbert norm of f̂δ. By the
predictions from Simon et al. (2021), we know that

R̂(f̂δ) =
δ2

n2κ2δ
R̃(f̂δ)

and we can use section 4.1 of Simon et al. (2021) to compute the expected Hilbert norm:

E ∥f̂δ∥2H =
∑
i

E[v̂2i ]
λi

=
∑
i

E[v̂i]2 +Var[v̂i]

λi

=
∑
i

L2
i,δv

2
i +

L2
i,δR̃(f̂δ)

n

λi

=
∑
i

L2
i,δv

2
i

λi
+
R̃(f̂δ)

n

∑
i

L2
i,δ

λi
.

Therefore, we will just use the expression:

∥f̂δ∥2H =
∑
i

λiv
2
i

(λi + κδ)2
+
R̃(f̂δ)

n

∑
i

λi
(λi + κδ)2

. (17)

B.2 OPTIMISTIC RATE

Theorem 7. Fix any k ∈ N and let ϵ =
√
(k2 + 2kn)/n2. For any δ ≥ 0, it holds that

(1− ϵ)

√
R̃(f̂δ)−

√
R̂(f̂δ) ≤

√
(
∑

i>k λi)∥f̂δ∥2H
n

.

Proof. Applying equation (6) and (4), we can write the difference√
R̃(f̂δ)−

√
R̂(f̂δ) =

(
1− δ

nκδ

)√
R̃(f̂δ)

≤

(
1

n

∑
i

λi
λi + κδ

)√
R̃(f̂δ).
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By the Cauchy-Schwarz inequality, for any k ∈ N, we have(∑
i

λi
λi + κδ

)2

≤

(
k +

∑
i>k

λi
λi + κδ

)2

= k2 + 2k

(∑
i>k

λi
λi + κδ

)
+

(∑
i>k

√
λi

λi + κδ

√
λi

)2

≤ k2 + 2kn+

(∑
i>k

λi
(λi + κδ)2

)(∑
i>k

λi

)
By the expression (17), we have(√

R̃(f̂δ)−
√
R̂(f̂δ)

)2

≤ k2 + 2kn

n2
R̃(f̂δ) +

(
R̃(f̂δ)

n

∑
i>k

λi
(λi + κδ)2

)(
1

n

∑
i>k

λi

)

≤ k2 + 2kn

n2
R̃(f̂δ) +

∥f̂δ∥2H(
∑

i>k λi)

n

then using
√
x+ y ≤

√
x+

√
y, we show that

√
R̃(f̂δ)−

√
R̂(f̂δ) ≤

√
k2 + 2kn

n2
R̃(f̂δ) +

∥f̂δ∥2H(
∑

i>k λi)

n

≤
√
k2 + 2kn

n2
R̃(f̂δ) +

√
∥f̂δ∥2H(

∑
i>k λi)

n
.

Rearranging concludes the proof.

B.3 NORM ANALYSIS

Theorem 9. For any l ∈ N ∪ {∞} and k ∈ N such that Rk > n, it holds that

∥f̂0∥2H ≤
∑
i≤l

v2i
λi

+

(
1− n

Rk

)−1 n
(
σ2 +

∑
i>l v

2
i

)∑
i>k λi

.

Proof. When δ = 0, it holds that

n

E0
= n−

∑
i

L2
i,0 =

∑
i

λi
λi + κ0

− λ2i
(λi + κ0)2

= κ0

(∑
i

λi
(λi + κ0)2

)
by applying (5) and (4). Therefore, the second term in (17) can be simplified as

R̃(f̂0)

n

∑
i

λi
(λi + κ0)2

=
E0
(∑

i(1− Li,0)
2v2i + σ2

)
n

n

E0κ0

=
∑
i

(1− Li,0)
2

κ0
v2i +

σ2

κ0

=
∑
i

κ0
(λi + κ0)2

v2i +
σ2

κ0

by the definition in (6). Plugging in, we arrive at

∥f̂0∥2H =
∑
i

v2i
λi + κ0

+
σ2

κ0
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To handle situations where f∗ is not in the RKHS, observe that for any l, we have∑
i

v2i
λi + κ0

=
∑
i≤l

v2i
λi + κ0

+
∑
i>l

v2i
λi + κ0

≤
∑
i≤l

v2i
λi

+
1

κ0

∑
i>l

v2i

and so

∥f̂0∥2H ≤
∑
i≤l

v2i
λi

+
1

κ0

(
σ2 +

∑
i>l

v2i

)
.

The proof concludes by plugging in Lemma 1.

Finally, we can plug in the norm bound of Theorem 9 into Theorem 7 to establish benign overfitting,
as in Koehler et al. (2021); Zhou et al. (2022).
Corollary 2. For any l ∈ N ∪ {∞} and k ∈ N such that (k/n)2 + 2(k/n) < 1 and Rk > n. Let
ϵ =

√
(k2 + 2kn)/n2, then it holds that

(1− ϵ)2R̃(f̂0) ≤

(∑
i>k λi

) (∑
i≤l

v2
i

λi

)
n

+

(
1− n

Rk

)−1
(
σ2 +

∑
i>l

v2i

)
. (18)
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