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Figure 1: Samples generated by MAV3D along the temporal and viewpoint dimensions. Left: “A corgi playing with a ball”.
Right top:“A knight chopping wood”. Right bottom: “A kangaroo cooking a meal”.

Abstract
We present MAV3D (Make-A-Video3D), a
method for generating three-dimensional dynamic
scenes from text descriptions. Our approach uses
a 4D dynamic Neural Radiance Field (NeRF),
which is optimized for scene appearance, density,
and motion consistency by querying a Text-to-
Video (T2V) diffusion-based model. The dynamic
video output generated from the provided text can
be viewed from any camera location and angle,
and can be composited into any 3D environment.
MAV3D does not require any 3D or 4D data and
the T2V model is trained only on Text-Image pairs
and unlabeled videos. We demonstrate the effec-
tiveness of our approach using comprehensive
quantitative and qualitative experiments and show
an improvement over previously established inter-
nal baselines. To the best of our knowledge, our
method is the first to generate 3D dynamic scenes
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given a text description. Generated samples can
be viewed at make-a-video3d.github.io.

1. Introduction
Generative models have seen tremendous recent progress,
and can now generate realistic images from natural language
prompts (Ramesh et al., 2022; Gafni et al., 2022; Rombach
et al., 2022; Saharia et al., 2022; Yu et al., 2022; Sheynin
et al., 2022). This success has been extended beyond
2D images both temporally to synthesize videos (Singer
et al., 2022; Ho et al., 2022) and spatially to produce 3D
shapes (Poole et al., 2022; Lin et al., 2022; Nichol et al.,
2022b). However, these two categories of generative models
have been studied in isolation to date.

In this paper we combine the benefits of video and 3D
generative models and propose a novel system for text-to-4D
(3D+time) generation. Our method, named MAV3D (Make-
A-Video3D), takes as input a natural-language description
and outputs a dynamic 3D scene representation which can
be rendered from arbitrary viewpoints. Such a method could
be used to generate animated 3D assets for video games,
visual effects, or augmented and virtual reality.

Differently from image and video generation where one
can train on large quantities of captioned data, there is no
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readily available collection of 4D models, with or without
textual annotations. One approach might be to start from
a pre-trained 2D video generator (Singer et al., 2022) and
distill a 4D reconstruction from generated videos. Still,
reconstructing the shape of deformable objects from video
is a very challenging, widely known as Non-Rigid Structure
from Motion (NRSfM). The task becomes simpler if one is
given multiple simultaneous viewpoints of the object. While
multi-camera setups are rare for real data, our insight is
that existing video generators implicitly model arbitrary
viewpoints for generated scenes. We can thus use a video
generator as a ‘statistical’ multi-camera setup to reconstruct
the geometry and photometry of the deformable object. Our
MAV3D algorithm does so by optimizing a dynamic Neural
Radiance Field (NeRF) jointly with decoding the input text
into a video, sampling random viewpoints around the object.

Naively optimizing dynamic NeRF using video generators
does not produce satisfying results and there are several
significant challenges that must be overcome toward this
goal. First, we need an effective representation for dynamic
3D scenes that is efficient and learnable end-to-end. Second,
we need a source of supervision since there are no large-
scale datasets of (text, 4D) pairs from which to learn. Third,
we need to scale the resolution of the outputs in both space
and time which is both memory- and compute-intensive due
to the 4D output domain.

For our representation, we build on recent advances in neu-
ral radiance fields (NeRFs) (Mildenhall et al., 2021). We
combine insights from work on efficient (static) NeRFs (Sun
et al., 2022; Müller et al., 2022) and dynamic NeRFs (Cao
& Johnson, 2023), and represent a 4D scene as a set of six
multiresolution feature planes.

To supervise this representation without paired (text, 4D)
data, we propose a multi-stage training pipeline for dynamic
scene rendering and demonstrate the importance of each
component in achieving high-quality results. One key ob-
servation is that directly optimizing a dynamic scene using
Score Distillation Sampling (SDS) (Poole et al., 2022) us-
ing Text-to-Video (T2V) model leads to visual artifacts and
sub-optimal convergence. Therefore, we first utilize a Text-
to-Image (T2I) (Singer et al., 2022) model to fit a static 3D
scene to a text prompt and subsequently augment our 3D
scene model with dynamics. Additionally, we introduce a
new temporal-aware SDS loss and motion regularizers that
prove to be crucial for realistic and challenging motion.

We scale to higher resolution outputs with an additional
phase of temporal-aware super-resolution fine-tuning. We
use SDS from the super-resolution module of the T2V model
to obtain high-resolution gradient information to supervise
our 3D scene model, increasing its visual fidelity and allow-
ing us to sample higher-resolution outputs during inference.

Our main contributions are:

• We introduce MAV3D, an effective method that utilizes
T2V model and dynamic NeRFs in order to integrate
world knowledge into 3D temporal representations.

• We propose a multi-stage static-to-dynamic optimiza-
tion scheme that gradually incorporates gradient in-
formation from static, temporal, and super-resolution
models, to enhance the 4D scene representation.

• We conduct a comprehensive set of experiments, in-
cluding ablation studies, using both quantitative and
qualitative metrics to reveal the technical decisions
made during the development of our method.

2. Related work
Neural rendering. Our 3D scene representation builds upon
recent advances in neural rendering. Neural radiance fields
(NeRFs) (Mildenhall et al., 2021) represent a 3D scene with
a neural network that inputs scene coordinates, and form
images with volume rendering. Recent work has improved
efficiency by incorporating 3D data structures such as voxel
grids (Sun et al., 2022) that may be sparse (Fridovich-Keil
et al., 2022) or multiresolution (Takikawa et al., 2021),
and which can be further accelerated via tensor factoriza-
tion (Chen et al., 2022) or hashing (Müller et al., 2022).

Dynamic neural rendering. We aim to generate dynamic
scenes which can be viewed from any angle. This relates
to classic work on free-viewpoint video which use videos
of a moving scene to synthesize novel views (Carranza
et al., 2003; Smolic et al., 2006; Collet et al., 2015). Recent
approaches make NeRFs dynamic by conditioning the net-
work on both space and time (Martin-Brualla et al., 2021;
Li et al., 2022) and may incorporate additional supervision
from depth (Xian et al., 2021) or scene flow (Li et al., 2021;
Du et al., 2021; Gao et al., 2021). Another category of ap-
proaches learn a time-varying deformation of 3D points into
a static canonical scene (Pumarola et al., 2021; Park et al.,
2021a; Tretschk et al., 2021; Park et al., 2021b). Some ap-
proaches accelerate NeRFs on dynamic scenes using explicit
voxel grids (Fang et al., 2022) or tensor factorization (Cao
& Johnson, 2023; Fridovich-Keil et al., 2023).

Text to 3D. The idea of generating 3D scenes from text dates
back decades (Adorni & Di Manzo, 1983); early efforts
parsed geometric relations from text and built scenes from
a library of known objects (Coyne & Sproat, 2001; Chang
et al., 2014). Some approaches train neural networks end-to-
end on paired datasets of text and shape (Chen et al., 2018;
Nichol et al., 2022b) but this approach is difficult to scale
due to the paucity of paired data. Other approaches instead
generate 3D shapes from text without paired data using a
pretrained CLIP (Radford et al., 2021) model (Jetchev, 2021;
Sanghi et al., 2022; Wang et al., 2022; Jain et al., 2022a)
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a squirrel playing on a swing set silver humanoid robot flipping a coin

superhero dog with red cape flying through the sky a goat drinking beer

a panda dancing a cat singing

Figure 2: Samples generated by MAV3D. The rows represent variations in time, and the columns represent variations in
viewpoint. The last column shows the depth image of its adjacent column.

or a text-to-image diffusion model (Poole et al., 2022; Lin
et al., 2022). We use a similar strategy, but generate 4D
rather than 3D content using a text-to-video model.

Diffusion-based generative models. Recent improvements
in diffusion models (Dhariwal & Nichol, 2021) have led
to highly advanced image synthesis (Ramesh et al., 2021;
Esser et al., 2021; Rombach et al., 2022; Gafni et al., 2022;
Nichol et al., 2022a; Ramesh et al., 2022; Saharia et al.,
2022) and the creation of generative models for other forms
of media, such as video(Singer et al., 2022; Ho et al., 2022;
Villegas et al., 2022). Our video generator is based on Make-
A-Video (MAV) (Singer et al., 2022), which expands upon a
Text-To-Image (T2I) model by training on unlabeled videos.

3. Method
Our goal is to develop a method that produces a dynamic
3D scene representation from a natural-language descrip-
tion. This is a challenging task since we have neither

(text, 3D) pairs nor dynamic 3D scene data for training.
Instead, we rely on a pretrained text-to-video (T2V) diffu-
sion model (Singer et al., 2022) as a scene prior, which has
learned to model realistic appearance and motion of scenes
by training on large-scale image, text, and video data.

At a high level, given a text prompt p we fit a 4D scene
representation fθ(x, y, z, t) that models the appearance of a
scene matching the prompt at arbitrary points in spacetime.
Without paired training data, we cannot directly supervise
the outputs from fθ; however given a sequence of camera
poses {Ct}Tt=1 we can render a sequence of images It =
R(fθ, t, Ct) from fθ and stack them to form a video V .
Then, we can pass the text prompt p and the video V to a
frozen, pretrained T2V diffusion model which scores the
video’s realism and alignment to the prompt; we can then
use Score Distillation Sampling (SDS) (Poole et al., 2022)
to compute an update direction for the scene parameters θ.

The above pipeline can be seen as an extension of Dream-
Fusion (Poole et al., 2022), adding a temporal dimension
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Figure 3: Full pipeline of MAV3D. First, we leverage only the three pure-spatial planes (colored green), render a single
image, and calculate the SDS loss using the T2I model. In the second stage, we add the additional three planes (colored
orange) which are initialized to zeros for smooth transition, render a full video and calculate the SDS-T loss using the
T2V model. In the third stage (SRFT), we additionally render high-resolution video which is passed as input to the
super-resolution component, with the low-resolution as condition.

to the scene model and supervising with a a T2V model
rather than a text-to-image (T2I) model. However, we found
that high-quality text-to-4D generation requires additional
significant innovations. First, we use a new 4D scene rep-
resentation (Section 3.1) which allows flexible modeling
of scene motion. Second, we enhance video quality and
improve model convergence with a multi-stage static-to-
dynamic optimization scheme (Section 3.2) that utilizes
several motion regularizers to encourage realistic motion.
Third, we improve the resolution of the model using super-
resolution fine-tuning (SRFT) (Section 3.3). See Fig. 3 for
an illustration of the method.

3.1. 4D Scene Representation

Following recent advances in neural rendering (Mildenhall
et al., 2021), we represent a dynamic 3D scene implicitly.
Given a timestep t and camera position, for each image pixel
we cast a ray through the camera plane into the scene and
sample a set of points {µi}Ni=1 along the ray; for each point
we compute a volume density τi ≥ 0 and color ci, and the
color for the ray is computed via volume rendering. Similar
to NeRF (Mildenhall et al., 2021), we output the color ci
from an MLP, but assume that the color is view-independent
(Lambertian). We explored generating albedo (scene color)
and random light sources like DreamFusion (Poole et al.,
2022) but found that it significantly slows training without
improving quality. Our learnable scene model is thus a
function (τ, ci) = fθ(x, y, z, t) that outputs volume density
and color for arbitrary points in spacetime.

We must then choose a suitable architecture for fθ. Dream-
Fusion (Poole et al., 2022) adopts a variant of Mip-
NeRF (Barron et al., 2022) for recovering static 3D structure
from images. By analogy, we can adopt any architecture
for recovering dynamic 3D structure from videos. Such ar-
chitectures are often designed to operate with as few as one
input view, and thus include strong scene priors (e.g., tem-
poral deformations from a static canonical scene (Pumarola
et al., 2021; Park et al., 2021a)) that enable reconstruction
from sparse views.

However, in our setting we need not learn from sparse views;
SDS on a pretrained T2V model enables us to supervise the
model along arbitrary view trajectories during training. As
such, rather than adopting an architecture which regularizes
and restricts scene motion, we instead would like a high-
capacity architecture that can flexibly model large scene
motion. We thus adopt HexPlane (Cao & Johnson, 2023), a
recently proposed representation for dynamic scenes.

HexPlane represents a 4D scene with six planes of fea-
ture vectors spanning all pairs of axes in {X,Y, Z, T}. It
computes an (R1 + R2 + R3)-dimensional feature for a
spacetime point (x, y, z, t) via projection onto each plane:

[PXY R1
xy +PZTR1

zt ;PXZR2
xz +PY TR2

yt ;PY ZR3
yz +PXTR3

yz ] (1)

Superscripts denote shapes (PXYR1 has shape X×Y×R1,
and is a plane of R1-dim features spanning the XY axes),
subscripts denote sampling via bilinear interpolation, and ;
is concatenation. The resulting feature is passed to a small
MLP which predicts volume density and color.

We further increase the capacity of the HexPlane model by
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representing each plane as a multi-resolution grid, similar
to (Müller et al., 2022) with the hash function removed.
We also use a background model simulating a large (static)
sphere surrounding the (dynamic) foreground modeled by
the HexPlane; it is a small MLP receiving a sinusoidally-
encoded ray direction and producing an RGB color. We also
keep a coarse voxel grid of occupancy probabilities updated
periodically via EMA to accelerate sampling. See Sec. A.3
of the supplementary for more details.

3.2. Dynamic Scene Optimization

Armed with the HexPlane model fθ for 4D scenes, we must
supervise it to match a textual prompt p. We introduce
temporal Score Distillation Sampling (SDS-T) which is
an extension of SDS (Poole et al., 2022) for pretrained
conditional video generator. We first describe the loss, and
then its application in MAV3D.

Recall that, given the camera trajectory C and the scene
parameters θ, the rendering function R infers a parametric
video Vθ. We assume that the pretrained conditional video
generator is based on diffusion and thus defines a denoising
function ϵ̂(V(θ,σ,ϵ) | y, σ) which takes as input a noised
video V(θ,σ,ϵ) =

√
1− σ2Vθ + σϵ (where ϵ ∈ N (0, I) is

normal noise), the noise level σ ∈ (0, 1), and additional
conditioning information y (textual prompt, video frame
rate, etc.), and predicts an estimate ϵ̂ of the noise ϵ.

We compute an update direction for the scene parameters
θ using SDS: we add random noise ϵ to the current video
Vθ to obtain the noised version V(θ,σ,ϵ), apply the denoiser
network to obtain the noise estimate ϵ̂. The update direction
for θ is then the (negative) gradient of the reconstruction
loss Eσ,ϵ[w(σ)∥ϵ̂(V(sg(θ),σ,ϵ) | y, σ)− ϵ∥2] averaged over ϵ
and σ, where w(σ) is a weighting function and sg(·) is the
stop-grad operator.1 The resulting SDS gradient is then

∇θLSDS−T = Eσ,ϵ,t,fps

[
w(σ)(ϵ̂(V

(t,fps)

(θ,σ,ϵ) |y, σ)− ϵ)
∂Vθ

∂θ

]
(2)

Where t is a random start time and fps is a ran-
dom video frame rate for the sub-sequence V

(t,fps)
(θ,σ,ϵ) =[

It(θ,σ,ϵ); I
t+ 1

fps

(θ,σ,ϵ) ; . . . ; I
t+ 16

fps

(θ,σ,ϵ)

]
of 16 frames, where It(θ,σ,ϵ)

denotes the frame t in the video out of T frames. We use
the -T suffix to emphasise that, differently from (Poole et al.,
2022), this version of SDS is applied to a video, i.e., a
temporal image sequence.

Static to dynamic. In practice we found that directly op-
timizing a HexPlane using SDS from a pretrained T2V
model leads to visual artifacts and sub-optimal convergence
(see Sec. 4.2). We therefore adopt a multi-stage static-to-

1(Poole et al., 2022) use a more complex definition of LSDS;
this simpler form gives the same gradient up to a scale factor.

dynamic optimization scheme, first optimizing a static 3D
scene matching the text prompt, then extending it to 4D.

During the first phase of static optimization, we fix the three
temporal planes of the HexPlane to zero (PZTR1 , PY TR2 ,
and PXTR3 in Equation 1); this is similar to the tri-plane
representation used by (Chan et al., 2022). During each
training iteration we sample a batch of 8 random camera
poses, and render a 64×64 image from each view, applying
view-dependent prompt engineering similar to DreamFu-
sion. We supervise the model using SDS on the frozen T2I
model from (Singer et al., 2022) which has been pretrained
on a large dataset of images and text.

During the second phase of dynamic optimization, we con-
tinue updating all planes of the HexPlane. We render a batch
of 8 64×64 16-frame videos from the model, and supervise
it using SDS-T on the frozen T2V model from (Singer et al.,
2022). We employ several regularizers during this phase to
encourage high-quality 4D synthesis.

Dynamic Camera. Most videos (including those on which
our T2V model was trained) have apparent motion from
two sources: object motion and camera motion. During
training we simulate camera motion by rendering videos
from randomly generated dynamic camera trajectories.

Training with dynamic cameras gives 4D scenes with more
pronounced and realistic object motion (See Section 4.2).
We hypothesize that, if trained with a static camera, the Hex-
Plane tries to model object and camera motion to close the
domain gap with the T2V model, giving worse object mo-
tion. Dynamic cameras also reduce the multi-face problem
common in DreamFusion: the T2V model can judge a video
showing faces on both sides of an object as unrealistic.

FPS Sampling. Dynamic cameras randomize the spatial
perspective from which we render videos during training;
we also vary the temporal extent of training videos via
FPS sampling. The T2V model accepts videos with F=16
frames, but also conditions on the frame-rate of those videos.
For each training sample we randomly sample a frame-rate
fps ∼ U [0, 1/F ] and start time t0 ∼ U [0, 1−F ·fps], where
the 4D scene model assumes a temporal extent t ∈ [0, 1].

Gaussian Annealing. DreamFusion biases toward central
scene content by adding Gaussian-distributed density to the
output from the scene model before rendering; we also use
this bias during static optimization. However in dynamic
scenes, content should be allowed to move away from the
origin; we thus find it helpful to linearly increase the width
of the Gaussian density bias during dynamic optimization.

Total Variation Loss. We encourage spacetime smoothness
in our 4D representing by applying the following Total Vari-
ation (TV) regularizer (following (Niemeyer et al., 2022))
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to each of the six planes P of the HexPlane:

LTV(P ;β) =
∑
i,j

(
(Pi,j+1 − Pi,j)

2 + (Pi+1,j − Pi,j)
2) β

2

(3)
The standard TV norm is obtained for β = 1; however, we
found that this resulted in noisy high-frequency artifacts
in our case, similar to (Mahendran & Vedaldi, 2015); we
follow the latter and set β = 2 to encourage smoothness.

3.3. Super-Resolution Fine-Tuning

During the static and dynamic scene optimization phases
described above, our 4D scene representation is supervised
via low-resolution 64 × 64 renderings; we found that ren-
dering higher-resolution videos from the learned model can
lack detail and exhibit artifacts. We overcome this problem
with a final phase of super-resolution fine-tuning (SRFT).

During SRFT we make use of the pretrained and frozen
video super-resolution module SRt

l from (Singer et al.,
2022). This diffusion-based model inputs a high-resolution
noisy 256×256 video along with a clean 64×64 low-res
video, and predicts the noise of the high-resolution video.

We use SRt
l to improve high resolution renderings from our

4D scene model. During each training iteration we sample a
256×256 video V↑ from our scene model and downsample
it to a 64×64 video V↓. These are used to compute an SDS
gradient for V↑ using SRt

l .

SRt
l does not condition on the text prompt p. Fine-tuning via

SDS on SRt
l alone thus encourages realistic high-resolution

videos, but not alignment to p; this can cause the model to
collapse to an empty scene. During SRFT we therefore train
jointly using SDS from SRt

l and SDS-T from Equation 2.
The final equation for the SR phase is:

∇θLSDS−SR =

(1− α)× Eσ,ϵ,t

[
w(σ)(ϵ̂(V↓

(t,fps)
(θ,σ,ϵ) |y, σ)− ϵ)

∂Vθ

∂θ

]
+

α× Eσ,ϵ,t

[
w(σ)(ϵ̂(V↑

(t,fps)
(θ,σ,ϵ) |y, σ, V↓θ)− ϵ)

∂Vθ

∂θ

]

Where α is an adjustable control parameter, which, through
validation, has been set to 0.2 in all of our experiments.

4. Experiments
Our experiments evaluate the ability of MAV3D to generate
dynamic scenes from text descriptions. First, we evaluate
the effectiveness of our approach on the Text-To-4D task.
To the best of our knowledge MAV3D is the first method
to tackle this task, so we develop three alternative methods
as baselines. Second, we evaluate simplified versions of
our model on the sub-tasks of T2V and Text-To-3D, and

green hummingbird flying in a dancing spider
space and fluttering its wings for halloween

3D rendering of a monkey learning
fox playing videogame to play the piano

Figure 4: An ablation on temporal-aware super-resolution
optimization. Top: without super-resolution phase. Bot-
tom: MAV3D results. The red square is a zoom-in area of
the image. This stage enhances the quality of the rendered
videos, resulting in high-resolution videos with finer details

compare them to existing baselines in the literature. Third,
we conduct a comprehensive ablation study to justify our
method’s design. Fourth, we describe our procedure for con-
verting dynamic NeRFs into dynamic meshes, and finally
present an extension of our model to the Image-to-4D task.

Metrics. We evaluate the generated videos using CLIP
R-Precision (Jain et al., 2022b), which measures the con-
sistency between the text and the generated scene. The
reported metric is the retrieval accuracy of input prompts
from rendered frames. We use the ViT-B/32 variant of
CLIP (Wang et al., 2022) and extract frames in varying
views and time steps. We also use four qualitative metrics
by asking human raters their preferences among two gener-
ated videos based on: (i) video quality; (ii) faithfulness to
the textual prompt; (iii) amount of motion; and (iv) realism
of motion. We evaluated all baselines and ablations on the
text prompts splits which were used in (Singer et al., 2022).

Samples. We show samples in Figures 1 and 2. For more
detailed visualization, please see make-a-video3d.github.io.

4.1. Results

Text-to-4D comparison. As there were no previous meth-
ods for Text-To-4D, we established three baselines for com-
parison. The baselines are based on a T2V generative
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Figure 5: R-Precision per viewing angle. We render per
method from cameras in a circle around the scene.

Table 1: Comparison with baselines (R-Precision and human
preference). Human evaluation is shown as a percentage
of majority votes in favor the baseline compared to our
model in the specific setting.

D Model R- Video Text- More Realistic
Precision↑ quality align. motion motion

4D

MAV+pixelNeRF 8.8 0.11 0.16 0.18 0.16
MAV+Point-E 10.6 0.20 0.06 0.26 0.17
MAV+D-NeRF 6.2 0.17 0.18 0.19 0.30
MAV3D 83.7 - - - -

3D
Stable DF 66.1 0.46 0.36 - -
Point-E 12.6 0.15 0.16 - -
MAV3D\t 82.4 - - - -

Video MAV 86.6 0.73 0.63 0.64 0.62
MAV3D\z 79.2 - - - -

method (Make-A-Video (Singer et al., 2022)), which gen-
erates a sequence of 2D frames from a text prompt. Once
generated, the sequence of 2D frames is transformed into a
sequence of 3D scene representations using three different
methods. The first sequence is produced by applying a one-
shot neural scene renderer (Point-E (Nichol et al., 2022b),
the second via pixelNeRF (Yu et al., 2021)) on each frame
independently, and third by applying D-NeRF (Pumarola
et al., 2021) combined with camera position extracted using
COLMAP (Schönberger & Frahm, 2016). We denote these
adapted baselines as MAV+Point-E, MAV+pixelNeRF and
MAV+D-NeRF, respectively. For the Point-E baseline, we
use the base1B variant released by the authors. For the
D-NeRF baseline, we use only videos with valid COLMAP
results and substantial camera motion. Results are presented
at the top of Table 1. As can be seen, our method surpasses
the naive baselines in the objective R-Precision metric and
is highly preferred by human raters across all metrics.

Furthermore, we explore our method performance for dif-
ferent camera viewing angles. This is done by calculating
R-precision for frames rendered from different camera posi-
tions. Specifically, given a camera position d = (R, θ, ϕ),
we fix the zoom, R, and the tilt, θ, and report R-Precision

Table 2: Ablation study (R-Precision and human preference
(%) . Human evaluation is shown as a percentage of
majority votes in favor the baseline vs our model.

Model R- Video Text- More Realistic
Precision↑ quality align. motion motion

w/o SR 84.3 0.41 0.34 0.42 0.36
w/o pretraining 63.5 0.27 0.44 0.46 0.35
w/o dynamic camera 83.6 0.54 0.48 0.35 0.42
w/o gaussian anneal. 76.3 0.47 0.50 0.45 0.38
with D-NeRF 81.9 0.45 0.47 0.50 0.47
with Instant NGP 78.4 0.36 0.40 0.48 0.42

for different pan values - ϕ. In Fig 5 we show our method
is able to render the scene consistently across viewing an-
gles while the MAV+D-NeRF and MAV+pixelNeRF per-
formance deteriorates as ϕ increases. MAV+Point-E is also
able to maintain a consistent R-Precision score.

Text-to-3D comparison. To evaluate our method on the
Text-to-3D (3D) task, we remove the temporal dimen-
sion from our rendered video. Specifically, we sample
MAV3D from a single time step, and denote this reduc-
tion as MAV3D\t. We compare this variant with: (i)
Stable-DreamFusion (Stable-DF) (Tang, 2022), a public
re-implementation of DreamFusion (Poole et al., 2022), and,
(ii) Point-E (Nichol et al., 2022b), which generates a point
cloud given a text prompt. The results are presented in
Table 1. In this setting, the input to each baseline is the
text prompt. Since the base1B variant of Point-E expects
image input, we utilize a T2I model that generates an image
which is then fed to the model. As can be seen, our model is
preferred over these variants in quality and text alignment.

Text-to-Video comparison. To evaluate our method on the
sub-task of T2V (Video), we remove the depth dimension
from our method output. Concretely, we sample frames
from our model on specific viewing directions (front, back,
and side), reduceing our method from temporal dynamic
scene generation to video generation. We denote this re-
duction as MAV3D\z. This variant is compared to videos
generated with Make-A-Video by appending the viewing
direction to the textual input prompt. Results are presented
at Table 1. Note that our method utilizes Make-A-Video as
a training objective and is thus bounded by its performance.

4.2. Ablation study

An ablation study of human preference and R-precision is
provided in Tab. 2 to assess the effectiveness of our different
contributions.

Ablation on different training stages. (i) without SR: a
model trained without the scene super-resolution fine-tuning,
for the same number of steps as MAV3D (stage 3). As can
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3D Video Depth Image Condition 3D Video Depth Image Condition

3D Video Depth Image Condition 3D Video Depth Image Condition

Figure 6: Image to 4D application. Given an input image we extract its CLIP embedding, and use it to condition MAV3D.

be seen, human raters favors the model trained with SR
in both quality, text alignment and motion. In addition,
as demonstrated in Fig. 4, the super-resolution fine-tuning
enhances the quality of the rendered videos, resulting in
high-resolution videos with finer details (e.g. the hands
for the fox) and less noise. (ii) without pre-training: As
illustrated in Tab. 2 and in Fig. 8, directly optimizing the
dynamic scene (without the static scene pre-training) for the
same number of steps as MAV3D, results in much lower
scene quality or poor convergence: the model trained with
static-pretraining is preferred for video quality and realistic
motion in 73% and 65% of cases, respectively. Additional
ablation of the number of static pretrain steps is available in
the supplementary.

Ablation on motion regularizers components. (i) dynamic
camera: here, we train a variant of our method in which
the camera position is fixed across all frames. We observe
that videos rendered using this variant obtain less motion,
and suffer from multi-face object (see Fig. 7). This may
explain the relatively high R-Precision score (since with
multiple faces, the object can be recognized more easily).
(ii) Gaussian annealing: Extending the spatial bias of the
model (to focus on the larger ”blob”) leads to renderings
with larger and more realistic motion.

Ablation on NeRF backbone. (i) with D-NeRF: to quantify
the contribution of the temporal NeRF, we analyzed a variant
of our method in which we replaced our temporal NeRF
backbone (HexPlane) with D-NeRF (Pumarola et al., 2021;
Fang et al., 2022). While HexPlane is slightly preferred in
terms of overall quality and realistic motion, our approach
is not sensitive to the dynamic backbone, demonstrating the
robustness of our method. (ii) with Instant-NGP: here we
replace our static NeRF backbone with Instant-NGP (Müller

et al., 2022). This variation employs hash encoding and
includes a color network that emits radiance values, and it
is significantly less preferred.

4.3. Real-time rendering

Applications such as virtual reality and games that use tra-
ditional graphic engines require assets in a standard format
such as textured meshes. The HexPlane model can be easily
converted to animated meshes as follows. First, the march-
ing cube algorithm is used to extract a simplicial mesh from
the opacity field generated at each time t, followed by mesh
decimation (for efficiency) and removal of small noisy con-
nected components. The XATLAS (Young, 2016) algorithm
is used to map the mesh vertices to a texture atlas and the
texture is initialized using the HexPlane colors averaged
in small spheres centred around each vertex. Finally, the
texture is further optimized to better match a number of ex-
ample frames rendered by HexPlane using a differentiable
mesh rendered. This results in a collection of texture meshes
that can be easily played back in any off-the-shelf 3D en-
gine (see make-a-video3d.github.io for running examples).

4.4. Image To 4D

Given an input image, we can use it to condition our method
to generate its 4D asset. Similar to (Singer et al., 2022),
instead of conditioning the T2I and T2V components on
the output of the prior, we condition them directly on the
CLIP (Yu et al., 2022) embedding of the input image. This
allows us to create a 4D asset that shares the same semantics
as the input image. For this experiment we took images
provided by (Nichol et al., 2022b) that were used there for
the Image-to-3D task. Fig. 6 and Fig. 10 demonstrate our
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method ability to generate both depth and motion from a
given input image, resulting in a 4D asset.

5. Discussion
Creating animated 3D content is challenging as the tools
available today are manual and catered to professionals.
While current models can generate static 3D objects, syn-
thesizing dynamic scenes is more complex. Unlike images
and videos, where large amounts of captioned data are read-
ily available, 4D models are scarce, with or without text
descriptions.

In this work, we present MAV3D, a new approach that
employs several diffusion models and dynamic NeRFs to
integrate world knowledge into 3D temporal representations.
MAV3D expands the functionality of previously established
diffusion-based models, enabling them to generate dynamic
scenes as described in text from a variety of viewpoints.

While our model is a step towards zero-shot temporal 3D
generation, it also has several limitations. The conversion
of dynamic NeRFs to a sequence of disjoint meshes for
real-time applications is inefficient and could be improved
if trajectories of vertices were predicted directly. Also, uti-
lizing super-resolution information has improved the quality
of the representation, but further improvement is needed for
higher-detailed textures. Finally, the quality of the repre-
sentation is dependent on the ability of the T2V model to
generate videos from various views. While utilizing view-
dependent prompts helps mitigating the multi-face problem,
further control to the video generator would be beneficial.
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A. Appendix
A.1. Additional results

To further demonsrate the effectiveness of our model, we have incorporated an extra metric, VideoCLIP (Xu et al., 2021), to
provide an additional quantitative evaluation of the temporal aspects of the generated content. The results are provided in
Tab. 3.

A.2. Ablations

Static scene pretrainig steps. In Fig. 9, we analyze the different number of steps required for the static scene pretraining.
As observed, directly optimizing the dynamic scene leads to sub-optimal convergence (R-Precision of 63.5%). Furthermore,
2000 iterations are sufficient for achieving high-quality results (R-Precision of 83.7%). An interesting observation is that
further increasing the number of static pretraining steps beyond 2000 does not improve the quality of the scene representation.

Text-to-image model. We trained our static scene phase using the open-source Stable Diffusion T2I model instead of
our T2I model. The model achieves an R-Precision score and a VideoCLIP (Xu et al., 2021) score of 74.2% and 21.43%,
respectively. These scores are slightly lower than those obtained by the same model trained with our T2I (83.7% and
23.86%) but are significantly higher than the baselines scores. We hypothesize that the difference in the scores between the
method trained using our T2I and the method trained with SD is due to the shift in distributions. Since our T2I model was
used to train MAV, it is more closely aligned with its distribution.

Table 3: Additional comparison with baselines (VideoCLIP).

Model VideoCLIP
MAV+pixelNeRF 7.53
MAV+Point-E 2.17
MAV+D-NeRF 3.64
MAV 21.51
MAV3D \z 10.00
MAV3D 18.89

A.3. Implementation details

Architecture details. We adopt a multi-resolution grid encoding architecture, similar to (Müller et al., 2022) with 7 levels
of resolutions, spanning from a minimum resolution of 16 × 16 up to a maximum resolution of 2048 × 2048. We use 5
layers MLP with 128 hidden units, each followed by ReLU activation. Similar to (Poole et al., 2022), we train another 3
layers MLP network with 64 hidden units for the background representation. The background is encoded using frequency
encoder and is not conditioned on the time.

A.4. Training details

Unless otherwise noted, we use a batch size of 8 and sample 128 points along each ray. During training, the camera position
is randomly sampled in spherical coordinates, with radius in range [1, 1.5], and the scene is bounded in box with radius 1.

Dynamic Camera. As the utilized T2V model generates videos with a moving camera {Ct}Tt=1, we propose to bridge the
distribution gap between the generated videos (by Make-A-Video) and the rendered videos (by NeRF) using a dynamic
camera position. Training the model using dynamic camera trajectory simulates the movement of a real moving camera and
thus enhancing the realism and coherence of the motion learned by the model.
To this end, given the first camera position C1 = (R, θ, ϕ) (randomly sampled in spherical coordinates bounded to the
range R ∈ [1, 1.5], θ ∈ [0, 2π

3 ], and ϕ ∈ [0, 2π]), we employ a random camera trajectory {C1 + (i − 1) · d}, in which
camera Ci is displaced by (i− 1) · d at each time-point i. Specifically, d = (∆R,∆θ,∆ϕ), where ∆R ∼ U [ 1−R

F , 1.5−R
F ],

∆θ ∼ U [− π
4F , π

4F ], ∆ϕ ∼ U [− π
2F , π

2F ].

As demonstrated in the experiments, a dynamic camera also helps reducing the amount of temporal artifacts such as
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A dolphin jumping out of the water A lemur drinking boba

Figure 7: An ablation on the dynamic camera component. Top: without dynamic camera. Bottom: MAV3D results. The
figures on the left demonstrate training with dynamic camera results in larger and more complicated motion (The dolphin
manages to jump out of the water). The figures on the right demonstrate how the dynamic camera mitigates the multi-face
problem.

A yorkie dog eating a donut A dog riding a skateboard

Figure 8: An ablation on static scene pre-training. Top: without static scene pretraining. Bottom: MAV3D results. As can
be seen in the figures on the left, pretraining the model on static scene leads to higher quality renderings. As can be seen in
the figures on the right, training directly the dynamic scene (both the 3D representation and the temporal dimension) may
result in lack of convergence.

unrealistic number of object parts, as it has visual of the object from multiple directions in the same sample.

Gaussian annealing. When optimizing a static scene model, incorporating a spatial bias towards the center of the scene
can be beneficial, as it helps focusing in the center of the scene rather than directly next to the sampled cameras (Poole et al.,
2022). The added noise, which is parameterized using a Gaussian PDF, causes a small “blob” of density to the origin of the
scene. However, in dynamic scene rendering, objects that were originally centered at the origin may move to surrounding
areas, making this bias less effective. Enlarging the standard deviation of the bias added to the density τ can encourage
density not only in the center of the scene, but also in nearby locations, further enhancing the realism of the motion:

λτ · exp
(
− ∥µ∥2

2σ(ts)2τ

)
(4)

Where σ is a function of the training step, ts. In order to anneal the bias for M = 5000 training steps from a minimum
value σmin = 0.2 to a maximum value σmax = 2.0, we define a linear function as follows: σ(ts) = min(σmax, σmin +
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Figure 9: Ablation on the number of static pretraining steps

(σmax − σmin) · ts
M ).

Optimization. We train the model using the Adam optimizer, with cosine decay scheduler, starting from learning rate of
1e-3. The static scene representation is trained on rendered images of 64× 64 for 2000 iterations with a total runtime of
around 15 minutes. The dynamic stage is trained on rendered videos of 64× 64× 16 for 5,000 iterations with a total runtime
of around 3 hours. Lastly, the super resolution phase is trained on rendered videos of 256 × 256 × 16 for another 2000
iterations with a total runtime of 3 hours. All runtimes were measured on 8 NVIDIA A100 GPUs. During inference, by
leveraging the continuous time range, we render videos of 256× 256× 64.

Training objective In order to encourage the model to make harder predictions if a specific pixel is an object or background,
we add the following soft binary cross entropy regularization:

−
∑
i,j

Ti,j log(Ti,j) + (1− Ti,j)log(1− Ti,j)

where Ti,j denotes the accumulated density along the ray of pixel (i, j), (i.e., the probability that the entire ray does not hit
any particle). This regularization is added to the loss with a weight of 10−3.

The weight of the variational loss described in Sec. 3.2 is 10−3.

A.5. Additional results for Image-to-4D

14



Text-To-4D Dynamic Scene Generation

3D Video Depth Image Condition 3D Video Depth Image Condition

3D Video Depth Image Condition 3D Video Depth Image Condition

3D Video Depth Image Condition 3D Video Depth Image Condition

Figure 10: Additional results for the Image to 4D application.
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