
Visual Cropping Improves Zero-Shot Question
Answering of Multimodal Large Language Models

Jiarui Zhang
Information Sciences Institute

University of Southern California, USA
jrzhang@isi.edu

Mahyar Khayatkhoei
Information Sciences Institute

University of Southern California, USA
mkhayat@isi.edu

Prateek Chhikara
Information Sciences Institute

University of Southern California, USA
pchhikar@isi.edu

Filip Ilievski
Department of Computer Science

Vrije Universiteit Amsterdam, Netherlands
f.ilievski@vu.nl

Abstract

Multimodal Large Language Models (LLMs) have recently achieved promising
zero-shot accuracy on visual question answering (VQA) – a fundamental task
affecting various downstream applications and domains. Given the great potential
for the broad use of these models, it is important to investigate their limitations in
dealing with different image and question properties. In this work, we investigate
whether multimodal LLMs can perceive small details as well as large details in
images. In particular, we show that their zero-shot accuracy in answering visual
questions is very sensitive to the size of the visual subject of the question, declining
up to 46% with size. Furthermore, we show that this effect is causal by observing
that human visual cropping can significantly mitigate their sensitivity to size.
Inspired by the usefulness of human cropping, we then propose three automatic
visual cropping methods as inference time mechanisms to improve the zero-shot
performance of multimodal LLMs. We study their effectiveness on four popular
VQA datasets, and a subset of the VQAv2 dataset tailored towards fine visual
details. Our findings suggest that multimodal LLMs should be used with caution in
detail-sensitive VQA applications, and that visual cropping is a promising direction
to improve their zero-shot performance. Our code and data are publicly available. 1

1 Introduction

Visual question answering (VQA) is a fundamental task with a broad range of downstream applications
in many critical domains, from biomedicine [19, 14, 9] to traffic monitoring [23, 25] and remote
sensing [17, 13]. Zero-shot VQA – answering visual questions in a domain without having access
to annotated data from that specific task and domain – is of particular interest since collecting
reliable answers for an extensive number of question-image pairs is expensive and time-consuming,
and thus impractical for many downstream tasks due to lack of access to experts or privacy and
security concerns [26]. Recently, multimodal Large Language Models (LLMs) [11, 1, 15] have
shown promising accuracy in zero-shot VQA, commonly attributed to their pretraining on terabytes
of image and language data with billion-parameter Transformer-based neural networks. Given their
potentially broad adoption in downstream tasks, it is crucial to study their limitations in dealing with
various phenomena in images and questions. To that end, in this work, we investigate whether their
question-answering ability is affected by the size of the visual object of interest.

1https://github.com/saccharomycetes/visual_crop_zsvqa

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.
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Question: Are there any street signs in the picture? Question: What kind of bird is this? 
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Figure 1: The effect of visual cropping on the probability of answers predicted by BLIP2 in zero-shot
VQA. The x-axis represents the crop size around the relevant visual subject of the question (x-axis
labels are indices to the cropped images displayed below each plot that the model sees at each step).
The model gradually finds the correct answer as it looks closer and perceives smaller visual details.

In Figure 1, we provide two motivating examples to illustrate a limitation in multimodal LLMs that
we will study in this paper in more detail. In these examples, we ask BLIP2 (FlanT5XL) [11], the
state-of-the-art multimodal LLM in zero-shot VQA, two questions about relatively small objects in
the image, i.e., questions concerning visual details. In the absence of any prior empirical evidence,
it is reasonable to assume that the BLIP2 accuracy is not significantly affected by the size of the
question’s visual subject because of the large representational capacity of multimodal LLMs and their
pretraining on a large variety of images containing objects of various sizes. In Figure 1 (left), we
observe that initially the model does not recognize the existence of a small street sign and assigns
lower probability to the correct answer; however, zooming into the image towards the street sign
gradually increases the probability assigned to the correct answer, suggesting that the model gradually
perceives more and more relevant details of the street sign. In Figure 1 (right), we observe further
evidence of this limitation in perceiving visual details. The model initially predicts white as the type
of the bird; however, when we zoom into the image towards the bird via visual cropping, without
changing the question in any way, we observe that the model gradually assigns higher probability
to the correct bird type of egret, suggesting that the model was not making a semantic error of
misunderstanding what type means, neither was it confused about where to look, rather it was unable
to perceive sufficient details to discriminate egret from other white birds, which is enabled by visual
cropping. This observation is particularly surprising since the visual encoding in BLIP2 is not
theoretically restricted in its visual resolution and therefore should be able to perceive the traffic sign
and recognize the bird type regardless of their relative visual sizes. The main goal of this paper is
to investigate the extent of the limitation observed in Figure 1 and potential solutions to mitigate its
consequences. Our study will focus on two variants of BLIP2 as the state-of-the-art for zero-shot
VQA (outperforming Flamingo [1]) and the only fully open-sourced multimodal LLM.

2 Related Works

Multimodal LLMs can be broadly grouped into two categories: end-to-end pretrained models, and
modular pretrained models. The former group includes architectures that are explicitly designed
for processing joint image and language data, most notably, the dual-encoder [16], the fusion-
encoder [10], the encoder-decoder [3], and the unified transformer [22], which are trained with
common pretraining objectives: image-text matching and contrastive, and masked language modeling.
The second group aims to overcome the expensive pretraining cost of the former group by learning to
adapt existing pretrained models: some models use a frozen image encoder and finetune an LLM with
the pretraining objectives [24, 27], whereas some models instead freeze the LLM and finetune the
vision encoder with additional adaptor layers [1, 21]. The most successful such model is BLIP2 [11],
which freezes both the vision encoder and the LLM, and directly learns a transformer-based module
on pretraining objectives to bridge the modality gap of its frozen underlying models. The granular
sensitivity of multimodal LLMs, including BLIP2, to image and question properties, has not been
thoroughly studied. We aim to bridge this gap in the present paper.
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Table 1: Sensitivity of zero-shot accuracy of VQA models to the size of visual concepts in TextVQA.
As the relative visual size of the answer decreases (right to left in each row), we observe a significant
decline in the accuracy of original models, whereas visual cropping reduces this accuracy gap.

Model Crop Method Answer Bounding Box Size (S)

< 0.005 [0.005, 0.05) ≥ 0.05

BLIP2 (FlanT5XL) w/o cropping 19.91 29.07 36.81
human-CROP 32.06 41.31 38.84

BLIP2 (OPT2.3B) w/o cropping 19.38 26.09 33.28
human-CROP 27.19 34.36 33.25

3 Sensitivity of Zero-Shot VQA Models to the Size of Visual Concepts

In this section, our goal is to quantitatively test our qualitative observations in Figure 1 that the
zero-shot VQA models struggle with describing fine visual details in images. To that end, we consider
the Text-VQA dataset, where for each question we can find the ground-truth bounding box containing
the correct answer (detailed in Appendix B). We partition its validation set into three groups based
on the relative size of the ground truth bounding box S = Abb

Atotal
, where Abb denotes the area of

the answer bounding box, and Atotal denotes the total area of the image: 1) S < 0.005 consisting
of 2822 question-image pairs, 2) 0.005 ≤ S < 0.05 consisting of 1833 question-image pairs, and
3) S ≥ 0.05 consisting of 345 question-image pairs. If a model’s perception is not sensitive to the
size of visual concepts, we expect it to have similar accuracy in all three groups. In Table 1, we
observe that the accuracy of both BLIP-2 variants declines across the three groups as the answer
bounding box becomes smaller (see w/o cropping rows). BLIP-2 (FlanT5) exhibits an accuracy
decline of 46% from group 3 (largest visual concepts) to group 1 (smallest visual concepts), and
BLIP-2 (OPT) exhibits a similar decline of 42%. These findings show that both models answer
questions about visual concepts more accurately when their relative size is larger, i.e., they struggle to
perceive fine visual details. Furthermore, to confirm that the issue is causally related to the size of the
visual concept, we conduct an intervention study, where we provide the models with visually cropped
images based on the ground-truth bounding boxes, denoted as human-CROP. We observe in Table 1
that human-CROP significantly improves the accuracy of both models, but more importantly, under
human-CROP the accuracy across the three groups becomes more similar: the decline between the
largest visual concept setting (group 3) to the smallest one (group 1) is less than 19% for both models.
This suggests that the perception limitation is indeed caused by the size of the visual concepts, and
that visual cropping can improve the perception of visual details by the zero-shot VQA models.

4 Visual Cropping Methods

To investigate whether the accuracy gain achieved by human visual cropping in Section 3 is realizable
in practice, in this section we propose three automatic cropping methods, illustrated in Figure 2,
whose goal is to find the approximate region of interest in images, i.e. the region containing the
subject of a question, and then to zoom into that region via visual cropping: 1) clip-CROP where
we progressively crop the image towards the region of highest relevance to a given question using
CLIP [16]; 2) yolo-CROP where instead of progressive cropping, we use candidate bounding boxes
predicted by YOLOv8 [6] to filter out regions that contain no salient objects, i.e., regions for which
CLIP could mistakenly assign high similarity; 3) sam-CROP where instead of YOLO, which provides
bounding boxes for only a fixed number of object classes, we use the segment anything model
(SAM) [7] to provide an extensive set of salient segmentation masks for each image as candidate
regions to compare to the question using CLIP. One potential drawback of visual cropping is that
some questions might need to have a global view of the image. To address this issue, we utilize the
fact that multimodal LLMs typically convert the image into a series of tokens. This allows us to
directly extend the original image tokens by concatenating the visually cropped image tokens, as
illustrated in Figure 2. More details about the methods, and examples of their success and failures
are provided in Appendix. In the next section, we will investigate the effectiveness of the proposed
methods for improving the accuracy of zero-shot VQA models.
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Figure 2: Illustration of the proposed visual cropping methods applied to two variants of BLIP2.

Table 2: Accuracy of human and automatic visual cropping methods on VQA datasets. For each
dataset and model, the best cropping method is depicted in bold, and the second-best is underlined.

Model Crop Method FD-VQA TextVQA GQA A-OKVQA VQAv2

BLIP2 (FlanT5XL)

w/o cropping 33.94 25.91 43.85 43.42 63.43
clip-CROP 36.61 30.93 45.04 45.34 63.57
yolo-CROP 35.87 28.94 45.20 42.72 63.39
sam-CROP 36.33 32.31 45.23 43.00 63.85

human-CROP 42.29 37.68 - - -

BLIP2 (OPT2.3B)

w/o cropping 35.14 23.93 31.95 31.57 51.22
clip-CROP 35.60 26.35 31.14 32.69 49.67
yolo-CROP 34.86 25.27 30.39 29.43 48.63
sam-CROP 35.60 26.45 30.47 31.07 48.58

human-CROP 42.11 31.21 - - -

5 Experiments

In this section, we investigate the effectiveness of the proposed visual cropping methods in improving
the zero-shot accuracy of VQA models. We use two state-of-the-art zero-shot VQA models which
have open-source code [11]: BLIP2 (FlanT5XL) is an encoder-decoder LLM and, BLIP2 (OPT2.3B),
a decoder-only LLM. We experiment with four popular VQA datasets, VQAv2 [4], GQA [5], A-
OKVQA [18], TextVQA [20], and a new fine-detail subset of VQAv2, denoted FDVQA, to enrich
our evaluation of questions about visual details. Details of the datasets are provided in Appendix B.

Table 2 shows the accuracy2 of the proposed visual cropping methods on the five VQA datasets.
First, we consider the detail-focused datasets, FDVQA and TextVQA, where we also have access to
human annotations and can report human-CROP accuracy: we observe that human-CROP improves
the accuracy of both the BLIP2 FlanT5 and OPT models, by 24% and 20%, respectively, showing the
full potential of visual cropping; additionally, for the proposed visual cropping methods, we observe
that while they do not achieve the full potential of human-CROP, they still successfully improve upon
both original models, with clip-CROP achieving best improvement on FDVQA and sam-CROP on
TextVQA. Next, we consider GQA, A-OKVQA, and VQAv2. For BLIP2 (FlanT5), we observe
that visual cropping methods can improve the accuracy of the original models, which shows that
their accuracy gain on fine details (observed in FDVQA and TextVQA) does not come at the cost
of their accuracy on larger visual details and relations. However, for BLIP2 (OPT), we observe that
visual cropping methods can cause a decline in the overall accuracy. We hypothesize that this is
due to the use of a decoder-only Transformer architecture in OPT which expects visual tokens to
appear at specific initial positions and therefore could not correctly attend to a concatenation of two
sets of image tokens (see Figure 2). We provide additional results regarding the inference time and
sensitivity of the methods to various question types in Appendix. Overall, our findings suggest that:
1) in settings where fine visual details are the main subject of the questions, visual cropping is a
promising technique to improve zero-shot VQA accuracy; and 2) there is a need for better visual
cropping methods that can close the gap with human visual cropping.

2https://visualqa.org/evaluation.html
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Figure C.1: Accuracy gain of visual cropping methods compared to no cropping, when applied to
BLIP2 FlanT5 (left) and OPT (right) on different question types in VQAv2. The x-axis is sorted
based on the combined gain of all methods. The question types are explained in Table 3 in Appendix.

A Implementation Details

We use python 3.8.16, salesforce-lavis 1.0.2, transformers 4.29.1 and torch 2.0.1 for all the BLIP model
experiments. Our environment consists of an Intel(R) Xeon(R) Gold 5215 CPU @ 2.50GHz with 40 cores and
256 GB of RAM. Additionally, we utilize NVIDIA RTX A5000 GPUs for our experiments.

B Dataset Details

We consider the validation set of four common VQA datasets and construct a new one tailored towards visual
details: 1) VQAv2 [4], which is a large-scale dataset containing 214,354 questions paired with 40,504 images
from various objects and settings (a subset of COCO [12]); 2) GQA [5] containing 12578 questions paired with
398 images, constructred by using the scene graphs of Visual Genome [8] to construct highly compositional
questions requiring spatial, logical, relational, and comparative reasoning, and explicitly controls the answer
distribution for different groups of questions in order to prevent educated guesses using language and world
priors; 3) A-OKVQA [18], which contains containing 1145 questions about 1122 images, where the questions
require additional knowledge and cannot be answered from the image-question pair alone; 4) TextVQA [20]
containing 5000 questions about textual information that appear in 3166 images, where more than half of the
answers require perceiving texts that occupy less than 0.005 of the total image area, and therefore emphasizes
how well a model can read small text, which can serve as a surrogate for how well a model can perceive fine
visual details; additionally, textVQA provides Optical Character Recognition (OCR) annotations [2] which we
use to approximate the ground-truth answer bounding box for each question by selecting the OCR bounding box
containing the text with the highest string similarity with the human-provided answer. This bounding box is used
for cropping in human-CROP; 5) FDVQA is a dataset we propose to deliberately focus on small hard-to-perceive
visual details; for this purpose, we first selected 400 question-answer pairs of VQAv2 on which the zero-shot
BLIP2 model fail to correctly predict the majority answer in the annotations, in order to filter out any sample
where perception is easy; then, we collected 3 human annotations per sample identifying whether answering the
question requires perceiving small details in the image and the model answer is indeed incorrect (e.g., excluding
near-synonymous answers or ambiguous questions); finally, we kept the samples where all 3 annotations agreed,
resulting in 109 image-question pairs, and we manually created the ground-truth bounding box around the
subject of the question.

C The Effect of Visual Cropping On Different Question Types.

To gain deeper insights into the granular benefits of visual cropping, Figure C.1 shows how the proposed visual
cropping methods impact the accuracy of zero-shot VQA models on various question types in VQAv2 (these
types are explained in Table 3 in Appendix). Questions concerning visual details, i.e., text reading and object
attributes, gain the most from visual cropping, consistent with our findings in FDVQA and TextVQA. However,
we observe that questions that require a global view of the image, i.e., localization and counting, become harder
to answer as a result of visual cropping. This suggests that our mechanism for combining the original and
cropped image tokens is not always successful in maintaining the global image information, encouraging future
research on effectively combining image tokens.
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Table 3: We select 6 question types from VQAv2 based on their first two words to study the granular
accuracy of visual cropping methods in Section 5. The total number of instances per question type is
reported in the last row, with 140691 instances belonging to none of these types.

Question types
Reading Object Attributes Existence Categorization Localization Counting

what letter what pattern is anyone what street where is how many
what brand what color is there what direction where are how much

what breed are there what animal where was
what colors is that what fruit
what style are all what vegetable

what material is everyone what food
what shape is one what game

is she what sport
is he

1064 22053 16426 4168 6329 23623

Table 4: Inference time comparison of visual cropping methods.

Cropping Method clip-CROP yolo-CROP sam-CROP DEVICE

Average Inference Time (seconds) 1.072 0.355 3.329 GPU
5.461 0.970 91.532 CPU

D The Time Overhead of Visual Cropping.

In Table 4, we report the average inference time of the proposed visual cropping methods on GPU (NVIDIA
RTX A5000) and CPU (Intel Xeon Gold 5215 2.50GHz). While YOLO is the fastest method, we recommend
using CLIP in practice since it provides the best overall balance between accuracy and inference time.
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E Additional Examples of Visual Cropping Success and Failure

(a) FD-VQA ✓
Question: What is the bird sitting on?
Answer: Leaf

(b) FD-VQA ✗
Question: How many dogs are here?
Answer: 1

(c) TextVQA ✓
Question: What letter does these athelete’s school
likely begin with?
Answer: G

(d) TextVQA ✗
Question: Who is winning?
Answer: Michigan

(e) GQA ✓
Question Is the person wearing a glove?
Answer: Yes

(f) GQA ✗
Question: What item of furniture is large?
Answers: Desk

9



(g) A-OKVQA ✓
Question: What does the ice-cream truck say to
watch out for?
Answer: Children

(h) A-OKVQA ✗
Question: What is the white object the man in the
black shirt is holding?
Answer: Plate

(i) VQAv2 ✓
Question: Is the mouth open?
Answer: No

(j) VQAv2 ✗
Question: How many people do you see?
Answer: 2

Figure E.2: Success (✓) and Failures (✗) of the proposed cropping techniques on five different
datasets.
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