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ABSTRACT

Large language models (LLM) trained using the next-token-prediction objective,
such as GPT3 and PaLM, have revolutionized natural language processing in re-
cent years by showing impressive zero-shot and few-shot capabilities across a
wide range of tasks. In this work, we propose a simple technique that signifi-
cantly boosts the performance of LLMs without adding computational cost. Our
key observation is that, by performing the next token prediction task with ran-
domly selected past tokens masked out, we can improve the quality of the learned
representations for downstream language understanding tasks. We hypothesize
that randomly masking past tokens prevents over-attending to recent tokens and
encourages attention to tokens in the distant past. By randomly masking input
tokens in the PaLM model, we show that we can significantly improve 1B and
8B PaLM’s zero-shot performance on the SuperGLUE benchmark from 55.7 to
59.2 and from 61.6 to 64.0, respectively. Our largest 8B model matches the score
of PaLM with an average score of 64, despite the fact that PaLM is trained on a
much larger dataset (780B tokens) of high-quality conversation and webpage data,
while ours is trained on the smaller C4 dataset (180B tokens). Experimental re-
sults show that our method also improves PaLM’s zero and few-shot performance
on a diverse suite of tasks, including commonsense reasoning, natural language
inference and cloze completion. Moreover, we show that our technique also helps
representation learning, significantly improving PaLM’s finetuning results.

1 INTRODUCTION

Language model (LM) pre-training has substantially advanced the state-of-the-art across a variety
of natural language processing tasks (Peters et al., 2018; Devlin et al., 2018; Brown et al., 2020;
Chowdhery et al., 2022) and related fields including image generation, reasoning, and code gener-
ation (Alayrac et al., 2022; Lewkowycz et al., 2022; Saharia et al., 2022; Chen et al., 2021). Prior
work on pre-training have focused on mixing different choices of architecture (e.g., encoder-only,
decoder-only, or encoder-decoder) with different objective functions (e.g., masking or causal lan-
guage modeling). For example, masked encoder-only models such as BERT (Devlin et al., 2018)
and RoBERTa (Liu et al., 2019) excel in discriminative finetuning tasks such as classification. Sim-
ilarly, masked encoder-decoder models such as BART (Lewis et al., 2019) and T5 (Roberts et al.,
2019) perform well on both discriminative and generative finetuning. While masked language mod-
eling is effective for finetuning and removes the need for task-specific architectures, its major limi-
tation is that there is still a need for task-specific datasets and task-specific finetuning. On the other
hand, decoder-only causal language models remove such limitations. In fact, they are capable of
zero-shot and few-shot adaptation without the need for finetuning, by simply prompting the model
with appropriate strings to control the generated outputs, as shown in GPT3 (Brown et al., 2020)
and PaLM (Chowdhery et al., 2022).

Driven by its impressive zero-shot and few-shot abilities, there has been more work on scaling causal
decoder-only architectures (Zhang et al., 2022; Black et al., acl; Brown et al., 2020; Chowdhery
et al., 2022) compared to encoder-based architectures, and there has been significant interests in
studying such models in various contexts (Hoffmann et al., 2022; Wei et al., 2022b; Li & Liang,
2021; Ahn et al., 2022; Chen et al., 2021). However, such decoder-only models are still limited
by their imperfect zero-shot and few-shot adaptation compared to human performance, and their
relatively inferior finetuning performance compared to masked language modeling.
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Figure 1: FCM outperforms PaLM in zero- and few-shot as well as finetuning tasks. Top & middle.
Task average performance grouped by categories. The model size is 1B. We report the averaged
scores in each category. Scores are averaged over 3 evaluation random seeds. Bottom. SuperGLUE
zero-shot performance by different model size and dataset size. PaLM⋆ 8B-780B HQ denotes the
published results of 8B model trained on 780B tokens from high quality datasets, PaLM 8B-180B
denotes the same setup but with 180B tokens from C4 dataset, and FCM 8B-180B denote the same
8B model trained on 180B tokens from C4 dataset using FCM as objective.

To address the above challenges, prior work have proposed to combine masked modeling with causal
language modeling (Dong et al., 2019; Wang et al., 2022; Tay et al., 2022; Du et al., 2022) to bring
the benefit of masked modeling to causal language models while retaining their zero-shot ability.
However, such approaches typically introduce extra computation and parameters or require using a
sophisticated attention masking strategy which hinders practical usages (Yang et al., 2019; Tay et al.,
2022). Moreover, they typically train encoder-decoder models which are not naturally suitable for
zero- and few-shot inference tasks compared with decoder-only causal language models and are still
outperformed by causal language models (Sanh et al., 2022; Brown et al., 2020; Chowdhery et al.,
2022). In order to further improve causal language models few-shot abilities, some works proposed
better prompt engineering methods (Liu et al., 2021; Lester et al., 2021; Ling et al., 2017; Wei et al.,
2022b; Li & Liang, 2021) or better finetuning methods (Mishra et al., 2022; Wei et al., 2022a; Sanh
et al., 2022). Prompt-based methods are sensitive to design (Lester et al., 2021; Liu et al., 2021),
while finetuning-based approaches typically require a huge amount of supervision to work with as
shown in Sanh et al. (2022). In addition, such methods can only improve pre-trained model and are
unable to improve pre-training.

In this work, we propose a pre-training approach that does not incur any extra computation cost or
parameters, to improve few-shot and zero-shot performance, as well as representation learning of
causal language models. Our key observation is that, by performing next token prediction task with
randomly selected past tokens masked out, we can improve the quality of the learned representations
for downstream language understanding tasks. Our method, Forgetful Causal Masking (FCM), can
be efficiently implemented by randomly masking input tokens in the causal language model. Ap-
plying our method to PaLM (Chowdhery et al., 2022), a state-of-the-art causal language model, we
see significant improvement on the SuperGLUE (Sarlin et al., 2020) benchmark: our method signif-
icantly improves the 1B-model-size PaLM’s zero-shot performance from 55.7 to 59.2 and improves
the 8B-model-size PaLM’s zero-shot performance from 61.6 to 64.0. We also conduct extensive
evaluation on the commonsense reasoning benchmark PIQA (Bisk et al., 2019), ARC (Yadav et al.,
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2019), and OpenBookQA (Mihaylov et al., 2018); the Winograd-style tasks Winograd (Sakaguchi
et al., 2020) and WinoGrande (Kocijan et al., 2020); the natural language inference (NLI) bench-
mark ANLI (Nie et al., 2019); and cloze completion tasks StoryCloze (Mostafazadeh et al., 2016)
and LAMBADA (Paperno et al., 2016); and find that our method improves the zero-shot and few-
shot performance of PaLM on all of the diverse suite of tasks. In addition, FCM improves repre-
sentation learning, as shown in our SuperGLUE finetuning experimental results, where our method
significantly improves 1B parameter PaLM model’s finetuneing performance from 67.0 to 68.7, and
our method significantly improves 8B parameters PaLM model’s finetuning performance on all 8
SuperGLUE tasks, improving the score from 80.7 to 83.1.

Contributions. We highlight the contributions of our paper below:

• We present FCM, a simple and scalable pre-training methodology for causal language mod-
eling. We provide the empirical evaluation of FCM on a suite of few-shot and finetuning
benchmarks.

• We show that FCM is highly effective at improving zero-shot and few-shot learning re-
sults, outperforms strong baselines including PaLM and UL2, improving the average Su-
perGLUE score of 8 billion parameters PaLM from 61.6 to 64.0, and improving PaLM on
a wide range of 19 NLP tasks.

• In addition to few-shot learning, we demonstrate that FCM significantly helps with fine-
tuning to downstream tasks, improving the performance of 8 billion parameters PaLM on
8 out of 8 SuperGLUE tasks and the average SuperGLUE score from 80.7 to 83.1.

• We demonstrate that FCM is scalable – it consistently outperforms PaLM with various
model sizes, from 128 million parameters to 1 billion and 8 billion.

2 RELATED WORK

Masking strategies and pre-training objectives. Many self-supervised pre-training techniques
have been proposed to leverage the vast availability of unsupervised data. Different architectures
typically leverage different objectives. Decoder-only models are typically trained with causal lan-
guage model objectives to mimic auto-regressive generation (Brown et al., 2020) and is found to be
effective in cross-modality learning (Alayrac et al., 2022; Yu et al., 2022). Related to our masking
out tokens, scheduled sampling (Bengio et al., 2015) applied replacing tokens with model predicted
tokens and is shown to improve training recurrent neural networks. Autoencoding denoising ob-
jectives have been used to learn a bidirectional contextualized encoder for natural language under-
standing (Devlin et al., 2018; Liu et al., 2019; Yang et al., 2019). For encoder-decoder models,
BART (Lewis et al., 2019) conducts NLU tasks by feeding the same input into the encoder and
decoder, and taking the final hidden states of the decoder. Raffel et al. (2020) explored many objec-
tives of pre-training and found that span-corruption works best with encoder-decoder model. Other
work explores multi-task pre-training using supervised data (Aribandi et al., 2021; Sanh et al., 2022;
Wang et al., 2022). To study the impact of different objectives on zero-shot generalization, Wang
et al. (2022) conducts a systematic study of different architectures combined with three different
pre-training objectives, and found causal language modeling to be effective at zero-shot learning.

Combining causal and masked language modeling. There has been work explore training model
with multiple objectives to combine causal and masked language modeling under the masked lan-
guage modeling objective with different attention masks (Dong et al., 2019; Bao et al., 2020). Later
work proposes to use blank infilling (Raffel et al., 2020) to randomly blank out continuous spans
of tokens from the input text and train the model to sequentially reconstruct the spans (Du et al.,
2022). XLNet (Yang et al., 2019) modifies the attention mask in a standard transformer to enable
token generation in any permutation of tokens. XLNet uses a two-stream self-attention mechanism,
instead of the right-shift, to avoid information leakage in Transformers, but doubles the time cost
of pre-training. UL2 (Tay et al., 2022) further proposes to train language model using a mixture of
denoisers to combines diverse pre-training paradigms together. Other work explored masking some
spans that are predicted at the end of the sequence for bidirectional models (Artetxe et al., 2022)
or left-to-right autoregressive models (Aghajanyan et al., 2022; Zhu et al., 2019; Donahue et al.,
2020; Fried et al., 2022). Notably, Bavarian et al. (2022) explores moving text in the middle to the
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end and predict it autoregressively. Related to our layer-wise attention masking, word masking has
been explored in the context of recurrent neural networks (Dai & Le, 2015; Bowman et al., 2015;
Xie et al., 2017). Different from prior work, we focus on efficiently improving causal transformer
model with masking language modeling, our method does not require complex implementations to
change input or output prediction, making it simple to implement and our method does not add extra
computation or parameters.

3 METHOD

Causal Transformer Model

emb2 emb3

How           Large        Language      Models      Transform   Science

Embed + Pos

tok2 tok3

emb1 emb4 emb5 emb6

tok1 tok4 tok5 tok6 Predict

Unmasked token Masked token

Figure 2: Illustrations of FCM. Given a causal language model, each token’s prediction is condi-
tioned on embeddings that are not masked. The loss is applied to each token in the sequence. In this
example, when predicting the token of the word “models”, the embeddings of the words “large”
and “language” are removed from the input sequence. The model is asked to predict all tokens
autoregressively.

3.1 PRE-TRAINING OBJECTIVE

FCM uses a standard causal, decoder-only Transformer model architecture (Vaswani et al., 2017),
i.e., each timestep can only attend to itself and past timesteps. We illustrate FCM in Figure 2.
Given an input text x = [x1, · · · , xn], the standard causal language modeling objective is defined to
maximize the log likelihood of x autoregressively:

log p(x) = log

n∏
i=1

p(xi|x1, x2, . . . , xi−1)

= log

n∏
i=1

p(xi|x<i) := log

n∏
i=1

p(xi|[xj ]
i−1
j=0). (1)

In FCM, we randomly sample a mask ratio from m ∼ [0, η] where η ∈ [0, 1] is a fixed maximum
mask ratio, we use η = 0.15 throughout the experiments unless otherwise mentioned. The model
is asked to predict each token xi ∈ x , and can only attend to tokens in x<i that are not sampled.
Concretely, the FCM objective is given by:

log p(x) = log

n∏
i=1

p(xi|[I[mj > η] · xj ]
i−1
j=0), (2)

where mj ∼ U(0, 1). This can be efficiently implemented by combining it with causal attention
mask. While applying random masking to the token sequence, we always exclude the special BOS
(‘beginning of sentence’) token at the beginning of each sequence, so that the model is aware of
the beginning of a sentence. Moreover, keeping the BOS token unmasked helps with training sta-
bility because it ensures that there is at least one token unmasked without changing the semantic
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meaning of the sequence. For example, when predicting token xt for small t, it is possible that all
tokens [x1, ..., xt−1] are masked, which can cause instability in the training loss. We found that this
technique enables us to train arbitrary high mask ratios without incurring instability.

3.2 MODEL ARCHITECTURE

We use the same model and architecture as PaLM (Chowdhery et al., 2022), including the modified
activation (Shazeer, 2020), multi-query attention (Shazeer, 2019), parallel layers (Wang & Komat-
suzaki, 2021) and RoPE embeddings (Su et al., 2021) described therein, with the exception that we
use SentencePiece (Kudo & Richardson, 2018) vocabulary with 32K tokens from C4 (Raffel et al.,
2020). To study the dependence of FCM on model size, we train 3 different sizes of the model,
ranging over three orders of magnitude from 125 million parameters, to 1 billion parameters, and to
8 billion parameters (see Table 1).

Model Layers # of heads dmodel Batch size Seq len

PaLM, FCM 128M 8 4 1024 1024 1024
PaLM, FCM 1B 16 8 2048 1024 1024
PaLM, FCM 8B 32 16 4096 1024 1024

Table 1: Architecture details of different sized models. We list the number of layers, dmodel, the
number of attention heads and attention head size, training batch size, and sequence length. The
feed-forward size dff is always 4× dmodel and attention head size is always 256.

3.3 METHOD DISCUSSION

In this section, we discuss the connections and differences between FCM and other pre-training
models. We are mainly concerned with how they improve few-shot, zero-shot, and finetuning per-
formance.

T5 Raffel et al. (2020) and UL2 (Tay et al., 2022) propose to train encoder-decoder or prefix lan-
guage model architecture using the span-corruption objective. T5 and UL2 always predict spans in
a fixed left-to-right order, and are therefore related to FCM in that our method also predicts masked
tokens from left to right. However, FCM is an autoregressive model without an encoder that encodes
full context information, so in principle, FCM can be combined together e.g.with a prefix language
model. Empirically, FCM outperforms T5 and UL2 on NLU tasks with smaller models (1B vs 8B)
and fewer number of tokens (180B vs 1000B).

XLNet (Yang et al., 2019) is also pre-trained with autoregressive objectives, but there are important
distinctions between FCM and XLNet. FCM does not need permutation of the input sequence and
designing two-stream self-attention mechanism to avoid the information leak within Transformer,
which doubles the time cost of pre-training. Our method is much simpler and more scalable.

GLM (Du et al., 2022) proposes to extend autoregressive modeling with bidirectional context. They
achieve this by selecting spans and move them to the end of sequence, then unselected tokens and
past spans use non-causal attention and tokens within each span use causal attention, similar to a
PrefixLM and UL2 (Tay et al., 2022; Raffel et al., 2020).

UniLM (Dong et al., 2019; Bao et al., 2020) combines different training objectives together by using
different self-attention masks to control the access to context for each token. Similar to BERT and
T5, UniLM is trained with an autoencoding objective with masked spans replaced by mask tokens.
This introduces a gap between pre-training and downstream tasks, since there are no mask tokens
in downstream tasks. Moreover, the model needs to be finetuned for natural language generation
tasks (e.g., summarization). In contrast, FCM focuses on improving causal language models and
outpeforms strong baselines such UL2 and PaLM on zero- and few-shot SuperGLUE benchmark.

In summary, our method is simpler and focuses on autoregressive causal language models. Our
method is easy to implement and does not introduce extra computation or parameters, and as exper-
imental evaluations in Section 4 show, FCM is scalable and achieves superior results than baselines.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training datasets We use C4 dataset to pre-train baselines and our model (Raffel et al., 2020). It
is a colossal, cleaned version of Common Crawl’s web crawl corpus1 and consists of about 180
billion tokens using sentencepiece tokenizer (Kudo & Richardson, 2018). Note that GPT-3 and
PaLM use significantly larger pre-training datasets, e.g., the PaLM pre-training dataset consists of a
high-quality corpus of 780 billion tokens that is a mixture of filtered webpages, social media con-
versations, and more. However, these datasets are not publicly available and training on it requires
tremendous compute resources. C4 is significantly smaller, which also reduces the compute cost of
training the large models.

Training and inference. Our training optimizer follows PaLM, and use the Adafactor optimizer
(Shazeer & Stern, 2018) which scales the learning rate by the root-mean-square of the parameter
matrix. We use learning rate of 0.01 for the first 10,000 steps, which is then decayed at a rate of
1/

√
k, where k is the step number. We train with momentum of β1 = 0.9. The second-order moment

interpolation value is computed as β2 = 1.0− k−0.8, where k is the step number. Following typical
large Transformer models training as in PaLM and GPT-3, models are trained without dropout, and
dropout of 0.1 is used for finetuning. Our training and inference codebase is based on JAX and T5X,
and all models are trained on TPU v4 Pods. The few-shot and zero-shot results are averaged over
three evaluation random seeds. For results of baselines, we choose and report the best published
results to compare against FCM. We use exactly the same batch size, learning rate, and training
hyperparameters for PaLM and FCM. More details on hyperparameters, compute infrastructure,
and training time are provided in Appendix A.

Evaluation tasks and metrics. We consider the following tasks and categorize them according to
their focused evaluation properties:

• Cloze and Completion tasks: LAMBADA (Paperno et al., 2016) consists of word prediction
tasks that test the understanding of narrative passages. StoryCloze (Mostafazadeh et al., 2016)
evaluates story understanding and script understanding, by requiring a system to choose the
correct ending to a four-sentence story.

• Commonsense Reasoning: PIQA (Bisk et al., 2019) is a dataset designed for physical common-
sense reasoning to investigate the physical knowledge of language models. ARC (Yadav et al.,
2019) is a multiple-choice question-answering dataset, containing questions from science ex-
ams from grades 3-9. There are two partitioned datasets ARC-e (easy) and ARC-c (challenge),
where the latter partition contains the more difficult questions that require reasoning. Open-
BookQA (Mihaylov et al., 2018) is designed to test understanding of both the topic (e.g., salient
facts) and the language it is expressed in. This dataset contains questions that require multi-step
reasoning, commonsense knowledge, and rich text comprehension.

• Winograd-style tasks: In the Winograd schema challenge, a schema is a pair of sentences that
differ in only one or two words and that contain an ambiguity that is resolved in opposite ways in
the two sentences. Winograd tasks (Kocijan et al., 2020) require world knowledge and reason-
ing to be solved. WinoGrande (Sakaguchi et al., 2020) is a large-scale dataset of 44k problems,
and requires commonsense reasoning to choose the correct option for a given sentence.

• Natural Language Understanding (NLU): SuperGLUE (Sarlin et al., 2020) consists of 8 chal-
lenging NLU tasks, including word sense disambiguation, natural language inference, corefer-
ence resolution, and question-answering.

• Natural Language Inference (NLI): Adversarial NLI (ANIL) (Nie et al., 2019) is collected via
an adversarial human-and-model-in-the-loop procedure and is selected to be difficult to state-of-
the-art models.

Baselines. The main baseline we compare with is PaLM (Chowdhery et al., 2022), since it is one of
state-of-the-arts on a wide range of NLP benchmarks.

1https://commoncrawl.org
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4.2 MAIN RESULTS

4.2.1 FEW-SHOT PERFORMANCE

We compare FCM with PaLM on few-shot and zero-shot performance in a wide range of bench-
marks. Table 2 includes the results for the FCM and the PaLM 1B and 8B models. The results
averaged over task categories are presented in Figure 1. Following prior work, we only consider
single checkpoint results from pre-trained language models.

FCM outperforms PaLM on 17 out of 19 tasks in the zero-shot setting, 15 out of 19 tasks in the one-
shot setting, and 15 out of 19 tasks in the few-shot setting. On the SuperGLUE (Sarlin et al., 2020)
benchmark, our method significantly improves the 1B-model-size PaLM’s zero-shot performance
from 55.7 to 59.2 and improves the 8B-model-size PaLM’s zero-shot performance from 61.6 to
64.0. Consider that PaLM is well-tuned in many aspects, including the pre-training dataset, training
strategy, and the number of tokens observed. The significantly better results of FCM shows that the
training objective can also play a crucial role in the model performance.

Table 2: Results obtained by the FCM 1B and 8B model across NLP benchmarks. We use the same
setup as in Brown et al. (2020); Chowdhery et al. (2022), including the splits for each task.

Zero-shot One-shot Few-shot

Task PaLM
1B

FCM
1B

PaLM
8B

FCM
8B

PaLM
1B

FCM
1B

PaLM
8B

FCM
8B

PaLM
1B

FCM
1B

PaLM
8B

FCM
8B

Lambada (EM) 42.4 43.5 58.0 59.1 48.9 49.5 65.8 66.5 48.2 49.7 66.1 67.5
StoryCloze 68.8 68.2 75.0 75.6 67.3 66.9 75.0 75.7 65.9 66.7 75.8 76.2
PIQA 72.0 72.1 77.0 77.4 71.0 71.6 75.5 76.5 72.0 71.6 77.1 77.3
ARC-e 46.2 45.6 55.3 57.1 48.0 45.9 60.1 60.2 50.2 48.2 64.0 64.4
ARC-c 25.8 27.7 33.8 33.0 26.3 27.2 34.0 35.0 26.5 28.1 35.5 36.5
OpenbookQA 45.8 46.4 48.2 49.2 45.0 43.2 47.0 48.4 42.6 43.6 49.0 49.5
Winograd 67.0 70.0 78.5 80.6 67.0 67.4 79.5 81.7 64.8 70.0 79.5 81.2
Winogrande 54.0 54.5 60.0 61.9 54.0 55.8 60.5 62.1 53.6 55.0 61.0 62.3
BoolQ 45.9 56.0 52.0 62.1 48.3 52.6 53.7 59.6 48.1 46.8 49.0 57.7
Copa 72.0 74.0 82.0 84.0 72.0 73.0 80.0 83.0 70.0 72.0 82.0 85.0
RTE 50.9 53.8 53.4 48.9 53.1 54.5 55.2 47.3 53.1 45.1 53.1 48.4
WiC 51.4 52.6 78.3 79.1 47.8 46.9 79.0 86.8 48.9 50.1 77.9 87.9
Multirc (F1a) 35.2 40.6 40.4 54.1 57.1 57.2 49.8 56.5 57.2 48.2 42.5 46.5
WSC 65.3 70.2 78.3 79.1 66.7 71.2 79.0 86.8 66.7 70.2 77.9 87.9
ReCoRD 75.8 76.3 85.5 85.0 75.8 76.4 85.5 84.9 74.9 75.0 84.6 83.9
CB 48.2 50.0 82.0 84.0 44.6 44.8 42.9 51.5 42.3 48.2 46.4 50.0
ANLI R1 33.3 33.5 32.9 34.3 31.3 33.0 32.7 33.5 30.5 32.5 31.1 32.9
ANLI R2 32.8 34.2 33.3 34.1 30.5 30.6 30.6 33.7 32.5 33.4 31.7 33.8
ANLI R3 33.3 33.6 33.0 33.9 30.0 31.2 31.7 33.8 32.8 34.2 32.9 35.1

4.2.2 FINETUNING PERFORMANCE

We conduct finetuning experiments on the SuperGLUE benchmark to compare PaLM and FCM.
Following PaLM experimental settings, models are finetuned with 5× 10−5 learning rate using the
Adafactor optimizer. To reduce computation time, we use batch size 512 instead of the original
batch size 32 in PaLM. The models are finetuned for 20K steps.

Table 3 reports the validation results on finetuning on task-proportionate mixture of SuperGLUE
tasks. On SuperGLUE, we compare with state-of-the-art models such as T5 11B (Raffel et al.,
2020) and UL2 (Tay et al., 2022), as well as PaLM (Chowdhery et al., 2022) and show that FCM
obtains significantly better performance than PaLM. All models are trained on C4 dataset, T5 11B
and UL2 are trained on 1000B tokens, the rest of models are trained on 180B tokens. It is worth
noting that both top performing models on SuperGLUE are encoder-decoder models that are trained
using the span-corruption objective. It has been shown that such an architecture generally outper-
forms autoregressive decoder-only models on classification task finetuning, when training cost is
equalized (Raffel et al., 2020). These results demonstrate that FCM can help bridge the gap. FCM
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1B outperforms PaLM 1B significantly on 4 out of 8 SuperGLUE tasks, and FCM 8B significantly
outperforms PaLM 8B on all 8 SuperGLUE tasks, improving the score from 80.7 to 83.1.

Table 3: Finetuning results on SuperGLUE dev set. We compare with T5-11B (Raffel et al., 2020),
UL2 (Tay et al., 2022) and PaLM (Chowdhery et al., 2022). Scores reported are the peak validation
scores per task following the setup of T5. All models are trained on the same 180B tokens except
that UL2 20B and T5 11B are trained on 1000B tokens.

Model BoolQ CB CoPA MultiRC Record RTE WiC WSC Avg

Masked language model

T5 11B 90.8 94.9 98.0 87.4 93.8 93.9 77.3 96.2 89.9
UL2 20B 90.8 98.7 99.0 88.4 93.7 92.1 77.3 98.1 90.7
T5 1.4B 83.7 92.9 85.9 82.7 69.6 78 80.8 80 81.7

Causal language model

PaLM 1B 75.0 78.6 58.2 62.9 63.3 60.0 66.4 71.2 67.0
FCM 1B 73.5 82.0 58.0 63.0 65.1 61.0 66.5 80.8 68.7
PaLM 8B 83.7 94.6 80 81 71.2 80 75.2 80.1 80.7
FCM 8B 84.8 96.4 81 82.1 73.7 86 76.2 85 83.1

4.2.3 MODEL SCALABILITY

To demonstrate the scalability of FCM, we further evaluate FCM with different model sizes in
Table 4. We consider both a smaller model with 128 millions parameters, and a scaled-up model
with 8 billion parameters. All models are trained for 180 billion tokens, which is equivalent to about
one epoch on the C4 dataset. Although 8 billion model size is relatively small compared to typical
large language models (Chowdhery et al., 2022; Brown et al., 2020), these results serve as a proof-
of-concept of FCM’s effectiveness and scalability for larger model sizes. We leave further scaled-up
experiments as promising future work. We compare with methods that use more high quality datasets
including the official PaLM⋆ and GPT-3. PaLM is trained on 780 billion tokens and GPT-3 is trained
on 300 billion tokens. Other baselines include T5 and UL2 which are trained for 1000 billion tokens
and ST-MoE which uses 500 billion tokens. The results show that FCM works with both smaller
and larger models, ranging from 128 million parameters to 8 billion parameters. Surprisingly, the
largest FCM model matches the score of PaLM⋆ with an average score of 64, despite the fact that
PaLM⋆ is trained on a much larger dataset (780B tokens) of high-quality conversation and webpage
data, while FCM is trained on the smaller C4 dataset (180B tokens). We further compare FCM with
official PaLM 8B model on one-shot and few-shot experiments. Table 5 shows the results, FCM
matches PaLM in most tasks, showing the promising capabilities of FCM.
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Figure 3: Fewshot and finetuning results on SuperGLUE. We compare PaLM⋆ which is trained on
780B high quality data, PaLM trained on C4, and FCM. On zero-shot and one-shot learning, FCM
matches or outperforms PaLM⋆ and outperforms PaLM in few-shot and finetuning significantly.

4.3 ABLATION STUDY

FCM works best with random ratio. We evaluate the impact of mask ratio on FCM using Su-
perGLUE zero-shot benchmark. Table 6 presents the results of FCM with different mask ratios.
Among them, sampling random ratio between [0.0, 0.15] performs significantly better than other
choices. Sampling mask ratios from 0.0 to 0.1 or 0.15 perform generally better than using fixed

8



Under review as a conference paper at ICLR 2023

Table 4: Comparisons on SuperGLUE zero-shot benchmark with different model sizes. PaLM⋆

denotes the published results of PaLM.
Model BoolQ CB COPA MultiRC ReCORD RTE WiC WSC Avg

Methods that use more high quality data

GPT-3 175B 60.5 46.4 91 72.9 90.2 63.5 0 65.4 61.2
PaLM⋆ 540B 88 51.8 93 83.5 92.9 72.9 59.1 89.1 78.8
GPT-3 13B 66.2 19.6 84 71.4 89 62.8 0 64.4 57.2
PaLM⋆ 8B 68.3 41.1 86 47.5 87.8 54.2 47 78.9 63.9

Methods that use 1000B tokens from C4

ST-MoE 269B 40.8 41.1 56 30.3 50 52.7 50 57.5 47.3
T5-XXL 11B 44.3 37.5 70 23 85.8 48.8 50.9 59.3 52.5
UL2 20B 63.1 41.1 85 36.2 88.1 60.7 49.8 79.9 63

Methods that use 180B tokens from C4

PaLM 128M 58.8 8.8 63 54.3 62.4 53.1 49 56.5 50.7
FCM 128M 55.7 8.9 69 55.1 62.1 56.3 52.1 56.1 51.9
PaLM 1B 45.9 48.2 72 35.2 75.8 50.9 51.6 65.3 55.6
FCM 1B 56 50 74 40.6 76.3 53.8 52.4 70.2 59.2
PaLM 8B 52 50 82 40.4 85.5 53.4 51.3 78.3 61.6
FCM 8B 62.1 48.2 84 54.1 85 48 51.1 79.1 64.0

Table 5: Comparison between FCM and PaLM on SuperGLUE zero-shot and few-shot benchmark
tasks. PaLM⋆ denotes published results obtained by training on more high quality data. The model
size is 8B.

# of shots Model BoolQ CB COPA MultiRC ReCORD RTE WiC WSC Avg

Zero-shot
PaLM⋆ 8B 68.3 41.1 86 47.5 87.8 54.2 47 78.9 63.9
PaLM 8B 52 50 82 40.4 85.5 53.4 51.3 78.3 61.6
FCM 8B 62.1 48.2 84 54.1 85 48 51.1 79.1 64

One-shot
PaLM⋆ 8B 64.7 41.1 82 50.6 87.8 57.8 47.3 81.4 64.1
PaLM 8B 53.7 42.9 80 49.8 85.5 55.2 51.5 79 62.2
FCM 8B 59.6 51.5 83 56.5 84.9 47.3 46.9 86.8 64.6

Few-shot
PaLM⋆ 8B 68.9 57.1 82 41.1 88 56.7 52.4 83.2 66.2
PaLM 8B 49 46.4 82 42.5 84.6 53.1 50.5 77.9 60.8
FCM 8B 57.7 50 85 46.5 83.9 48.4 49.5 87.9 63.6

mask ratio 0.1 or 0.15, indicating that fixed mask ratios could potentially introduce pre-training and
inference gap, and sampling random mask ratio is a simple way to alleviate it.

Using mask tokens instead of attention mask. Alternative to FCM, a natural way of preventing
future tokens from attending to past tokens is replacing tokens with a special [mask] token. Using
mask tokens is widely adapted in masked language modeling (Devlin et al., 2018; Liu et al., 2019),
and combining mask token with causal language modeling can be considered as a special case of
UniLM Dong et al. (2019). We perform an ablation study comparing FCM with mask token, and
present the results in Table 7. Using mask tokens lead to performance degradation in zero- and
few-shot experiments, and about the same results on finetuning experiments. We hypothesis that the
performance drop is due to the train and inference gap caused by introducing the [mask] token,
which can negatively impact zero- and few-shot performance because the model is not finetuned to
remove such gap.

Comparison with dropout. FCM random masking can be seen as a special type of dropout (Sri-
vastava et al., 2014) applied only on the input sequence layer wisely by using attention masking. We
note that general dropout and FCM are complementary in that they can be combined together. To
compare random masking vs. dropout, we compare three models in Table 8: (1) PaLM, (2) PaLM
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Table 6: Ablation of mask ratio on SuperGLUE. Comparisons on SuperGLUE zero-shot and one-
shot benchmark between fixed mask ratio and random mask ratios using FCM. The model size is
1B. FCM [x, y] denotes mask ratio is randomly sampled between x and y.

Model BoolQ CB COPA MultiRC ReCORD RTE WiC WSC Avg

zero-shot

PaLM 45.9 48.2 72.4 35.2 75.8 50.9 51.6 65.3 55.7
FCM [0.1, 0.1] 56.5 51.6 73.5 32.9 76.3 55.6 52 67.1 58.2
FCM [0.15, 0.15] 54 48.2 75.5 22.6 75.9 52.7 49.8 66.1 55.6
FCM [0, 0.1] 57.9 51.8 69.6 33.3 76.8 48.4 51.6 67.7 57.1
FCM [0.0, 0.15] 56 50 74.1 40.6 76.3 53.8 52.4 70.2 59.2
FCM [0.0, 0.3] 52.5 53.6 69.4 42.9 75.4 49.8 48.4 66.1 57.3

one-shot

PaLM 48.3 44.6 50.9 75.8 47.8 72 35.9 66.7 55.3
FCM [0.1, 0.1] 56.1 32.1 53.8 76.3 47.3 72 33.3 67.4 54.8
FCM [0.15, 0.15] 48.3 37.5 52.4 75.9 49.1 69 20.9 66.3 52.4
FCM [0, 0.1] 56.5 42.9 53.1 76.8 47.8 72 29.1 66.3 55.6
FCM [0.0, 0.15] 52.6 44.6 54.5 76.4 46.9 73 43.2 71.6 57.9
FCM [0.0, 0.3] 50.8 32.1 52 75.4 47.2 74 46.5 66.3 55.5

Table 7: Comparisons on SuperGLUE zero-shot, few-shot and finetuning benchmarks between using
attention mask and using mask token. The model size is 1B.

Masking strategy 0-shot avg 1-shot avg 5-shot avg finetune avg

Mask token 57.4 57.0 55.4 68.5
Attention 59.2 57.9 57.2 68.7

with dropout rate 0.1, (3) FCM with fixed random ratio 0.1, and (4) FCM with fixed random ratio
0.1 and dropout rate 0.1. We see that using dropout during large language models pre-training is
harmful, decreasing the score from 55.7 to 55.4, which aligns with findings from prior work (Raffel
et al., 2020; Chowdhery et al., 2022). In contrast, combining dropout with FCM together can im-
prove PaLM, improving the score 55.7 to 57.7, indicating that FCM and dropout are complementary
techniques and we leave further studies of this as an interesting future work. We can see that using
only FCM performs slightly better than combining dropout and FCM together, showing the effec-
tiveness of FCM on performing the next token prediction task with randomly selected past tokens
masked out.

Table 8: Comparisons on SuperGLUE zero-shot benchmark between between Random Masking vs.
Dropout. The model size is 1B.

Model BoolQ CB COPA MultiRC ReCORD RTE WiC WSC Avg

PaLM 45.9 48.2 72.4 35.2 75.8 50.9 51.6 65.3 55.7
PaLM + Dropout 53.5 48.2 64.4 37.2 75.7 50.2 50.2 63.5 55.4

FCM [0.1, 0.1] + Dropout 44 53.6 71 43.1 75.3 59.2 49.8 65.4 57.7
FCM [0.1, 0.1] 56.5 51.6 73.5 32.9 76.3 55.6 52 67.1 58.2

5 CONCLUSION

In this paper, we propose FCM, a novel pre-training paradigm using a causal transformer decoder.
FCM is a combination of causal next-token-prediction and random masking to input sequence. Ex-
perimental results show that FCM significantly outperforms the state-of-the-art causal transformer
model on a wide range of zero- and few-shot as well as finetuning benchmarks, and our model is
readily extendable to various tasks.

As FCM improves performance of causal language models on few-shot and finetuning bench-
marks, applying our approach to other language understanding tasks and language-image tasks (e.g.,
Flamingo (Alayrac et al., 2022)) is a promising direction for future work. Since our method does not
introduce extra computation, another direction would be investigating what is the impact of FCM on
compute scaling law (Hoffmann et al., 2022).
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A APPENDIX

A.1 IMPLEMENTATION AND TRAINING DETAILS

Our implementation uses Flax (Heek et al., 2020), JAX (Bradbury et al., 2018) and T5X (Roberts
et al., 2022) Our architecture is based on PaLM (Chowdhery et al., 2022) which introduces some
modifications to GPT-3 (Brown et al., 2020) architecture to reduce compute cost. The dataset C4 is
provided by Tensorflow datasets. We use SentencePiece (Kudo & Richardson, 2018) as tokenizer.
For PaLM and FCM trained on C4 datasets, the sequence length is 1024 to reduce compute cost, al-
though the official PaLM is trained with longer context length 2048. Following the settings of PaLM,
input examples are concatenated together and then split into sequences of exactly 1024 tokens, so
that there are no padding tokens, but examples may be split in the middle. Input examples are differ-
entiated from one another with a special [eod] token For downstream tasks evaluation, including
both fewshot and finetune benchmarks, we follow the dataset format and splits used in Brown et al.
(2020); Chowdhery et al. (2022). Our experiments are conducted using cloud TPU v4, it has a
unified 32 GiB HBM memory space across the entire chip. For 128M models, training 180B tokens
takes 18 hours on TPU v4-64. For 1B models, training on 180B tokens takes 25 hours on TPU
v4-256. The training of 8B models on 180B tokens takes 100 hours on TPU v4-512.

A.2 HYPERPARAMETERS

In this section we provide the training and evaluation hyperparameters of FCM. These configurations
follow the training hyperparameters of PaLM Chowdhery et al. (2022).

Hyperparameter Value
Dropout 0.0
Optimizer Adafactor
Initial learning rate lr 0.01

Learning rate decay
0.01 for the first 10,000 steps,
which is then decayed at a rate of 1/

√
k,

where k is the step number
Weight decay lr2

Optimizer momentum β1 = 0.9, β2 = 1.0− k−0.8

Global norm gradient clipping 1.0
Batch size 1024
Sequence length 1024

Table 9: Hyperparameters for training PaLM and FCM

Hyperparameter Value
Dropout 0.1
Optimizer SGD momentum
Momentum 0.9
Batch size 512
Sequence length 1024

Table 10: Hyperparameters for finetuning PaLM and FCM

A.3 FULL RESULTS

Table 12 includes the results for the FCM and the PaLM 1B and 8B models across three random
evaluation seeds. Following prior work, we only consider single checkpoint results from pre-trained
language models. The variance across different evaluation seeds is small on most tasks.

A.4 ADDITIONAL EXPERIMENTS ON COMPARING WITH FILL-IN-THE-MIDDLE
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Related to FCM is fill-in-the-middle training, which splits documents into three pieces at random
and moves the middle piece to the end. This is similar to the procedure used in Aghajanyan et al.
(2022); Donahue et al. (2020); Bavarian et al. (2022); Artetxe et al. (2022). FCM is orthogonal to
fill-in-the-middle training, and in fact, our method can be easily integrated into such methods:

CM3 (Aghajanyan et al., 2022) and HYBUNI (Artetxe et al., 2022) focus on introducing bidirection-
ality into causal masking objectives, where the masked tokens are moved to the end of the sequence
in order to make it possible to attend to future positions from these masked tokens. The introduction
of bidirectionality gives the model additional capabilities to attend to the future when predicting
masked tokens.

On the contrary, our paper focuses exclusively on the setting of unidirectional language models.
Unlike CM3 and HYBUNI, our approach focuses on improving autoregressive language models
without altering the input sequence or changing the training objective. Instead, we only change
the attention masks for unidirectional language models. In fact, we can incorporate our attention
masking method into bidirectional models such as CM3 and HYBUNI, but it is beyond the scope of
the paper and we leave it for future work.

In Table 11, we compare with a simpler version of CM3 and HYBUNI, where we randomly split
the sentence into [prefix, middle, suffix], move [middle] to the end of the sequence, concatenate the
three pieces using sentinel tokens, and train the causal language model to predict the sequence. We
report zero- and few-shot results on SuperGLUE. The fill-in-the-middle is denoted as FIM. We did
not see an improvement in zero- and few-shot learning. Bavarian et al. (2022) also reported a similar
finding that few-shot performance does not improve by moving the infill regions to the end of the
context.

CM3 demonstrates impressive results on cross modal generation and representation learning tasks,
we believe combining CM3 and FCM could further improve the performance which we leave as an
interesting future work.

Table 11: Comparison between FCM, PaLM, and fill-in-the-middle (FIM) on SuperGLUE zero-shot
and few-shot benchmark tasks. All models are trained for 180B tokens on C4. The model size is
1B.

# of shots Model BoolQ CB COPA MultiRC ReCORD RTE WiC WSC Avg

Zero-shot
PaLM 1B 52 50 82 40.4 85.5 53.4 51.3 78.3 61.6

FIM 1B 50.5 47.7 78 39.8 83.7 47.9 50.1 77.9 59.8
FCM 1B 62.1 48.2 84 54.1 85 48 51.1 79.1 64

One-shot
PaLM 1B 53.7 42.9 80 49.8 85.5 55.2 51.5 79 62.2

FIM 1B 52 43.1 78 49 83.1 48.2 45.9 80 59.9
FCM 1B 59.6 51.5 83 56.5 84.9 47.3 46.9 86.8 64.6

Few-shot
PaLM 1B 49 46.4 82 42.5 84.6 53.1 50.5 77.9 60.8

FIM 1B 50.5 45.6 79 39.8 80.1 50.9 49.4 75.8 58.8
FCM 1B 57.7 50 85 46.5 83.9 48.4 49.5 87.9 63.6
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Table 12: Results across three random realizations. We use the same setup as in Brown et al. (2020);
Chowdhery et al. (2022), including the splits for each task.
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