
Under review as a conference paper at ICLR 2022

A DECISION TREE ALGORITHM FOR MDP

Anonymous authors
Paper under double-blind review

ABSTRACT

Decision trees are robust modeling tools in machine learning with human-
interpretable representations. The curse of dimensionality of Markov Decision
Process (MDP) makes exact solution methods computationally intractable in prac-
tice for large state-action spaces. In this paper, we show that even for problems
with large state space, when the solution policy of the MDP can be represented by
a tree-like structure, our proposed algorithm retrieves a tree of the solution policy
of the MDP in computationally tractable time. Our algorithm uses a tree grow-
ing strategy to incrementally disaggregate the state space solving smaller MDP
instances with Linear Programming. These ideas can be extended to experience
based RL problems as an alternative to black-box based policies.

1 INTRODUCTION

Deep neural network based Reinforcement Learning (RL) has seen recent success in tackling
Markov Decision Problem (MDP) instances with large state-action space. For example, the MuZero
model (Schrittwieser et al. (2020)) has been able to successfully beat human performance in pre-
viously computationally untractable problems such as Shogi, Chess and Atari games with a single
modeling paradigm. The success of these methods can be traced to two fundamental ideas in RL:
First, the iterative nature of the Q-learning algorithm (see Watkins & Dayan (1992)) where the
state-action value function can be updated locally without having to handle the whole state-action
space at once as in exact methods; Second, the non-linear parameterization of the state-action value
function and the policy function with deep neural networks, where in a sense, the state space model
is “learned” and compressed without having to update and explore the whole state space. While
successful methods, they are not devoid of drawbacks. Their strength in not taking into account the
whole action-state space is also their weakness which manifests in the well-known worst case slow
convergence of Q-learning (see Szepesvári et al. (1998)) as well as the relatively slow convergence
of the gradient-based methods for training deep neural networks for regression.

In this paper, we aim to apply the essence of these two ideas to develop an algorithm to solve
a subset of instances of MDP, that while having large enough state-action space such that exact
methods are computationally intractable, their solution policy admits a representation as a decision
tree that can be computed by exact methods. In summary, we aim to do an improvement over these
instances with two ideas: First, the use of exact methods, such as Dynamic Programming (DP) or
Linear Programming (LP), rather than iterative methods to compute the state-action value function;
Second, the use of decision trees to partition the state space and codify the optimal policy rather than
using deep neural networks. In Figure 1 we show the subset of problems we aim to tackle in the
gray area. That is, problems with large enough state space such that exact methods are not tractable,
but the action space is still not too large. This is key, as the size of the policy function representation
as a decision tree depends on the structure of the state space being partitionable in regions with the
same optimal action.

To illustrate these concepts we consider the cartpole balancing example, which consists of control-
ling a cart that can move either to right or left in a straight rail. Perpendicular to the axis of movement
of the cart, there is a pole attached to a rotating axis at its center. With two actions A = {←,→}
the goal is to have the pole attached to the cart balanced in the upright position for the longest
possible amount of time. The state space of the system is a 4-dimensional vector of real numbers
S = {(x, v, θ, w) : x ∈ [−ℓ1, ℓ1], v ∈ [−ℓ2, ℓ2], θ ∈ [−ℓ3, ℓ3], w ∈ [−ℓ4, ℓ4]} (position, horizontal
velocity, angle and angular velocity). Here, the state space is of infinite size |S| = ∞. Instead of
using deep Q-learning, we use a decision tree based algorithm that outputs the policy in Figure 2.

1

Under review as a conference paper at ICLR 2022

Exact Methods
LP/DP

MDP Solving Method: Q-learning based, Policy/Value Iteration.
Parameterization of value function: ADP, Deep Learning Based.

Parameterization of policy function: Deep Learning Based.

|S|

|A|

Figure 1: Solution Methods for MDP relative to state-action space size. The blue area denotes
problems that are tractable using exact methods. The red area is the subset of problems where deep
neural network based Q-learning is the most used solution method. The gray area is the subset of
problems we aim to tackle.

This decision tree serves two functions simultaneously: It defines a partition or “aggregation” of the
state space S into disjoint regions that will be the states of a much smaller MDP; and second and
most importantly, it summarizes the optimal policy as a decision tree, giving a transparent and in-
terpretable control policy. These two points are the same ideas that make deep Q-learning methods
successful: Aggregation of the space and non-linear parameterization of the optimal policy. The
MDP went from having a infinite cardinality to a reduce state space of only 6 states.

π∗(·)

w ≤ −0.39

θ ≤ 0 :← θ ≤ 0 :←

w > −0.39

θ ≤ 0

w ≤ 0 :← w > 0 :→

θ > 0

w ≤ 0 :→ w > 0 :→

Figure 2: Cartpole solution policy π∗(x, v, θ, w) from our algorithm.

2 RELATED WORK

In the RL and MDP literature the idea of state aggregation starts as early as the discipline itself
as an answer to the curse of dimensionality for large state-action spaces. One of such ideas is to
make a large state space discrete by aggregating states into “boxes” (see Fox (1973)). Our method
takes ideas from the Variable Resolution idea where a given discretization is further refined by con-
structing finer boxes around regions of the state space where the discretization does not approximate
well the value function. One of those methods is the “Trie Model” (see Moore (1991)) where a
tree model with similar ideas to ours is used to identify regions of the state space that need to be
further partitioned while still applying Dynamic Programming methods to obtain a policy. Their
main criterion to make a split was to identify regions of the state space where the model was inaccu-
rate (in a value function sense) and increase the resolution of the MDP by further partitioning these
regions. In Singh et al. (1995) the convergence for the Q-learning algorithm is proved for the “soft-
aggregation” scheme where states belong to disjoint clusters with a given probability (including the
hard cluster case where states belong to only one cluster), our work borrows a similar description
of the aggregated MDP (from a cluster level) that we use to define our Linear Programming for-
mulation. Bounds on the performance of value iteration over disjoint state aggregation are given in
Van Roy (2006).

2

Under review as a conference paper at ICLR 2022

A large stream of literature then focuses on parameterization of the value function as means to defeat
the curse of dimensionality (which is an indirect way to aggregate the state space). Approximate
Dynamic Programming (see Bertsekas (2008) for a summary overview) is a parameterization of
the value function by a lower-dimensional linear basis of the state space. On the non-linear case,
nearest neighbor approximations have been used in Shah & Xie (2018). Kernel functions are used in
Ormoneit & Sen (2002) and Ormoneit & Glynn (2002). Decision Trees have been used in Ernst et al.
(2005) to similarly approximate the Q-function of unseen samples. Much of the recent literature
focus on Deep Neural Network based RL which can be seen as a non-linear representation of the
state-action value function (see Li (2017) for an overview) as well as a non-linear parameterization
of the policy as stated in the introduction. Actor-critic architectures (see Haarnoja et al. (2018)) have
also seen recent success in tackling large scale problems.

A characterization theory of state aggregations is studied in Li et al. (2006), where the most common
families of aggregations (bisimulation, and equivalent value function aggregations) is studied and
a hierarchy between them is given. A related work to ours is Kim & Dean (2003) where a similar
sequential partition is used for finding sequential state aggregations, our work differs in the crite-
ria to make splits, whereas we approximate the behavior of the whole MDP, Kim & Dean (2003)
chooses a split based on the maximum distance between value functions from one iteration to the
next positioning their work closer to the variable resolution literature.

Our method is new in the sense that instead of exclusively focusing on the resolution relative to
the value function (that is, instead of trying to approximate and interpolate the value function at
unseen points) we find a state aggregation abstraction of the original state space with a reduced state
space with the same optimal policy as in the original state space, given that the original MDP admits
such representation. We further discuss the theory and potential computational savings of MDP
abstraction in Section A.3.

3 METHODOLOGY

In this section we describe our methodology connecting the representation of policies as decision
trees and the aggregation of the original state space resulting in a much smaller MDP with equivalent
optimal policy.

3.1 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is a modeling framework that in simple terms finds optimal
decisions with a changing environment over time with the goal of finding the “best” actions given
the state of the environment. Formally, a MDP is composed of an environment represented by a
state space S, a set of actions A. An agent in state s ∈ S , takes an action a ∈ A. After this, the
agent transitions to state s′ ∈ S and receives a reward r ∈ R with probability p(s′, r|s, a), which is
independent of the previous history of states or actions, making the model a Markov chain. Given
the state and action s, a the reward is a quantity R(s, a, s′). A policy π : S → A is a function that
maps states s ∈ S to a single action a1. For simplicity, assume that there is a terminal state that ends
the subsequent transitions (an absorbing state E). This state is reached in a random number of T
transitions. The cumulative discounted reward an agent receives by interacting in the system using
a policy π is given by:

Eπ

[∞∑
t=0

γtR(st, π(st), st+1)

]
. (1)

Given a complete description of the model, the policy that maximizes the cumulative reward is given
by the Bellman optimality equation:

Vπ(s) :=
∑
s′,r

P(s′, r|s, π(s))[r + Vπ(s
′)], (2)

V∗(s) = max
a

∑
s′,r

P(s′, r|s, a)[r + V∗(s
′)]. (3)

1The extension to stochastic policies is straightforward and not considered here.

3

Under review as a conference paper at ICLR 2022

Where Vπ(s) is the expected reward starting at state s following policy π, the expression Vπ(s)
can be intuitively derived by a first-step analysis on the fact that the system is memoryless by the
Markov property of Markov chains, that is, the expected reward in one state is simply the one step
expected reward obtained in that state r (after taking action π(s) and transitioning to state s′) plus
the expected reward of starting at state s′. The optimal policy V∗(s) is simply taking the greediest
action a at every state s in the expected reward sense.

3.2 REPRESENTATION OF POLICIES AS DECISION TREES

In this subsection we show the connection between state aggregation and policy representation as
decision trees. A policy π is a mapping between the state space S and the action setA. This mapping
is similar to a classification problem, in the sense that in a classification problem the goal is to divide
the input space into “regions” classifying them into different classes. In MDP, the goal is similar as
the policy divides the state space S into disjoint regions corresponding to elements of the action set
A.

Similar to Deep Neural Networks (DNN), decision trees are also good function approximators. An
analogous function approximation theorem for decision trees is that for any policy π(s), there exist
a tree T with J leaves L = {Ej}Jj=1 such that the policy π can be approximated by the function
π(s) =

∑J
j=1 π̄(Ej)1{s ∈ Ej} where {π̄(Ej)}Jj=1 is a collection of piecewise constant actions in

A.

Given this relation between a policy and a decision tree π(s) =
∑J

j=1 π̄(Ej)1{s ∈ Ej}, it is natural
to think of a related MDP where the states are the partitions of the state space rather than the larger
(and potentially infinite) original state space. This approximated MDP could be far away from
accurately approximate the reward of the original MDP but its resolution is good enough to identify
the optimal policies.

The challenge lies in identifying a growing strategy for the trees that is able to find the optimal
policy π∗ by iteratively partitioning the state space and taking the leaves of the tree as meta-states of
a reduced MDP approximating the behavior of this policy in the original state space. The growing
strategy needs an objective value that is able the compare the overall quality of different trees with
respect to finding optimal policies in the original state space. For example, as any tree algorithm
normally starts by collapsing all states into a single one, any partition into two disjoint subsets needs
to take into account the sizes of the partitions as well as the approximated behavior of the aggregated
MDP with respect to the original state space and quantify its improvement with respect to the initial
tree where all states are collapsed into one.

3.3 AGGREGATED MDP

Suppose the state space of the original MDP is aggregated into J meta-states. This aggregation is
a disjoint partition S = ∪Jj=1 Ej into disjoint events Ej . Then, for any state s ∈ S there is only
one index j, such that s ∈ Ej . To define an MDP under this aggregated state space let the transition
probabilities be (for meta-states E ,E ′ and action a ∈ A):

P(E ′|E , a) =
P(s′ ∈ E ′, s ∈ E , a)

P(s ∈ E , a)
, (4)

R(E , a,E ′) = E(R(s, a, s′)|s′ ∈ E ′, s ∈ E , a). (5)
We summarize the dynamics implied by Equations (4) and (5) with the notation P(E ′, r|E , a). A
solution method of the aggregated MDP using Linear Programming is given by solving the following
optimization program:

minV,q
∑J

j=1 µ(Ej)V (Ej) (6)

s.t. q(Ej , a) =
∑J

k=1

∑
r P(Ek, r|Ej , a)[r + γV (Ek)], for j = 1, . . . , J, a ∈ A,

V (Ej) ≥ q(Ej , a), for j = 1, . . . , J, a ∈ A.
Where µ is an arbitrary probability measure on the meta-states {Ej} such that µ(Ej) > 0 for all
j = 1, . . . , J (see Chapter 6 of Puterman (1994)). Note that when the meta-states E are singletons,
that is, each event only contains one state, this formulation is equivalent to solving the original MDP.

4

Under review as a conference paper at ICLR 2022

The policy implied by the solution of this MDP (denoted π̃) is naturally defined in the aggregated
state space {Ej}Jj=1. That is, π̃∗ : {Ej}Jj=1 → A. Extending this policy to the original state space
is straight-forward by letting π̃∗(s) = π̃∗(Ej) for all s ∈ Ej . Whenever a policy is defined, its state
space can be interchangeably understood by this extension.

3.4 TREE PARTITION AND APPROXIMATION TO ORIGINAL MDP

A tree T is a collection of sequential binary partitions of the state space S. For example, suppose
S = {x : x ∈ Rd}, that is, the state space is the set of d-dimensional real-valued vectors, where xi

is the i-th entry of the vector x. A tree T is composed by a set of J leaves L = {Ej}Jj=1. A leaf is
a sequence of binary splits of the state space, for example, the leaf E = xi1 ≤ τ1, · · · , xik > τk is
composed by a sequence of binary splits of the state space (≤ or >) at some threshold level sequence
τ1, . . . , τk ∈ R, with i1, · · · , ik being a index sequence of integers in {1, · · · , d}. The set of leaves
is a disjoint partition of the state space, that is ∪Jj=1Ej = S and Ej ∩ Ek = ∅ for j ̸= k.

Given a tree T with a set of leaves L = {Ej}Jj=1 the problem in Equation 6 can be solved to obtain
a solution of the aggregated MDP. Let G(π) be the cumulative expected reward of the original MDP
under policy π and pdf λ for the initial state (that is, λ(s) ≥ 0 and

∑
s∈S λ(s) = 1 with cdf Λ(s)

defined by some ordering of s ∈ S), that is, let G(π) := Eπ

[∑∞
t=0 γ

tR(st, at, st+1)|s0 = Λ−1(U)
]

where U is an independent uniform (0, 1) random variable.

An approximation of the expected reward G given by the aggregated MDP can be obtained by setting
the measure µ(Ej) equal to µ(Ej) =

∑
s∈Ej

λ(s). The intuition of why this measure approximates

G(π̃) is given by the fact that the optimal objective value of the linear program
∑J

j=1 µ(Ej)V∗(Ej)
is the expected reward of the aggregated MDP with starting state given by the distribution µ. By
making µ(Ej) proportional to P(s0 ∈ Ej) in the original MDP we match the distribution of the initial
state. As the dynamics P(E ′, r|E , a) are an average of the dynamics of the original MDP, we have
G̃(π̃∗) :=

∑
s∈Ej

P(s0 ∈ Ej)V∗(Ej) is an approximation of G(π̃∗) where π̃∗ is the policy implied
by solving the LP in Equation (6). In Section A.4 we discuss the optimality of the aggregated policy.

3.5 TREE ALGORITHM FOR MDP

In this subsection we assume the state space is the set of d-dimensional real-valued vectors, that is,
S = {x : x ∈ Rd}, where xi is the i-th entry of the vector x. Let |E | be the Lebesgue measure
of a subset E ⊆ Rd. The meta-states E = xi1 ≤ τ1, · · · , xik > τk are composed by a sequence
of binary splits of the state space (≤ or >) at some threshold level sequence τ1, . . . , τk ∈ R, with
i1, · · · , ik being a index sequence of integers in {1, · · · , d}.

Given a tree L, let G̃(L) be the expected reward of the MDP after solving the aggregated MDP
with partition L in Equation (6), that is, G̃(L) := G̃(π̃∗) (as discussed, this in an approximation of
the reward of the original MDP). Let the initial partition T0 with leaves set composed of one single
meta-state E0 = S. The set of leaves is L0 = {E0}. As an improvement step, we are interest in
further partitioning the state space from L0 into a partition L1 such that G̃(L0) < G̃(L1), meaning
that the expected reward of the MDP (under the partition L1) is higher than under L0. Intuitively,
adding information allows to make better decisions. As L0 ⊂ L1 ⊂ · · · ⊂ Lk, meaning that the sets
of leaves is grown from the set of leaves from the previous iteration. Then, a sequence of increasing
expected reward partitions would be found, that is, a sequence:

G̃(L0) ≤ G̃(L1) ≤ · · · ≤ G̃(Lk−1) ≤ G̃(Lk). (7)

An interpretation of (7) is that a sequence of increasing partitions L0 ⊂ · · · ⊂ Lk ⊆ S each
providing more information (and a more accurate model approximation) such that at every iteration,
as more information is available, better policies can be found.

Selecting a partition can be done as follows: Start with a partition L. Given the set of leaves L,
let L(xi ≤ τ) := {E ∈ L : |E | ≥ |E , xi ≤ τ |}, that is, the set of leaves where partitioning at
xi ≤ τ would effectively partition it (thus reducing its uniform measure in the original state space).
Consider the candidate partition L(xi, τ) := L\L(xi ≤ τ)∪

⋃
E∈L(xi≤τ)

{E , xi ≤ τ}∪{E , xi > τ},

that is, removing the events E from the leaf set by splitting them into two new leaves (events)

5

Under review as a conference paper at ICLR 2022

{E , xi ≤ τ} and {E , xi > τ}. Then, greedily select the partition that most increases the expected
reward of the MDP. That is, by optimizing the following problem:

max
i,τ

G̃(L(xi, τ)). (8)

Which can be seen as selecting the variable i and the threshold τ that best partitions the state space L
and generates highest expected reward, each of these operations needs to compute the input probabil-
ities for the LP in Equations (4) and (5) and the LP in Equation (6). After finishing the pass, the new
partition (set of new leaves) is equal toL\L(xi∗ ≤ τ∗)∪

⋃
E∈L(xi∗≤τ∗)

{E , xi∗ ≤ τ∗}∪{E , xi∗ > τ∗}

for i∗, τ∗ = argmaxi,τ G̃(L(xi, τ)). The algorithm can be summarized as:

Algorithm 1: State-Space Partition Algorithm for MDP:

• Step 0: Initialize L = {E0}. With E0 = S. Let g∗ := G̃(L). Go to Step 1.

• Step 1: Solve maxi,τ G̃(L(xi, τ)). Go to Step 2.

• Step 2: If maxi,τ G̃(L(xi, τ)) > g∗ update g∗ ← maxi,τ G̃(L(xi, τ)), L ← (L \ L(xi∗ ≤
τ))∪

⋃
E∈L(xi∗≤τ∗)

{E , xi∗ ≤ τ∗} ∪ {E , xi∗ > τ∗} for i∗, τ∗ = argmaxi,τ G̃(L(xi, τ)) and

go to Step 1. Otherwise, stop.

Each new partition may split more than one leaf node at every iteration. See the example in Section
A.1 for a step by step example run of the algorithm in a 2-dimensional grid.

3.6 COMPUTATIONAL COMPLEXITY

As discussed in subsection 3.2 the optimal policy π∗ of the original MDP can be represented by a
tree with J∗ leaves (approximating the optimal policy as π∗(s) =

∑J∗

j=1 π̃(Ej)1{s ∈ Ej}). Suppose
our procedure can find an equivalent tree after a certain number of iterations such that the size of the
tree is equal to J∗ at such iteration k (this depends on the particular instance and its transition and
reward structure). In this section we discuss the computational effort at iteration k of our algorithm
and use this result to bound the overall computational complexity of our algorithm.

Solving an MDP using Linear Programming as in Equation (6) has complexity of order O(np) where
n is the number of variables/constraints (in our LP formulation the number of constraints is equal
to the number of variables in Equation (6) which is the size of the state-action space |S||A|). The
degree of the polynomial can be taken as p = 2.5 if following the algorithm for LP in Vaidya (1989)
or even lower when considering more recent advances in matrix multiplication as in Cohen et al.
(2021).

The complexity of our procedure at iteration k is the number of partitions that can be done at iteration
k times the complexity of solving instances of LP of size n = s(k)|A| (the size of the instances
increases as the iterations of our algorithm increase). As the number of total possible partitions is
bounded by some constant (dependent on the size of the original state space) K(S), the complexity
of our algorithm at iteration k is O((K(S)−k)s(k)p|A|p). That is, the number of available partitions
K(S) − k times the complexity of solving a LP of size s(k). As s(k) is a worst-case estimate of
the size of the state-action space, letting k = s−1(J∗) is a conservative estimate of the number of
iterations necessary for the algorithm to find the tree.

The complexity can be then bounded as s−1(J∗)O((K(S)−s−1(J∗))s(s−1(J∗))p|A|p) which can
be simplified to O(K(S)J∗p|A|p) by absorbing s−1(J∗) as a constant inside the big-O notation
(noting that it is independent of the size of the state-action space). Comparing this with the com-
plexity of the original MDP of order O((|S||A|)p) highlights the potential computational savings of
our algorithm, as K(S)≪ |S| (for intuition, consider the case when S is a discretized d-dimensional
grid of size |S| = Md, across every dimension there are M possible levels to partition, then the total
number of partitions is K(S) = Md).

Up to a constant, our procedure is more efficient than solving the original problem if J∗ <

|S|/
√

K(S). Or, in other words, up to a constant our procedure is |S|/
√

K(S)J∗ faster than
solving the original MDP. This highlights that the savings of our procedure happen obviously when

6

Under review as a conference paper at ICLR 2022

J∗ is small compared to |S|. Note that the action space size |A| is always a bottleneck as the LP
instances are of size always proportional to |A| at every iteration. Thus, our procedure is tractable
as long as the action space A is relatively small. Likewise, the savings in computation also depend
on the size J∗ of the tree which a priori is not known.

In the next two subsections we present an explicit from for the state space function size s(k) and the
corresponding complexity to the common “box” discretization scheme in 2 and d dimensions.

3.6.1 2-DIMENSIONAL GRID

We describe the worst-case complexity of our algorithm a 2-dimensional grid: Let the state space
S = {(x, y) : x = 1, . . . ,M, y = 1, . . . , N} be a 2-dimensional grid of sizes N times M . The size
of the worst-case instances of the MDP at iteration k is given by:

s(k) =

{(
k+2
2

)2
k ≤ 2m

k(m+ 1)−m2 + 1 k > 2m
(9)

for m := N ∧ M . The expression comes from dividing a rectangle using k lines (partitions),
kx vertical and ky horizontal, such that k = kx + ky results in (kx + 1)(ky + 1) partitions of a
rectangle. This product is maximal when qx = qy getting the bound on the number of partitions(
k
2 + 1

)2
=

(
k+2
2

)2
. Next, as kx ≤ N and ky ≤ M without loss of generality assume N <

M . When the number of partitions k is greater than 2N we have kx remains at N for a total of
(N + 1)(k −N + 1) = k(N + 1)−N2 + 1 partitions.

In this case the number of new partitions available at every iteration is K(S)− k = N +M − k+1
(the minus k comes from the fact that at every iteration there is one partition less available out of
N + M possible partitions). Then, for k > 2m and without loss of generality N ≤ M such that
m = N , the worst case complexity is O((N +M −k+1)(k(m+1)|A|)p) which can be simplified
to O(M(k(N +1)|A|)p) after canceling the N +1 outside with k that is greater than 2N . Compare
this to the complexity of the original problem of O((NM |A|)p). In this case, our algorithm works
best when N is far from M from a complexity point of view as we can take M (which in this case
is the maximum between N and M) from inside the polynomial of the LP complexity and deal with
a smaller size 2N < k < M instances of LP.

In summary, by letting m = N ∧M and m̄ = N ∨M the worst-case complexity of our procedure
is O(m̄(k(m + 1)|A|)p) compared to original problem of complexity O((NM |A|)p). See Section
A.2 for the complexity analysis of the d-dimensional case. The d-dimensional grid case is also
promising for applications where the state space is continuous (and thus infinite and uncountable)
but some suggested discretization is possible (either data-driven or ad-hoc). In this case, while the
state space is infinite, the partition algorithm can guide an optimal discretization structure. See the
cartpole balancing example in the numerical section.

4 NUMERICAL EXAMPLES

4.1 GRIDWORLD

We present an instance of Gridworld as an example of our method. Gridworld consist of a grid where
an agent moves to reach a goal (ending) state using one of four moves (actions) A = {↑, ↓,→,←}
(moving up, down, right or left one step in the grid). Each state is represented by a coordinate
(x, y) ∈ Z2+ in a grid. Each state (x, y) has a reward r depending only in the state. In this setting
transitions are deterministic once an action is taken (this can be relaxed without loss of generality, to
allow jumps or stochastic transitions once an action is taken). We illustrate an instance of Gridworld
in Figure 3.

In Figure 4 we plot side by side the optimal policy by solving the original MDP and our tree algo-
rithm in Algorithm 1. Although the instance is trivial it highlights the computational savings of our
methodology by only needing 6 states (other than the initial and terminal states which are given)
rather than 28 in the original state space.

7

Under review as a conference paper at ICLR 2022

0 1 2 3 4 5 6 7 8 9

0

1

2

-1 -500 -500 -500 -500 -500 -500 -500 -500 -500

-1 -1 -1 -1 -1 -1 -1 -1 -1 0

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Figure 3: Gridworld example: The green square is the starting state and the orange state is the goal.
Each number in the grid represents the reward of visiting that state. The goal (starting at any point)
is to reach the terminal state incurring minimum cost.

0 1 2 3 4 5 6 7 8 9

x

0

1

2

y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

→ → → → → → → → →

→ → → → → → → → → ↑

(a) Optimal policy

0 1 2 3 4 5 6 7 8 9

x

0

1

2

y

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

→ → → → → → → → →

→ → → → → → → ↑ ↑ ↑

(b) Our tree policy after 3 iterations

Figure 4: Side by side comparison of optimal policy π∗ and the tree policy implied by our algorithm.

4.2 CARTPOLE BALANCING

A popular benchmark for Reinforcement Learning problems is the so-called cartpole balancing
problem, which consists of controlling a cart that can move either to right or left in a straight
rail. Perpendicular to the axis of movement of the cart, there is a pole attached to a rotat-
ing axis at its center. With two actions A = {←,→} the goal is to have the pole attached
to the cart balanced. The state space of the system is a 4-dimensional vector of real numbers
S = {(x, v, θ, w) : x ∈ [−ℓ1, ℓ1], v ∈ [−ℓ2, ℓ2], θ ∈ [−ℓ3, ℓ3], w ∈ [−ℓ4, ℓ4]}. In Figure 5 we
present a diagram of the cartpole system. x in the diagram represents the horizontal position of
the pole, v represents the horizontal velocity of the cart (positive means moving to the right), θ is
the angle (in radians) from the vertical upright position of the pole (positive means the pole is in a
clockwise position) and w is the angular velocity of the pole (positive means rotating clockwise).

Figure 5: Cartpole state space and diagram.

In this case, we generate n = 10, 000 random instances of data {(x, v, θ, w), a, r, (x′, v′, θ′, w′)}
with a totally random policy (given a state of the cart (x, v, θ, w), move the cart left or right with
equal probability). The reward r is equal to 1 for every unit of time the pole stays upright (the angle
is |θ| < 0.28 radians), otherwise the reward r is 0 (meaning that the pole has fallen). Note that is
very different from the usual pipeline of doing reinforcement learning as we only used a previous
generated data and do not assume access to a simulator to generate new policies in this case. With
this sample data, we estimate sample estimates of the parameters in Equations (4) and (5).

As it is, the problem is hard as the control problem is continuous on the state variables. Moreover,
the equations governing the mechanics of the cart are non-linear equations that in principle are not
given and subject to random perturbations. Typically, one way the infinite state space problem can
be remedied is by discretizing it resulting in the d-dimensional grid case discussed in Section A.2

8

Under review as a conference paper at ICLR 2022

(with d = 4) with computational complexity O(|M1M2M3M42|p) for the original MDP resulting
in a large state space size even for moderate values of M1,M2,M3,M4.

Using our decision tree procedure in Algorithm 1 for Mi = 10 equidistant cuts of the domain
[−ℓi, ℓi] for i = 1, . . . , 4 solves the problem in 3 iterations of the algorithm (in this case, solving
the cartpole problem consist in finding a policy that maintains the pole stable in the upright position
beyond a threshold time). The size of the instances at the 3rd iteration of our algorithm is just 6 states
for a total complexity of order 40(6× 2)p using Algorithm 1 compared to solving a 4-dimensional
discretized MDP of complexity of order (104 × 2)p.

The policy that solves the cartpole problem is plotted in Figure 2. For n′ = 1000 random unseen
instances controlled with the policy in Figure 2 (started in the upright position with a random per-
turbation), the average expected reward is 187.93 with median 199.0 (the instances were stopped
once the reward reached 200). It is important to note that this control tilts the cart slightly to the
left, nonetheless, given the succinct policy representation it is noteworthy that the cartpole can be
successfully controlled at all with a data-driven algorithm not deep learning based.

This method opens up a new angle to tackle non-linear continuous control problems without a sim-
ulator in the presence of uncertainty where the optimal policy can be represented as a lower dimen-
sional tree policy. Moreover, the tree policy is attractive compared to a black-box policy. Doing an
adversarial analysis (an adversarial attack consist in finding inputs in the state space that generate
an undesirable action, see Behzadan & Munir (2017)) on a finite tree is much easier than with a
continuous deep neural network. For example, a tree based policy used for landing a drone relying
on sensors can be easily stress tested for reliability as the policy of the tree has a finite number of
scenarios where an action is deterministically chosen. This cannot be said from a policy encoded
in a black-box deep neural network as there can always be regions in the input space where the
action chosen is unknown and an attacker can try to exploit the policy at these regions to induce
catastrophic outcomes.

5 CONCLUSION

In this paper we have presented a decision tree algorithm for MDP that is computationally tractable
even when the state space is prohibitively large as long as the optimal policy has a lower dimen-
sional tree structure. On top of computational tractability the tree structure of the solution policy is
transparent and interpretable.

Further research effort is needed in exploring the statistical properties of sampling partitions to speed
up the algorithm (as in traditional tree algorithms). Another interesting open research question is
to establish a theory for adversarial RL for tree-based policies. Moreover, there is an open path for
extending these ideas to an online RL algorithm where an interpretable policy is desirable but exact
methods are intractable as in the cartpole example.

REFERENCES

Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement learning to policy induction
attacks. In International Conference on Machine Learning and Data Mining in Pattern Recogni-
tion, pp. 262–275. Springer, 2017.

Dimitri P Bertsekas. Approximate dynamic programming. 2008.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6:503–556, 2005.

Bennett L Fox. Discretizing dynamic programs. Journal of Optimization Theory and Applications,
11(3):228–234, 1973.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

9

Under review as a conference paper at ICLR 2022

Kee-Eung Kim and Thomas Dean. Solving factored mdps using non-homogeneous partitions. Arti-
ficial Intelligence, 147(1-2):225–251, 2003.

Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory of state abstraction
for mdps. ISAIM, 4:5, 2006.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Andrew W Moore. Variable resolution dynamic programming: Efficiently learning action maps
in multivariate real-valued state-spaces. In Machine Learning Proceedings 1991, pp. 333–337.
Elsevier, 1991.

Dirk Ormoneit and Peter Glynn. Kernel-based reinforcement learning in average-cost problems.
IEEE Transactions on Automatic Control, 47(10):1624–1636, 2002.

Dirk Ormoneit and Śaunak Sen. Kernel-based reinforcement learning. Machine learning, 49(2):
161–178, 2002.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Devavrat Shah and Qiaomin Xie. Q-learning with nearest neighbors. arXiv preprint
arXiv:1802.03900, 2018.

Satinder P Singh, Tommi Jaakkola, and Michael I Jordan. Reinforcement learning with soft state
aggregation. Advances in neural information processing systems, pp. 361–368, 1995.

Csaba Szepesvári et al. The asymptotic convergence-rate of q-learning. Advances in neural infor-
mation processing systems, pp. 1064–1070, 1998.

Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In 30th annual
symposium on foundations of computer science, pp. 332–337. IEEE Computer Society, 1989.

Benjamin Van Roy. Performance loss bounds for approximate value iteration with state aggregation.
Mathematics of Operations Research, 31(2):234–244, 2006.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

A APPENDIX

A.1 2-D GRIDWORLD EXAMPLE

We illustrate our algorithm with the following example: Let S = {(x, y) : x = 1, . . . ,M, y =
1, . . . , N} be a 2-dimensional grid. In this 2-dimensional grid the action set is composed of four
actions A = {↑, ↓,←,→}, that is, moving up, down, left or right in the grid. Moreover, let the
rewards R(x, y) arbitrary real values assigned to each point in the grid. The reward of the MDP
is discounted at a rate γ ∈ (0, 1). Let P((x′, y′), r|(x, y), a) be the transition probabilities and
rewards of the original problem (for example, if we consider the deterministic case where every
action takes the agent to the intended square without perturbation, then, P((x, y + 1)|(x, y), ↑) = 1
for x = 1, . . . ,M, y = 1, . . . ,M − 1).

At iteration 0 (initialization) we have E0 = S, that is, all states are aggregated into a single state.
Solving this “degenerate” MDP amounts to evaluate the following program:

minV,q µ(E0)V (E0)

s.t. q(E0, a) = R(E0, a,E0) + γV (E0), for a ∈ A,
V (E0) ≥ q(E0, a), for a ∈ A.

10

Under review as a conference paper at ICLR 2022

R(E0, a,E0) = E{R(x′, y′)|(x′, y′) ∈ E0, (x, y) ∈ E0, a} is the average reward of perform-
ing action a ∈ A in the aggregated state as in Equation (5). For example, R(E0,→,E0) =

1
(M−1)N

∑M
i=2

∑N
j=1 R(i, j), R(E0,←,E0) = 1

(M−1)N

∑M−1
i=1

∑N
j=1 R(i, j), R(E0, ↑,E0) =

1
M(N−1)

∑M
i=1

∑N
j=2 R(i, j) and R(E0, ↓,E0) =

1
M(N−1)

∑M
i=1

∑N−1
j=1 R(i, j), note how on each

expected value, the boundary (of states that are not visited) is removed. The transition probabilities
are all equal to one, as any action is going to move to the only state E0 = S.

The above program can be further simplified as V (E0) = (1 − γ)−1 maxa∈A R(E0, a,E0) as
µ(E0) = 1. This quantity is a rough approximation of the reward of the MDP by only perform-
ing the action argmaxa∈A R(E0, a,E0) at every state in the original state space S .

At the next iteration, the goal is to split state E0 into two states E1 and E2 that has the highest
increase in the expected reward of the MDP. The possible vertical splits are τx = 1, . . . ,M while the
horizontal splits are τy = 1, . . . , N . Performing a split at level τx results in two states: E1 = x ≤ τx
and E2 = x > τx. This results in the following set of equations:

R(E1, ↑,E1) =
1

τx(N − 1)

τx∑
i=1

N∑
j=2

R(i, j), R(E1, ↓,E1) =
1

τx(N−1)

∑τx
i=1

∑N−1
j=1 R(i, j),

R(E1,→,E1) =
1

(τx − 1)N

τx∑
i=2

N∑
j=1

R(i, j), R(E1,←,E1) =
1

(τx−1)N

∑τx−1
i=1

∑N−1
j=1 R(i, j),

R(E2, ↑,E2) =
1

(M − τx)(N − 1)

M∑
i=τx+1

N∑
j=2

R(i, j), R(E2, ↓,E2) =
1

(M−τx)(N−1)

∑M
i=τx+1

∑N−1
j=1 R(i, j),

R(E2,→,E2) =
1

(M − τx − 1)N

M∑
i=τx+2

N∑
j=1

R(i, j), R(E2,←,E2) =
1

(M−τx−1)N

∑M−1
i=τx+1

∑N
j=1 R(i, j),

R(E1,→,E2) =
1

N

N∑
j=1

R(τx + 1, j), R(E2,←,E1) =
1
N

∑N
j=1 R(τx, j).

With transition probabilities:

P(E1|E1,→) =
(τx − 1)N

τxN
= 1− τ−1

x , P(E2|E1,→) = N
τxN

= τ−1
x ,

P(E2|E2,←) =
(M − τx − 1)N

(M − τx)N
= 1− (M − τx)

−1, P(E1|E2,←) = N
(M−τx)N

= (M − τx)
−1,

P(E1|E1, ↑) = P(E1|E1, ↓) = 1, P(E2|E2, ↑) = P(E2|E2, ↓) = 1.

With these, at the first iteration the LP in Equation (6) with two states is solved for τx (here we
let µ(E1) be the uniform distribution, or simply said, the number of points in the grid in E1, that is
τxN/MN):

minV,q
τxN
MN V (E1) +

(M−τx)N
MN V (E2)

s.t. q(Ej , a) =
∑2

k=1 P(Ek|Ej , a)[R(Ej , a,Ek) + γV (Ek)], for j = 1, 2, a ∈ A,
V (Ej) ≥ q(Ej , a), for j = 1, 2, a ∈ A.

Solving an instance of this problem for each value of τx and τy , and choosing the one with highest
value for the LP is the first iteration of the algorithm. The objective is the approximated2 expected
reward of the original MDP by sampling the first state according to the distribution µ(E).

Suppose that the partition with highest expected reward (value of the LP) is given by τ∗x . The
policy implied by the LP is π∗(E1) = argmaxa∈A q∗(E1, a) and π∗(E2) = argmaxa∈A q∗(E2, a).

2Under the aggregated space.

11

Under review as a conference paper at ICLR 2022

As discussed previously, the objective of the LP can be also seen as the approximated reward of
the original MDP by following policy π∗(E1) whenever (x, y) ∈ E1 and policy π∗(E2) whenever
(x, y) ∈ E2.

At next iteration a similar process is followed, given the states E1 = x ≤ τ∗x and E2 = x > τ∗x
at the end of the previous iteration, these states would be further partitioned by considering the rest
of partitions τx = 1, . . . , τ∗x − 1, τ∗x + 1, . . . ,M and τy = 1, . . . , N . Vertical partitions (across
the x-axis) would partition the state space in 3 partitiosns (states) E1 = x ≤ τ∗x , x ≤ τx, E2 =
x ≤ τ∗x , x > τx and E3 = x > τ∗x for τx < τ∗x or E1 = x ≤ τ∗x , E2 = x > τ∗x , x ≤ τx and
E3 = x > τ∗x , x > τx for τx > τ∗x . Horizontal partitions (across the y-axis) would partition the
state space into 4 partitions (states) given by: E1 = x ≤ τ∗x , y ≤ τy , E2 = x > τ∗x , y ≤ τy ,
E3 = x ≤ τ∗x , y > τy and E4 = x > τ∗x , y > τx.

These two situations can be visualized by partitioning a rectangle vertically (across the x-axis) at first
iteration, at the next iteration another vertical partition would result in 3 states, while a horizontal
one (across the whole rectangle) would divide the state space into 4 regions. Whenever a partition
is performed it might or not affect all states at the previous iteration, identifying which states are
further divided is what motivates the definition of the set L(xi ≤ τ) in the algorithm subsection.

A.2 d-DIMENSIONAL GRID

In the worst case of a d-dimensional grid, let the state space S = {(x1, . . . , xd) : x1 =
1, . . . ,M1, x2 = . . . , xd = 1, . . . ,Md} be a grid of sizes M1 × · · · ×Md. Without loss of gen-
erality assume M1 ≤ M2 ≤ · · · ≤ Md. Using a similar analysis as in the 2 dimensional case, a
hyperrectagle in d-dimensions with k = k1+ · · ·+kd lines partitioning it across every axes in every
dimensions has

∏d
j=1(kj + 1) partitions. Likewise, this product is maximal when k1 = · · · = kd

resulting in at most (k/d+ 1)d partitions at iteration k.

When k > M1/d, we have that k1 = M1 and the number of partitions becomes (M1 +

1)
(

k−M1

d−1 + 1
)d−1

. By induction this process can be continued until the last dimension to get∏d−1
j=1(Mj + 1)

(
k −

∑d−1
j=1 Mj + 1

)
partitions in the worst case. This result can be summarized

with the function s(k) as:

s(k) =



(k/d+ 1)d k ≤M1/d

(M1 + 1)
(

k−M1

d−1 + 1
)d−1

M1/d < k ≤M2/(d− 2)

(M1 + 1)(M2 + 1)
(

k−M1−M2

d−1 + 1
)d−2

M2/(d− 2) < k ≤M3/(d− 3)

...∏d−1
j=1(Mj + 1)

(
k −

∑d−1
j=1 Mj + 1

)
k > Md−1/(d− 1)

(10)

Similarly, the number of partitions available is K(S) − k = [
∑d

j=1 Mj] − k + 1. Recall the state

space is of size |S| =
∏d

j=1 Mj . Depending on the structure of the problem, the worst possible
case of the algorithm is of similar complexity to the original problem when k is large. Nonetheless,
in a usual instance of the problem the optimal partition selected by the algorithm does not follow
the adversarial structure of these worst-case bounds of increasing the number of partitions as the
objective value is rather trying to increase the overall reward of the MDP than just greedily increase
the size of the state space.

A.3 STATE AGGREGATION THEORY

We borrow the state aggregation framework of Li et al. (2006) to describe our proposed tree space
aggregation procedure. A state aggregation of a given MDP (S,A, P,R, γ) into an aggregated
representation (S̃,A, P̃ , R̃, γ) is defined by a function ϕ mapping elements from the original MDP
into new aggregated states, that is, ϕ : S → S̃. The transitions and rewards of the original MDP are
linear combinations adding up to 1 of the original rewards, that is, for E ,E ′ ∈ S̃ (the elements of S̃

12

Under review as a conference paper at ICLR 2022

are denoted as such as they can be interpreted as “events” of the original state space, for example, a
leaf of a decision tree describes an event of the original state space and all states falling into it are
aggregated as a single state):

P(E ′|E , a) =
∑

s∈ϕ−1(E)

∑
s′∈ϕ−1(E ′)

w(s)P(s′|s, a), (11)

R(E , a,E ′) =
∑

s∈ϕ−1(E)

∑
s′∈ϕ−1(E ′)

w(s)R(s, a, s′). (12)

The weights w(s) can be interpreted as the relative importance of each state into their aggregated
state, these weights add to 1, that is

∑
s∈ϕ−1(E) w(s) = 1 for all E ∈ S̃3. In Li et al. (2006)

depending on properties of the aggregation function ϕ a hierarchy of state aggregations is presented.
This hierarchy has on one side the coarsest possible aggregation where all states are collapsed to one,
and on the other end the finest possible aggregation of the original state space (that is, the original
representation of the state space). They describe a partial ordering between these aggregations
(one aggregation contains another if all its partitions are subsets of the partitions of the other state
aggregation, this is denoted by ⪰ where the finer aggregation scheme goes on the l.h.s. of the
relationship). The hierarchy showed in the paper is summarized as (Theorem 2 in the paper):

ϕ0 ⪰ ϕmodel ⪰ ϕQπ ⪰ ϕQ∗ ⪰ ϕa∗ ⪰ ϕπ∗ . (13)

Where ϕ0 is the original (finest) representation of the MDP. ϕmodel is a representation where the
rewards and transition probabilities of the aggregated states is the same as in the original MDP
(the so-called bisimulation aggregation in the literature). ϕQπ is an aggregation where all states
aggregated have the same Q-function value for all policies π. In ϕQ∗ all aggregated states have the
same Q-function value for the optimal policy only and all actions a ∈ A. ϕa∗ is an aggregation
where all aggregated states have the same optimal action and the optimal Q-function evaluated at
the optimal action is the same for all states aggregated. Lastly, ϕπ∗ is an aggregation where all states
in a class have the same optimal action.

This is an important discussion, because going to the right of the hierarchy (coarser aggregations of
the state space) would achieve higher computational savings if solving an aggregated representation
of the MDP allows to retrieve an equivalent solution to the original one. In Li et al. (2006) is showed
that up to the aggregation scheme ϕa∗ there are guarantees of optimality by solving the problem in
the aggregated state space using Q-learning. There is also a negative result for the aggregation ϕπ∗

where convergence to the optimal policy of the original MDP is not guaranteed.

In this paper we propose another family of aggregations that we call ϕtree, which is an abstraction
where the original solution of the MDP has a tree structure and a reduced (aggregated) MDP where
the states are determined by the leaf of such tree and its optimal solution is equivalent to the original
MDP. That is, a MDP (S,A, P,R, γ) has a solution π∗(s) =

∑J
j=1 1{s ∈ Ej}π∗(Ej) where π∗(Ej)

for j = 1, . . . , J is the solution of the MDP (S̃,A, P̃ , R̃, γ) and {Ej}Jj=1 are the leaf of a tree
composed of binary partitions.

The family of partitions ϕtree is of computational interest as it is between ϕa∗ and ϕπ∗ in the partial
ordering hierarchy of state aggregations, that is, ϕa∗ ⪰ ϕtree ⪰ ϕπ∗ , thus, potentially achiev-
ing sizable computational savings for large state MDPs beyond the well studied first 3 hierarchies
(ϕmodel, ϕQπ and ϕQ∗) trying to aggregate the state space according to the value function.

A.4 DISCUSSION ON OPTIMALITY OF ALGORITHM 1

Here we present an informal discussion of the convergence of Algorithm 1 and present an intuitive
argument of when the structure of the original MDP lends itself to have a tree structure such that
the reduced MDP has an equivalent solution. In plain words, whenever the optimal structure (ge-
ometry of the paths) of the MDP is characterized by a (sub-)modular function, a tree structure of an
aggregated MDP will capture the structure of the optimal solution of the original problem.

3These can be seen as analogous of Equations 4 and 12 for a policy πw with stationary distribution w in that
aggregation.

13

Under review as a conference paper at ICLR 2022

Consider the following gridworld example with state space S = {(x, y) : x = 1, . . . ,M, y =
1, . . . , N} and reward equal to 1 at (M,N). With action set A = {↑, ↓,←,→}. In this case the
solution of this MDP is given by the value function V∗(x, y) = γd1(x,y)/(1− γ2) where d1(x, y) is
the Manhattan distance to the point (M,N) with reward equal to 1. To see why this is the case, the
solution from any point (x, y) is to take the deterministic shortest path to the point with reward 1,
once this point is reached a reward of 1 is accumulated at even period, that is a reward γd1(x,y)(1 +
γ2 + γ4 + γ6 + · · ·) which is a geometric series by the substitution γ′ = γ2. What is important
here is that the structure of the optimal policy with respect to the other states follows a structure
determined by the distance function. To this end, define the random variable T : S × A × U → S
which denotes the transition to a new state by applying an action to the current state (the U is a
random uniform representing the randomness in the case where transitions are not deterministic). In
this case Ta(x, y) is just the deterministic state that is reached by applying action a from state (x, y),
for example, action a =→, makes Ta(x, y) = (x+ 1, y). With this, we have that the optimal policy
is determined completely by the distance function d1(x, y) in the neighboring points spanned by the
actions a ∈ A:

π∗(x, y) = argmin
a∈A

1 + d1(Ta(x, y)), (14)

This follows from d1(x, y) = 1 + d1(Ta∗(x, y)) with a∗ = argmina∈A d1(Ta(x, y)) because the
distance to any contiguous transition is equal to 1. The key observation is that while there are many
shortest paths to the high reward circuit, the metric implied by Ta(x, y) defines an aggregation
of the policies as in Figure 6. This follows from the fact that the distance function is modular
d1(x, y) = 1 + d1(Ta∗(x, y)) as previously discussed.

→ → → → •
→ → → → ↑
→ → → → ↑
→ → → → ↑
→ → → → ↑

Figure 6: The point (M,N) with reward 1 represented by a •. A configuration of the shortest path
trajectory such that points in every partition have the same direction. This is optimal as the metric
induced by d1(x, y) is the Manhattan distance.

Then, an MDP aggregation with 4 states as in Figure 7 has the same structure in its solution than
the original MDP. For any point (x, y), the mapping to the aggregated states is given by E1 = x <
M, y < M , E2 = x ≥ M,y < M , E3 = x < M, y ≥ M and E4 = x ≥ M,y ≥ M , or simply the
blue lines in Figure 6. As said before, Equations 4 and 5 can be seen as linear combinations (adding
to 1) of the original rewards and transition probabilities. Then, the only state with positive reward is
E4, that is, R(E4) = 1 for preceding any action. Otherwise R(E) = 0 for E ∈ {E1,E2,E3}.

E3 E4

E1 E2

Figure 7: Optimal policy π∗ in the aggregation of MDP in Figure 7.

The structure of the solution of this MDP is given by:

π∗(E) = argmin
a∈A

E[d̃(E , Ta(E)) + d̃(Ta(E),E4)] = argmin
a∈A

E[p−1
a + d̃(Ta(E),E4)], (15)

14

Under review as a conference paper at ICLR 2022

where d̃(Ta(E),E4) is the expected number of steps to state E4 from state Ta(E). In this instance of
the problem, for any two connected states E and E ′ by action a ∈ A (for example, from E1 to E3 only
the action a = ↑ has positive probability of transitioning), with probability pa the chain moves to pa,
otherwise it stays with probability 1− pa. From this, by the average of a geometric distribution the
average number of steps to connected states is d̃(E , Ta(E)) = p−1

a . The structure of the aggregated
MDP is optimal with respect to the original state space as R(E4) is the only state with positive
reward. Moreover, π∗(x, y) = π∗(E) for (x, y) ∈ E . Note that there is also a correspondence
between the transient states of the optimal policy of the aggregated MDP and the transient states of
the original MDP. The recurrent states of the aggregated MDP contain the recurrent of the original
MDP.

This argument can be extended to problems where the optimal policy in both aggregated and original
state spaces is given by two modular functions d, d̃ that captures the span of the actions and the
recurrent circuits of maximum reward (given any policy π, the MDP behaves as a Markov Chain
with transition matrix Pπ . Then, the solution of the MDP is a Markov Chain that can be canonically
decomposed into transient and closed recurrent classes, these classes are by definition high reward
circuits). In a way, the modularity of the function d is what allows the reduction of the state space
to work.

As a last and key point, note that the optimal value function V∗(x, y) = γd1(x,y)/(1 − γ2) is in a
way a distraction from the true driver of the solution of the problem, the distance function d1(x, y).
From this point of view, aggregating states according to the similarity of the value function is not
the appropriate way of solving these instances.

15

	Introduction
	Related Work
	Methodology
	Markov Decision Processes
	Representation of Policies as Decision Trees
	Aggregated MDP
	Tree Partition and Approximation to Original MDP
	Tree Algorithm for MDP
	Computational Complexity
	2-dimensional grid

	Numerical Examples
	GridWorld
	Cartpole Balancing

	Conclusion
	Appendix
	2-d Gridworld Example
	d-dimensional grid
	State Aggregation Theory
	Discussion on Optimality of Algorithm 1

