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Abstract

To alleviate the workload of data annotation, we propose a label-free approach (SinusNet)
for the segmentation of maxillary sinus lesions in CBCT images via learning the anomaly
features from diverse synthetic lesions within the normal maxillary sinus. Our SinusNet
achieved average F1 of 80.9± 11.6%, precision of 82.7± 9.1%, and recall of 80.1± 15.0%,
respectively, and comparable performance with those of previous supervised approaches.
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1. Introduction

Segmentation and volume measurement of the maxillary sinus (MS) and maxillary sinus
lesion (MSL) in cone-beam CT (CBCT) can provide an assessment for the diagnosis of
sinusitis and help with the preoperative planning of maxillary implants and bone grafts.
However, the manual segmentation of MS and MSL is complex and time-consuming because
the MS and MSL are adjacent to other important anatomical structures and are sometimes
affected by metal artifacts. Also, the MSL is observed with high variations in texture, size,
and position within the MS region. Recently, deep learning-based methods (Jung et al.,
2021; Hung et al., 2022) have been proposed for successful MS and MSL segmentation in
CBCT images. Despite such success, they all rely on the large-scale well-labeled dataset to
model the diversities of the MS and MSL in CBCT images.

In this paper, we propose a label-free approach for multi-label segmentation of MS,
maxillary air region (MA), and MSL in CBCT images, requiring no lesion annotation.
Our contributions are follows: 1) We propose a label-free approach (SinusNet) for MSL
segmentation to alleviate the workload of data annotation in CBCT images. 2) Motivated
by the observation that the MSL exists in the MS with various patterns of high-intensity
ranges, we synthesize lesion masks considering the shape and texture features of MSL using
morphological operations and insert these into the normal MS to generate training pairs.
3) To the best of our knowledge, we are the first to attempt a deep learning-based label-free
segmentation of MSL in CBCT images.
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Figure 1: Overview of proposed SinusNet framework. We insert synthetic lesions in the
normal MS and train SinusNet to segment the MS and MA. In the inference, the
SinusNet first segment the MS and MA, then the segmentation results of MSL
are generated by pixel-wise multiplication of the predicted MS and inverse MA.

2. Methods
Data description. We built the CBCT dataset acquired 38 patients, consisting of 18 and
6 normal MS for training and validation sets, respectively, 14 patients with lesions for test
sets. The normal ground truth was manually annotated by one radiologist. This manual
task took approximately 2 hours per CBCT scan to complete. The 640×640 size of CBCT
images was resized to 256×256 and normalized according to min-max normalization.
Synthetic lesion generation. We used three synthetic lesion generation methods based
on our domain knowledge to represent various shapes of the MSL (Figure 1). First, we
generated a curve line with random width (3-5 pixel diameter) along the inside of the MS
boundary, starting from the edge of the MS in most cases. Second, we generated a random
number of shapes (ellipses) with various sizes and orientations into the normal MS region.
In our domain knowledge, we observed that the MSL is mostly shown as ellipse shapes in
the axial plane of CBCT images. For the last method, we filled the whole air region of
the MS to represent patients filled with the MSL. After generating different shape types to
represent synthetic MSL, we apply pixel noise to closely resemble the real MSL’s intensity
range (30-80 pixel values). The optimal range of pixel values was determined on an empirical
basis. We obtained air labels for our synthetic lesions by simple pixel-wise multiplication of
inverse synthetic lesion masks and paired normal air labels. CBCT inputs were generated
by pixel-wise addition with synthetic lesions to the MS region in normal CBCT images.
Network architecture. The network architecture was motivated by the U-Net consisting
of an encoder and decoder. We used three backbones of ResNet101, DenseNet121, and
EfficientNetB4 with initial weights of ImageNet for transfer learning. The Sigmoid function
was used as the output activation for multi-label segmentation of the MS and MA.
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Multi-label segmentation loss. For multi-label segmentation, we used soft Dice loss
(SDL) for both the MS and MA segmentation. The SDL is defined as: SDL(G,P ) =
1− 1
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of classes (background, MA, MS), G is the ground truth, and P is the prediction result.
Training setup. We implemented the deep networks on Tensorflow with NVIDIA GeForce
GTX 1080Ti. For training, Adam optimizer was used with an initial learning rate of 10−3.
Deep networks were trained for 200 epochs with a batch size of 16. We adopt three data
augmentations, including rotation (±10◦), brightness (±20%), Gaussian noise (0.05).

3. Experiments and Discussion
Impact of Label-free approach. To measure the performance of deep networks, we
used the F1-score (F1), precision (PR), and recall (RC). In our experiments, ResNet101
achieved the highest performance for the MSL segmentation (Figure 2). As shown in Table
1, experimental results show that the segmentation performance is further improved by
training with various morphological and texture features of synthetic lesions generated by
our label-free methods. Our SinusNet required about 0.02 seconds per image for inference.
Comparison with supervised approaches. For MSL segmentation in CBCT images,
our label-free approach shows comparable performance with those of reported supervised
approaches (Jung et al., 2021; Hung et al., 2022) as shown in Figure 2a. Furthermore,
we not only use a smaller CBCT dataset than theirs but also do not need any true lesion
annotations for training. Our SinusNet may provide a feasible way to be relieved from the
labor-intensive manual annotation and allow an automated lesion segmentation in real-time.
Table 1: Ablation study for synthetic lesion generation methods in ResNet101 backbone.
Synthetic method MS MA MSL
Edge Shape Fill F1 PR RC F1 PR RC F1 PR RC
✓ - - 97.0±1.8 96.7±1.8 97.4±2.4 79.3±18.0 97.5±1.4 70.3±23.8 41.4±18.0 86.1±6.3 29.6±17.0
- ✓ - 97.1±1.4 96.4±2.1 97.9±1.3 87.3±10.1 97.8±1.2 80.2±15.6 61.5±13.5 89.4±8.2 48.4±15.9
- - ✓ 96.4±2.9 97.2±1.6 95.7±4.6 88.6±8.2 97.8±1.3 81.9±12.9 60.2±21.1 86.9±13.8 48.5±21.1
✓ ✓ ✓ 96.6±1.7 95.8±2.4 97.4±2.1 95.0±2.2 94.7±3.5 95.4±2.9 80.9±11.6 82.7±9.1 80.1±15.0

Figure 2: (a) F1 comparison with previous supervised approaches. (b) Comparison of
ground truth (yellow) and predicted results (red) from our SinusNet.
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