
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Tag Tree-Guided Multi-grained Alignment for Multi-Domain
Short Video Recommendation

ABSTRACT
Multi-Domain Rcommendation (MDR) aims to leverage data from
multiple domains to enhance recommendations through overlap-
ping users or items. However, extreme overlap sparsity in some ap-
plications makes it challenging for existing multi-domain models
to capture domain-shared information. Moreover, the sparse over-
lapping users or items result in a cold start problem in every single
domain and hinder feature space alignment of different domains,
posing a challenge for joint optimization across domains. However,
in multi-domain short video recommendation, we identify two key
characteristics that can greatly alleviate the overlapping sparsity
issue and enable domain alignment. (1) The following relations be-
tween users and publishers exhibit strong preferences and a con-
centration effect, as popular video publishers, who constitute a
small portion of all users, are followed by amajority of users across
various domains. (2)The tag tree structure shared by all videos can
help facilitate multi-grained alignment across multiple domains.
Based on these characteristics, we propose tag tree-guided multi-
grained alignment with publisher enhancement for multi-domain
video recommendation. Our model integrates publisher and tag
nodes into the user-video bipartite graph as central nodes, enabling
user and video alignment across all domains via graph propaga-
tion. Then, we propose a tag tree-guided decomposition method
to obtain hierarchical graphs for multi-grained alignment. Further,
we design tree-guided contrastive learning methods to capture the
intra-level and inter-level node relations respectively. Finally, ex-
tensive experiments on two real-world short video recommenda-
tion datasets demonstrate the effectiveness of our model.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Multi-domain recommendation, Multi-grained domain alignment,
Tree structure, Popular publisher enhancement
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(a) Featured-Video (b) Double-Columned Discovery (c) Single-Columned Swift Slide

user following publisher or not

video
tag

Figure 1: Multiple scenarios in a popular short video plat-
form. Only part of the tag information is displayed.

1 INTRODUCTION
Aiming to provide users with multimodal content that caters to
their diverse interests, short video recommendation plays a piv-
otal role in internet entertainment.With the advance of deep learn-
ing techniques, many deep learning models [2, 3, 5, 6] have been
widely deployed in short video recommendation services, signifi-
cantly enhancing user experience by accurately predicting prefer-
ences for unviewed short videos.

In response to users’ varied needs and commercial objectives,
short video platforms, such as Tiktok1 and Kuaishou2, generally
offer multiple recommendation scenarios. For example, a popular
short video platform has scenarios such as Featured-Video, Double-
Columned Discovery, and Single-Columned Swift Slide scenarios, as
depicted in Figure 1. These scenarios are similar to the multiple
scenarios described in research [1] and can be treated as differ-
ent specific recommendation domains of users and short videos.
Generally, the overlapping users or short videos in these domains
present the potential to enhance recommendations in each domain
by leveraging users’ interests in other domains. Nonetheless, in
some applications, the overlap of users or items in different do-
mains is scarce (i.e., overlap sparsity issue), which results in a spe-
cific domain being unable to fully exploit the additional abundant
information from other domains. For instance, the analysis of 10
million instances of real interactions within the three aforemen-
tioned domains indicated the extreme overlap sparsity issue: only
1.3% of users and 2.8% of short videos appeared simultane-
ously in these three domains. Most existing multi-domain mod-
els [12, 13, 19] design a domain-shared module to model shared
information across different domains. These models actually rely
on overlapping users or items to learn shared information, mak-
ing it difficult to adopt them for overlap sparsity issue. In addition,
the overlap sparsity issue results in a cold start problem for a large
1https://www.tiktok.com/
2https://www.kuaishou.com/
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(a) Concentration effect of following relations

<video>

<music> <sport>
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<basketball>

… tag tree

video

<football>

<instrument>

less similar

<violin>

<water>

<swim>

similar more similar

(b) Tag tree structure of short video recommendation

Figure 2: Two key characteristics in multi-domain short
video recommendation

number of users in single domains, which limits the alignment of
different feature spaces of different domains and poses a challenge
for multi-domain joint optimization modeling.

However, we observe that the characteristics of two shared roles
(i.e., user following publishers and video tags as shown in Figure 1)
across different domains can greatly alleviate the overlap sparsity
issue and achieve domain alignment. Specifically:

(1) Concentration effect of following relations: On short video
platforms, users can assume dual roles as both viewers and publish-
ers of videos. Intuitively, following relations between viewers
and publishers indicate stronger preferences than the click-
ing relations. Thus, users who follow the same publisher in dif-
ferent domains are likely to share similar preferences. Moreover,
following relations exhibit a pronounced concentration ef-
fect as Figure 2(a) depicted, where popular publishers accounting
for a small number of all users connect to most users in multiple
domains. This concentration effect, coupled with the strong pref-
erence of following relations, can help popular publishers serve as
central nodes to align the preferences of non-overlapping users
across different domains.Thereby, it can enhance preference knowl-
edge sharing among domains. For simplicity, we refer to the pop-
ular publishers as publishers in the following.

(2) Tag tree-guided hierarchical similarity structure: Short videos
across different domains share the same tag tree structure. As shown
in Figure 2(b), videos related to <violin>, <football>, <swim> and
<basketball> all share a common root tag, indicating their coarse-
grained similarity. However, the degree of similarity among these
videos varies at different levels of tag granularity. Thus, the tag

tree structure can serve as the supervision information to
capture the hierarchical similarity of videos, enabling multi-
grained alignment of non-overlapping videos across different do-
mains. Additionally, video publishers typically exhibit a stable tag-
releasing style. That is, although a single publisher may release a
great many videos, the tags of these videos are generally similar or
the same. Thereby, we can introduce the releasing relations to uti-
lize the tag tree structure tomodel the similarity of publisher styles
across domains. In addition to the above-mentioned following rela-
tion, it can further enhance the similarity of user preferences and
alleviate the overlap sparsity issue.

Drawing on the two characteristics, we proposeTag tree-Guided
Multi-grainedAlignmentwithPublisherEnhancement (TGMAPE)
for multi-domain short video recommendation. Specifically, we in-
troduce publisher and tag nodes, along with their associated rela-
tions, into the bipartite graph of users and videos to construct a tag
and publisher enhanced heterogeneous graph. In this graph, the
publisher and tag nodes serve as central bridge nodes to enable
user and video alignment across all domains. Then, we propose
a tag tree-guided decomposition method, which decomposes the
graph into hierarchical graphs for multi-grained alignment. Fur-
thermore, to further address the sparsity issue, we design two con-
trastive learning functions to model the tree-guided intra-level and
inter-level node relations respectively. These contrastive learning
functions enhance the modeling of relations between node repre-
sentations by reinforcing the similarities and differences among
nodes within the tree structure. Finally, extensive experiments on
two real-world short video recommendation datasets demonstrate
the effectiveness of our model.

2 RELATEDWORK
2.1 Single-Domain Recommendation
Existing recommendation models mainly focus on single-domain
modeling. Traditional models, such as Collaborative Filtering (CF),
assume users exhibiting similar behavior patterns share similar
preferences [2, 6, 9]. Subsequent research [11, 20, 29, 32] pays atten-
tion to decoding users’ evolving preferences from their historical
behaviors. For instance, DIN [32] employs attention mechanisms
to capture target item-related interests from user behaviors. Nat-
urally, the interactions between users and items in recommenda-
tion systems form a graph structure. As Graph Neural Networks
(GNNs) [27] have demonstrated the remarkable ability to process
graph-structured data, many researchers have explored a great va-
riety of GNN methods [8, 23, 25] to enhance recommendation per-
formance. For instance, Graph Convolutional Network (GCN) [10]
has been employed to factorize user-item rating matrices into user
and item embedding matrices for recommendation. LightGCN[8]
removes nonlinear activation and feature transformation in GCN.
Nowadays, GNNs have served as important components in vari-
ous recommendation models [22, 26, 30] to encode complex rela-
tions. In this work, we design tag tree-guided hierarchical multi-
graphs for multi-grained alignment across different domains. Dif-
ferent from traditional recommendation graphs, it involves tree-
structured node-level relations across multi-graphs, which allows
for more accurate representations of nodes within graphs.
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2.2 Multi-Domain Recommendation
Multi-Domain Recommendation [31, 34] aims to develop a unified
model from data across domains to serve users in all domains. Pre-
vious research draws inspiration from Multi-Task Learning (MTL)
principles, such as MMoE [14] and PLE [21]. MMoE uses differ-
ent gate networks for each domain to fuse shared domain experts
while PLE extends MMoE by introducing domain-specific experts.
Based on PLE, SAR-Net [18] adopts attention modules to capture
users’ across-domain interests. STAR [19] proposes a star-shaped
network consisting of one centered network shared across all do-
mains and the other domain-specific network tailored to each do-
main. To capture the difference of domains at a finer-grained level,
AdaSparse [28] and PEPNet [1] learn domain-specific features at
parameter level. In summary, most multi-domain recommendation
models use both domain-shared and domain-specific structures to
extract a user’s shared and specific features across domains. How-
ever, when dealing with the overlap sparsity issue, it is challenging
to learn non-overlapping users’ specific and shared features from
their interaction data in a single domain. Although EDDA [15] pro-
poses to identify similar pairs for domain alignment, it still relies
on sparse overlapping users or items. Different from existing mod-
els, our model introduces publishers and tag tree structure shared
by multiple domains for multi-grained alignment.

3 PRELIMINARY
Multi-Domain Recommendation typically employs D = {𝐷𝑖 }𝑂𝑖=1
to denote 𝑂 distinct domains. Each instance in D can be repre-
sented as (x, 𝑦), where 𝑦 ∈ {0, 1} is the binary label of x. In the
specific multi-domain short video recommendation, each instance
x contains the user, video, publisher and tag entities. We use U,
V , P to denote the universal sets of users, videos and publish-
ers across all domains respectively. Additionally, we adopt T =
{T𝑘 }𝐾

𝑘=0 to denote universal sets of tags in the tag tree, where T𝑘
represents the tag set at 𝑘-th level and 𝐾 indicates the depth of the
tree. In short video recommendation, the effective view label, where
if the viewing time exceeds 50% of the video’s total duration, and
0 otherwise, is more significant than other interaction labels, such
as clicks. Thus, we adopt the effective view label as 𝑦 in our work.

Each positive interaction instance x = (𝑢, 𝑣, 𝑃,𝑇 , 𝑑𝑖 ) (i.e., (x, 𝑦 =
1) ∈ 𝐷𝑖 ) represents that in the 𝑖-th domain 𝑑𝑖 , user 𝑢 following
publisher list 𝑃 = [𝑝1, 𝑝2, · · · , 𝑝𝑀 ] effectively views video 𝑣 cor-
responding to tag list 𝑇 = [𝑡0, 𝑡1, · · · , 𝑡𝐾 ], where 𝑀 denotes the
number of publishers that 𝑢 follows and 𝑡𝑘 ∈ T𝑘 .

Moreover, publishers typically exhibit stability in the tag infor-
mation of their released videos.The stable tag information can help
model the multi-grained similarity between different publishers,
which in turn facilitates the alignment of users across various do-
mains. Thus, we introduce the releasing relation set E𝑃𝑇 , where
{(𝑝, 𝑡 ′𝑘 )}𝐾

𝑘=0 ⊂ E𝑃𝑇 indicates that publisher 𝑝 frequently releases
videos tagged with [𝑡 ′0, 𝑡 ′1, · · · , 𝑡 ′𝐾 ], where 𝑡 ′𝑘 ∈ T𝑘 . Based on
the above definitions, the multi-domain short video recommenda-
tion task can be defined as follows:

Problem definition: Given instance set D with releasing rela-
tion set E𝑃𝑇 , this task should predict the label 𝑦 of each sample x
in all short video recommendation domains accurately.

4 METHODOLOGY
In this section, we introduce TGMAPE for multi-domain recom-
mendation, as depicted in Figure 3. In Section 4.1, we detail the con-
struction of the tag and publisher-enhanced heterogeneous graph.
Then, we introduce the tag tree-guided decomposition to gener-
ate hierarchical multi-graphs, enabling multi-grained alignment.
Section 4.2 elaborates on the intra-level graph aggregation pro-
cess based on the multi-graphs. Furthermore, in Section 4.3, we
propose tree-based contrastive learning to capture both intra-level
and inter-level node relationships. Lastly, Section 4.4 illustrates the
inter-level fusion and prediction method.

4.1 Tag Tree-Guided Multi-Graphs
Construction

4.1.1 Tag and Publisher Enhanced Heterogeneous Graph Construc-
tion. Different from existing multi-domain recommendation meth-
ods, our model exploits the tag tree structure for multi-grained
alignment across different domains. The tree incorporates parent-
child relation set E𝑇𝑇 among tags in T . Specifically, if tag 𝑡 ′ is a
parent tag of tag 𝑡 , it can be denoted as (𝑡, 𝑡 ′) ∈ E𝑇𝑇 . Thereby, our
tag tree structure can be formulated as follows:

Tag Tree Structure. 𝑇𝑟𝑒𝑒 = {T𝑘 }𝐾
𝑘=0 ∪ E𝑇𝑇 satisfies:

• For each tag 𝑡𝑘+1 ∈ T𝑘+1, there exists a unique parent
node 𝑡𝑘 ∈ T𝑘 , i.e.,(𝑡𝑘+1, 𝑡𝑘 ) ∈ E𝑇𝑇 .

• For any two distinct levels 𝑖, 𝑗 within the tag tree, no tag
node is shared, i.e., T 𝑖 ∩ T 𝑗 = ∅.

Figure 2(b) illustrates a sample tag tree structure in which tag
<instrument> is the parent tag of tag <violin>, for example. For
each positive sample x = (𝑢, 𝑣, 𝑃,𝑇 , 𝑑𝑖 ), multiple kinds of relations
can be identified as follows:

• E𝑈𝑉 : (𝑢, 𝑣) ∈ E𝑈𝑉 represents that user 𝑢 ∈ U interacts
𝑣 ∈ V in domain 𝑑𝑖 .

• E𝑈𝑃 : (𝑢, 𝑝𝑖 ) ∈ E𝑈𝑃 represents that user 𝑢 ∈ U follows
𝑝𝑖 ∈ P. In E𝑈𝑃 , publishers serve as central nodes to
connect most of users across different domains, thus
aligning sparse-overlapping users in different domains.

• E𝑉𝑇 : {(𝑣, 𝑡𝑘 )}𝐾𝑘=0 ⊂ E𝑉𝑇 represents that video 𝑣 ∈ V cor-
responds to tag list𝑇 = [𝑡0, 𝑡1, · · · , 𝑡𝐾 ] where 𝑡𝑖 represents
the 𝑖-th level tag. For instance, as depicted in Figure 2(b), a
violin-related video correspond to𝑇 = [<video>, <music>,
<instrument>, <violin>]. In E𝑉𝑇 , tags serve as central
nodes to connect all videos across different domains.
Besides, the hierarchical tree structure enables the multi-
grained alignment.

Based on the above relation data, we can construct Tag and Pub-
lisher EnhancedHeterogeneous Graph asG = (U∪V∪P∪T , E𝑈𝑉∪
E𝑈𝑃 ∪ E𝑉𝑇 ∪ E𝑃𝑇 ∪ E𝑇𝑇 ), as depicted in Figure 3(a).

4.1.2 Tag Tree-Guided Decomposition. To facilitate the alignment
of videos and users across multiple domains with different levels of
granularity, we decompose the related relation sets E𝑉𝑇 and E𝑃𝑇
guided by the tag tree structure as follows:

E [𝑘 ]
𝑉𝑇 = {(𝑣, 𝑡𝑘 ) | (𝑣, 𝑡𝑘 ) ∈ E𝑉𝑇 },

E [𝑘 ]
𝑃𝑇 = {(𝑣, 𝑡𝑘 ) | (𝑣, 𝑡𝑘 ) ∈ E𝑃𝑇 }.

(1)

3
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Figure 3: The framework of TGMAPE

Evidently, all tags of videos share a common root tag <video>. As
the common tag does not facilitate differentiation among videos,
we ignore the root level (𝑘 = 0) in the following. Accordingly, G is
decomposed into the hierarchical multi-graphs: ∀𝑘 = 1, 2, · · · , 𝐾,

G [𝑘 ] = (U ∪V ∪ P ∪ T𝑘 , E𝑈𝑉 ∪ E𝑈𝑃 ∪ E [𝑘 ]
𝑉𝑇 ∪ E [𝑘 ]

𝑃𝑇 ) .

In particular, different from the simple superposition of multi-
ple graphs, it incorporates a complex node-level relation set E𝑇𝑇
between hierarchical multiple graphs. Accordingly, the tag tree
guided multi-graphs can be formulated as G∗ = {G [𝑘 ] }𝐾

𝑘=1 ∪ E𝑇𝑇 ,
as depicted in Figure 3(b).

4.2 Intra-Level Graph Aggregation
Before aggregating graphs, we initialize the embeddings of users,
videos, publishers, and tags. Aiming to achievemulti-grained align-
ment, we initialize 𝐾 group of embeddings for the 𝐾 hierarchical
graphs accordingly. Given that the embedding and aggregation
methods for the various entities within the multi-graphs are analo-
gous, we choose to focus on the video entity for simplicity. Specif-
ically, by transforming video 𝑣 ∈ V into the 𝑘-th level video em-
bedding matrix 𝐸 [𝑘 ]𝑣 ∈ R |V |×𝑑 with 𝑑 denoting the embedding
dimension, we obtain the initial embedding of video 𝑣 as e[𝑘 ],0𝑣 .
Then the aggregation process can be formulated as follows:

e[𝑘 ],𝑙+1𝑣 = 𝜑 (𝐴𝑔𝑔({𝑓 𝑢𝑣 (e[𝑘 ],𝑙𝑢 ) | ∀𝑢 ∈ N [𝑘 ],𝑈
𝑣 }),

𝐴𝑔𝑔({𝑓 𝑡𝑣 (e[𝑘 ],𝑙𝑡 ) | ∀𝑡 ∈ N [𝑘 ],𝑇
𝑣 })),

(2)

where𝑁 [𝑘 ],𝑈
𝑣 and𝑁 [𝑘 ],𝑇

𝑣 respectively denote the neighboring user
and tag node sets of video 𝑣 inG [𝑘 ] . In ourwork, we select the split-
ting function for 𝑓 (·), mean pooling operation for 𝐴𝑔𝑔(·) and con-
catenation operation for 𝜑 (·) respectively, due to their efficiency
and effectiveness through empirical analysis. Specifically, after split-
ting, the dimension of embedding 𝑓 (e) is reduced to 𝑑/2, such that
𝑓 𝑢𝑣 (e[𝑘 ],𝑙𝑢 )∥ 𝑓 𝑡𝑣 ((e[𝑘 ],𝑙𝑡 ) = e[𝑘 ],𝑙𝑢 with ·∥· denoting the concatena-
tion operation. Note that, in the edge set E𝑈𝑉 ∪ E𝑈𝑃 ∪ E [𝑘 ]

𝑉𝑇 ∪
E [𝑘 ]
𝑃𝑇 of graph G [𝑘 ] , each node type is associated with two types

of edges. For instance, regarding the user node type, it is associ-
ated with two distinct relation sets: E𝑈𝑃 and E𝑈𝑉 . Upon setting
the combination function 𝜙 as the concatenation operation, the di-
mension of embedding e[𝑘 ],𝑙+1𝑣 reverts to the original dimension 𝑑 .
Through multi-layer graph propagation, a large number of
non-overlapping users or videos can be aligned across differ-
ent domains with publisher or tag nodes as center bridge nodes.

Finally, the weighted-pooling operation is applied to aggregate
representation by operating on the propagated 𝐿 layers as follows:

e[𝑘 ],∗𝑣 =
𝐿∑
𝑙=0

𝛼𝑙e
[𝑘 ],𝑙
𝑣 , (3)

where 𝛼𝑙 indicates the importance of the 𝑙-th layer representation
in constituting the final representation. Following LightGCN [8],
we set 𝛼𝑙 as 1

(𝑙+1) by default. Similarly, we obtain the aggregated

representations as e[𝑘 ],∗𝑢 , e[𝑘 ],∗
𝑡𝑘

, {e[𝑘 ],∗𝑝𝑚 }𝑀𝑚=1 for user 𝑢, 𝑘th-level
tag 𝑡𝑘 and 𝑢 following publisher list 𝑃 in G [𝑘 ] .
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Video-aware publisher representation. As users often have
various interests, theymay followmultiple publishers, such as game
and music video publishers. To represent the user’s following pref-
erences for a particular video, we propose a video-aware gate
mechanism that integrates information from the user’s following
publisher list. Specifically, the video-aware gating network 𝑔 pro-
duces a distribution over 𝑀 publishers based on the video-related
input, and the final ensembled video-aware following preference
representation e[𝑘 ],∗𝑃 can be formulated as:

𝑔(𝑝𝑚) =
exp(e[𝑘 ],∗𝑝𝑚 ×W(e[𝑘 ],∗𝑣 ∥e[𝑘 ],∗

𝑡𝑘
)
⊤
)

𝑀∑
𝑗=1

exp(e[𝑘 ],∗𝑝 𝑗 ×W(e[𝑘 ],∗𝑣 ∥e[𝑘 ],∗
𝑡𝑘

)
⊤
)
,

e[𝑘 ],∗𝑃 =
𝑀∑
𝑚=1

𝑔(𝑝𝑚)e[𝑘 ],∗𝑝𝑚 ,

(4)

whereW ∈ R𝑑×2𝑑 serves tomatch the dimensions of vectors e[𝑘 ],∗𝑝 𝑗

and e[𝑘 ],∗𝑣 ∥e[𝑘 ],∗
𝑡𝑘

; × indicates the matrix multiplication.

4.3 Tree-Based Contrastive Learning
In Section 4.2, we obtain the representations of tag-tree guided hi-
erarchical graphs. To effectively capture node-level relations among
these graphs, we design two types of constrastive learning. To il-
lustrate themmore clearly, we use Figure 3(c) as an example below.

(1) inter-level contrastive learning: Inter-level parent-child
relations E𝑇𝑇 exist among different levels. For each node 𝐴1 in
(𝑘 + 1)-th level, its parent node is 𝐴 rather than 𝐵 in 𝑘-th level. To
capture the relation, we propose the inter-level parent-child indi-
cator MLPe as supervision, where the score of positive inter-level
node pairs (𝐴1, 𝐴) ∈ E𝑇𝑇 should be higher than negative pairs
(𝐴1, 𝐵) ∉ E𝑇𝑇 . Naturally, contrastive learning is suitable for mod-
eling the positive and negative pairs. We utilize the above tag in-
formation to enrich the video information. For a mini-batch of 𝑁
samples {x1, x2, · · · , x𝑁 }, each sample contains a video 𝑣𝑖 and its
corresponding tag list [𝑡0𝑖 , 𝑡

1
𝑖 , · · · , 𝑡

𝐾
𝑖 ]. For each sample x𝑖 , we sam-

ple a negative sample x𝑗 , such that for the (𝑘 + 1)-th tag 𝑡𝑘+1𝑖 , the
𝑘-th tag 𝑡𝑘𝑗 is not its parent tag 𝑡𝑘𝑖 . Thereby, we collect paired con-
trastive training data𝑌𝑒 = {(𝑖, 𝑗)}𝑁𝑖=1, and formulate the inter-level
contrastive loss accordingly:

L𝑒 = − 1
𝐾 − 1

𝐾−1∑
𝑘=1

∑
(𝑖, 𝑗 ) ∈𝑌𝑒

𝐶 (e[𝑘+1]𝑣,𝑖 , e[𝑘 ]𝑣,𝑖 , e
[𝑘 ]
𝑣,𝑗 |MLPe),

𝐶 (a, b, c|𝜙) = log(𝜎 (𝜙 (a∥b) − 𝜙 (a∥c))),
(5)

where 𝜎 (·)is the sigmoid activation.
(2) intra-level contrastive learning. Also, there exists a type

of contrastive relation among nodes at the same level. To capture
the relation, we propose the intra-level same-parent indicatorMLPa
as supervision. Specifically, the corresponding score of positive
intra-level node pairs (𝐴1, 𝐴2) with the same parent node𝐴 should
be higher than negative pair (𝐴1, 𝐵1) with different parent nodes
(i.e., (𝐴1, 𝐴) ∈ E𝑇𝑇 , (𝐴2, 𝐴) ∈ E𝑇𝑇 and (𝐵1, 𝐴) ∉ E𝑇𝑇 ). Thus, for
each sample x𝑖 , we sample a positive sample x𝑗 and a negative
sample x𝑗 ′ , such that at the (𝑘 +1)-th level, 𝑡𝑘+1𝑖 and 𝑡𝑘+1𝑗 share the

same parent tag while 𝑡𝑘+1𝑖 and 𝑡𝑘+1𝑗 ′ do not. Thereby, we collect
paired contrastive training data 𝑌𝑎 = {(𝑖, 𝑗, 𝑗 ′)}𝑁𝑖=1, and formulate
the intra-level contrastive loss accordingly:

L𝑎 = − 1
𝐾 − 1

𝐾−1∑
𝑘=1

∑
(𝑖, 𝑗, 𝑗 ′ ) ∈𝑌𝑎

𝐶 (e[𝑘+1]𝑣,𝑖 , e[𝑘+1]𝑣,𝑗 , e[𝑘+1]𝑣,𝑗 ′ |MLPa), (6)

where 𝐶 (a, b, c|𝜙) is the same as Eq. 5.

4.4 Inter-Level Fusion and Prediction
Inter-Level Fusion. After obtaining the hierarchical representa-
tions, we employ efficient mean pooling operation to fuse these
representations. The inter-level video representation is then for-
mulated as: e𝑣 = 1

𝐾

∑𝐾
𝑘=1 e

[𝑘 ],∗
𝑣 . Similarly, the inter-level represen-

tations for users and publishers can be derived as e𝑢 , e𝑃 .
Prediction and Optimization. After obtaining the representa-
tions e𝑢 , e𝑣, e𝑃 and domain embedding e𝑑𝑖 , we concatenate them
to obtain the overall representation of the instancex = (𝑢, 𝑣, 𝑃,𝑇 , 𝑑𝑖 )
and then adopt the MLP to predict its label as follows:

𝑦 = MLP(e𝑢 ∥e𝑣 ∥e𝑃 ∥e𝑑𝑖 ), (7)

where the last layer of MLP employs sigmod function as the ac-
tivation function. Then, we employ the point-wise binary cross-
entropy loss for a mini-batch of samples as follows:

L𝑜 = −
𝑂∑
𝑖=1

∑
(x,𝑦) ∈𝐷𝑖

𝑦 log(𝑦) + (1 − 𝑦) log(1 − 𝑦) . (8)

Finally, the overall loss L is defined using hyper-parameters 𝜆𝑒
and 𝜆𝑎 as follows:

L = L𝑜 + 𝜆𝑒L𝑒 + 𝜆𝑎L𝑎 . (9)

5 EXPERIMENTS
In this section, we present empirical results to demonstrate the
effectiveness of our proposed TGMAPE. These experiments are
designed to answer the following research questions: RQ1 How
does TGMAPE perform compared with state-of-the-art recommen-
dationmethods?RQ2What factors affect the performance ofmulti-
domain recommendation? RQ3 How do the hyper-parameters in
TGMAPE impact multi-domain recommendation performance?

5.1 Experimental Settings
5.1.1 Dataset Description. The datasets utilized in this work were
collected from a leading short video platform inChina.The datasets
were subsampled from multi-domain recommendation’s logs, cor-
responding to two distinct time intervals3. These datasets, referred
to asMDSVR-small andMDSVR-large, encompass data across three
distinct domains: Featured-Video, Double-Columned Discovery, and
Single-Columned Swift Slide, denoted as D1, D2, D3 respectively.
Each dataset is split into training, validation, and test sets in a ratio
of 8:1:1. Across both datasets, there are 5434 publishers that serve
as central nodes. Besides, the tag tree had four levels (i.e., 𝐾 = 3).

3We collected the data ourselves, due to the absence of public datasets that has anal-
ogous following relations and the tag tree structure. We plan to release part of our
experimental datasets and code.
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The number of tags at levels 𝑘 = 0, 1, 2, 3 are 1, 39, 176, 414 respec-
tively. Table 1 provides a comprehensive overview of the datasets’
characteristics, including the overlapping proportion of users or
videos across the domains, as indicated in the overlap column. No-
tably, the overlap proportion for users and videos is relatively low,
indicating that the multi-domain datasets exhibit significant
overlap sparsity. In contrast, publisher and tag entities are shared
across all domains.

Table 1: The statistics of the two datasets.

MDSVR-small

Domain D1 D2 D3 All Overlap

#Samples 545,162 44,859 886,765 1,476,786 -
#User 48,713 16,410 60,575 116,181 0.179%
#Video 179,755 26,688 219,529 304,532 2.373%

MDSVR-large

Domain D1 D2 D3 All Overlap

#Samples 1,816,208 149,533 2,956,884 4,922,625 -
#User 64,344 28,938 74,091 146,067 0.583%
#Video 318,711 63,772 368,977 589,392 4.668%

5.1.2 Evaluation Metrics. Following many multi-domain recom-
mendation works [18, 24], we choose two commonly-used metrics,
AUC (Area Under the Curve) [4] and RImp (Relative Improve-
ment) to evaluate the performance of the TGMAPE.

5.1.3 Baselines. To demonstrate the effectiveness of our proposed
model, we compared it with three categories of existing recommen-
dation models: Single Domain Recommendation (SDR) baselines,
Multi-task Learning (MTL) models and MDR (Multi-domain Rec-
ommendation) models.

(1) Single Domain Recommendation (SDR) Baselines.
• Single integrates the embedding and prediction layers as

detailed in Section 4.4.
• NeuMF [9] combines traditional matrix factorization with

an MLP to simultaneously extract both low-dimensional
and high-dimensional features.

• NGCF [23] obtains the representation of a node by aggre-
gating its neighbor nodes and additionally uses element-
wise multiplication to incorporate interactions.

• LightGCN [8] streamlines the GCN model by eliminat-
ing feature transformation and nonlinear activation layers,
opting instead to directly apply neighborhood aggregation
operations to update the embedded representation.

• DCCF [17] leverages an adaptive self-supervised augmen-
tation to disentangle interests behind user-item interactions.

(2) Multi-Task Learning (MTL) Baselines
• MMoE [14] captures task relationships and shared repre-

sentations through a set of different experts.We adaptMMoE
for multi-domain recommendations by treating the task
for each domain as an individual task.

• PLE [21] extends theMMoE by incorporating task-specific
experts. Similarly, we apply PLE for multi-domain recom-
mendations, building different experts for each domain.

(3) Multi-Domain Recommendation (MDR) Baselines

• HMoE [12] employs the implicit and explicit mix of expert
structures to learn the relationships among domains.

• STAR[19] designs a domain-shared network and domain-
specific networks to capture the shared and specific knowl-
edge in each domain.

• AdaSparse [28] adopts neuron-level domain-awareweight-
ing factors to measure the importance of neurons for dif-
ferent domains.

• HiNet [33] utilizes hierarchical information extraction and
scenario-aware attentive network to cater tomulti-task and
multi-domain scenarios. For multi-domain recommenda-
tions, we adapt HiNet using a single task structure.

• PEPNet [1] incorporates dynamic parameters to more ef-
fectively capture domain-specific patterns.

• EDDA [15] disentangles knowledge across domains by sep-
arating model and embedding for inter-domain and intra-
domain segments, and identifies similar user/item pairs from
different domains through graph random walks.

To ensure fair comparison, all baselines use the represen-
tations of 𝑢, 𝑣, 𝑃,𝑇 , 𝑑𝑖 in x as input. Also, we introduce a mod-
ified version of our model, TGMAPE(CPT), to validate that the
performance enhancements of TGMAPE come from modeling the
concentration effect of following relations and hierarchical multi-
grained alignment with tags, rather than just adding tags and pub-
lisher information. Specifically, TGMAPE(CPT) aggregates user and
video representations based on user-video bipartite graph and then
embeds tag, publisher and domain representations as the input of
MLP outlined in Section 4.4. For SDR methods, we train a separate
model for each domain. For MTLmethods, we treat the aggregated
data from all domains as the input and recommendation for each
domain as a single task, following previous MDR [7, 16, 19] setting.

5.1.4 Implement Details. Allmodels in this study are implemented
using PyTorch. In Section 5.3, we detail the impact of crucial hyper-
parameters of tree-guided contrastive loss in our model, including
the contrastive loss weights 𝜆𝑒 and 𝜆𝑎 . Additionally, Section 5.4 ex-
amines the impact of other hyper-parameters, including the model
depth𝐿 and the dimension of latent embedding vectors𝑑 .We adopt
the optimal configurations for these hyper-parameters. Under the
above settings, all models are trained using Adam optimizer with
a learning rate of 1e-4, batch size of 8196. The hidden sizes ofMLP
described in Section 4.4 are set as [64,32] by default. The hidden
sizes ofMLPe andMLPa for contrastive learning are set as [32]. To
ensure fair comparison, we apply the above-mentioned settings
across all models. Furthermore, we search for optimal values of
the other hyper-parameters of the baseline models as suggested in
their respective original papers. Ultimately, we employ the early
stopping strategy based on the models’ performance on the valida-
tion set to avoid overfitting.

5.2 Overall Performance Comparison (RQ1)
The experimental results for the two employed datasets across mul-
tiple domains are presented in Table 2, where we can observe that:

• TGMAPE consistently outperforms all baselines across all
datasets and domains, demonstrating the effectiveness

6
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Table 2: PerformanceComparison:The overall performance over the two datasets. “*”denotes that the best-performingmethod
significantly outperforms the second-best one on the paired t-test (p-value < 0.05).

Model
MDSVR-small MDSVR-large

D1 D2 D3 D1 D2 D3
AUC RImp AUC RImp AUC RImp AUC RImp AUC RImp AUC RImp

Single 0.7348 - 0.6662 - 0.7450 - 0.7554 - 0.7142 - 0.7666 -
NeuMF 0.7347 -0.01% 0.6673 +0.17% 0.7456 +0.08% 0.7528 -0.34% 0.7162 +0.28% 0.7674 +0.10%
NGCF 0.7354 +0.08% 0.6680 +0.27% 0.7458 +0.11% 0.7565 +0.15% 0.7106 -0.50% 0.7689 +0.30%

LightGCN 0.7360 +0.16% 0.6684 +0.33% 0.7469 +0.26% 0.7605 +0.68% 0.7162 +0.28% 0.7694 +0.37%
DCCF 0.7381 +0.45% 0.6553 -1.64% 0.7450 0.00% 0.7571 +0.23% 0.7033 -1.53% 0.7698 +0.42%

MMoE 0.7404 +0.76% 0.6524 -2.07% 0.7452 +0.03% 0.7651 +1.28% 0.7101 -0.57% 0.7713 +0.61%
PLE 0.7410 +0.84% 0.6483 -2.69% 0.7470 +0.27% 0.7653 +1.31% 0.7146 +0.06% 0.7716 +0.65%

HMoE 0.7412 +0.87% 0.6619 -0.65% 0.7464 +0.19% 0.7652 +1.30% 0.7043 -1.39% 0.7706 +0.52%
STAR 0.7413 +0.88% 0.6619 -0.65% 0.7452 +0.03% 0.7621 +0.89% 0.7073 -0.97% 0.7687 +0.27%

AdaSparse 0.7443 +1.29% 0.6639 -0.35% 0.7471 +0.28% 0.7641 +1.15% 0.7074 -0.95% 0.7710 +0.57%
HiNet 0.7417 +0.94% 0.6674 +0.18% 0.7447 -0.04% 0.7658 +1.38% 0.7163 +0.29% 0.7721 +0.72%
PEPNet 0.7420 +0.98% 0.6532 -1.95% 0.7492 +0.56% 0.7664 +1.46% 0.7009 -1.86% 0.7726 +0.78%
EDDA 0.7402 +0.73% 0.6690 +0.42% 0.7483 +0.44% 0.7639 +1.13% 0.7165 +0.32% 0.7709 +0.56%

TGMAPE(CPT) 0.7447 +1.35% 0.6585 -1.16% 0.7491 +0.55% 0.7652 +1.30% 0.7097 -0.63% 0.7714 +0.63%

TGMAPE 0.7488* +1.91% 0.6733* +1.07% 0.7545* +1.28% 0.7695* +1.87% 0.7204* +0.87% 0.7764* +1.28%

of our proposed model in multi-domain short video
recommendation. Due to the large volume of data, 0.002
improvement in AUC is significant [28].

• Compared with TGMAPE(CPT), which takes user follow-
ing publishers and video corresponding tags as side infor-
mation, ourmodel gains 1.17% and 0.91% forMDSVR-small
and MDSVR-large, respectively. This improvement can be
attributed to our model’s incorporation of publisher and
tag nodes in graphs, which can act as central bridges to
learn from different domains through graph propagation.

• Compared with the SDR methods, most MTL and MDR
baselines perform better in D1 and D3 while performing
worse in D2. This may be due to D2 having less data than
the other domains, posing challenges for models to accu-
rately learn the representations of non-overlapping users
or videos in D2. In contrast, our model achieves the best
performance across all three domains because it can signif-
icantly reduce the difficulty of modeling sparse domains in
a domain alignment manner.

5.3 Ablation Study (RQ2)
5.3.1 Impact of cores in multi-graphs. We conducted five ablation
versions to investigate the impact of the publisher concentration
effect and tag tree-guided hierarchical alignment in our TGMAPE.

• TGMAPE (w/o publisher concentration) removes edges re-
lated to publishers to analyze the impact of publisher con-
centration effect.

• TGMAPE(w/o tag alignment) removes edges related to tags
to examine the impact of hierarchical alignment.

• TGMAPE(coarse-grained alignment) retains only the 𝑘 =
1 level of the graph to validate that single coarse-grained
alignment is inferior to multi-grained alignment.

• TGMAPE(medium-grained alignment) retains only the𝑘 =
2 level of the graph to validate that single medium-grained
alignment is inferior to multi-grained alignment.

• TGMAPE(fine-grained alignment) retains only the 𝑘 = 3
level of the graph to validate that single fine-grained align-
ment is inferior to multi-grained alignment.

To ensure fairness, the prediction layers of these ablation baselines
have the same structure as that of TGMAPE. Based on the results
presented in Table 3, we can observe that:

• The enhanced performance of TGMAPE compared with
TGMAPE(w/o publisher concentration) confirms the effec-
tiveness of publisher concentration in our model.

• The significant improvement of TGMAPE compared with
TGMAPE(w/o tag alignment) indicates the effectiveness of
tag alignment for multi-domain video recommendation.

• In single-grained alignment baselines, increasing granular-
ity does not necessarily improvemodel performance. Specif-
ically, medium-grained alignment yields the best results in
D1 and D3, while coarse-grained alignment performs best
in D2.This may arise because videos categorized with finer
tags may introduce more noise, negatively impacting ac-
curacy. Conversely, a slightly coarser granularity can mit-
igate noise in tag categories while maintaining sufficient
alignment information.

• The single-grained alignment models underperform com-
pared to ourmulti-grained alignmentmodel, TGMAPE.This
is because multi-grained alignment can capture node
similarity across multiple domains at varying levels.

5.3.2 Impact of tree-guided contrastive learning. Tree-guided con-
trastive learning methods are designed to capture node-level rela-
tions within hierarchical multi-graphs. We conduct the following
experiments to analyze their impact step by step.
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Table 3: Ablation study. The best results are highlighted in boldface respectively.

Model MDSVR-small MDSVR-large
D1 D2 D3 D1 D2 D3

TGMAPE(w/o publisher concentration) 0.7463 0.6665 0.7519 0.7681 0.7131 0.7743
TGMAPE(w/o tag alignment) 0.7388 0.6559 0.7430 0.7628 0.7056 0.7694

TGMAPE(coarse-grained alignment) 0.7463 0.6699 0.7510 0.7663 0.7128 0.7723
TGMAPE(medium-grained alignment) 0.7471 0.6604 0.7520 0.7676 0.7109 0.7732

TGMAPE(fine-grained alignment) 0.7457 0.6572 0.7509 0.7664 0.7098 0.7723

TGMAPE 0.7488* 0.6733* 0.7545* 0.7695* 0.7204* 0.7764*
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Figure 4: Impact of tree-guided contrastive learning on
MDSVR-small dataset.

(1) Impact of inter-level relation contrastive learning. We vary 𝜆𝑒
within {0, 0.2, 0.4, 0.6, 0.8, 1.0} with 𝜆𝑎 = 0. The results depicted in
Figure 4(a) show that the model’s performance initially improves
and then declines as 𝜆𝑒 increases. Notably, our model with inter-
level relation contrastive learning (i.e., 𝜆𝑒 ≠ 0) consistently outper-
forms the version without intra-level relation contrastive learning
(i.e., 𝜆𝑒 = 0), demonstrating inter-level contrastive learning
can aid in tag tree guidedmulti-domainmodeling. Given that
𝜆𝑒 = 0.8 yields excellent AUC results for all domains, we adopt this
value. After conducting a similar experiment, we set 𝜆𝑒 = 0.4 for
MDSVR-large.

(2) Impact of intra-level relation contrastive learning. We vary 𝜆𝑎
within {0, 0.2, 0.4, 0.6, 0.8, 1.0} with 𝜆𝑒 = 0.8. The results in Fig-
ure 4(b) indicate that performance improves and then declineswith
increasing 𝜆𝑎 . Particularly, our model with 𝜆𝑎 in {0.2, 0.4, 0.6} out-
performs the model without intra-level contrastive learning (i.e.,
𝜆𝑎 = 0) for all domains, demonstrating a proper loss weight
of intra-level contrastive learning can aid in tag tree guided
multi-domain modeling. Given that 𝜆𝑎 = 0.6 yields excellent
AUC results for all domains, we adopt this value. And set 𝜆𝑎 = 0.2
for MDSVR-large after a similar experiment.

In the case of D2 with the smallest sample sizes, the tag tree-
guided contrast loss consistently enhances AUC across the tested
range of loss weights. This may be because the tag tree-guided
contrastive learning mechanism can leverage a substantial num-
ber of negative or positive video information sampled from other
domains. By doing so, it allows for learning representations more
accurately in the sparse domain D2.

5.4 Hyper-Parameter Studies (RQ3)
Impact of Aggregation Depth. Varying 𝐿 from 1 to 4, we ob-
serve that the performance initially improves and then declines, as

1 2 3 4
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Figure 5: Performance w.r.t aggregation depth 𝐿 and dimen-
sion 𝑑 on MDSVR-small dataset.

depicted in Figure 5(a). This trend can be attributed to a trade-off
between the benefits of high-order aggregation information and
the drawbacks of over-smoothing. For MDSVR-small, we set 𝐿 = 3
as TGMAPE achieves the best performance at this value. Moreover,
after conducting a similar experiment on MDSVR-large, we adopt
the best-performing setting 𝐿 = 2.
Impact of Embedding Dimension. Varying 𝑑 in {16, 32, 64, 128},
we find that TGMAPE’s performance shows a trend of first increas-
ing and then decreasing due to the overfitting issue, as depicted in
Figure 5(b). Since TGMAPE performs best with the embedding di-
mension equaling 32, we set𝑑 = 32 forMDSVR-small dataset. After
conducting similar experiments on the MDSVR-large dataset, we
also adopt the best-performing setting 𝑑 = 32.

6 CONCLUSION
In this work, we have identified two pivotal characteristics inmulti-
domain short video recommendation: users’ concentrated follow-
ing relations and videos’ tag tree structure shared across domains,
to greatly alleviate overlapping sparsity issue and facilitate domain
alignment. Thereby, we propose a novel approach called tag tree-
guided multi-grained alignment with publisher enhancement for
multi-domain short video recommendation. Specifically, ourmodel
integrates publisher and tag nodes into the user-video bipartite
graph, serving as central nodes to enable multi-domain alignment
through graph propagation. Then, we devise a tag tree-guided de-
compositionmethod to generate hierarchicalmulti-graphs formulti-
grained alignment. Further, we design contrastive learning meth-
ods to enhance the modeling of relations within the tree struc-
ture. Finally, extensive experiments confirm the effectiveness of
our model.
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