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Abstract001

Recently, structured state space sequence (S4)002
models (Gu et al., 2022) have generated consid-003
erable interest due to their simplicity and favor-004
able performance compared to the transformer005
architecture in certain sequence modeling tasks.006
A very important property that distinguishes007
these models from traditional gated RNNs is008
the linear dependence of the model output on009
the latent space vector at each time step, even010
when an input dependent selection mechanism011
is incorporated, (Gu and Dao, 2023). This012
means that the computation underlying infer-013
ence and sequence mapping in these models in-014
volves linear time evolution of the latent space015
vector. Inspired by long standing studies of016
time evolution of matrix product states in quan-017
tum mechanics (Cirac et al., 2021), we study018
the problem of compressing the latent space of019
sequence models using tensorization methods.020
Such tensorized sequence models, we call TS4.021
Various novel structures on the parameters of022
S4 models within the tensorization setting are023
imposed to propose new classes of structured024
sequence models.025

1 Introduction026

Machine learning models that take inputs in a fixed027

sequential order (so-called sequence models) have028

diverse applications. A limited set of examples029

of such applications includes natural language pro-030

cessing, time series forecasting, speech recognition,031

voice recognition and many others. A concrete re-032

alization of sequence models is the transformer033

architecture (Vaswani et al., 2017) which serves034

as the central backbone of the current generation035

of large language models (Achiam et al., 2023).036

The fundamental quadratic scaling problem of the037

attention module in transformers is well known.038

Various proposed solutions exist to mitigate this.039

One class of these solutions, named S4 models, in-040

volves using a latent vector space in order to learn041

an effective representation of context and memory,042

which can then be used to model the next element 043

of the input sequence. The relationship of the la- 044

tent vector to the input to be processed at each time 045

step in such models is quite reminiscent of clas- 046

sical Kalman filters. Additionally. these models 047

can also be thought of as a combination of con- 048

volutional neural networks (CNN) and recurrent 049

neural networks (RNN). Different classes of these 050

models have been investigated. All of them differ 051

in the manner in which the corresponding Kalman 052

filter state transition matrix (which is denoted by 053

the model parameter A in the relevant literature) is 054

parametrized. 055

One peculiar property of these models is that 056

the latent vector always evolves linearly. This is 057

a marked difference from the generally non-linear 058

evolution of the latent vectors in gated RNNs. All 059

the proposals in this short paper were therefore in- 060

spired by the superficial similarities of this linear 061

evolution of the latent vector in S4 models with the 062

linearity inherent in the time evolution dynamics of 063

quantum systems. Noting that quantum mechanics 064

is also afflicted with the curse of dimensionality for 065

large systems, coupled with the observation that 066

larger latent spaces in S4 models will generally 067

lead to better modeling of properties of the input 068

sequence, we sought to borrow some ideas that are 069

used to economically represent complicated quan- 070

tum states using what are called matrix product 071

states (defined below), to the setting of S4 models. 072

2 Issues solved by TS4 models 073

Before we discuss the construction of TS4 models 074

in detail, we would like to provide a motivation 075

in terms of practical issues that are solved by im- 076

posing structure on S4 models after tensorizing the 077

latent space. 078
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2.1 Requirement of complex field079

Real diagonalizable matrices are not dense in080

RN×N . This fact implies that the underlying field081

must be complex for the diagonal choice of A in082

popular versions of S4 models to work. Thus, we083

need to use complex numbers as part of the training084

process. This causes issues with activation func-085

tions like the softmax which is strictly ill-behaved086

for complex inputs. Moreover, various empirical087

constraints have to be imposed on the real and imag-088

inary parts of the entries of A.089

2.2 Numerical Stability090

For even moderately large sequence lengths, the091

corresponding norms of matrix elements in the di-092

agonal representation may blow up. This causes093

convergence issues during training, and needs to094

be carefully handled. Further, the real part of the095

entries in A may become large and positive, and096

therefore, need to be regulated properly.097

3 Preliminaries098

3.1 Notation and Terminology099

For a vector space V , we denote the set of linear op-100

erators acting on that vector space by the notation101

L(V ). For the tensor product of vector spaces,102

V = V1 ⊗ V2 ⊗ · · · ⊗ Vk,103

we denote by eI an element of the standard basis104

set of V constructed by tensoring the individual105

basis elements of Vi, namely, eI = ei1 ⊗ ei2 · · · ⊗106

eik , when the multi-index I = (i1, · · · , ik), and107

ej ∈ Vj is a basis element. We further call each Vi108

above a local factor of the full vector space V . An109

important fact to keep in mind that would be useful110

subsequently is that if hj ∈ L(Vj), hk ∈ L(Vk),111

and j ̸= k, then,112

[hj , hk] = 0.113

We denote discrete time sequences using the no-114

tation xt. For any two such sequences xt, yt, we115

denote their convolution as116

zt = xt ⋆ yt117

3.2 Technical Background118

Consider a general tensor whose components are119

based on a vector space of dimension N .120

T (i1, · · · , ik). (1)121

If each index ij here ranges over 1 to N , then this 122

tensor in genral has Nk components. Thus the 123

total number of required components scales expo- 124

nentially with the number of dimensions of the 125

tensor. Dense tensors in large dimensions there- 126

fore, cannot be practically stored as is. To fix this, 127

the notion of a tensor train was introduced. This is 128

a set of third rank tensors Bi (except for B1, and 129

Bk which are second rank), such that we can write 130

T (i1 · · · ik) 131

= B1(i1)B2(i2) · · ·Bk−1(ik−1)Bk(ik) (2) 132

Writing out the indices for the implicit matrix mul- 133

tiplications in Eq.(2) in order to set our convention, 134

we get 135

T (i1 · · · ik) =
∑
αi

B1(i1, α1)B2(α1, i2, α3) 136

· · ·Bk−1(αk−2, ik−1, αk−1)Bk(αk−1, ik). (3) 137

This representation is useful if the size of each 138

Bj(k) is bounded by a constant r × r. In this case, 139

the total number of scalars in all the Bj put together 140

is simply kNr2, which is thus linear in both k and 141

N (compared to exponential in dk and polynomial 142

in N before). This is huge savings and implies 143

that tensor trains can be stored practically on a 144

computer. We now briefly look at how to construct 145

such a decomposition for a given tensor. tensor 146

train generation can now be reduced to multiple 147

SVDs. To see this, start with an arbitrary tensor 148

Ti1···ik such that index ij satisfies 1 ≤ ij ≤ nj . 149

Consider its first unfolding A1, such that 150

A1(i1; i2, · · · , ik) = T (i1, · · · , ik) 151

The notation for the A1 just means that T has been 152

reshaped, such that it has n1 rows, and
∏k

j=2 nj 153

columns, the latter having been structured into a 154

fat index. Perform a singular value decomposition 155

on A1, so that A1 = U1V1. Writing out the indices 156

explicitly, we get 157

A1(i1; i2, · · · , ik) 158

=

r1∑
α1=1

U1(i1, α1)V1(α1, i2, · · · , ik). 159

The number r1 here represents the algebraic rank 160

of A1, which is the number of linearly indepen- 161

dent columns and rows. This implies that the ma- 162

trix X = UT
1 U1 is a full rank square matrix of 163

dimension r1 × r1. We can now solve for V1 as 164
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V1 = S1A1, which in terms of indices can be writ-165

ten out as166

V1(α1, i2, · · · , ik)167

=

n1∑
i1=1

S1(α1, i1)A(i1, · · · , ik),168

where we have defined S1 = X−1UT
1 . Next, con-169

sider the tensor V1 obtained above, and reshape it170

into A2 to have r1n2 rows and
∏d

j=3 nj columns,171

such that172

A2(α1i2; i3, · · · , ik)173

= V1(α1, i2, · · · , ik)174

We can again write A2 = U2V2, with the indices175

written out explicitly as,176

A2(αii2; i3, · · · , ik)177

=

r2∑
α2=1

U2(α1, i2;α2)V2(α2, i3, · · · , ik).178

Repeating this process by induction, we obtain the179

tensors180

U1(i1, α1), U2(α1i2;α2), · · · , Uk(αk−1, ik).181

Finally, the so called core tensors of the decompo-182

sition in Eq.(2) are obtained as183

B1(i1, α1) = U1(i1, α1),184

Bk(αk−1, ik) = Uk(αk−1, ik),185

Bj(αj−1, ij , αj) = Uj(αj−1ij ;αj)186

2 ≤j ≤ k − 1 (4)187

We note in passing that unlike diagonalization, this188

tensor train generation is applicable to both real189

and complex tensors.190

4 Structured State Space Sequence191

Models192

The current analysis of S4 models involves cre-193

ating a mapping between sequences xt → yt, as194

solutions of the equations195

h′t = Aht +Bxt, yt = Cht. (5)196

Here,197

ht ∈ RN×1, A ∈ RN×N ,198

B ∈ RN×1, C ∈ R1×N ,199

are vectors and matrices living in the latent space. 200

Note further that, we can consider a discretization 201

of this set of equations, with an implicit time step 202

∆, and re-write this as an effectively discrete evo- 203

lution. We define, 204

A = exp(∆A), B = (∆A)−1(A− I)(∆B).
(6)

205

Then, we the kernel K can be written as 206

K = (CB,CAB, · · · , CA
k−1

B, · · · ), (7) 207

and the output is obtained as 208

yt = xt ⋆ K (8) 209

We note that the convolution in Eq.(8) is an op- 210

eration that can be implemented quite efficiently 211

in modern hardware using FFTs. Thus, our focus 212

would be on exploring methods for the computation 213

in Eq.(7) in an efficient manner. 214

5 Our approach: TS4 models 215

We now focus on a hitherto unexplored way of 216

imposing structure on state space models. The 217

proposal is as follows. Suppose the latent vector 218

space V of dimension N , can be written as the 219

tensor product of k real vector spaces of dimension 220

d, V = H1 ⊗ H2 ⊗ · · · ⊗ Hk.This implies that 221

N = dk. Suppose further we choose A to have the 222

form 223

A =
∑
j

hj 224

hj ∈ L(Hj ⊗Hj+1 ⊗ · · · ⊗Hj+l). (9) 225

This expression for A is inspired by the local Hamil- 226

tonians that one writes for lattice systems in quan- 227

tum physics. If we take l to be large, that means that 228

the information in the latent state is shared among 229

a larger number of factor spaces. We note that the 230

number of parameters P in A is just P ∈ O(kd2l). 231

If we therefore choose l << k, then, the number 232

of parameters in A scales as logN , compared to 233

N for a diagonal A. We have therefore effectively 234

reduced the number of parameters that need to be 235

trained. 236

5.1 Novel classes of TS4 models 237

The structure on TS4 models is now imposed by 238

specifying l in Eq.(9). We call a TS4 model s-local 239

if, in Eq.(9), l = s. Operationally, this means that 240
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the encoding information of the input sequence is241

scrambled to s local factor spaces by the A matrix.242

While general s-local models are harder to analyze243

analytically, we impose additional structure on the244

local operators hj in Eq.(9) and constrain them to245

be strings of operators, in the form246

hj =

j+s∏
m=j

fm, fm ∈ L(Hm).247

This is the simplest form of structure that can be248

imposed on the hj , and for small enough s, one can249

get good closed form approximations (and some-250

times, exact expressions) for the exponent A in251

Eq.(6). Since the vector B ∈ V , it needs to simi-252

larly be represented in a form that is economical.253

Accordingly, we choose a tensor train form for its254

components255

B(i1, · · · , ik) = B1(i1)B2(i2) · · ·Bk(ik) (10)256

where B1, Bk are rank-1 tensors, and the others257

are rank three tensors. A similar expression for C258

holds.259

6 Conclusion and Future Direction260

In this short paper, we have discussed novel ways261

of imposing structure on state space models after262

tensorization of the latent space. These additional263

structural constraints are inspired from the behav-264

ior of quantum lattice systems with local interac-265

tions. Locality is imposed by requiring the degree266

of scrambling of information by the A parameter267

is restricted to a pre-determined number of local268

copies of the latent space. We are in the process269

of running evaluations of these ideas for sequence270

modeling tasks. Further, we would like to compare271

explicitly with the results of (Su et al., 2024).272

Limitations273

While this work proposes a novel framework for274

analyzing and potentially compressing S4 mod-275

els using tensor product spaces, several limitations276

should be acknowledged. First, the theoretical de-277

velopment is primarily heuristic and lacks rigorous278

proofs or guarantees about representational capac-279

ity or stability under this reformulation. As a result,280

claims about memory savings or parameter effi-281

ciency are based on empirical intuition rather than282

formal bounds.283

Second, our experimental evaluation is still in284

early stages. While the proposed framework of-285

fers a compelling perspective, we have not yet286

conducted large-scale benchmarks across multiple 287

NLP tasks to quantify improvements or trade-offs 288

in accuracy, training time, or hardware efficiency. 289

This limits the immediate applicability of our find- 290

ings to practical systems. 291

Third, the current formulation assumes certain 292

factorization structures in the state space matrices, 293

which may not hold in pre-trained S4 models or 294

may require retraining from scratch. This restricts 295

the generality of the method, especially when at- 296

tempting to apply it in a plug-and-play fashion to 297

existing SSM-based architectures. 298

Finally, tensor product representations can grow 299

rapidly in dimensionality if not carefully con- 300

strained, potentially negating memory savings in 301

practice. Future work will explore low-rank or 302

decomposed representations to mitigate this over- 303

head. 304
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