TS4: Tensorized Structured State Space Sequence Models

Anonymous ACL submission

Abstract

Recently, structured state space sequence (S4)
models (Gu et al., 2022) have generated consid-
erable interest due to their simplicity and favor-
able performance compared to the transformer
architecture in certain sequence modeling tasks.
A very important property that distinguishes
these models from traditional gated RNNss is
the linear dependence of the model output on
the latent space vector at each time step, even
when an input dependent selection mechanism
is incorporated, (Gu and Dao, 2023). This
means that the computation underlying infer-
ence and sequence mapping in these models in-
volves linear time evolution of the latent space
vector. Inspired by long standing studies of
time evolution of matrix product states in quan-
tum mechanics (Cirac et al., 2021), we study
the problem of compressing the latent space of
sequence models using tensorization methods.
Such tensorized sequence models, we call TS4.
Various novel structures on the parameters of
S4 models within the tensorization setting are
imposed to propose new classes of structured
sequence models.

1 Introduction

Machine learning models that take inputs in a fixed
sequential order (so-called sequence models) have
diverse applications. A limited set of examples
of such applications includes natural language pro-
cessing, time series forecasting, speech recognition,
voice recognition and many others. A concrete re-
alization of sequence models is the transformer
architecture (Vaswani et al., 2017) which serves
as the central backbone of the current generation
of large language models (Achiam et al., 2023).
The fundamental quadratic scaling problem of the
attention module in transformers is well known.
Various proposed solutions exist to mitigate this.
One class of these solutions, named S4 models, in-
volves using a latent vector space in order to learn
an effective representation of context and memory,

which can then be used to model the next element
of the input sequence. The relationship of the la-
tent vector to the input to be processed at each time
step in such models is quite reminiscent of clas-
sical Kalman filters. Additionally. these models
can also be thought of as a combination of con-
volutional neural networks (CNN) and recurrent
neural networks (RNN). Different classes of these
models have been investigated. All of them differ
in the manner in which the corresponding Kalman
filter state transition matrix (which is denoted by
the model parameter A in the relevant literature) is
parametrized.

One peculiar property of these models is that
the latent vector always evolves linearly. This is
a marked difference from the generally non-linear
evolution of the latent vectors in gated RNNs. All
the proposals in this short paper were therefore in-
spired by the superficial similarities of this linear
evolution of the latent vector in S4 models with the
linearity inherent in the time evolution dynamics of
quantum systems. Noting that quantum mechanics
is also afflicted with the curse of dimensionality for
large systems, coupled with the observation that
larger latent spaces in S4 models will generally
lead to better modeling of properties of the input
sequence, we sought to borrow some ideas that are
used to economically represent complicated quan-
tum states using what are called matrix product
states (defined below), to the setting of S4 models.

2 Issues solved by TS4 models

Before we discuss the construction of TS4 models
in detail, we would like to provide a motivation
in terms of practical issues that are solved by im-
posing structure on S4 models after tensorizing the
latent space.

2.1 Requirement of complex field

Real diagonalizable matrices are not dense in
RNXN This fact implies that the underlying field
must be complex for the diagonal choice of A in
popular versions of S4 models to work. Thus, we
need to use complex numbers as part of the training
process. This causes issues with activation func-
tions like the softmax which is strictly ill-behaved
for complex inputs. Moreover, various empirical
constraints have to be imposed on the real and imag-
inary parts of the entries of A.

2.2 Numerical Stability

For even moderately large sequence lengths, the
corresponding norms of matrix elements in the di-
agonal representation may blow up. This causes
convergence issues during training, and needs to
be carefully handled. Further, the real part of the
entries in A may become large and positive, and
therefore, need to be regulated properly.

3 Preliminaries

3.1 Notation and Terminology

For a vector space 1/, we denote the set of linear op-
erators acting on that vector space by the notation
L(V'). For the tensor product of vector spaces,

V=Vieoh® - @V,

we denote by e an element of the standard basis
set of V' constructed by tensoring the individual
basis elements of V;, namely, ey = e;, @ e;, -+ ®
ei,, when the multi-index I = (iy,--- i), and
ej € Vj is a basis element. We further call each V;
above a local factor of the full vector space V. An
important fact to keep in mind that would be useful
subsequently is that if h; € L(V}),hy € L(Vy),
and j # k, then,

[hj, hi] = 0.

We denote discrete time sequences using the no-
tation z;. For any two such sequences xi, y:, we
denote their convolution as

2t =Tt *x Yt

3.2 Technical Background

Consider a general tensor whose components are
based on a vector space of dimension V.

T(ix, - k). ey

If each index 7; here ranges over 1 to [V, then this
tensor in genral has N* components. Thus the
total number of required components scales expo-
nentially with the number of dimensions of the
tensor. Dense tensors in large dimensions there-
fore, cannot be practically stored as is. To fix this,
the notion of a tensor train was introduced. This is
a set of third rank tensors B; (except for B;, and
By, which are second rank), such that we can write

T(i1---iy)
= By(i1)Ba(i2) - - - Br—1(ig—1)Br(ix) (2)

Writing out the indices for the implicit matrix mul-
tiplications in Eq.(2) in order to set our convention,
we get

T(iy i) = Z By (i1, a1)Ba(aq, iz, a3)

Qg

o Br_q(og—2, i1, 0p—1) Br(og—1,%). (3)

This representation is useful if the size of each
B (k) is bounded by a constant x 7. In this case,
the total number of scalars in all the B; put together
is simply kN2, which is thus linear in both & and
N (compared to exponential in dk and polynomial
in N before). This is huge savings and implies
that tensor trains can be stored practically on a
computer. We now briefly look at how to construct
such a decomposition for a given tensor. tensor
train generation can now be reduced to multiple
SVDs. To see this, start with an arbitrary tensor
T;,...i;, such that index 7; satisfies 1 < i; < n; .
Consider its first unfolding Ay, such that

Al(’Ll,ZQ, 72k’) = T(Zla aZk)

The notation for the A; just means that 7" has been
reshaped, such that it has n; rows, and H§:2 n;
columns, the latter having been structured into a
fat index. Perform a singular value decomposition
on Aq, so that A; = Uy V3. Writing out the indices
explicitly, we get

Aq(irsig, -, i)

1
= Z Ul(il7a1)‘/1(a17127"' 7,“43)

a1=1

The number r; here represents the algebraic rank
of A, which is the number of linearly indepen-
dent columns and rows. This implies that the ma-
trix X = U{U is a full rank square matrix of
dimension 1 X 1. We can now solve for V7 as

V1 = S1Aq, which in terms of indices can be writ-
ten out as

Vl(alai27"' aZk‘)
ni

= Z Si(ar,in)A(i, -+ i),
i1=1

where we have defined S; = X U] . Next, con-
sider the tensor V; obtained above, and reshape it
into Ao to have riny rows and H;l:?) nj columns,
such that

yik)
- Vl(Oél,iQ, e azk)

As(auio;ig, -

We can again write Ay = Us Vs, with the indices
written out explicitly as,

Ao(ayigyiz, -+ i)
T2
=) Us(on,ig;) Va(ag, i, -,).
as=1
Repeating this process by induction, we obtain the

tensors

Ui(i1, on), Us(aio; aa), -+, Ug(oe—1, ik)-

Finally, the so called core tensors of the decompo-
sition in Eq.(2) are obtained as

By (i1, a1) = Ui (i1, o1),
By (og—1,1k) = Up(ag—1,1i),
Bj(aj-1,ij,05) = Uj(aj-1ij; o)
2<j<k-1)
We note in passing that unlike diagonalization, this

tensor train generation is applicable to both real
and complex tensors.

4 Structured State Space Sequence
Models

The current analysis of S4 models involves cre-
ating a mapping between sequences T+ — Y, as
solutions of the equations

hi = Ahy + Bxy, yr = Chy. 5

Here,

htERNXl,AGRNXN,
B ERNXl,CERb(N,

are vectors and matrices living in the latent space.
Note further that, we can consider a discretization
of this set of equations, with an implicit time step
A, and re-write this as an effectively discrete evo-
lution. We define,
A =exp(AA), B=(AA)YA-I)AB).
(6)

Then, we the kernel K can be written as
K = (CB,CAB,--- ,CA"'B,--.), ()
and the output is obtained as
Yo = apx K (8)

We note that the convolution in Eq.(8) is an op-
eration that can be implemented quite efficiently
in modern hardware using FFTs. Thus, our focus
would be on exploring methods for the computation
in Eq.(7) in an efficient manner.

5 Our approach: TS4 models

We now focus on a hitherto unexplored way of
imposing structure on state space models. The
proposal is as follows. Suppose the latent vector
space V' of dimension IV, can be written as the
tensor product of k real vector spaces of dimension
d, V = H ® Hy ® --- @ Hy.This implies that
N = d*. Suppose further we choose A to have the
form

A= "hy
J
thL(Hj@Hj+1®"'®Hj+l)~ 9)

This expression for A is inspired by the local Hamil-
tonians that one writes for lattice systems in quan-
tum physics. If we take [to be large, that means that
the information in the latent state is shared among
a larger number of factor spaces. We note that the
number of parameters P in A is just P € O(kd?).
If we therefore choose | << k, then, the number
of parameters in A scales as logN, compared to
N for a diagonal A. We have therefore effectively
reduced the number of parameters that need to be
trained.

5.1 Novel classes of TS4 models

The structure on TS4 models is now imposed by
specifying [in Eq.(9). We call a TS4 model s-local
if, in Eq.(9), [= s. Operationally, this means that

the encoding information of the input sequence is
scrambled to s local factor spaces by the A matrix.
While general s-local models are harder to analyze
analytically, we impose additional structure on the
local operators h; in Eq.(9) and constrain them to
be strings of operators, in the form

J+s

hi= 1] fm: fm € L(Hpn).

m=j
This is the simplest form of structure that can be
imposed on the /;, and for small enough s, one can
get good closed form approximations (and some-
times, exact expressions) for the exponent A in
Eq.(6). Since the vector B € V/, it needs to simi-
larly be represented in a form that is economical.
Accordingly, we choose a tensor train form for its
components

B(ir, -+ i) = Bi(i1)Ba(i2) - - - By (i) (10)

where By, By, are rank-1 tensors, and the others
are rank three tensors. A similar expression for C'
holds.

6 Conclusion and Future Direction

In this short paper, we have discussed novel ways
of imposing structure on state space models after
tensorization of the latent space. These additional
structural constraints are inspired from the behav-
ior of quantum lattice systems with local interac-
tions. Locality is imposed by requiring the degree
of scrambling of information by the A parameter
is restricted to a pre-determined number of local
copies of the latent space. We are in the process
of running evaluations of these ideas for sequence
modeling tasks. Further, we would like to compare
explicitly with the results of (Su et al., 2024).

Limitations

While this work proposes a novel framework for
analyzing and potentially compressing S4 mod-
els using tensor product spaces, several limitations
should be acknowledged. First, the theoretical de-
velopment is primarily heuristic and lacks rigorous
proofs or guarantees about representational capac-
ity or stability under this reformulation. As a result,
claims about memory savings or parameter effi-
ciency are based on empirical intuition rather than
formal bounds.

Second, our experimental evaluation is still in
early stages. While the proposed framework of-
fers a compelling perspective, we have not yet

conducted large-scale benchmarks across multiple
NLP tasks to quantify improvements or trade-offs
in accuracy, training time, or hardware efficiency.
This limits the immediate applicability of our find-
ings to practical systems.

Third, the current formulation assumes certain
factorization structures in the state space matrices,
which may not hold in pre-trained S4 models or
may require retraining from scratch. This restricts
the generality of the method, especially when at-
tempting to apply it in a plug-and-play fashion to
existing SSM-based architectures.

Finally, tensor product representations can grow
rapidly in dimensionality if not carefully con-
strained, potentially negating memory savings in
practice. Future work will explore low-rank or
decomposed representations to mitigate this over-
head.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

J Ignacio Cirac, David Perez-Garcia, Norbert Schuch,
and Frank Verstraete. 2021. Matrix product states
and projected entangled pair states: Concepts, sym-
metries, theorems. Reviews of Modern Physics,
93(4):045003.

Albert Gu and Tri Dao. 2023. Mamba: Linear-
time sequence modeling with selective state spaces.
arXiv:2312.00752.

Albert Gu, Karan Goel, and Christopher Re. 2022. Ef-
ficiently modeling long sequences with structured
state spaces. In International Conference on Learn-
ing Representations.

Zhan Su, Yuqin Zhou, Fengran Mo, and Jakob Grue
Simonsen. 2024. Language modeling using tensor
trains. arXiv preprint arXiv:2405.04590.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC

	Introduction
	Issues solved by TS4 models
	Requirement of complex field
	Numerical Stability

	Preliminaries
	Notation and Terminology
	Technical Background

	Structured State Space Sequence Models
	Our approach: TS4 models
	Novel classes of TS4 models

	Conclusion and Future Direction

