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ABSTRACT

Drug discovery is essential for identifying candidate drugs for various diseases.
However, its low success rate often results in a scarcity of annotations, lead-
ing to the few-shot learning problem. Existing approaches primarily focus on
single-scale structural features, which may overlook crucial hierarchical informa-
tion within molecular structures. Considering that different structural levels de-
termine different molecular properties, we introduce Hierarchical Matching Net-
works (HierMatch). This approach utilizes hierarchical pooling and matching
techniques to enhance the representation and comparison of molecular features
across multiple scales. Specifically, hierarchical pooling aggregates node fea-
tures from local neighborhoods to global structures, preserving essential details
that single-scale methods may overlook. Hierarchical matching then performs
pairwise comparisons at these different structural levels, allowing more precise
assessments of molecular similarities. To further enhance our model, we incorpo-
rate a meta-learning strategy that independently updates general and task-specific
parameters, improving feature alignment and matching across hierarchical levels.
This allows our approach adaptively captures subtle structural similarities and dis-
tinctions, improving both predictive accuracy and generalization. Our experimen-
tal results show that HierMatch outperforms state-of-the-art (SOTA) methods on
the MoleculeNet and FS-Mol benchmarks, with improvements of 2.87% in AU-
ROC and 6.52% in AAUPRC. Additionally, HierMatch demonstrates excellent
generalization performance on the Meta-MolNet benchmark.

1 INTRODUCTION

Drug discovery is pivotal for human health, involving the screening and optimization of numer-
ous compounds to identify potential drug candidates that satisfy both pharmacological efficacy and
toxicological safety criteria (Drews|, |2000; Renaud et al., 2016} |Atanasov et al.| 2021)). The tra-
ditional drug development cycle typically spans over a decade, incurs costs exceeding 1 billion
dollars, yet achieves a success rate of less than 10% (Sliwoski et al.l 2014; |Adelusi et al.| [2022)).
Artificial Intelligence-Driven Drug Discovery (AIDD) has emerged as a promising solution to ad-
dress this challenge (Mak et al., 2023} Macalino et al.| 2015 [Gawehn et al.| [2016). Within AIDD,
Quantitative Structure-Activity/Property Relationship (QSAR/QSPR) (Cherkasov et al., 2014} Liu
& Long, [2009) models are crucial for predicting the relationships between molecular structures and
their activities. These methods (Zhang et al.l |2021a; [Fabian et al., [2020; Wang et al., 2021} |(Chen
et al.,|2023) rely heavily on extensive datasets due to the complexity of understanding and modeling
molecular geometries. However, the lengthy durations, high costs, and low success rates of chemical
wet experiments limit the availability of experimental data, resulting in a scarcity of labeled data.

Few-shot learning (Li et al., 2023} |Wang et al.| |2020b) has shown potential in addressing this data
scarcity, enabling models to generalize quickly from minimal data to new tasks. Most approaches are
based on molecular graphs with atoms as nodes and chemical bonds as edges, using Graph Neural
Networks (GNNs) (Zhou et al., [2020) to capture molecular topological structures. In particular,
IterRefLSTM (Altae-Tran et al.| 2017), Meta-MGNN (Guo et al., 2021), PAR (Wang et al.,|[2021)),
ADKF-IFT (Chen et al., 2023), and Meta-GAT (Lv et al., 2024) use GNNs as encoders to learn
molecular representations for label inference. Conversely, several sequence-based methods, such
as CHEF (Adler et al.| [2020) and MHNfs, (Schimunek et al.| 2023) utilize Multilayer Perceptrons
(MLPs) as encoders to compress molecular fingerprints or descriptors for predictive modeling.
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Figure 1: Different structures of molecules affect different molecular properties. (a) At the atom
level, hydrogen ions in hydrochloric and sulfuric acids determine acidity. (b) At the substructure
level, hydroxyl groups in ethanol and dodecane affect hydrophobicity. (c) At the molecule level, the
overall structures influence boiling points. Red blocks highlight key molecular structures.

However, existing approaches often overlook a crucial aspect: different levels of structural
information—ranging from atoms to substructures and the entire molecule—determine dis-
tinct molecular properties. Some properties are influenced by atomic composition, while others
depend on substructures or the overall molecular configuration. Figure [T] provides corresponding
examples: (a) shows how hydrogen ions determine the acidity of hydrochloric acid and sulfuric
acid; (b) demonstrates how hydroxyl groups influence the hydrophobic properties of ethanol and
dodecane; (c) indicates how the overall molecular structure affects boiling points. In graph-based
methods, using multiple GNN layers may cause over-smoothing, where the receptive fields of nodes
expand to cover the entire molecular graph, thus obscuring substructural details. This makes GNNs
more suitable for predicting properties related to the overall structure of molecules. Conversely,
fingerprint-based methods offer only fragmented local features, potentially overlooking critical in-
formation from the overall molecular structure. Although CHEF (Adler et al., 2020) introduces a
representation fusion strategy, its reliance on ECFP6 (Rogers & Hahn| 2010)—which is based on
fixed local features—Ilimits its capacity for multi-level structural analysis. Therefore, capturing dif-
ferent levels of molecular structures is crucial for accurately predicting various molecular properties.

To address this challenge, we propose Hierarchical Matching Networks (HierMatch), which uti-
lizes hierarchical pooling and matching to enhance the capabilities of GNNs for few-shot molecular
representation learning. This approach enables the model to more accurately capture and predict
molecular properties in few-shot scenarios. Our main contributions are summarized as follows:

* To the best of our knowledge, we are pioneers in applying a hierarchical structural matching
approach to few-shot learning for molecular property prediction. This approach enhances
the model’s understanding of complex molecular structures via hierarchical pooling and
matching, seamlessly integrating with existing GNNs while significantly boosting perfor-
mance with minimal additional cost (Section [3).

* We propose a hierarchical framework that integrates information from atoms to higher-level
structures, capturing complex molecular features. Using an attention-based matching mod-
ule, the model aligns representations at various levels, selecting the most relevant features
for improved prediction (Sections[3.3.1]and [3.3.1).

* We propose a adaptive meta-learning strategy that independently updates task-specific and
general parameters while dynamically fine-tuning parameters across multiple hierarchical
levels, further enhancing the effectiveness of hierarchical matching (Section [3.3.2).

* Our HierMatch outperforms the SOTAs on both the MoleculeNet (Section [4.1)) and FS-
Mol (Section #.2) benchmarks, achieving improvements of 2.87% in AUROC and 6.52%
in AAUPRC, respectively. Additionally, we test the generalization ability of HierMatch on
the Meta-Mol benchmark, which shows outstanding performance (Section [4.3).
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2 RELATED WORK

2.1 GRAPH-BASED MOLECULAR PROPERTY PREDICTION

Molecular graphs, where atoms as nodes and chemical bonds as edges, represent the complex topol-
ogy of molecules, facilitating a deeper understanding of their physical and chemical properties.
Graph Neural Networks (GNNs) have been employed to encode these structural features, with no-
table examples including Graph Isomorphism Networks (GIN) 2019), Graph Convolu-

tional Networks (GCN) (Kipf & Welling} 2017), Graph Attention Networks (GAT)
2018), and Message Passing Neural Networks (MPNN) (Gilmer et al., 2017).

Graph-based methods are also mainstream for the few-shot molecular property prediction task. PAR
2021) and ADKF-IFT (Chen et al.,2023) employ GIN (Xu et al.,[2019) as the molecular
encoder, while Meta-MGNN (Guo et al., 2021)) utilizes Pre-GIN 2020). Meta-GAT
2024) adopts GAT (Velickovi¢ et al., 2018) to learn molecular representations. However, these
methods (Altae-Tran et al.,[2017; Ren et al} 2018} [Zhuang et al.},[2023};[Chen et al., 2023} [Schimunek|
overlook the impact of varying molecular structures on different molecular properties or
activities. In addition, several approaches (Zhao et al., 2023}, [Liu et al.} 2024)) combine the strengths
of LLMs to tackle the few-shot problem, but these methods incur high computational costs. Our
method differs by incorporating molecular hierarchical structures through hierarchical pooling and
matching, allowing for more effective representation of complex structures.

2.2 MATCHING LEARNING

In few-shot learning, matching learning compares new instances with a small set of labeled exam-
ples to facilitate accurate predictions, with methods like Matching Networks (Vinyals et al.| 2016)),
ProtoNet [2017), Relation Networks 2018), and LGM-Net (Li et al.l 2019).
Hierarchical matching further enhances few-shot learning by matching multi-level representations.
Specifically, AMN enhances embedding robustness with feature-level attention
mechanisms. Advancedly, SSF-HRNet (Zhong et al [2023)) incorporates self-similarity features
and hierarchical relationships to boost performance. Additionally, VTM employs
a hierarchical encoder-decoder architecture to perform patch-level non-parametric matching. Simi-
larly, HCL (Zheng et al},[2022)) combines hierarchical matching with contrastive learning to identify
discriminative patches. These methods have been applied in Natural Language Processing (NLP)
and Computer Vision (CV). However, related research remains sparse in drug discovery. To address
this gap, we propose HierMatch, which leverages structural hierarchical matching specifically for
the few-shot molecular property prediction task.

2.3 HIERARCHICAL REPRESENTATION LEARNING ON GRAPHS

Hierarchical representation learning is vital for graphs as it captures multi-scale structures, allowing
models to discern both local and global patterns more effectively (Grattarola et al., 2022). Exist-
ing methods in this domain can be divided into three categories: layer-wise hierarchical methods,
architecture-level hierarchical methods, and supergraph-based methods. Layer-wise hierarchical

methods, such as DiffPool (Ying et al} 2018), JK-Nets (Xu et al.} 2018), Top-K Pooling (Lee et all}
2019), ASAP (Ranjan et al., 2020), and HGP-SL (Zhang et al., |2019), pool nodes into clusters

to create coarser graph representations. In contrast, MixHop (Abu-El-Haija et all, 2019) captures
higher-order graph structures by leveraging multiple powers of the adjacency matrix for feature ag-
gregation. Additionally, architecture-level hierarchical methods like FraGAT (Zhang et al., [2021D))
and MGSSL (Zhang et al} 2021d) employ branched networks for molecular multi-scale represen-
tation learning at atom, structure, and molecule levels, while HiMol adopts su-
pergraph construction to represent hierarchical information. Unlike these methods, our HierMatch
not only obtains multi-level molecular representations but also utilizes matching learning to capture
properties influenced by different hierarchical structures.
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Figure 2: The overview of HierMatch. Left: Our model follows a hierarchical pooling-matching
architecture comprising two components: an encoding module (including pooling) and a matching
module. First, mean pooling is applied at each GNN layer to generate multi-level molecular repre-
sentations. Then, an attention mechanism is utilized to align representations between the support set
and query set across different levels. Finally, predictions from different GNN layers are integrated
to obtain the final results. Right: The detailed process of the matching module.

3 METHOD

We propose Hierarchical Matching Networks (HierMatch), a simple yet effective approach for
the few-shot molecular property prediction task. Figure 2] provides an overview of the HierMatch
framework. In this section, we first introduce the few-shot molecular property prediction problem
in Section @ Then, we discuss the background of GNNs in Section @ Finally, we detail our
method and its training process in Section [3.3]

3.1 PROBLEM DEFINITION

The few-shot molecular property prediction problem, as defined by ADKF-IFT (Chen et al., [2023)
and MHNfs (Schimunek et al., 2023)), involves training models on a set of tasks {7}}]:;1 from the
training set Dy,q;n to enhance generalization to new tasks. Each task 7. includes a support set
S, = {(XT,i,ym)}f\El and a query set Q, = {(XT,j,yT,j)}év:gl, where x,; € R? and x,; € R?
represent molecular features, and y, ;, y-; € {0, 1} indicate the molecular properties or activities.
The support set S provides a few labeled examples for task-specific adaptation, while the query set
Q. is utilized to evaluate the model’s performance on unseen examples.

3.2 PRELIMINARIES

Graph neural networks (GNNs) are designed to handle graph-structured data (non-Euclidean data),
by aggregating information from neighboring nodes to learn effective representations (Zhou et al.|
2020). Models such as GCN (Kipf & Welling, [2017), GIN (Xu et al., [2019), and GAT (Velickovi¢
et al., 2018)) are widely used for tasks like graph classification and other related applications. In a

graph G = {V, €}, V represents the set of nodes and £ the set of edges. hq(}o) represents the initial
features of node v, and b,, ,, denotes the features of the edge e, , between nodes u and v. At the [t

layer, the representation hg,l) of node v is updated in GNNs as follows:

h() — UPDATE® (h,gl—U,AGGREGATE(” ({ (hgj—U, n(-n, bv,u) lue J\/(v)})) ()

where N (v) is the set of neighboring nodes of v. The AGGREGATE function combines features
from neighboring nodes, and the UPDATE function updates the node features for the next layer.
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3.3 HIERARCHICAL MATCHING

Figure[I]demonstrates the critical role of hierarchical molecular structures in determining molecular
properties. Consequently, predicting molecular properties from limited samples requires considering
these hierarchical structures. As shown in Figure 2] we apply a pooling operation at each layer to
extract multi-level molecular representations. Then, we employ hierarchical matching, utilizing an
attention mechanism to align these representations and make predictions at hierarchical levels. The
final prediction is obtained by integrating the outputs from various GNN layers.

3.3.1 MODEL ARCHITECTURE

Encoding Module. In Section we highlight the importance of hierarchical molecular struc-
tures in determining molecular properties. Following the mainstream graph-based few-shot molec-
ular property prediction approaches (Wang et al., [2021; |Guo et al.l 2021} [Lv et al.l 2024} (Chen
et al., |2023)), we adopt the widely used GIN (Xu et al.l [2019) as the backbone of our method. In
GNN:gs, each layer aggregates local information from nodes and their neighboring hops. As the net-
work depth increases, the model incrementally aggregates hierarchical information, from individual
nodes to substructures, and ultimately to the entire molecule.

To capture molecular representations at different levels, we employ mean pooling to aggregate node
representations at each layer of the GNN. For a given task 7, we first apply Eq.[I]to obtain the node

representations hg, € R4 for the support set S, and h(Tl, € R™ %4 for the query set Q.

Then, we utilize mean pooling to derive the molecular representations zg,)s e RN=*4 for the support
set S, and 2\, € RN?*4 for the query set Q. as follows:

z(Tl’)S = Pooling(h(l) veVrs), z) = Pooling(h(l) v EVrg)s )

TS,V 74q 7,9,V

where the Pooling function denotes mean pooling, and [ refers to the ™" layer of the GNN.

Matching Module. In few-shot learning, matching learning evaluates the similarity between a
query sample and those in the support set (Vinyals et al.| 2016} |Wang et al.| 2020a). We implement
hierarchical matching in GNNs, focusing on molecular structures at different layers to improve the
precision of similarity identification among molecules.

We adopt the attention mechanism introduced by|Vaswani et al.|(2017) to measure similarity. Specif-
ically, we designate the molecular representations Z(Tl,)S € RN-xd

the molecular representations z(Tl,)q € RN7*4 in the query set Q. as the query. The corresponding
ground-truth labels y - s € RN=*1 in the support set are used as the value. This approach enables us

to achieve matching results at the specified level using the attention mechanism:

in the support set S, as the key, and

l l
(2 W) (2 s W) T
Va

where d is the dimension of molecular representations, and W, W, € Rdxd,

¥ = Softmax(

)Yr,s: 3)

Fusion. We repeat the above steps to obtain the matching results y% for each GNN layer. These
results are then concatenated to form a comprehensive representation, integrating predictions from
different layers. This concatenated representation is subsequently passed through a Linear layer to
produce the final prediction ¥, , € RV7*1:

yT,q = Liﬂearwo (Concat(y‘(r}()p yg—?c)p T y-g,g))a “4)

where L represents the total number of layers in the GNN, and W, € R¥*2 are the parameters of

the Linear function. This fusion process ensures that the final prediction leverages the hierarchical
information captured at each layer, resulting in a more robust and comprehensive output. By effec-
tively integrating multi-level features, the model better captures the complex relationships inherent
in molecular structures.

'the subscript s represents it belongs to support set.
’the subscript q represents it belongs to query set.
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Algorithm 1 Meta-training procedure for HierMatch.

Input: The few-shot training tasks {7’T}JTV;1 of molecular property prediction, learning rate 7,
Output: trained model fg w

1: Randomly initialize 8 and w;

2: while not converged do

3:  Sample a batch B of tasks 7;;

4 for all 7 do

5 Sample N? and N molecules to form Sin,» and Qirain, 3

6: for/=1,...,Ldo

7 Obtain node representations h(Tl)é, hg)q of I GNN layer by Eq.

8 Obtain molecular representations z(Tl)é, z(T{)q of " GNN layer by Eq.

9: Evaluate prediction y% of I'" GNN layer by Eq.
10: end for
11: Evaluate the final prediction 3, , by Eq.
12: end for

13:  Update 6, w by Eq.[3}
14: end while

3.3.2 TRAINING AND INFERENCE

For simplicity, we denote HierMatch as fg v, where @ includes the parameters of all graph-based
molecular encoder layers, and w = {W,, W, W, } represents the parameters of the matching and
fusion modules.

Training Stage. We employ a standard meta-learning process to train the model on the training
set Dyqin to enhance its generalization performance. For each training task 7, the model is trained
on a small set of labeled samples, known as the support set S;, and then evaluated on the query
set Q.. By iteratively training on different tasks within Dy, the model gradually acquires general
knowledge across tasks, thereby strengthening its generalization capability. After obtaining the
prediction results ¥, , for the query set using Eq. 4} we optimize the model using the following
objective function:

. 1 .
min Es o npu |57 D, LWesini)| )
fr.ow ‘Q‘r‘
(Xr,5,Yr,)EQT
where £ represents the cross-entropy (CE) loss function, and y, ; € {0, 1} represents the ground-
truth label. The complete meta-training algorithm of HierMatch is detailed in Algorithm T]

Inference Stage. After training, we evaluate the model using a series of test tasks 7.5 on the test
set Diesr. To capture the specific knowledge of each test task Ty, ~, we split the support set Sieg,
into S; and Q.. With the parameter 6 fixed, we fine-tune the model parameters w on Q.. The
optimization objective function is given as follows:

. 1 "
MBS 6~ |15 Y. L) ©)
(%7 g€,
where w, denotes the task-specific parameters for each task. After fine-tuning, the model is eval-
uated using the support set Sieq, to predict the labels of unknown query molecules. This process

allows the model to adapt to the specific features of each test task, enabling accurate predictions for
new and unseen molecular structures.

4 EXPERIMENT

In this section, we evaluate the empirical performance of HierMatch, as outlined in Section[3.3] We
conduct experiments on the MoleculeNet [4.T]and FS-Mol .2 benchmarks to validate our approach.
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Additionally, we perform an ablation study of HierMatch in Section[4.2] To demonstrate the gen-
eralization of HierMatch, we further test it on seven datasets from the Meta-MolNet benchmark in
Section [4.3] covering both single-task and multi-task scenarios. Lastly, we conduct visualization
experiments to demonstrate the importance of hierarchical matching in HierMatch in Section 4]
For a more detailed set of experimental results, please refer to Appendix [D.3] All experiments are
run on an NVIDIA RTX A6000 GPU.

4.1 FEW-SHOT MOLECULAR PROPERTY PREDICTION ON MOLECULENET BENCHMARK

Table 1: All methods are compared on the MoleculeNet benchmark with a support set size of 20.

The mean test performance measured by AUROC% along with the standard deviations.

Method Tox21 (12)+ SIDER (27)1 MUV (17)1 ToxCast (617) 1
CHEF (Adler et al.| 2020) 61.97 £ 0.65 57.344+0.82 53.17+421 5652+ 1.24
MixHop (Abu-El-Haija et al.]2019)  78.14£0.33 72.01 £0.87 78.04£3.01  77.19 + 0.93
Siamese (Koch et al.] 2013) 8040 £ 035 71.104+432 59.59 & 5.13 -
ProtoNet (Snell et al. 2017} 7498 £0.32 64.54+0.89 6588+4.11  63.70 £ 1.26
MAML (Finn et al.] 2017} 80.21 £ 024 7043 +£0.76 63.90+£228  66.79 £ 0.85
TPN (Liu et al.]2018) 76.05+£024 6784095 65224582 6274+ 1.45
EGNN (Kim et al. 2019} 8121 £0.16 72.87+0.73 6520208  63.65+ 1.57
TterRefLSTM (Altae-Tran et al.|2017) 81.10 £0.17 69.63 £0.31 4556 £ 5.12 -

PAR (Wang et al.| 2021) 82.06 £ 0.12 74.68 031 6648212  69.72 + 1.63
ADKF-IET (Chen et al.|[2023) 8243+ 0.60 67724121 98.18+3.05 72.07 +£0.81
MHNFs (Schimunek et al.| 2023} 80.23 £ 0.84 6589+ 1.17 73.81+£253 7491 +0.73
HierMatch (Ours) 82.62+ 043 68.13+£ 154 79.40+3.14 7774 +£0.75
Pre-GNN (Hu et al.|[2020) 82.14 £ 0.08 73.96+0.08 67.14+ 158  73.68+£0.74
GNN-MAML (Guo et al.| 2021} 82.97 £ 0.10 7543 +021 68.99 & 1.84 -
Pre-PAR (Wang et al.| 2021} 84.93+£0.11 78.08+0.16 69.96+ 137  75.12+0.84
Pre-ADKF-IFT (Chen et al.|[2023) 86.06 £ 0.35 70.95+0.60 95.74+037 7622 +0.13
Pre-HierMatch (Ours) 8635+ 0.13 8034+ 045 8635+0.76 81.63+0.73

Benchmark and Baselines. MoleculeNet (Wu et al., [2018)) serves as a benchmark for few-shot
molecular property prediction, focusing on small molecules with a molecular weight of less than
900 Daltons. This benchmark includes 4 datasets: Tox21, SIDER, MUYV, and ToxCast. More details
of datasets refer to Appendix[A.T] We compare HierMatch with two types of baselines: 1) Methods
trained from scratch, including CHEF (Adler et al., [2020), MixHop (Abu-El-Haija et al.| |2019),
Siamese (Koch et al.| [2015), ProtoNet (Snell et al.l 2017), MAML (Ren et al., 2018), TPN (Liu
et al.l 2018), EGNN (Kim et al.,[2019), IterRefLLSTM (Altae-Tran et al.| 2017)), PAR (Wang et al.,
2021), MHNfs (Schimunek et al., 2023)), and ADKF-IFT (Chen et al., 2023); 2) Methods that fine-
tune pretrained models, including Pre-GNN (Hu et al., 2020), GNN-MAML (Guo et al.,[2021)), Pre-
PAR (Wang et al.| 2021)), Pre-ADKF-IFT (Chen et al., |2023). Pre-HierMatch is our pretrained
method, utilizing pretrained parameters provided by the Pre-GNN method (Hu et al., 2020). More
details of the experimental setup can be found in Appendix

Evaluation Procedure. Following the procedural framework of Wang et al. (2021), we adopt
AUROC (Area Under the Receiver Operating Characteristic Curve) as the evaluation metric and set
the support set to 20 (i.e., 2-way 10-shot). The model is trained using the Adam optimizer (Kingma
& Bal 2014). During testing, results are based on 10 repeated experiments with different random
seeds. For the baselines, we replicated the results for CHEF, MixHop and MHNfs, while the results
for the other baselines are cited from (Chen et al.|(2023)).

Performance. Table [T demonstrates that both HierMatch and Pre-HierMatch outperform cur-
rent leading methods on the Tox21, SIDER (pre-training stage only), and ToxCast datasets, sur-
passing the SOTAs by an average margin of 2.87%. Compared to CHEF, HierMatch demonstrates
superior performance, suggesting that graph structures are more effective than fixed fingerprints
for hierarchical representation learning in this context. Additionally, our HierMatch outperforms
MixHop, highlighting the importance of hierarchical matching for molecular property prediction,
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Figure 3: Mean performance with standard errors on the FS-Mol test tasks. (a) Performance of all
compared approaches on FS-Mol benchmark. (b) Ablation study of the hierarchical pooling and
matching modules in HierMatch across different backbones.

especially in few-shot scenarios. On the MUV dataset, HierMatch ranks second among all base-
lines, possibly due to the severe distribution imbalance inherent in the MUV dataset.

4.2 FEW-SHOT MOLECULAR PROPERTY PREDICTION ON FS-MOL BENCHMARK

Benchmark and Baselines. FS-Mol, introduced by |Stanley et al.|(2021), serves as a benchmark
for few-shot molecular property prediction tasks, specifically for macromolecules (i.e., proteins).
It comprises 5,120 tasks, divided into a training set (4,938 tasks), a validation set (40 tasks), and
a test set (157 tasks), covering a total of 233,786 compounds. Further details are provided in
Appendix For comparison with HierMatch, we select four types of baselines: 1) Single-
task methods: single-task GP with Tanimoto kernel (GP-ST) (Ralaivola et al. 2005), single-task
GNN (GNN-ST) (Gilmer et al., 2017), and CHEF (Adler et al., 2020); 2) Multi-task pre-training
method: Multi-task GNN (GNN-MT) (Stanley et al.,[2021)); 3) Self-supervised pre-training method:
Molecule Attention Transformer (MAT) (Maziarka et al., [2020); and 4) Meta-learning methods:
MixTop (Abu-El-Haija et al.,|2019), PAR (Wang et al.| [2021), ProtoNet (Snell et al.,[2017), GNN-
MAML (Guo et all, 2021), ADKF-IFT (Chen et al., 2023) and MHNfs (Schimunek et al., 2023]).
The experimental results of all baselines are reproduced by [Chen et al.| (2023). Further details can
be found in Appendix [B.2]

Evaluation Procedure. We adopt the identical experimental configuration as the FS-Mol bench-
mark (Stanley et al.,2021). For each task, we employ unbalanced sampling to create an uneven dis-
tribution of positive and negative samples within the support set. The evaluation metric, AAUPRC,
provides a precise and sensitive measure of how well the model improves in handling minority
classes, which is crucial in unbalanced datasets. Further details of the evaluation can be found in
Appendix [B.3] During testing, we set five different support set sizes: 16, 32, 64, 128, and 256. For
each setting, we perform 10 repeated random splits of the support/query sets for the test tasks under
these settings and take the averages as the final results.

Performance. Figure[3|(a) displays the test results of all compared methods. The results indicate
that HierMatch outperforms all benchmarks across various support set sizes. It achieves substantial
performance gains of 4.27%, 8.53%, 4.40%, 6.07%, and 4.26% with support set sizes of 16, 32, 64,
128, and 256, respectively. These findings underscore the effectiveness of HierMatch’s hierarchical
pooling and matching mechanism in enhancing the model’s generalization and robustness. Addi-
tionally, HierMatch demonstrates strong adaptability, consistently improving performance across
different support set sizes.

Ablation Study. 1) To explore the importance of hierarchical pooling and matching mechanisms
in learning complex molecular structures, we select GNN-MAML (Guo et al.,[2021) as the baseline.
HierMatch extends GNN-MAML by incorporating these hierarchical mechanisms. 2) To evaluate
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the transferability of HierMatch, we tested it using common GNN frameworks, including GIN (Xu
et al.}2019), GCN (Kipf & Wellingl [2017), GAT (Velickovic et al., 2018)), and GraphSAGE (Hamil-
ton et al., 2017). Experimental results, as shown in Figure 3| (b), highlight the significant advantages
of the hierarchical pooling and matching mechanism in processing complex molecular structure
information and showcase their strong adaptability and transferability across frameworks.

Sub-benchmark Performance. The FS-Mol benchmark (157 test tasks) is divided into 7 subset
tasks (Stanley et al 2021). The results of these subset tasks for HierMatch and the baselines are
presented in Appendix [D.2] Table [D.2] demonstrates the superior performance of HierMatch over
SOTA.

HIV (AUROC) Tox21 (AUROC)
ADKEF-IFT RF
HierMatch XGBoost
CDDD B GCN
Mol2Context-vec © CMPNN
MolBERT DMPNN
N-gram Attentive FP
PreGNN TrimNet
ToxCast (AUROC) PCBA (PRAUC) MUV (PRAUC) SVM I Meta-GAT

Figure 4: The performance of all compared methods on the seven classification tasks with a support
set of size 2 on the Meta-MolNet benchmark. Each colored sector represents a method, with the
height of the sector indicating the method’s effectiveness. Starting from the black arrow, the methods
are listed in the legend in a counterclockwise direction. HierMatch corresponds to the sector.
The dashed orange circle marks the results of HierMatch. Methods with sectors not crossing this
line fail to surpass HierMatch, while those crossing it show superior performance.

4.3 CROSS-DOMAIN DRUG DISCOVERY ON META-MOLNET BENCHMARK

Benchmark and Baselines. Meta-MolNet (Lv et al., 2024) sets a standard for evaluating gener-
alization in computational chemistry by improving data quality and testing rigor. We evaluate our
model on classification tasks including GSK3, JNK3, HIV, Tox21, ToxCast, PCBA, and MUV. For
comparison, we consider four types of baselines: 1) Classical machine learning methods: support
vector machine (SVM) (Bao et al.| 2016)), extreme gradient boosting algorithm (XGBoost)(Deng
et al.} |2021), and random forests (RF) (Fabris et al., 2018). 2) Supervised learning methods: GCN
(Kipf & Welling, 2016), CMPNN (Song et al., [2020), DMPNN (Yang et al., [2019), Attentive FP
(Xiong et al., 2019), and TrimNet (Li et al.l [2020). 3) Self-supervised learning methods: CDDD
(Winter et al., 2019), Mol2Context-vec (Lv et al., 2021), MolIBERT (Fabian et al., [2020),N-gram
(Liu et al., 2019), and Pre-GNN (Hu et al. [2020). 4) Meta-learning method: ADKF-IFT (Chen
et al., [2023) and Meta-GAT (Lv et al.| 2024). All baseline results are reproduced according to|Lv
et al.[(2024). Due to the sub-task settings of Meta-MolNet, prototype-based methods are no longer
applicable. Further details can be found in Appendix

Evaluation Procedure. To evaluate the generalization ability of HierMatch, we follow a higher
ratio of molecules/scaffolds as|Lv et al.|(2024). For classification tasks, we use AUROC and PRAUC
as evaluation metrics. Specifically, AUROC is used to measure the performance of binary classifica-
tion tasks (GSK3, JNK3, HIV, Tox21, and ToxCast), while PRAUC is more suitable for tasks with
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severely skewed distributions (PCBA, MUV). All experimental results are based on the average of
three independent runs with different random seeds, with the support set size set to 2. Further details
on evaluation metrics can be found in Appendix [C.3]

Performance. Figure [4] shows the comparative results of different methods on the seven classi-
fication datasets in Meta-MolNet. The experiments indicate that HierMatch performs excellently
on the GSK3, JNK3, Tox21, and ToxCast datasets, while showing less well on the HIV and PCBA
datasets. Our method faces significant challenges on the MUV dataset, likely due to distributional
biases. Overall, HierMatch exhibits excellent generalization capabilities across most datasets for
new molecular scaffolds but performs poorly in specific cases, such as the MUV dataset.

4.4 VISUALIZATION
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Figure 5: Layer-wise visualization for NR-AhR toxicity prediction. The first row presents PCA
projections of 10 molecules, distinguishing between active (blue) and inactive (pink) molecules.
The second row displays the internal visualization of a selected molecule across layers, with color
intensity indicating the model’s attention shifts as the layers deepen.

To validate the importance of hierarchical representations, we visualize 10 molecules for the NR-
AhR toxicity prediction task, as shown in Figure |§l In the second row, we select one molecule, with
the SMILES “CCOclcce2ne(S(N)(=0)=0)sc2c1", to demonstrate how each GNN layer captures
distinct structural levels, from atoms and substructures to the entire molecule. Additionally, PCA
projections of the 10 molecules were performed to examine the distribution of active and inactive
compounds. This analysis enhances our understanding of the model’s ability to distinguish molecu-
lar structures across layers, offering insights into both its interpretability and the role of hierarchical
feature extraction in toxicity prediction. Further details can be found in the Appendix [E]

5 CONCLUSION

We propose Hierarchical Matching Networks (HierMatch) to address the limitations of existing few-
shot learning methods in drug discovery. HierMatch involves hierarchical pooling and matching
techniques. Specifically, hierarchical pooling aggregates node features at each level, preserving
crucial details that single-scale methods might overlook. Then, hierarchical matching performs
pairwise comparisons at these different structural levels, allowing more accurate assessments of
molecular similarities. Experimental results show that HierMatch improves AUROC and AAUPRC
by 2.87% and 6.52% respectively on the MoleculeNet and FS-Mol benchmarks and demonstrates
excellent generalization on the Meta-MolNet benchmark. Future work will focus on improving the
fusion mechanism of HierMatch by adopting advanced techniques such as attention fusion or multi-
scale feature aggregation to better capture the complex relationships between structural levels.

6 ETHICS STATEMENT

This paper addresses few-shot molecular representation learning without introducing new datasets
or requiring human annotation. As such, it presents no additional ethical concerns beyond those
commonly associated with research in this field.
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A  DETAILS OF MOLECULENET BENCHMARK

In this section, we introduce the details of datasets that are included in the MoleculeNet benchmark
in Section[A.1] In addition, we show the details of the experimental setup[A.2]

A.1 DETAILS OF DATASETS

Table 2: Summary of datasets included in MoleculeNet.

Dataset | Tox21 SIDER MUV  ToxCast
Compounds 8,014 1,427 93,127 8,015
Tasks 12 27 17 617
Meta-Training Tasks 9 21 12 450
Meta-Testing Tasks 3 6 5 167

In the MoleculeNet benchmark, we perform experiments on 4 datasets in Tabel [2] which include
Tox21 (Richard et al., |[2020), SIDER (Kuhn et al., [2016), MUV (Rohrer & Baumann, 2009)), and
ToxCast (Richard et al.l 2016). Widely utilized in the assessment of compound toxicity for drug
development and environmental risk evaluation, the Tox21 dataset, as described in [Richard et al.
(2020), contains 8,014 compounds categorized into 12 tasks. By analyzing this dataset, researchers
can identify environmental pollutants and potential drug candidates, offering crucial insights into
their impact on human health. The SIDER dataset, introduced in Kuhn et al.| (2016)) , serves as a
crucial database of drug side effects, encompassing extensive information on medications and their
associated adverse responses. This dataset encompasses 1427 compounds distributed among 27 cat-
egories. Utilizing the SIDER dataset provides researchers with valuable insights into drug safety
profiles and potential side effects. The MUYV dataset (Rohrer & Baumann, 2009), which includes
93,127 compounds distributed among 17 tasks showcasing a range of biological activities, is widely
acknowledged as a key standard for evaluating the multifaceted functions of drug compounds. A
fundamental resource in toxicology research, the ToxCast dataset (Richard et al.,|2016)) is a critical
high-throughput screening database used to evaluate the potential health hazards posed by various
compounds. With a compilation of 8,615 compounds and 617 tasks, this dataset significantly con-
tributes to the field of toxicology.
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A.2 DETAILS OF EXPERIMENTAL SETUP

In HieMatch (and Pre-HirMatch), GIN used in Equation [I|and Equation 2] consists of 5 layers with
hidden size 300. In addition, attention mechanism used in Equation [3|consist of 1 layer with 1 head.
We implement HierMatch in PyTorch (Paszke et al., 2019) and Pytorch Geometric library (Fey &
Lenssen, 2019). We train the model for a maximum number of 5000 epoches. We employ the Adam
optimizer (Kingma & Bal,2014)) with a learning rate of 0.001 for meta-learning, while using a higher
learning rate of 0.05 for fine-tuning the matching module and fusion module within each task. The
dropout rate is maintained at 0.1 for all components, except for the graph-based molecular encoder.
We summarize the hyperparameters used by HierMatch in Table 3]

Table 3: Hyperparameters used by HierMatch

Hyperparameter | Explored values | Selected
learning rate for meta-learning 0.001 0.001
learning rate for fine-tuning 0.01~0.5 0.05
number of update steps for fine-tuning 1~5 5
number of layer of GNN in (1) and 5 5
number of layer of matching module in (3) 1 1
number of head of matching module in (3) 1 1
dropout 0.0~0.5 0.1
hidden dimension for GNN in (1)) and 300 300

B DETAILS OF FS-MoOL BENCHMARK

In this section, we first introduce the details of FS-Mol benchmark (Stanley et al.|, [2021)) in Sec-
tion The subsequent discussion delves into the details of the compared baselines on FS-Mol
benchmark in Section [B.1] In addition, further details regarding the evaluation metric AAUCPR
is presented in Section Finally, the details of experimental setup on FS-Mol benchmark is
presented in Section[B.4]

B.1 DETAILS OF BENCHMARKS

The Few-Shot Learning Dataset of Molecules (FS-Mol) (Stanley et al. [2021)) is designed for ma-
chine learning applications in the Quantitative Structure-Activity Relationships (QSAR) field (Trop-
sha et al., |2023)), specifically focusing on few-shot learning scenarios. It comprises a total of 5120
distinct assays, encompassing 233,786 unique compounds. The dataset is partitioned into three
subsets: Dyyqin for training, Dy for testing, and D,,4;;4 for validation purposes. D;.s; contains
157 tasks, Dy,qin includes 4938 tasks, and D,,,1;4 is composed of 40 tasks. Notably, each task in
the dataset contains an average of 94 compounds, a notably lower figure compared to other similar
datasets. This characteristic reflects the high specificity of the protein targets and the corresponding
assays, posing a significant challenge in the QSAR domain.

B.2 DETAILS OF BASELINES.

In the comparative analysis of the FS-Mol benchmark (Stanley et al., 2021}, four types of base-
lines have been chosen: Single-task methods, Multi-task pre-training methods, Self-supervised pre-
training methods, and Meta-learning methods.

Single-task Methods. The single-task methods are single-task GP with Tanimoto kernel (GP-ST)
(Ralaivola et al.,|2005)), single-task GNN (GNN-ST) (Gilmer et al.||2017), and MHNfs (Schimunek
et al.| [2023)) for context-enriched information.

GP-ST, as delineated in the study by (Ralaivola et al.}[2005)), encompassing the random walk kernel,
shortest-path kernel, and subtree kernel, are employed to evaluate the resemblance between graphs
of chemical compounds. |Gilmer et al.|(2017)) introduces GNN-ST, particularly focusing on MPNNs
for proficient learning from graph-based representations of molecules in quantum chemistry.
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Multi-task Pre-training Method. Multi-task GNN (GNN-MT) (Stanley et al., 2021) employs a
10-layer pre-trained GNN with 128 hidden dimensions and "principal neighborhood message aggre-
gation." Task-specific readout functions and an MLP with a 512-dimensional hidden layer produce
activity label predictions. The model is fine-tuned on all tasks in Dy, using multi-task learning.

Self-supervised Pre-training Method. The Molecule Attention Transformer (MAT) (Maziarka
et al [2020) modifies the Transformer architecture (Vaswani et al., [2017) by incorporating insights
on inter-atomic distances and the molecular graph structure into the self-attention mechanism.

Meta-learning Methods. Property-Aware Relation Networks (PAR) (Wang et al., [2021)), Proto-
typical Networks (ProtoNet) (Snell et al.| 2017), GNN-MAML (Guo et al.| [2021), and ADKF-
IFT (Chen et al., [2023)) are four typical meta-learning methods. Specifically, PAR (Wang et al.,
2021), introduces a property-aware embedding function that transforms generic molecular embed-
dings into a substructure-aware representation which relevant to the target property, and designs an
adaptive relation graph learning module to jointly estimate the molecular relation graph and refine
the molecular embeddings with respect to the target property. Schimunek et al| (2023) proposes
MHNfs approach, utilizing a Modern Hopfield Network (MHN) (Ramsauer et al., [2020) to link
molecules with an extensive array of reference molecules, thereby enhancing the covariance struc-
ture of the data and mitigating spurious correlations of molecules. ProtoNet (Snell et al., [2017),
a simple approach to few-shot classification, learns an embedding where each class is represented
by a prototype, computed as the mean of the embedded support examples for that class. Clas-
sification is then done by computing distances from the query example to each class prototype.
GNN-MAML (Guo et al.,2021) uses graph neural networks to learn molecular representations, and
employs a meta-learning framework for model optimization. It also incorporates molecular struc-
ture, self-supervised modules, and self-attentive task weights to exploit unlabeled data and address
task heterogeneity. ADKF-IFT (Chen et al., 2023 combines the representational power of deep
learning with the probabilistic modeling capabilities of gaussian processes, enabling efficient and
uncertainty-aware molecular property prediction through meta-learning.

B.3 EVALUATION METRICS OF FS-MOL BENCHMARK

The AAUCPR (Area Under the Curve for Precision-Recall) serves as a pivotal statistical measure
utilized for assessing enhancements in the efficacy of classification models when confronted with
imbalanced datasets due to targeted modifications, like algorithmic adjustments or alterations in
data processing methodologies. By contrasting the precision-recall curve’s area prior to and post
adjustments, this metric adeptly elucidates the extent of enhancement in the capacity of model to
identify minority classes, thereby supplying a quantitative foundation for optimizing the model and
facilitating decision-making support.

In line with the research conducted by [Stanley et al.|(2021)), we employ the AAUCPR as an evalua-
tion metric for comparing all baseline models. The specific calculation formula is detailed below:
N (1)

A AUCPR (fo,w) = AUCPR (fo.w) = =

(7
where the NZ(1) represents the number of active molecules in query set Q.

B.4 DETAILS OF EXPERIMENTAL SETUP

In HierMatch, the hyperparameters used by HierMatch are reported in Table [3] What is more, on
FS-Mol benchmark (Stanley et al.| 2021, we set the batch task 21 and weight decay Se-5. And we
train the model for 10,000 epoches.

C DETAILS OF META-MOLNET BENCHMARK

In this section, we first introduce the details of Meta-MolNet benchmark (Lv et al., [2024) in Sec-
tion[C.I] In addition, we provide the details of the baselines in Section[C.2] Finally, the details of
evaluation metric is provided in Section
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C.1 DETAILS OF BENCHMARKS

Meta-MolNet is an innovative benchmarking platform designed to improve molecular machine
learning models by integrating diverse datasets through multitask and transfer learning, spanning
applications from drug discovery to materials science. In this paper, we use 7 classification tasks on
Meta-MolNet benchmark to evaluate our HierMatch, which include GSK3, JNK3, HIV, Tox21, Tox-
Cast, PCBA and MUV. The GSK3 dataset focuses on predicting the activity of compounds against
the GSK3 enzyme, which is associated with diseases like diabetes and Alzheimer’s. The JNK3
dataset assesses the inhibitory activity of compounds against JNK3, a kinase implicated in neurode-
generative diseases. The HIV dataset contains data for predicting the ability of compounds to inhibit
HIV replication. Tox21 evaluates the toxicity of compounds across multiple biological pathways,
while ToxCast predicts the toxic effects of environmental chemicals. The PCBA dataset measures
compound activity across various bioassays from the PubChem database. Lastly, the MUV dataset
provides a rigorous and unbiased benchmark for validating virtual screening methods. Together,
these tasks offer a comprehensive evaluation framework for molecular machine learning models.
The detailed description of datasets in Table 4]

Table 4: Detailed Description of the benchmark datasets
No. of No. of Molecules/

Task type ‘ Datasets  Category  Data type Tasks Molecules  Scaffolds  Scaffolds ratio Metrics Threshold
Sinele Task GSK3  Biophysics SMILES 1 3,197 38 84.13 ROC-AUC 30
Clas%i ﬁcation JNK3  Biophysics SMILES 1 4,873 62 78.60 ROC-AUC 30
HIV Biophysics ~ SMILES 1 6,386 68 93.91 ROC-AUC 30
Tox21  Physiology SMILES 12 2,119 12 176.58 ROC-AUC 30
Multi Task | ToxCast Physiology SMILES 617 2,372 14 169.43 ROC-AUC 30
Classification | PCBA  Biophysics ~SMILES 128 21,835 34 642.21 PRC-AUC 200
MUV  Biophysics SMILES 17 11,671 152 76.78 PRC-AUC 30

C.2 DETAILS OF BASELINES

Four types of baselines—classical machine learning models, graph-based models, message passing
neural networks, and self-supervised pre-training models—are chosen for comparative analysis on
the Meta-MolNet benchmark (Lv et al., [2024).

Classical Machine Learning Methods. Support Vector Machines (SVM) (Bao et al.,[2016), ex-
treme gradient boosting algorithms (XGBoost) (Deng et al.,|2021), and Random Forests (RF) (Fab-
ris et al., 2018) are among the classical machine learning methods that utilize descriptors and/or
fingerprints commonly found in traditional QSPR/QSAR models (Cherkasov et al.,[2014). Notably,
the Extended Connectivity Fingerprints (ECFPs) (Rogers & Hahnl [2010; |Glen et al., 2006) and
Molecular ACCess System (MACCS) keys (Bender et al., 2004; |Unterthiner et al., 2014) are widely
used as fingerprints in such models. SVM (Bao et al.l 2016) is a robust machine learning algo-
rithm designed to identify the optimal solution for classification tasks by determining the maximum
margin hyperplane within a high-dimensional space. XGBoost (Deng et al.,|2021)) is a proficient ma-
chine learning technique that utilizes distributed gradient boosting to provide rapid, adaptable, and
user-friendly solutions. Information about RF (Fabris et al., 2018) can be found in Appendix

Supervised Learning Methods. Graph Convolutional Networks (GCN) (Duvenaud et al.,|[2015)),
Directed Message Passing Neural Networks (DMPNN) (Yang et al.l [2019), Communicative Mes-
sage Passing Neural Networks (CMPNN) (Song et al., 2020), Attentive FP (Xiong et al.| |2019),
and Triplet Message Networks (TrimNet) (Li et al.,|2020) are among the supervised learning meth-
ods. Specifically, GCI\E] (Duvenaud et al., 2015)) employs convolution operations based on the eigen
decomposition of the Laplacian matrix, which allows them to aggregate information from neighbor-
ing nodes and derive node embedding representations. DMPNN"|(Yang et al., [2019) use Laplacian
eigen decomposition for convolution operations, aggregating information from neighboring nodes to
derive node embeddings. CMPNI\E] (Song et al., [2020) enhance modeling of molecular properties

*https://github.com/tkipf/gcn.git
*nttps://github.com/chemprop/chemprop.git
Shttps://github.com/SY575/CMPNN.git
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by using a node-edge interaction module to effectively integrate atom and bond features. Atten-
tive FP|(Xiong et al., 2019) employs atom and bond attributes to create feature vectors, preserving
spatial information and capturing both local and nonlocal effects with a graph attention mechanism.
TrimNet[Z] (Li et al., 2020) utilizes a triplet message mechanism to extract edge information from
atom-bond-atom interactions, achieving state-of-the-art performance.

Self-supervised Learning Methods. CDDD (Winter et al., 2019), Mol2Context-vec (Lv et al.,
2021), MoIBERT, N-gram, and Pre-GNN (Hu et al.| [2020) are self-supervised methods that pre-
train on large molecular datasets to extract meaningful descriptors. These data-driven approaches
produce generalizable features, avoiding fixed extraction rules and reducing overfitting. Specifically,
CDDIﬂ (Winter et al.,[2019) learns features from a large chemical structure corpus by translating be-
tween different molecular representations, compressing shared information into a low-dimensional
vector. MolZContext-ve(ﬂ (Lv et al., 2021) uses a Bi-LSTM to create dynamic representations
of molecular substructures, capturing intramolecular hydrogen bonds and other non-covalent inter-
actions. MolBER (Fabian et al., |2020) is a Transformer-based model that uses BERT (Devlin
et al.,|2018) to learn high-quality molecular representations for drug discovery. N-granﬂ (Liuetal.
2019) captures co-occurrence patterns of local substructures by extracting n-grams from the graph
and creating a histogram to represent their frequencies, forming the graph-level representation. Pre-
GNNE-] (Hu et al.| 2020) pre-trains graph neural networks by learning representations at both node
and graph levels, capturing local and global structural information in molecular graphs.

Meta-learning Methods. Meta-GAT (Lv et al., [2024) and ADKF-IFT (Chen et al., 2023) are
two typical meta-learning methods. Specifically, Meta-GA’IE] (Lv et al.,[2024)) s a graph attention
network that uses cross-domain meta-learning to predict molecular properties with few examples.
By extracting meta-knowledge from similar molecules across domains, it reduces sample complexity
and quickly adapts to new scaffold molecules with minimal data. ADKF-IFTE] (Chen et al., 2023)
can be seen in Appendix [B.1]

C.3 EVALUATION METRICS OF META-MOLNET

In this paper, we use benchmark datasets with a higher ratio of molecules to scaffolds, presenting
a significantly more challenging scenario compared to random cross-validation and datasets with a
lower ratio (Lv et al.| [2024), for evaluating generalization ability. For classification tasks, we use
Area Under the Receiver Operating Characteristic Curve (AUROC) and Area Under the Precision-
Recall Curve (PRAUC) as evaluation metrics. Specifically, AUROC measures the trade-off between
the true positive rate (sensitivity) and the false positive rate (1 - specificity) across different classi-
fication thresholds. AUROC ranges from 0 to 1, where 0.5 represents a random classifier and 1
represents a perfect classifier. A higher AUROC value indicates better classification performance,
making it well-suited for evaluating binary classification tasks such as GSK3, JNK3, HIV, Tox21,
and ToxCast. Meanwhile, PRAUC considers the trade-off between precision (positive predictive
value) and recall (sensitivity). Like AUROC, PRAUC ranges from O to 1, with higher values in-
dicating better performance. PRAUC is particularly useful for evaluating models on imbalanced
datasets, making it more suitable for tasks such as PCBA and MUYV, which have severely skewed
distributions.

C.4 DETAILS OF EXPERIMENTAL SETUP

On the Meta-MolNet benchmark, we set the query set size to 8 and the support set size to 2. We
employ the AdamW optimizer (Loshchilov & Hutter, [2017) with a learning rate of 0.001 for meta-

®https://github.com/OpenDrugAl/AttentiveFP.git
"https://github.com/yvquanli/trimnet.git
$https://github.com/jrwnter/cddd.git
https://github.com/10l188/Mol2Context-vec.git
Yhttps://github.com/BenevolentAI/MolBERT.git
Uhttps://github.com/chaol224/n_gram_graph.git
Zhttps://github.com/snap-stanford/pretrain-gnns.git
Bhttps://github.com/10188/Meta—MolNet.git
“https://github.com/Wenlin—-Chen/ADKF-IFT.git
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learning and an inner learning rate of 0.001 for fine-tuning the task-specific modules within each
task. A weight decay of 5e-4 is applied. The model is trained for 100 epochs to ensure robust
performance.

D FURTHER EXPERIMENTS RESULTS ON FS-MoL

D.1 OVERALL PERFORMANCE

Figure [6] (a)~(e) show the performance of different methods in classifying 157 FS-Mol (Stanley
et al.} [2021)) test tasks across various support set sizes via box plots. The box plots show the distri-
bution of classification accuracies for each method, providing insight into their overall performance
and effectiveness in handling varying support set sizes. Our HieMatch demonstrates superior per-
formance compared to the state-of-the-art (SOTA) method across all metrics.

D.2 SUB-BENCHMARK PERFORMANCE

FS-Mol (Stanley et al., [2021)) divides tasks into 7 sub-benchmarks using Enzyme Commission (EC)
numbers (Hu et al., [2012), allowing for assessment across the entire benchmark. In classification
tasks with a support set size of 16, Table [D.2]illustrates the performance of the top methods across
all sub-benchmarks. The results highlight that, while excelling in overall performance, HieMatch
emerges as the top performer in half of the sub-benchmarks for classification tasks.

Table 5: The classification performance for the 16 support set size.

FS-Mol sub-benchmark (EC category) Method
Class Description #tasks RF GP-ST GNN-MAML ADKF-IFT HierMatch
1 oxidoreductases 7 0.081 £0.032 0.013 £0.019 0.046 +£0.023 0.103 +0.0036  0.231 & 0.075
2 kinases 125 0.082 £0.006 0.013 £0.004 0.178 £0.009 0.247 £0.010  0.256 & 0.012
3 hydrolases 20 0.158 £0.026  0.062 £0.019 0.106 +£0.024  0.213 £0.029  0.201 &+ 0.028
4 lysases 2 0218 £0.172 0.161 £0.112  0.218 £0.147  0.223 £0.160  0.211 £ 0.061
5 isomerases 1 0.119 £0.029 -0.014 +0.015 0.006 £ 0.021  0.121 £0.049  0.087 £ 0.025
6 ligases 1 0.027 £0.069 -0.011 £0.003 0.001 £0.017 0.103 £0.066  0.359 & 0.011
7 translocases 1 0.102 £0.053  0.067 £0.050 0.001 £0.021  0.082 £0.049 -0.009 £ 0.011
all enzymes 157 0.093 £0.007 0.021 £0.005 0.162 +0.009 0.230 £0.009  0.245 + 0.011

D.3 META-TESTING COSTS

In this section, we compare the inference time of our HierMatch with meta-learning approaches.
Figure [7] illustrates that HierMatch takes slightly more time compared to ProtoNet (Snell et al
2017) and GNN-MAML (Guo et al., [2021)). Additionally, ADKF-IFT (Chen et al.l [2023)) exhibits
the longest reference time. However, it is important to note that HierMatch still maintains a relatively
fast inference time, making it a viable option for meta-learning tasks.

E VISUALIZATION EXPERIMENTS

F DISCUSSION, LIMITATION AND FUTURE WORK

Limitation: Simple Fusion Design. The fusion mechanism in the proposed HierMatch model is
relatively simplistic, which might limit its ability to effectively integrate information from different
hierarchical levels. This simple design could lead to suboptimal performance as the model may not
fully capture the complex interactions and dependencies across multiple scales of molecular struc-
tures. A more sophisticated fusion technique, such as attention-based fusion or multi-scale feature
aggregation, could potentially enhance the model’s capability to combine features from different
layers more effectively. By leveraging advanced fusion strategies, the model can better exploit the
rich hierarchical information inherent in molecular structures, leading to improved prediction ac-
curacy and generalization. Implementing these advanced fusion methods may involve additional
computational complexity, but the potential gains in model performance justify this investment.
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Figure 6: Box plots illustrate how different methods perform in classifying 157 FS-Mol test tasks
across various support set sizes.
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Figure 7: The wall-clock time, along with standard errors, is recorded during meta-testing on a
predetermined set of FS-Mol classification tasks for comparison with the meta-learning approaches.

Limitation: Underfitting on Regression Tasks. The HierMatch model exhibits underfitting be-
havior on regression tasks, indicating that it may not be capturing all the necessary features and
complexities required for accurate regression predictions. Experimental results suggest that this
underfitting is due to the use of a linear layer in the final fusion module. When different layers’
molecular features are fused using a weighted average approach instead, the model performs signif-
icantly better and converges properly. This improvement with the weighted average fusion indicates
that the linear layer may not be adequately capturing the relationships between features from dif-
ferent layers for regression tasks. Therefore, replacing the linear fusion with a weighted average
aggregation method could resolve the underfitting issue, allowing the model to capture the neces-
sary complexities and improve its performance on regression tasks.

Conclusion and Future Work In this paper, we propose Hierarchical Matching Networks (Hier-
Match) to address the limitations of existing few-shot learning approaches in drug discovery. Hi-
erMatch utilizes hierarchical pooling and matching techniques to enhance the representation and
comparison of molecular features across multiple scales. By aggregating node features from local
neighborhoods to global structures, HierMatch preserves essential structural details that single-scale
methods often overlook. Our experimental results demonstrated that HierMatch outperforms state-
of-the-art methods on the MoleculeNet and FS-Mol benchmarks, with significant improvements in
AUROC and AAUPRC. Additionally, HierMatch showed exceptional generalization ability on the
Meta-MolNet benchmark. However, our analysis revealed that the model’s performance on regres-
sion tasks could be further improved by addressing specific issues in the fusion module.

In the future, we will focus on enhancing the fusion mechanism within HierMatch to better cap-
ture the complex relationships between features from different hierarchical levels. Specifically, we
will explore advanced fusion techniques such as attention-based fusion and multi-scale feature ag-
gregation to replace the current simplistic linear approach. Additionally, we plan to conduct more
extensive experiments on a wider range of datasets and tasks to ensure the robustness and general-
izability of our model. Another promising direction is to integrate domain-specific knowledge and
features into the model to further improve its predictive accuracy and interpretability. Finally, we
will work on optimizing the computational efficiency and scalability of HierMatch to facilitate its
application in large-scale drug discovery projects.
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