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ABSTRACT

Recent advancements in unified vision-language models (VLMs), which integrate
both visual understanding and generation capabilities, have attracted significant
attention. The underlying hypothesis is that a unified architecture with mixed
training on both understanding and generation tasks can enable mutual enhance-
ment between understanding and generation. However, this hypothesis remains
underexplored in prior works on unified VLMs. To address this gap, this paper
systematically investigates the generalization across understanding and generation
tasks in unified VLMs. Specifically, we design multiple datasets closely aligned
with real-world scenarios to facilitate extensive experiments and quantitative evalu-
ations. We evaluate multiple unified VLM architectures to validate our findings.
Our key findings are as follows. First, unified VLMs trained with mixed data
exhibit mutual benefits in understanding and generation tasks across various ar-
chitectures, and this mutual benefits can scale up with increased data. Second,
alignment between multimodal input and output spaces is important to mutual
benefits. Better alignment will lead to more significant mutual benefits. Third, the
knowledge acquired during generation tasks can transfer to understanding tasks,
and this cross-task generalization occurs within the base language model, beyond
modality adapters. Our findings underscore the critical necessity of unifying un-
derstanding and generation in VLMs, offering valuable insights for the design and
optimization of unified VLMs.

1 INTRODUCTION

In recent years, Vision-Language Models(VLMs) has emerged as a transformative paradigm in
artificial intelligence. These models are typically categorized into two distinct types: understanding-
only VLMs (Chen et al., 2024b; Liu et al., 2023; Wang et al., 2024a), which focus mainly on
comprehension and perception tasks like visual question answering (VQA) and image captioning;
and generation-only VLMs (Betker et al., 2023; Podell et al., 2023; Tian et al., 2024b), which excel
in tasks like image generation and image editing. Although these specialized models have achieved
remarkable success in their respective domains, recent research has increasingly shifted toward the
development of unified VLMs (Chen et al., 2025; Xie et al., 2024; Zhou et al., 2024; Wang et al.,
2024b; Team, 2024). These unified models aim to integrate both understanding and generation
capabilities within a single framework.

The intuitive motivation for developing unified VLMs stems from the hypothesis that a shared ar-
chitecture and mixed training across understanding and generation tasks can foster mutual benefits.
As Richard Feynman famously stated, “What I cannot create, I do not understand.” This philos-
ophy underscores the potential synergy between understanding and generation. Specifically, it is
hypothesized that the knowledge acquired through understanding tasks can be leveraged to enhance
performance on generation tasks. For instance, spatial concepts learned during image caption tasks
may assist the model in generating images correctly following complex text instructions. Conversely,
successful execution of generation tasks may hinge on the model’s ability to comprehend the underly-
ing concepts in textual instructions. This process, in turn, can reinforce the model’s understanding of
these concepts. For example, generating images with precise spatial relationships may deepen the
model’s grasp of spatial concepts, thereby improving its performance on related understanding tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Output  
Space

Input
Space

LLM

U-VLM

G-VLM

Unified VLM
(Aligned)

Unified VLM
(Non-aligned)

180

190

200

210

220

FI
D

 S
co

re
 (

  )

75

80

85

90

V
Q

A
 S

co
re

( 
 )

Figure 1: Unified VLMs surpass understanding-
only and generation-only models. Alignment of
vision input-output spaces further boosts perfor-
mance. Results from Section4.

Despite the growing interest in unified VLMs,
most existing works have predominantly fo-
cused on architectural innovations or training
strategies. However, a critical question remains
largely unexplored: Are unified vision-language
models (VLMs) truly necessary when separate
models for understanding and generation al-
ready excel in their respective domains? Cur-
rently, unified VLMs do not exhibit clear superi-
ority over separate models in either understand-
ing or generation tasks(Chen et al., 2025; Team,
2024). Moreover, the generalization across un-
derstanding and generation tasks has been in-
sufficiently studied. This topic has only been
briefly discussed in a few prior works (Tong
et al., 2024; Chen et al., 2025; Wu et al., 2024a),
often as a secondary consideration within the
context of specific architectures. It remains un-
clear whether such generalization consistently
exists across different unified VLMs and what
factors influence this phenomenon.

To address this gap, this paper systematically investigates the generalization across understanding
and generation in unified VLMs. First, to facilitate extensive experimentation, we carefully design
two easy-to-control image-text dataset aligned with real-world scenarios. This dataset includes both
vision understanding data (e.g., visual question answering (VQA) and image captioning) and vision
generation data (e.g., text-to-image generation). We then evaluate and analyze multiple unified VLM
architectures, covering a wide range of prior works. Our key findings are as follows:

First, unified VLMs exhibit mutual benefits between understanding and generation tasks. Specifically,
we compare the performance of unified VLMs trained with mixed tasks (combining understanding
and generation) against task-specific models trained solely on either understanding or generation
tasks using the same set of data. The results show that most of the unified VLMs outperform their
task-specific counterparts, as illustrated in Figure 1. To further explore these mutual benefits, we
conduct experiments by fixing the amount of understanding data while increasing the generation
data, and vice versa. We find that the mutual benefits can scale up with the increase in training data,
highlighting the synergy between understanding and generation.

Second, better alignment between vision input and output spaces leads to improved generalization.
Our evaluations reveal that unified VLMs with well-aligned vision input and output spaces exhibit
more pronounced mutual benefits, as shown in Figure 1. To validate this observation, we introduce
artificial distortions to disrupt the alignment between the vision input and output spaces. The results
demonstrate that such disruptions significantly reduce the mutual benefits in unified VLMs, while task-
specific models remain largely unaffected. These findings underscore the critical role of alignment
between vision input and output spaces in facilitating cross-task generalization.

Third, knowledge acquired during generation tasks can transfer to understanding tasks. Lever-
aging our carefully designed synthetic dataset, we simulate scenarios where specific knowledge
is underrepresented in the understanding data but remains present in the generation data. While
understanding-only models struggle to learn this knowledge, unified VLMs successfully acquire it
and achieve near-perfect accuracy on related tasks. This empirically demonstrates the transfer of
knowledge from generation tasks to understanding tasks. Further analysis reveals that this knowledge
transfer occurs primarily within the base language model (LLM), beyond the modality adapters

Through these findings, we highlight the necessity of unifying understanding and generation within a
single framework, as evidenced by the mutual benefits observed in unified VLMs. Additionally, we
reveal the potential for scaling up vision-language models through the integration of understanding
and generation tasks. We hope that our experimental pipeline will facilitate future research in this
area and provide insights for the design and optimization of unified VLMs.
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2 RELATED WORK

Unified Vision-Language Models. Recent efforts have aimed to build unified VLMs that seamlessly
support both understanding and generation across vision and language modalities. A popular direction
extends autoregressive language modeling to both text and image tokens (Wu et al., 2024b; Wang
et al., 2024b), enabling a single transformer to predict the next token regardless of modality. Models
such as LWM (Liu et al., 2024) and Chameleon (Team, 2024) adopt discrete VQ-based image
tokenizers (Gafni et al., 2022), allowing vision-language inputs to be encoded and decoded within a
unified autoregressive framework. Beyond token-based approaches, diffusion models have recently
emerged as a powerful tool for vision generation. A group of works treats diffusion as an external
module: an autoregressive LLM first generates latent codes, which are then passed to a pretrained
diffusion model to produce the final image (Dong et al., 2023; Tian et al., 2024a). Transfusion (Zhou
et al., 2024) and Showo (Xie et al., 2024) take a hybrid route, integrating continuous or discrete
diffusion for images with autoregressive text prediction, offering greater flexibility for mixed-modal
generation. Alternative strategies explore architectural innovations to support dual capabilities. Janus-
pro (Chen et al., 2025) decouples vision encoders into separate pathways to balance understanding and
generation tasks. Dual Diffusion (Li et al., 2024) proposes using two independent diffusion processes
for the two capabilities, while Liquid (Wu et al., 2024a) aligns visual and textual representations in a
shared space for unified token-level modeling.

Generalization Across Generation and Understanding. While unified MLLMs have demonstrated
promising performance in both understanding and generation tasks, their purported advantage of
mutual enhancement across modalities remains an open question. Existing studies have largely
focused on model architecture or training efficiency without systematically evaluating the general-
ization capability across understanding and generation paradigms (Team, 2024; Sun et al., 2023;
Wang et al., 2024b; Chen et al., 2025). Although some recent works have begun to explore this
intersection, they reach inconsistent conclusions, highlighting critical gaps. Tong et al. (2024) observe
consistent mutual benefits in a unified VLM that uses SigLIP (Zhai et al., 2023) as the vision encoder
for understanding tasks and generates SigLIP tokens, which are used as conditions for a diffusion
model to generate images. They also find that these mutual benefits scale with increased data. In
contrast, Wu et al. (2024a) discuss the impairment of both understanding and generation tasks in a
unified VLM that uses VQ-VAE (Van Den Oord et al., 2017) as the vision encoder for understanding
tasks and generates VQ-VAE tokens. Their experiments reveal that this impairment diminishes as
the model size increases. Similarly, Chen et al. (2025) claim that architectural disentanglement of
vision understanding and generation can alleviate conflicts between these tasks. Using SigLIP as the
vision encoder and generating VQ-VAE tokens for image generation tasks, their experiments reveal
inconsistent mutual effects: in some tasks, understanding and generation benefit each other, while
in others, they harm one another. Despite these initial efforts, the above analyses are restricted to
specific unified VLM architectures, and none provide a comprehensive evaluation of bidirectional
generalization across understanding and generation tasks across different unified VLM designs.
Moreover, these studies are computationally intensive and difficult to reproduce. Our work addresses
this gap by offering a systematic study across various unified VLMs, leveraging carefully curated
datasets and finely controlled, computationally friendly experiments.

3 PRELIMINARIES

3.1 DATASETS

To ensure precise control over the dataset, facilitate flexible adjustments to its distribution for analysis,
and reduce computational cost for numerous experiments, we mainly use two datasets to conduct our
experiments: a synthetic SmartWatch dataset and a modified CelebA (Liu et al., 2015) dataset. We
use a combination of 60K VQA data, 60K caption data and 60k text-to-image generation data as the
default training dataset.

SmartWatch. This dataset closely mimics real-world scenarios for both image understanding and
generation tasks, as illustrated in Figure 2. Each image in the dataset is controlled by six distinct
attributes: time, weather, weather position, battery level, battery position, and watch face color.
Specifically: Time consists of hour, minute, and second values ranging from 0–12, 0–60, and 0–60,
respectively. Weather can take on three states: cloudy, rainy, or sunny. Battery level ranges from 0 to
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100. Both weather position and battery position can be top-left, top-right, bottom-left, or bottom-right.
To generate each data sample, we first define the ground truth for the six attributes. A rule-based
generator then creates the corresponding image based on these ground truth attributes, ensuring
accurate pairing between image and text data. The watch face color is randomly sampled and not
included in any text data, allowing a single text ground truth to correspond to multiple images. This
design simulates real-world scenarios where diverse visual variations may arise from the same textual
description, as shown in Figures 2a. For understanding tasks, we generate VQA (Visual Question
Answering) and caption data using diverse QA templates. Each VQA question focuses on one
attribute, with equal appearance probabilities for the five attributes. For caption data, each caption
includes 1–5 attributes, with time always present and the other four appearing independently with
a probability of 0.5. For generation tasks, we create instructions following the caption data using
different templates.

CelebA. We select seven clearly defined attributes in the original CelebA: ‘Black Hair’, ‘Eyeglasses’,
‘No Beard’, ‘Male’, ‘Wearing Hat’, ‘Wearing Necklace’, ‘Wearing Necktie’. To generate one image-
text pair, we first randomly sample to obtain the ground truth of the attributes, then generate the
text part using pre-defined templates. After that we filter and randomly sample the corresponding
image. Images for training and testing are from two non-overlapping image pools respectively. The
procedure to generate VQA data, caption data and image generation data is the same as SmartWatch.

(a) Samples from the SmartWatch dataset showing
time 02:07:00, cloudy weather displayed at the top-
right, and 51% battery displayed at the bottom-left.

(b) Samples from the CelebA dataset showing person
who does not have black hair, has no beard, is a female,
is not wearing a hat, is not wearing a necklace.

Figure 2: Samples from SmartWatch and CelebA with the corresponding ground truth attributes.

3.2 EVALUATION

The evaluation of understanding tasks is conducted in the VQA format. For generation tasks, we
compute the FID score (Heusel et al., 2017) between the ground truth images and the generated ones.

3.3 UNIFIED VLMS

In this paper, we primarily focus on LLM-based Unified Vision-Language Models (VLMs). For
image understanding, a pre-trained image encoder first encodes the input image. Subsequently, a
dedicated understanding vision adapter projects the encoded representations from the encoder’s
hidden space to the LLM’s hidden space, transforming them into input vision tokens. These vision
tokens are then combined with text tokens and fed into the LLM. The pre-trained image encoder
can be either a VQ-VAE encoder(Van Den Oord et al., 2017) or a SigLIP vision encoder (Zhai et al.,
2023). For image generation, the LLM generates a special symbol, “¡image¿”, at the beginning of the
generation process. Upon encountering this symbol, an image generation head is activated instead of
the language modeling head. This image generation head projects the LLM’s output hidden states
into vision tokens. After generating the first vision token, a generation vision adapter maps these
tokens back to the LLM’s input hidden space to enable autoregressive generation. The parameters of
the generation vision adapter can optionally be shared with those of the understanding vision adapter,
depending on whether the input and generated vision tokens reside in the same latent space. The
generated vision tokens may correspond to SigLIP vision embeddings or VQ-VAE tokens.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4 EXPERIMENT SETTINGS

We evaluate various combinations of VQ-VAE and SigLIP within unified VLMs:

SigLIP-VQ: SigLIP serves as the vision encoder for the VLM, generating VQ token IDs that are
decoded into real images by the VQ-VAE decoder, align with Janus Chen et al. (2025).

VQ-VQ: The VQ-VAE encoder acts as the vision encoder for the VLM, generating VQ token IDs
that are decoded into real images by the VQ-VAE decoder, resembling Liquid Wu et al. (2024a).

SigLIP-SigLIP: SigLIP is used as the vision encoder for the VLM, generating SigLIP embeddings
align with MetaMorph Tong et al. (2024).

VQ-SigLIP: The VQ-VAE encoder serves as the vision encoder for the VLM, generating SigLIP
embeddings. While this configuration is not practical for real-world applications, it serves as a
valuable baseline for comparison in our experiments.

For VQ-VAE, we use vq ds16 t2i from Sun et al. (2024), with a resolution of 256 × 256. For
SigLIP, we use SigLIP-base-patch16-224 from Zhai et al. (2023), with a resolution of
224× 224. In unified VLMs with aligned input and output vision spaces, we share the parameters
of the understanding vision adapter and generation vision adapter by default to maintain alignment.
For the base LLM in all unified VLMs, we use Vicuna-7B-v1.5 (Peng et al., 2023) for fair
comparison. We adopt a one-stage training approach to jointly update the vision adapters, image
generation head, and LLMs. By default, we fine-tune the base LLM using Low-Rank Adaptation
(LoRA). More details are in the supplementary materials.

4 GENERALIZATION ACROSS UNDERSTANDING AND GENERATION
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Figure 3: Image understanding and generation performance of VLMs during training. “ g” denotes
generation-only training, and “ u” denotes understanding-only training. Most Unified VLMs trained
with mixture of understanding and generation data outperform task-specific models trained with
understanding-only or generation-only data. Unified VLMs with aligned vision input and output
space (SigLIP-SigLIP and VQ-VQ) performs better.

First, we train the four types of unified VLMs using a mixture of understanding and generation data.
To verify whether unified VLMs can yield mutual benefits between understanding and generation
compared to task-specific models, we compare their performance with models trained solely on
understanding-only or generation-only data. The evaluation results are shown in Figure 3. From the
figure, we observe that most unified VLMs trained with mixed data outperform their task-specific
counterparts. For understanding tasks, SigLIP-SigLIP surpass SigLIP u, SigLIP-VQ surpass SigLIP u
on SmartWatch, while VQ-VQ and VQ-SigLIP outperform VQ u. For generation tasks, both SigLIP-
VQ and VQ-VQ exceed the performance of VQ g. These results indicate that generalization across
understanding and generation tasks does indeed exist in unified VLMs. Training on both tasks can
enhance the performance of each other, empirically demonstrating the necessity and superiority of
unified VLMs over task-specific models.

From Figure 3, we observe that unified VLMs with aligned vision input and output spaces tend to
perform better. Specifically, SigLIP-SigLIP outperforms SigLIP-VQ in understanding tasks, VQ-VQ
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Table 1: Effect of the affine transformation on model performance. SW and CA denote the Smart-
Watch and CelebA datasets, respectively. Values in parentheses indicate the performance change after
applying the transformation. The transformation has a negligible impact on non-unified models but
significantly degrades the performance of unified models.

SigLIP u VQ u VQ g
Model Type Transform SW VQA ↑ CA VQA ↑ SW VQA ↑ CA VQA ↑ SW FID ↓ CA FID ↓

Non-Unified w\o-Affine 76.6 87.0 80.5 63.8 210.9 357.0
w-Affine 78.2(+1.6) 87.3(+0.3) 78.9(-1.6) 63.3(-0.5) 210.9(-0.0) 357.0(-0.0)

SigLIP-SigLIP VQ-VQ
Model Type Transform SW VQA ↑ CA VQA ↑ SW VQA ↑ CA VQA ↑ SW FID ↓ CA FID ↓

Unified w\o-Affine 98.7 91.0 89.3 66.1 190.2 273.5
w-Affine 91.3(-7.5) 85.3(-5.8) 85.1(-4.2) 64.5(-1.6) 195.8(+5.6) 368.4(+94.9)

surpasses VQ-SigLIP in understanding tasks, and VQ-VQ outperforms SigLIP-VQ in generation tasks.
This discrepancy motivates us to hypothesize the generalization of knowledge between generation
and understanding is influenced by the distance between the vision input and output spaces.

To further validate this hypothesis, we introduce a random affine transformation immediately after
the understanding vision adapter to distort the vision input space, making it slightly different from
the vision output space. We carefully ensure that the affine transformation is reversible to avoid
information loss. The results are shown in Table 1. First, the affine transformation has little effect on
the performance of understanding-only VLMs. This guarantees that any performance difference in
unified VLMs with or without the affine transformation arises from the misalignment of the input
and output vision spaces, rather than from the distortion of the input space itself. Based on this,
mixed training with the affine transformation performs worse than without the transformation in
both understanding and generation tasks for both SigLIP-SigLIP and VQ-VQ. The performance
degradation is significant, even leading to the underperformance of unified models compared to
non-unified models. This empirically confirming our hypothesis: Understanding can benefit from
generation, but this benefit depends on the alignment between the vision input and output spaces.
This may be because, when the input and output spaces are close or identical, the embeddings of the
same visual concept are similar across understanding (input) and generation (output), facilitating
easier learning. Conversely, when the two spaces are distant, it becomes challenging for the base
LLM to capture the relationship between input and output representations of the same visual concept,
leading to poor generalization, even causing conflicts between understanding and generation. This
also explains the underperformance of SigLIP-VQ compared to SigLIP u in Figure 3.

4.1 SCALING UP WITH INCREASED DATA

Building on the previous findings, we investigate whether the mutual benefits between understanding
and generation can scale with increased training data. To this end, we expand the dataset in two
directions: (1) fixing the generation data at 60K while increasing the understanding data from 0K to
120K, 180K, 240K, and 300K; and (2) fixing the understanding data at 120K while increasing the
generation data from 0K to 60K, 90K, 120K, and 180K. The evaluation results are shown in Figure 4.

Our results reveal two key trends regarding the interplay between understanding and generation data.
First, as shown in the right panel of Figure 4a, when we increase the amount of understanding data
while holding generation data constant, the generation performance (measured by FID score) exhibits
one of two patterns: it either improves continuously or improves initially before declining. Conversely,
a similar trend is observed for understanding performance (VQA accuracy) when increasing the
amount of generation data while keeping understanding data fixed, as depicted in the left panel of
Figure 4b. A notable exception is SigLIP-VQ on the CelebA dataset, where performance degrades
with 60K generation samples, which can likely be attributed to the aforementioned misalignment
between the vision input and output spaces. These findings have two significant implications:

First, the initial performance boost in one task from adding data for the other validates the strong
cross-task generalization of unified VLMs. This synergy suggests that generation training can enhance
understanding, and vice versa, reinforcing the value of a unified modeling approach.
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Figure 4: Performance of SigLIP-VQ and VQ-VQ under varying data scales. Only increase the
amount of generation data can boost the performance in understanding tasks, and vice versa.

Second, The eventual performance decline underscores the critical need for balance between the
amounts of understanding and generation data. Once one data type becomes dominant in the training
mixture, further increasing its volume can harm performance on the complementary task, leading to a
performance trade-off instead of mutual reinforcement.

4.2 KNOWLEDGE TRANSFER FROM GENERATION TO UNDERSTANDING
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Figure 5: Performance comparison between unified VLMs and understanding-only VLMs, trained on
understanding data biased on the weather attribute. “ u” denotes understanding-only training. “-D”
denotes using separate understanding vision adapter and generation vision adapter.

Based on the previous findings that adding generation data can improve understanding performance
(and vice versa), we hypothesize that knowledge learned in one task (e.g., generation) can transfer
to the other task (e.g., understanding) in unified VLMs. Leveraging our easy-to-control synthetic
dataset, we specifically manipulate the appearance of key attributes to test this hypothesis. In this
experiment, we intentionally reduce the occurrence of one attribute in understanding tasks to a very
low level (0 appearances in image captioning data and 0.05 probability of appearance in VQA data),
while maintaining normal generation data. We apply this manipulation to two attributes, weather and
battery, creating two biased datasets: one biased on weather and the other biased on battery. We then
evaluate and compare the performance of understanding-only VLMs with that of unified VLMs. The
results are shown in Figures 5 and 6.
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Figure 6: Performance comparison between unified VLMs and understanding-only VLMs, trained on
understanding data biased on the battery attribute. “ u” denotes understanding-only training. “-D”
denotes using separate understanding vision adapter and generation vision adapter.

As shown in Figure 5, when training on data biased on the weather attribute, both understanding-
only models (VQ u and SigLIP u) struggle to identify weather-related information. In contrast, all
unified VLMs trained with mixed data achieve nearly 100% VQA accuracy. Similarly, as shown in
Figure 6, for SigLIP-based VLMs, the unified models significantly outperform their understanding-
only counterparts. For VQ-based VLMs, although all models exhibit relatively poor performance
(likely due to the inherent difficulty of identifying characters with the VQ encoder), the unified VLMs
still surpass the understanding-only models by the end of training. These results clearly demonstrate
the knowledge transfer from generation tasks to understanding tasks in unified VLMs, partially
explaining why increasing generation data can boost understanding accuracy.

SigLIP_u SigLIP_SIgLIP VQ_u VQ-VQ

Figure 7: t-SNE visualization of input vision tokens corresponding to the ViT patch representing the
weather icon, output by the understanding vision adapter. Samples are colored using the weather
ground truth, where red, green, blue refers to sunny, cloudy, and rainy. 5000 samples are shown.

To further investigate how this knowledge transfer occurs, we analyze the understanding vision
adapter. We hypothesize that generation training may force the vision input and output spaces to
retain more image-related information. However, we conclude that this is not the primary factor
driving the observed knowledge transfer.

We analyze the understanding vision tokens output by the understanding vision adapter in SigLIP u,
SigLIP-SigLIP, VQ u, VQ-VQ trained on the weather-biased dataset. For each model we sample
5000 vision tokens corresponding to the ViT patch representing the weather icon in 5000 images
respectively. Using t-SNE, we visualize these tokens colored according to the weather ground truth, as
shown in Figure 7. The results reveal no confusion in weather labels across all models. Additionally,
we perform linear probing for the vision tokens from each model on a training/testing split of 4K/1K
samples. After 10 epochs, vision tokens from all the four models, including the understanding-only
models, achieve 100% linear probing accuracy. This indicates that weather-related information is
present in the vision tokens of both unified and understanding-only VLMs.

The above analysis indicates that knowledge transfer is not primarily driven by generation training
forcing the vision input space to retain more information. Weather-related information exists in both
unified and understanding-only VLMs. However, in understanding-only training, the base LLM
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fails to utilize this information, neglecting the relationship between vision tokens and text tokens.
In contrast, with generation training, the base LLM learns this relationship well. This suggests that
the base LLM is capable of implicitly aligning the vision input and output spaces to some extent,
allowing the relationships learned in the vision output space to generalize to the vision input space.

To further validate our findings, we experiment with separate understanding and generation vision
adapters instead of sharing their parameters (default setting). As shown by SigLIP-D (D for ”detach”)
and VQ-VQ-D in Figures 5 and 6, we observe that parameter sharing between the two vision adapters
is not the key factor enabling knowledge transfer in unified VLMs, which also leads to the explanation
that the base LLM is capable of implicitly aligning the vision input and output spaces.

4.3 APPLICATIONS ON REAL-CASE VLMS

To further validate our findings in real-world scenarios, we conduct experiments based on LLaVA-
V1.5-7B Liu et al. (2023). We extend LLaVA by adding a generation vision adapter and a generation
vision head, enabling it to generate image CLIP embeddings (Tong et al., 2024) or VQ-VAE token
IDs Chen et al. (2025). For VQ-VAE we use vq ds16 t2i, same with the previous experi-
ments, but use a generation vision adapter of 2-layer MLP instead of a single linear layer, since the
data is more complexed. For the image generation data, we reverse the image-caption pairs from
ShareGPT4V (Chen et al., 2023). Specifically, we sample 350K image-caption pairs from the 1.2M
ShareGPT4V-PT dataset, using the image captions as generation instructions and the corresponding
images as generation targets.

Following the two-stage training process of the original LLaVA framework, we proceed as follows:
In the first stage, we freeze the base LLM and vision encoder while updating the understanding
vision adapter, generation vision adapter, and generation head. To this end, we augment the original
558K image understanding dataset with an additional 150K image generation samples. In the second
stage, we unfreeze the vision encoder and update all other parameters. Here, we further augment the
original 665K instruction-tuning dataset with 200K image generation samples.

Table 2: Performance comparison between original LLaVA-1.5-7B (understanding-only) and the
unified VLM version with 350K additional image generation data (150K for pre-training stage and
200K for instruction-tuning stage). Results for the original LLaVA-1.5-7B are from the official report
of LMMs-Eval Li et al..

Model MME MMBench EN POPE VizWiz MMVet GQA MMStar TextVQA

LLaVA 1510.7 64.3 85.9 54.4 30.6 62.0 33.3 45.8
CLIP-CLIP 1506.4 65.0 86.5 55.4 34.4 62.0 36.2 47.0
CLIP-VQ 1476.6 66.1 86.6 58.1 31.2 62.1 36.3 47.1

We evaluate the MLLMs on eight popular independent MLLM benchmarks (Hudson & Manning,
2019; Liu et al., 2025; Fu et al., 2023; Chen et al., 2024a; Yu et al., 2023; Li et al., 2023; Gurari
et al., 2018; Singh et al., 2019). As evaluation results shown in Table 2, incorporating generation
tasks during training does not conflict with understanding tasks. The unified version achieves non-
trivial improvements on most benchmarks compared to the understanding-only version. This further
strengthens our findings and demonstrates the potential of unified VLMs with mixed training of
understanding and generation.

5 CONCLUSION

This work systematically investigates the generalization across understanding and generation in
various unified vision-language models (VLMs),. Our findings reveal three key insights: (1): Mutual
benefits between understanding and generation exist across multiple unified VLMs. (2): The
alignment between vision input and output spaces is a critical factor for cross-task generalization.
Better alignment will lead to better cross-task generalization. (3): Knowledge learned in generation
tasks can transfer to understanding tasks, even when there are gaps between vision input and output
spaces. These results validate the hypothesis that unification fosters synergies between understanding
and generation, and underscore the necessity of unified VLMs, offering actionable guidelines and
insights for model design.
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A APPENDIX

B EVALUATION PROCEDURE FOR SMARTWATCH

We compute the VQA accuracy score across four key attributes: time, weather, position, and
battery. For weather and position, we use matching-based evaluation. For time and battery, given
their more continuous value ranges and the model’s progressive learning nature, simple matching-
based evaluation cannot fully capture the model’s ability. Thus, we compute time accuracy as
1− errorh

6 − errorm
30 − errors

30 , and battery accuracy as 1− errorb
100 .

C ADDITIONAL EXPERIMENT DETAILS

For all experiments conducted on the synthetic SmartWatch UI dataset, we utilized 3 Nvidia H100
80GB GPUs. Training was performed for one epoch with a global batch size of 393. To optimize
GPU memory usage, we employed Low-Rank Adaptation (LoRA) (Hu et al., 2022), setting lora r
to 128 and lora alpha to 256, with a learning rate of 2e − 4 following the configuration in
LLaVA-1.5. The learning rates for the understanding vision adapter, generation vision adapter, and
image generation head were set to 1e − 4. For the default settings of 60K generation data and
120K understanding data, the entire training process completed within an hour. Additionally, we
independently generated 1.5K samples as the test dataset, with 1,000 samples for Visual Question
Answering (VQA) and 500 samples for text-to-image generation.

For the final real-world case experiment, we strictly followed the implementation details of LLaVA-
1.5, using all default hyperparameters. We do not use LoRA in this experiment. We used 8 Nvidia
H100 80GB GPUs. The pre-training stage completed within 3 hours, while the fine-tuning stage
finished within 6 hours.

For all unified VLMs that generate CLIP or SigLIP embeddings, we applied cosine similarity loss on
the generation part, following (Tong et al., 2024). For unified VLMs that generate VQ-VAE token
IDs, we used cross-entropy loss. In the case of SigLIP-VQ unified VLMs, considering the scale
difference between the cross-entropy loss of VQ-VAE token IDs and language token IDs, we set the
weight of the generation loss to 0.2.

D LIMITATIONS

First, our study does not include unified VLM architectures that incorporate diffusion-based generation
components, such as Emu3 (Wang et al., 2024b) and Transfusion (Zhou et al., 2024). Second, while
the mutual benefits between understanding and generation tasks are clearly demonstrated in our
experiments using the current LLM base, adopting a more advanced LLM base could potentially
yield even more promising results.

E DETAILED EXPERIMENT RESULTS
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Table A3: Performance comparison of various unified VLMs with understanding-only or generation-
only VLMs. “ u” refers to understanding-only; “ g” refers to generation-only; “*” refers to affine
transformation after the understanding vision adapter.

Model time acc weather acc position acc battery acc total acc FID score
SigLIP u 49.7 100.0 93.4 56.3 76.6 -
SigLIP-VQ 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-SigLIP 95.8 100.0 100.0 98.4 98.7 -
VQ u 50.8 100.0 100.0 61.6 80.5 -
VQ g - - - - - 210.9
VQ-SigLIP 45.8 100.0 100.0 81.2 85.5 -
VQ-VQ 52.7 100.0 100.0 96.8 89.3 190.2
SigLIP* u 50.4 100.0 98.8 49.5 78.2 -
SigLIP*-SigLIP 54.3 100.0 100.0 98.9 91.3 -
VQ* u 52.4 100.0 97.9 56.9 78.9 -
VQ*-VQ 60.0 100.0 100.0 80.6 85.1 195.8

Table A4: Performance of different unified VLMs along the increase of understanding or generation
data.

Model Und data Gen data time acc weather acc position acc battery acc total acc FID score
VQ-VQ 0K 60K - - - - - 210.9
VQ-VQ 120K 60K 52.7 100.0 100.0 96.8 89.3 192.2
VQ-VQ 180K 60K 56.0 100.0 100.0 97.5 90.2 188.1
VQ-VQ 240K 60K 73.7 100.0 100.0 97.9 94.0 165.1
VQ-VQ 300K 60K 62.8 100.0 100.0 98.4 91.8 152.0
VQ-VQ 120K 0K 50.8 100.0 100.0 61.6 80.5 -
VQ-VQ 120K 60K 52.7 100.0 100.0 96.8 89.3 192.2
VQ-VQ 120K 90K 48.3 100.0 100.0 96.2 88.3 180.8
VQ-VQ 120K 120K 48.3 100.0 100.0 80.7 84.5 171.4
VQ-VQ 120K 180K 60.0 100.0 100.0 98.1 89.3 116.4
SigLIP-VQ 0K 60K - - - - - 210.9
SigLIP-VQ 120K 60K 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-VQ 180K 60K 80.4 100.0 100.0 100.0 95.9 183.0
SigLIP-VQ 240K 60K 54.9 100.0 100.0 100.0 90.6 162.4
SigLIP-VQ 300K 60K 97.0 100.0 100.0 100.0 99.3 157.0
SigLIP-VQ 120K 0K 49.7 100.0 93.4 56.3 76.6 -
SigLIP-VQ 120K 60K 66.5 100.0 100.0 69.2 85.6 198.2
SigLIP-VQ 120K 90K 50.8 100.0 100.0 100.0 89.7 156.5
SigLIP-VQ 120K 120K 55.0 100.0 100.0 100.0 90.6 165.6
SigLIP-VQ 120K 180K 96.3 100.0 100.0 100.0 99.2 131.8

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table A5: Performance of different unified VLMs trained on weather-biased dataset.

Model time acc weather acc position acc battery acc total acc
SigLIP u 52.9 28.6 100.0 99.7 78.7
SigLIP-SigLIP 81.7 100.0 100.0 97.2 95.9
SigLIP-SigLIP-D 99.6 100.0 100.0 99.9 99.9
SigLIP-VQ 52.2 100.0 100.0 98.6 90.8
VQ u 50.9 54.3 81.3 77.5 70.0
VQ-VQ 49.1 97.1 100.0 94.4 88.7
VQ-VQ-D 50.7 100.0 100.0 97.4 90.3
VQ-SigLIP 52.8 100.0 100.0 80.6 86.6

Table A6: Performance of different unified VLMs trained on battery-biased dataset.

Model time acc weather acc position acc battery acc total acc
SigLIP u 55.7 100.0 100.0 70.3 84.7
SigLIP-SigLIP 96.6 100.0 100.0 98.0 98.9
SigLIP-SigLIP-D 89.3 100.0 100.0 97.2 97.4
SigLIP-VQ 53.6 100.0 100.0 95.8 90.4
VQ u 50.1 100.0 100.0 61.3 81.5
VQ-VQ 49.8 100.0 100.0 69.4 83.4
VQ-VQ-D 48.8 100.0 100.0 74.5 84.4
VQ-SigLIP 46.8 100.0 86.3 67.1 76.7
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