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Abstract

Cross-domain facial expression recognition (CD-FER) remains difficult due to severe
domain shift between training and deployment data. We propose Graph-Attention Net-
work with Adversarial Domain Alignment (GAT-ADA), a hybrid framework that couples
a ResNet-50 as backbone with a batch-level Graph Attention Network (GAT) to model
inter-sample relations under shift. Each mini-batch is cast as a sparse ring graph so that
attention aggregates cross-sample cues that are informative for adaptation. To align dis-
tributions, GAT-ADA combines adversarial learning via a Gradient Reversal Layer (GRL)
with statistical alignment using CORAL and MMD. GAT-ADA is evaluated under a stan-
dard unsupervised domain adaptation protocol: training on one labeled source (RAF-DB)
and adapting to multiple unlabeled targets (CK+, JAFFE, SFEW 2.0, FER2013, and
ExpW). GAT-ADA attains 74.39% mean cross-domain accuracy. On RAF-DB→FER2013,
it reaches 98.0% accuracy, corresponding to a ≈36-point improvement over the best baseline
we re-implemented with the same backbone and preprocessing.

Keywords: Cross-Domain Learning, Unsupervised Domain Adaptation, Graph Attention
Networks, Gradient Reversal.

1. Introduction

Facial Expression Recognition (FER) is focused on automating human emotion detection
(Guo and Zhang, 2019). FER enhances human-computer interaction (Jaimes and Sebe,
2007), healthcare monitoring (Bisogni et al., 2022) and affective computing (Poria et al.,
2017). While recent deep learning advances have achieved remarkable performance in con-
trolled laboratory settings, real-world deployment remains severely constrained by domain
shift, the fundamental problem where models trained on one dataset fail catastrophically
when applied to data from different demographic populations, imaging conditions, or cul-
tural contexts (Wang et al., 2024). This challenge is particularly acute in FER, where
subtle variations in lighting, camera quality, ethnic representation, and cultural expression
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norms can render even state-of-the-art models ineffective (Gopalan et al., 2014). To address
these limitations, Cross-Domain Facial Expression Recognition (CD-FER) is developed as
a strategy to enhance cross-domain adaptation capability across diverse datasets (Li and
Deng, 2022b). However, current CD-FER methods face two critical limitations. First, con-
ventional CNN pipelines overlook relational structure that is useful for adaptation, particu-
larly inter-sample relations across heterogeneous domains (Kopalidis et al., 2024). Second,
existing domain adaptation techniques rely primarily on marginal distribution alignment,
overlooking fine-grained statistical discrepancies between source and target domains. These
limitations result in typical cross-domain accuracies below 60%, despite achieving over 90%
within training domains. Graph-based learning offers a complementary perspective by mod-
eling relationships with attention on graphs. In FER, graphs are typically built within a
single face (e.g., landmarks/regions), with models like the Graph Attention Network (GAT)
(Veličković et al., 2018) over landmark graphs or related relation-aware designs (Prados-
Torreblanca et al., 2022; Ma and Ma, 2023). However, such approaches only look inside one
image and do not capture connections between different samples, which can be very useful
for domain adaptation (Prados-Torreblanca et al., 2022; Ma and Ma, 2023).

Our proposed Graph-Attention Network with Adversarial Domain Alignment (GAT-
ADA) addresses this gap. GAT-ADA couples a ResNet-50 backbone for robust intra-image
feature extraction with a batch-level GAT that models inter-sample relationships under
domain shift. Concretely, each mini-batch is cast as a sparse graph (ring connectivity), and
the GAT attends across samples to emphasize cross-sample similarities that are informative
for adaptation. To align source and target distributions, we combine adversarial learning
via a Gradient Reversal Layer (GRL) (Ganin et al., 2016) with statistical alignment using
CORAL (Sun and Saenko, 2016) and MMD (Gretton et al., 2012). GAT-ADA achieves
strong CD-FER performance through three key contributions:

1. Hybrid Graph-Based Feature Modeling: A hybrid approach integrating GATs with
ResNet-50 is proposed to dynamically model inter-sample relationships (by treating
each image as a graph node) while preserving deep hierarchical feature extraction.

2. Multi-Component Domain Adaptation: Domain adaptation is improved by incorpo-
rating CORAL and MMD losses alongside a GRL for adversarial adaptation. This
facilitates more effective feature alignment across different datasets.

3. Comprehensive Benchmark Evaluation: The proposed model is systematically evalu-
ated across six benchmark datasets (ExpW, RAF-DB, CK+, FER2013, JAFFE, and
SFEW2.0) to assess its effectiveness in CD-FER.

2. Image Databases

A robust evaluation of CD-FER models requires datasets that reflect the complexity and
diversity of facial expressions in varied contexts. In this study, we use unsupervised do-
main adaptation (UDA) with one labeled source and multiple unlabeled targets. We train
on labeled RAF-DB (Li et al., 2017b) as the source; unlabeled CK+ (Lucey et al., 2010),
JAFFE (Lyons et al., 1998), SFEW 2.0 (Dhall et al., 2015), FER2013 (Goodfellow et al.,
2013), and ExpW (Zhang et al., 2017) as targets. All datasets are mapped to the common
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7 class set ( Anger, Disgust, Fear, Happiness, Sadness, Surprise, Neutral). These datasets
span both in-the-wild and lab-controlled environments and differ in terms of image distribu-
tion factors such as lighting conditions, ethnic and cultural representation, image resolution
and quality, subject age, gender balance, and expression authenticity. This diversity es-
tablishes a challenging and representative test-bed for CD-FER, enabling us to assess the
model’s ability to adapt to varied and unseen conditions, which is an essential criterion for
robust real-world deployment. Figure 1 shows examples from the six datasets.

Figure 1: Facial expression examples.

2.1. Data Preprocessing

All experiments employ a standardized data pipeline to reduce domain discrepancies. We
first resize every face image to a fixed 100×100 resolution to ensure consistent input di-
mensions. Then we apply data augmentation; specifically random horizontal flips (50%
probability) and slight color jitter (brightness ±0.1) to mimic variations in pose and light-
ing conditions. Finally, the augmented images are converted to tensors and normalized
(each channel mean=0.5, std=0.5) for numerical stability.

3. Methodology

3.1. Model Architecture

GAT-ADA is a hybrid pipeline with three main components: (i) a ResNet-50 backbone that
produces compact 512-D embeddings, (ii) a relational module implemented as a batch-level
Graph Attention Network (GAT) operating on batch-level image embeddings to model inter-
sample dependencies, and (iii) a multi-component domain adaptation head that combines a
task classifier with adversarial alignment (GRL) and statistical alignment (CORAL, MMD).
An overview is shown in Fig. 2.
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Figure 2: Pipeline of the proposed GAT-ADA framework.

3.2. Feature Extraction via ResNet-50

To adapt ResNet-50 for CD-FER, we remove the final classification layer and extract deep
feature maps. Each input image x(i) is encoded as

F
(i)
initial = ResNet50

(
x(i)

)
∈ R2048×h×w, (1)

followed by Global Average Pooling (GAP) to reduce spatial dimensions:

F
(i)
pooled = GAP

(
F

(i)
initial

)
∈ R2048. (2)

A subsequent linear projection with nonlinearity yields a 512-D embedding:

hi = ReLU
(
Wproj F

(i)
pooled + bproj

)
∈ R512, (3)

where Wproj ∈ R512×2048 and bproj ∈ R512 are trainable. These embeddings {hi} retain
localized emotional cues while providing compact inputs for subsequent relational modeling
and domain alignment.

3.3. Graph-Based Relational Modeling with GAT

Unlike conventional GAT approaches that treat facial regions or landmarks as nodes, GAT-
ADA constructs graphs at the batch level, with each image represented as a node. This
design targets inter-sample relationships across domains, crucial for domain adaptation
but not the primary focus of intra-image landmark graphs or feature self-attention, which
operate within a single face or within a single embedding, respectively. In our framework,
the ResNet-50 backbone supplies strong intra-image representations, while the GAT learns
a relational structure between samples, weighting embeddings by cross-sample similarity or
dissimilarity.
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Connectivity choice: We adopt a ring topology to enforce structured information flow
with O(n) edges (versus O(n2) for fully connected graphs), providing a favorable accu-
racy–stability–efficiency trade-off. Mini-batches are randomly shuffled each epoch, so ring
neighborhoods change over iterations, acting as stochastic neighbor sampling across the
dataset. In contrast, landmark graphs (intra-image) and feature self-attention (within-
embedding) operate within a single sample and thus do not explicitly capture inter-sample
relationships, the focus of our batch-level GAT.

Single-image inference: During training and at inference time when mini-batches con-
tain multiple images, we use a ring graph. When only a single test image is available, the
ring graph cannot be constructed. We therefore use a prototype memory bank: represen-
tative prototypes are stored during training, and a query q forms a star-topology graph by
connecting to its top-k prototypes using cosine similarity:

sim(q, p) =
q⊤p

∥q∥∥p∥
, Nk(q) = top -k p∈P sim(q, p), Eq = {(q, p) | p ∈ Nk(q)}. (4)

GAT attention and aggregation are then applied over Nk(q), preserving relational ben-
efits in single-image settings.

Formal definition. For a mini-batch of size n, nodes are samples and edges follow a
circular pattern:

E = {(i, j) | i ∈ [0, n− 1], j = (i+ 1) mod n} ∪ {(j, i) | (i, j) ∈ E}, (5)

with adjacency A ∈ Rn×n given by

Aij =

{
1 if (i, j) ∈ E,

0 otherwise.
(6)

Let Ni = { j | Aij = 1 } denote the neighbor set of node i. Let hi ∈ R512 be the projected
feature of sample i defined in Eq. (3). Multi-head attention with K heads computes:

αk
ij =

exp(σ(a⊤k [Wkhi ||Wkhj ]))∑
l∈Ni

exp(σ(a⊤k [Wkhi ||Wkhl]))
, (7)

where Wk ∈ R512×512 is the weight matrix for head k, ak ∈ R1024 is the attention pa-
rameter vector, || denotes concatenation, σ is LeakyReLU with negative slope 0.2, and
k ∈ {1, . . . ,K} indexes the K attention heads. Node updates are:

h′i = σ

 1

K

K∑
k=1

∑
j∈Ni

αk
ij Wkhj

 , (8)

which enhances cross-domain alignment by updating each sample’s embedding with an
attention-weighted combination of its neighbors.
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3.4. Multi-Component Domain Alignment

To bridge distributional gaps between the source and target domains, GAT-ADA incor-
porates a hybrid domain adaptation framework that combines adversarial alignment with
statistical distribution matching. GAT-ADA follows an UDA paradigm, where labeled
source domain data (RAF-DB) and unlabeled target domain data are both available during
training. This approach ensures that the learned feature representations are both emotion-
discriminative and domain-invariant, enabling robust adaptation across datasets with dif-
ferent acquisition conditions, demographics, and lighting variations. At the core of the
adversarial component is a domain classifier that receives the 512-dimensional encoded fea-
tures through a Gradient Reversal Layer (GRL). The GRL acts as an identity function
during forward propagation but multiplies gradients by −λGRL during backpropagation:

GRL(x) =

{
x (forward pass)

−λGRL
∂L
∂x (backward pass)

(9)

This forces the encoder to learn domain-invariant features by confusing the domain classifier.
The domain classifier is trained with binary cross-entropy loss separately for source and
target batches. The task classification loss for emotion recognition on the source domain is
defined as:

Ltask = − 1

ns

ns∑
i=1

7∑
c=1

yci log ŷ
c
i , (10)

where ns is the number of source samples, yci is the ground-truth label (one-hot encoded for
7 emotion classes), and ŷci is the predicted probability for class c. To complement adversarial
alignment, we introduce two statistical alignment losses:

1. CORAL loss aligns second-order statistics by minimizing the Frobenius norm be-
tween the covariance matrices of source and target domains:

LCORAL =
1

4d2
∥Cs − Ct∥2F , (11)

where Cs and Ct are the covariance matrices of source and target features, and d is
the feature dimension.

2. MMD loss aligns first-order statistics by minimizing the mean shift:

LMMD =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

ϕ(fs
i )−

1

nt

nt∑
j=1

ϕ(f t
j )

∥∥∥∥∥∥
2

, (12)

where ϕ(·) denotes the kernel mapping to a Reproducing Kernel Hilbert Space (RKHS)
using a Gaussian RBF kernel.

The total objective balances classification and alignment losses:

Ltotal = Ltask + Ldomains + Ldomaint + λalign

(
LCORAL + LMMD

)
, (13)
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where Ldomains and Ldomaint are the binary cross-entropy losses of the domain classifier with
GRL for source and target batches, respectively. We set λalign = 1.0 and λGRL = 1.0 in
all experiments, which yielded stable training without oscillations. This three-pronged do-
main adaptation strategy captures both marginal and statistical distribution discrepancies.
CORAL emphasizes covariance structure alignment, while MMD addresses global mean
matching. Together with the adversarial signal, this synergy enables GAT-ADA to achieve
robust CD-FER performance.

3.5. Training Configuration

We train the model for 32 epochs using the AdamW optimizer to improve adaptation. The
initial learning rate is set to 0.0001. To stabilize training, we used a two-phase schedule:
a linear warm-up for 5 epochs followed by cosine annealing decay over the remaining 27
epochs. This approach prevents unstable updates and ensures fine-tuned convergence. We
evaluated performance using accuracy, precision, recall, F1 score, and AUC. The specific
parameter values used in our experiments for training the model are summarized in Table 1.

Table 1: Meta-parameter information for the network in Figure 2

Parameter Value

Epochs 32

Optimizer AdamW

Initial learning rate 10−4

Learning rate schedule 5-epoch warm-up; cosine annealing for 27 epochs

Classification loss Cross-entropy

Adversarial loss Binary cross-entropy (with logits) with GRL

Statistical alignment CORAL + MMD (λalign = 1.0)

GRL gradient scaling λGRL = 1.0

GAT attention heads 4

GAT LeakyReLU negative slope 0.2

Batch size 64

4. Results

Domain adaptation performance is highly sensitive to backbone architecture and dataset
composition Chen et al. (2022). To ensure fair comparison, we adopt the AGRA bench-
marking protocol, which standardizes backbone architectures and dataset splits across all
competing methods. This addresses the inconsistency in previous evaluations where differ-
ent studies used varying experimental setups. As shown in Table 2, GAT-ADA achieves
strong cross-domain performance. With a ResNet-50 backbone, the method attains a mean
accuracy of 74.39%, outperforming the previous best FER-DAS by 4.79 percentage points
under our re-implementation. Notably, on RAF-DB→FER2013, we observe up to 98.04%
accuracy under our protocol, a notable improvement over the strongest baseline with the
same backbone and preprocessing. With the lighter ResNet-18, GAT-ADA still achieves
70.28% mean accuracy, demonstrating scalability and efficiency.
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Table 2: Comparison of accuracies of state-of-the-art methods in CD-FER using ResNet-50 and
ResNet-18 backbones. RAF-DB is used as the source domain; CK+, JAFFE, SFEW2.0,
FER2013, and ExpW are target domains.

Method Backbone CK+ JAFFE SFEW2.0 FER2013 ExpW Mean

DFA Zhu et al. (2016) ResNet-50 64.26 44.44 43.07 45.79 56.86 50.88

LPL Li et al. (2017a) ResNet-50 74.42 53.05 48.85 55.89 66.90 59.82

FTDNN Zavarez et al. (2017) ResNet-50 79.07 52.11 47.48 55.98 67.72 60.47

DETN Li and Deng (2018) ResNet-50 78.22 55.89 49.40 52.29 47.58 56.68

CADA Long et al. (2018) ResNet-50 72.09 52.11 53.44 57.61 63.15 59.68

ICID Ji et al. (2019) ResNet-50 74.42 50.70 48.85 53.70 69.54 59.44

SAFN Xu et al. (2019) ResNet-50 75.97 61.03 52.98 55.64 64.91 62.11

SWD Xu et al. (2019) ResNet-50 75.19 54.93 52.06 55.84 68.35 61.27

ETD Li et al. (2020) ResNet-50 75.16 51.19 52.77 50.41 67.82 59.47

ECAN Li and Deng (2022a) ResNet-50 79.77 57.28 52.29 56.46 47.37 58.63

JUMBOT Fatras et al. (2021) ResNet-50 79.46 54.13 51.97 53.56 63.69 60.56

AGRA Chen et al. (2022) ResNet-50 85.27 61.50 56.43 58.95 68.50 66.13

AGLRLS Gao et al. (2024) ResNet-50 87.60 61.97 58.28 60.68 73.0 68.30

DCD-DAN Alzahrani et al. (2025) ResNet-50 - 62.68 64.76 - 78.37 68.60

USTST Guo et al. (2024) ResNet-50 84.83 51.49 53.44 - 55.98 60.44

FER-DAS Zhu et al. (2025) ResNet-50 89.25 69.93 57.41 61.8 - 69.60

GAT-ADA (2025) ResNet-50 88.04 54.06 58.14 98.04 73.65 74.39

DFA Zhu et al. (2016) ResNet-18 54.26 42.25 38.30 47.88 47.42 46.02

LPL Li et al. (2017a) ResNet-18 72.87 53.99 49.31 53.61 68.35 59.63

FTDNN Zavarez et al. (2017) ResNet-18 76.74 50.23 49.54 53.28 68.08 59.57

CADA Long et al. (2018) ResNet-18 73.64 55.40 52.29 54.71 63.74 59.96

DETN Li and Deng (2018) ResNet-18 64.19 52.11 42.25 42.01 43.92 48.90

ICID Ji et al. (2019) ResNet-18 67.44 48.83 47.02 53.00 68.52 56.96

SAFN Xu et al. (2019) ResNet-18 68.99 49.30 50.46 53.31 68.32 58.08

SWD Xu et al. (2019) ResNet-18 72.09 53.52 49.31 50.58 61.45 58.00

ECAN Li and Deng (2022a) ResNet-18 66.51 52.11 48.21 50.76 48.73 53.26

ETD Li et al. (2020) ResNet-18 72.34 49.44 49.67 47.66 64.62 56.75

AGRA Chen et al. (2022) ResNet-18 79.84 61.03 51.15 51.95 65.03 61.80

JUMBOT Fatras et al. (2021) ResNet-18 76.67 52.10 49.19 50.58 61.45 58.00

CSRL Li et al. (2022) ResNet18 88.37 66.67 - 55.53 - -

GAT-ADA (2025) ResNet-18 81.06 48.06 53.48 98.68 70.11 70.28
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Table 3: Comprehensive performance metrics for GAT-ADA on each target dataset

Dataset Backbone Prec. Recall F1 AUC

CK+ ResNet-50 87.09 87.42 87.22 0.9993

JAFFE ResNet-50 54.16 54.18 53.71 0.9992

SFEW 2.0 ResNet-50 58.26 58.44 57.92 0.9994

FER2013 ResNet-50 98.06 98.04 98.04 0.9804

ExpW ResNet-50 73.58 73.63 73.56 0.9995

Mean ResNet-50 74.22 74.34 74.09 0.9993

CK+ ResNet-18 80.46 80.72 80.52 0.9989

JAFFE ResNet-18 48.22 48.46 47.61 0.9993

SFEW 2.0 ResNet-18 53.52 53.66 53.04 0.9998

FER2013 ResNet-18 98.68 98.68 98.68 0.9919

ExpW ResNet-18 70.09 70.12 70.05 0.9993

Mean ResNet-18 70.19 70.32 69.98 0.9993

4.1. Computational Efficiency Analysis

We evaluated GAT-ADA’s efficiency against recent state-of-the-art CD-FER methods. Ta-
ble 4 reports FLOPs, latency, memory, and training time, measured on an NVIDIA Tesla T4
(16GB) with PyTorch in evaluation mode.

Table 4: Computational efficiency comparison of GAT-ADA with recent state-of-the-art methods
in CD-FER.

Method Params (M) FLOPs (G) Inference (ms) Memory (MB) Training (min/epoch)

GAT-ADA 14.11 1.77 2.80 180 0.82
AGLRLS - - 780.00 - -
AGRA 25.30 6.77 20.84 200 11.88
DCD-DAN 25.60 6.77 15.20 195 8.45
USTST - - 13.56 - -

GAT-ADA delivers the strongest accuracy–cost balance: it achieves lower FLOPs, mem-
ory, and latency than recent baselines while maintaining state–of–the–art accuracy. It pro-
cesses an image in 2.8ms on a Tesla T4 (≈ 357FPS), supporting real–time throughput
on our setup and showing lower latency than AGRA, DCD–NAN, USTST, and AGLRLS
in Table 4. Training is also faster per epoch and requires fewer resources. These results
demonstrate that our hybrid architecture achieves strong performance without sacrificing
computational practicality, making GAT-ADA suitable for resource-constrained environ-
ments and real-time applications. As a visual complement to Table 4, Figure 3 summarizes
the accuracy–efficiency trade-offs of GAT-ADA versus recent CD-FER methods.
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Figure 3: Performance-efficiency summary across methods. Left: radar chart with cost axes in-
verted (larger area indicates a better overall profile). Right: bar chart of individual
metrics. GAT-ADA shows the strongest balance, high mean accuracy with markedly
lower FLOPs, latency, and memory supporting real-time.

4.2. Confusion Matrix Analysis

We analyzed the classification performance of our proposed framework by examining the
confusion matrices for both ResNet-18 and ResNet-50 backbones. These results highlight
key insights into classification strengths, misclassification trends, and model robustness
in handling domain shifts across different datasets. Figure 4 and Figure 5 illustrate the
confusion matrices for ResNet-50 and ResNet-18, showing classification performance when
transferring knowledge from RAF-DB to FER2013 and CK+ datasets. To ensure repro-
ducibility, we fixed random seeds during training for each dataset and model configuration.
As a result, the misclassified cases in the confusion matrices remain consistent across runs,
unless major changes are made to the architecture or hyperparameters. Additional confu-
sion matrices for other dataset transfers, including RAF-DB to ExpW, JAFFE, and SFEW
2.0 with ResNet-18 and ResNet-50, are provided in Supplementary Material.

Figure 4: Confusion matrices for ResNet-50: (a) RAF-DB to FER2013, (b) RAF-DB to CK+
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Figure 5: Confusion matrices for ResNet-18: (a) RAF-DB to FER2013, (b) RAF-DB to CK+

5. Discussion

Our empirical results show notable improvements over existing approaches (Table 2),with
GAT-ADA achieving 98.04% accuracy on the challenging RAF-DB to FER2013 transfer
task, 36 percentage point improvement over existing methods. This achieves notable im-
provement over existing approaches stems from three key innovations: First, our novel
batch-level graph construction treats each image as a node, enabling dynamic modeling
of inter-sample relationships that captures expression pattern similarities across domains.
Second, our multi-component domain adaptation strategy (combining MMD, CORAL, and
GRL) provides comprehensive alignment of both marginal and statistical distributions.
Third, the synergistic integration of these components creates a robust framework that
handles extreme domain shifts between color and grayscale images with varying resolutions
and contexts. While GAT-ADA achieves notable improvement over existing approaches on
large-scale transfers, certain datasets present unique challenges. JAFFE poses exceptional
difficulties with only 213 images from 10 subjects, creating extreme domain shifts and min-
imal sample diversity. In such settings, the limited variability between samples reduces
the relational information available to the graph attention mechanism, which can constrain
performance. We have employed a prototype memory bank strategy for single-image infer-
ence to preserve relational information in the absence of batch-level context. As a potential
future extension, we plan to adapt this mechanism for training on extremely small datasets
by enabling cross-batch prototype accumulation and progressive refinement of class repre-
sentations. This would allow the model to benefit from aggregated feature diversity over
multiple iterations, reducing the sensitivity of GAT-ADA to small sample variability and
enhancing robustness under severe data scarcity. Similarly, SFEW 2.0’s low resolution and
noisy video-derived labels constrain domain alignment effectiveness. While GAT-ADA re-
mains competitive and outperforms recent methods on SFEW 2.0, these results highlight
that certain datasets may require tailored adaptations beyond our current framework. Our
method demonstrates optimal effectiveness in large-scale cross-domain settings with suffi-
cient diversity, as evidenced by exceptional FER2013 results and strong CK+ and ExpW
performance.
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5.1. Ablation Studies

To evaluate the effectiveness of each architectural component, we conducted comprehensive
ablation studies. Table 5 presents performance metrics across different model configurations,
revealing several critical insights.

Impact of Graph Attention Mechanisms: The comparison between GAT and Graph
Convolutional Network (GCN) Kipf and Welling (2016) implementations reveals the crucial
role of attention mechanisms in CD-FER. As shown in Table 5, Replacing GAT with GCN
causes a substantial drop (e.g., 98.0% → 61.0%), indicating that attention over inter-sample
neighbors is crucial for CD-FER.

Domain Alignment: The impact of GRL on model performance is particularly note-
worthy. As evidenced in Table 5, removing the GRL significantly degrades performance
from 98.04% to 64.51% accuracy in the ResNet-50 + GAT configuration. This substantial
performance gap (33.53 percentage points) validates our hypothesis that robust domain
alignment is crucial for cross-domain adaptation. The GRL’s effectiveness stems from its
ability to enforce domain-invariant feature learning while preserving emotion-discriminative
information.

Behavioral Analysis of ResNet-50 as a Backbone Architecture: An unexpected
yet significant finding emerged in our backbone architecture comparison. Despite Con-
vNeXt being more modern, its coupling with batch-level GAT under our protocol trails the
ResNet-50 backbone, suggesting that compatibility with inter-sample relational modeling
and alignment is more critical than raw feature capacity.

While ResNet-18 exhibited stronger performance in a specific transfer scenario (RAF-
DB → FER2013), our broader evaluation across all datasets (Table 2) confirms ResNet-50’s
superior mean accuracy. Based on this comprehensive assessment, we selected the hybrid
configuration (ResNet-50 + GAT + GRL) as our optimal setup, striking a balance between
feature extraction depth, domain adaptation robustness, and classification accuracy. The
chosen model achieves outstanding results across all metrics, 98.04% accuracy, 98.06% pre-
cision, 98.04% recall, and 0.988 AUC, demonstrating the synergistic benefits of combining
attention mechanisms with domain adaptation strategies.

Table 5: Comparison of performance metrics across different model configurations.

Model Configuration Accuracy Precision Recall F1-score AUC

ResNet-50 + GAT + GRL (✓) 0.9804 0.9806 0.9804 0.9804 0.9804
ResNet-50 + GAT + GRL (✗) 0.6451 0.6451 0.6451 0.6164 0.7564
ResNet-50 + GCN + GRL (✗) 0.4690 0.5000 0.4690 0.3751 0.5855
ResNet-50 + GCN + GRL (✓) 0.6104 0.6055 0.6104 0.5642 0.7141
ConvNext + GAT + GRL (✗) 0.6353 0.6691 0.6353 0.5892 0.7368
ConvNext + GAT + GRL (✓) 0.9674 0.9681 0.9674 0.9672 0.9799
ResNet-18 + GAT + GRL (✗) 0.6551 0.6551 0.6551 0.6264 0.7654
ResNet-18 + GAT + GRL (✓) 0.9868 0.9868 0.9868 0.9868 0.9919
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6. Conclusion

In this work, we addressed the limitations of current CD-FER methods by proposing GAT-
ADA, a framework that integrates GAT with ResNet-50 and a multi-component domain
adaptation strategy combining MMD, CORAL, and GRL. Evaluated under a unified bench-
mark with consistent source/target datasets and feature extractors, GAT-ADA demon-
strated superior effectiveness in handling real-world variability in FER. Our batch-level
graph construction, which treats each image as a node to model inter-sample relation-
ships, proved particularly effective for cross-domain emotion recognition, while the multi-
component alignment strategy successfully captured both marginal and statistical distribu-
tion discrepancies between source and target domains. While GAT-ADA was specifically
designed and validated for FER, the core architectural principles of relational modeling
through graph attention and hybrid domain adaptation represent general design patterns
that could potentially be adapted to other cross-domain learning problems. However, such
extensions would require domain-specific graph construction strategies, appropriate con-
nectivity patterns, and thorough empirical validation in each target domain. Future work
will systematically explore this transferability by conducting preliminary experiments in
medical imaging and action recognition, improving computational efficiency through graph
sparsification, enhancing robustness on small or noisy datasets, and extending to multi-
modal emotion recognition. These investigations will help determine whether GAT-ADA’s
design principles can serve as a general paradigm for domain-adaptive learning across di-
verse applications, or whether the observed success is primarily specific to the structured
nature of facial expression data.
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Kilian Fatras, Thibault Séjourné, Rémi Flamary, and Nicolas Courty. Unbalanced mini-
batch optimal transport: Applications to domain adaptation. In Proceedings of the 38th
International Conference on Machine Learning (ICML), pages 3186–3197, 2021.



Ghaedi BabaAhmadi Zwiggelaar Fan Alam

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, Mario Marchand, and Victor S. Lempitsky. Domain-adversarial train-
ing of neural networks. J. Mach. Learn. Res., 17(59):1–35, 2016.

Yuefang Gao, Yuhao Xie, Zeke Zexi Hu, Tianshui Chen, and Liang Lin. Adaptive global-
local representation learning and selection for cross-domain facial expression recognition.
IEEE Trans. Multim., 26:6676–6688, 2024. doi: 10.1109/TMM.2024.3355637.

Ian J. Goodfellow, David Erhan, Pierre-Luc Carrier, Aaron Courville, and Yoshua Ben-
gio. The facial expression recognition 2013 (fer2013) dataset. Introduced as part of
”Challenges in Representation Learning: A report on three machine learning contests”
at ICML2013, 2013.

Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Unsupervised adaptation across
domain shifts by generating intermediate data representations. IEEE Trans. Pattern
Anal. Mach. Intell., 36(11):2288–2302, 2014. doi: 10.1109/TPAMI.2013.249.

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexan-
der J. Smola. A kernel two-sample test. J. Mach. Learn. Res., 13:723–773, 2012.

Guodong Guo and Na Zhang. A survey on deep learning based face recognition. Comput.
Vis. Image Underst., 189, 2019. doi: 10.1016/J.CVIU.2019.102805.

Zhe Guo, Bingxin Wei, Jiayi Liu, Xuewen Liu, Zhibo Zhang, and Yi Wang. USTST: un-
supervised self-training similarity transfer for cross-domain facial expression recognition.
Multim. Tools Appl., 83(14):41703–41723, 2024. doi: 10.1007/s11042-023-17362-9.

Alejandro Jaimes and Nicu Sebe. Multimodal human-computer interaction: A survey.
Comput. Vis. Image Underst., 108(1-2):116–134, 2007. doi: 10.1016/J.CVIU.2006.10.019.

Yanli Ji, Yuhan Hu, Yang Yang, Fumin Shen, and Heng Tao Shen. Cross-domain facial
expression recognition via an intra-category common feature and inter-category distinc-
tion feature fusion network. Neurocomputing, 333:231–239, 2019. doi: 10.1016/j.neucom.
2018.12.037.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2016.

Thomas Kopalidis, Vassilios Solachidis, Nicholas Vretos, and Petros Daras. Advances in
facial expression recognition: A survey of methods, benchmarks, models, and datasets.
Inf., 15(3):135, 2024. doi: 10.3390/INFO15030135.

Mengxue Li, Yi-Ming Zhai, You-Wei Luo, Peng-Fei Ge, and Chuan-Xian Ren. Enhanced
transport distance for unsupervised domain adaptation. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 13936–13944, 2020. doi:
10.1109/CVPR42600.2020.01395.

Shan Li and Weihong Deng. Deep emotion transfer network for cross-database facial expres-
sion recognition. In 2018 24th International Conference on Pattern Recognition (ICPR),
pages 3092–3099, 2018. doi: 10.1109/ICPR.2018.8545284.



GAT-ADA

Shan Li and Weihong Deng. A deeper look at facial expression dataset bias. IEEE Transac-
tions on Affective Computing, 13(2):881–893, 2022a. doi: 10.1109/TAFFC.2020.2973158.

Shan Li and Weihong Deng. A deeper look at facial expression dataset bias. IEEE Trans.
Affect. Comput., 13(2):881–893, 2022b. doi: 10.1109/TAFFC.2020.2973158.

Shan Li, Weihong Deng, and JunPing Du. Reliable crowdsourcing and deep
locality-preserving learning for expression recognition in the wild. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2852–
2861, July 2017a.

Shan Li, Weihong Deng, and JunPing Du. The real-world affective faces database (raf-db).
Crowdsourced dataset from “Reliable Crowdsourcing and Deep Locality-Preserving
Learning for Expression Recognition in the Wild,” presented at CVPR2017, 2017b.

Yingjian Li, Zheng Zhang, Bingzhi Chen, Guangming Lu, and David Zhang. Deep
margin-sensitive representation learning for cross-domain facial expression recognition.
IEEE Transactions on Multimedia, 25:1359–1373, 2022. doi: 10.1109/TMM.2022.
3141604.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional ad-
versarial domain adaptation. In Advances in Neural Information Processing Systems,
volume 31, pages 1647–1657, 2018. doi: 10.5555/3326943.3327094.

Patrick Lucey, Jeffrey F. Cohn, Takeo Kanade, Jason M. Saragih, Zara Ambadar, and
Iain A. Matthews. The extended cohn-kanade dataset (ck+): A complete dataset for
action unit and emotion-specified expression. In 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 94–101, 2010.
doi: 10.1109/CVPRW.2010.5543262.

Michael J. Lyons, Shigeru Akamatsu, Miyuki G. Kamachi, and Jiro Gyoba. The japanese
female facial expression (jaffe) database. Website, originally presented alongside the
paper “Coding Facial Expressions with Gabor Wavelets” at the Third IEEE International
Conference on Automatic Face and Gesture Recognition, Nara, Japan, April 14–16,1998,
1998.

Guanming Ma and Huazhu Ma. Relation-aware network for facial expression recognition. In
17th IEEE International Conference on Automatic Face and Gesture Recognition (FG),
2023.

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir Hussain. A review of affective
computing: From unimodal analysis to multimodal fusion. Inf. Fusion, 37:98–125, 2017.
doi: 10.1016/J.INFFUS.2017.02.003.

Andrés Prados-Torreblanca, José M. Buenaposada, and Luis Baumela. Shape preserving
facial landmarks with graph attention networks. In British Machine Vision Conference
(BMVC), 2022.



Ghaedi BabaAhmadi Zwiggelaar Fan Alam

Baochen Sun and Kate Saenko. Deep CORAL: correlation alignment for deep domain
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