
Under review as a conference paper at ICLR 2023

MOMENTUM DIMINISHES THE EFFECT OF SPECTRAL
BIAS IN PHYSICS-INFORMED NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Physics-informed neural network (PINN) algorithms have shown promising re-
sults in solving a wide range of problems involving partial differential equations
(PDEs). However, even the simplest PDEs, often fail to converge to desirable
solutions when the target function contains high-frequency modes, due to a phe-
nomenon known as spectral bias. In the present work, we exploit neural tan-
gent kernels (NTKs) to investigate the training dynamics of PINNs evolving under
stochastic gradient descent with momentum (GDM). This demonstrates GDM sig-
nificantly reduces the effect of spectral bias. We have also examined why training
a model via the Adam optimizer can accelerate the convergence while reducing
the spectral bias. Moreover, our numerical experiments have confirmed that wide-
enough networks using GDM or Adam still converge to desirable solutions, even
in the presence of high-frequency features.

1 INTRODUCTION

Physics-informed neural networks (PINNs) have been proposed as alternatives to traditional numeri-
cal partial differential equations (PDEs) solvers (Raissi et al., 2019; 2020; Sirignano & Spiliopoulos,
2018; Tripathy & Bilionis, 2018). In PINNs, a PDE which describes the physical domain knowledge
of a problem is added as a regularization term to an empirical loss function. Although PINNs has
shown remarkable performance in solving a wide range of problems in science and engineering (Cai
et al., 2022; Kharazmi et al., 2019; Sun et al., 2020; Kissas et al., 2020; Tartakovsky et al., 2018),
regardless of the simplicity of a PDE itself, they often fail to converge to accurate solutions when
the target function contains high-frequency features (Krishnapriyan et al., 2021; Wang et al., 2021).
This phenomenon known as the spectral bias exists in even the simplest linear PDEs (Wang et al.,
2021; Moseley et al., 2021; Krishnapriyan et al., 2021).

Spectral bias is not limited to PINNs. Rahaman et al. (2019) empirically showed that all fully-
connected feed-forward neural networks (NNs) are biased against learning complex components of
target functions. Furthermore, Cao et al. (2019) theoretically proved that in training infinitely-wide
networks with squared loss, the corresponding eigenvalues of the neural tangent kernel (NTK) (Jacot
et al., 2018) indicate the exact convergence rate for different components of the target functions.
Thus, spectral bias happens when the absolute values of some of the eigenvalues of the NTK are
large while others are small. Recently, utilizing the NTK of infinitely-wide PINNs, Wang et al.
(2022) examined the gradient flow of these networks during training. They proved that the training
error decays based on e−κit, where κi are the eigenvalues of the NTK. Thus, the components of the
target function corresponding to the smaller eigenvalues have a slower rate of decay, which causes
spectral bias. To tackle the issue of spectral bias, they proposed to assign a weight to each term of
the loss function and dynamically update it. Although the results showed some improvements, as the
frequency of the target function increased, their proposed PINN still failed to converge to solutions
of PDEs. Moreover, as assigning weights can result in indefinite kernels, the training process could
become extremely unstable. Of note, compared to the typical NNs, analyzing the effect of spectral
bias for PINNs is more challenging as the loss function is regularized by means of adding the PDE
equation. Thus, Wang et al. (2022)’s study was limited to training the model only based on GD.

Some studies proposed an alternative approach in which instead of modifying the loss function
terms, a high-frequency PDE is solved in a few successive steps. In these methods, it is assumed
that the optimal solution of low-frequency PDEs is close to the optimal solution of high-frequency

1

Under review as a conference paper at ICLR 2023

PDEs. Hence, instead of randomly initializing weights they are being initialized using the optimal
solution of low-frequency PDEs. Moseley et al. (2021) implemented a finite element approach where
PINNs were trained to learn basis functions over several small, overlapping subdomains. Similarly,
Krishnapriyan et al. (2021) proposed a learning method based on learning the solution over small
successive chunks of time. Moreover, they proposed another sequential learning scheme in which
the model was gradually trained on target functions with lower frequencies, and, at each step, the
optimized weights were used as the warm initialization for higher-frequency target functions. In
a similar approach, Huang & Alkhalifah (2021) proposed to use the pre-trained models from low-
frequency functions and to increase the size of the network (neuron splitting) as the frequency of
the target function is increased. Although these methods showed good performance on some PDEs,
as the frequency terms became larger, the process became much slower as the required time steps
would significantly grow.

In this work, we study the spectral bias of PINNs from an optimization perspective. Existing studies
only have focused on effect of the vanilla GD (Wang et al., 2022) or they are limited to some weak
empirical evidence indicating that Adam might learn high feature faster (Taylor et al., 2022). We
prove that an infinitely-wide PINN under the vanilla GD optimization process will converge to the
solution. However, for high-frequency modes, the learning rate needs to become very small, which
makes the convergence extremely slow, and hence not possible in practice. Moreover, we prove that
for infinitely-wide networks, using the GD with momentum (GDM) optimizer can reduce the effect
of spectral bias in the networks, while significantly outperforming vanilla GD. We also investigate
why the Adam optimizer can also accelerate the optimization process while decreases the effect
of spectral bias in PINNs. To the best of our knowledge this is the first time that the gradient
flow of the output of PINNs under the GDM, and Adam are being analyzed, and their relation to
solving spectral bias is discussed. Finally, our extensive numerical experiments on sufficiently wide
networks confirm our theoretical findings.

2 PRELIMINARIES

2.1 PINNS GENERAL FORM

The general form of a well-posed PDE on a bounded domain (Ω ⊂ Rd) is defined as:
D[u](x) = f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω
(1)

where D is a differential operator and u(x) is the solution (of the PDE), in which x =
(x1, x2, . . . , xd). Note that for time-dependent equations, t = (t1, t2, . . . , td) are viewed as ad-
ditional coordinates within x. Hence, the initial condition is viewed as a special type of Dirichlet
boundary condition and included in the second term.

Using PINNs, the solution of Eq. 1 can be approximated as u(x,w) by minimizing the following
loss function:

L(w) := 1

Nb

Nb∑
i=1

(u(xib,w)− g(xi
b))

2

︸ ︷︷ ︸
Lb(w)

+
1

Nr

Nr∑
i=1

(D[u](xi
r,w)− f(xi

r))
2

︸ ︷︷ ︸
Lr(w)

(2)

where {xib}
Nb
i=1 and {xir}

Nr
i=1 are boundary and collocation points respectively, and w describes the

neural network parameters. Lb(w) corresponds to the mean squared error of the boundary (and
initial) condition data points, and Lr(w) encapsulates the physics of the problem using the randomly
selected collocation points. Similar to all other NNs, minimizing the loss function L(w) results in
finding the optimal solutions w*.

2.2 INFINITELY-WIDE NEURAL NETWORKS

A fully-connected infinitely-wide NN with L hidden layers can be written as Jacot et al. (2018):

uh(x) =
1

N
Θh · xh + bh

xh+1 = σ(uh)

2

Under review as a conference paper at ICLR 2023

where Θh and bh are respectively the weight matrices and the bias vectors in the layers h =
1, . . . , L, N is the width of the layer, and σ(·) is a β-smooth activation function (e.g. tanh(·)).
The final output of the NN is written as:

u(x,w) =
1

N
ΘL · xL + bL

where w = (Θ0,b0, . . . ,ΘL,bL). At each time step t, we can determine the change of the output
with respect to the input, which defines a NTK:

Kt
(x,x’) = ∇wu(x,w(t))⊤∇wu(x′,w(t)).

It is worth noting that the NTK is associated with the model and is completely independent of
the choice of optimization algorithms or the loss function. Liu et al. (2020) showed that for a
fully-connected NN with a linear output layer, the spectral norm of its Hessian satisfies ∥H(w)∥ =
O(1√

N
). Consequently, as the width become larger, the norm of the Hessian becomes smaller:

limN→0∥H(w)∥ = 0. Thus, one major consequence of dealing with infinitely-wide fully-connected
NNs is that if the last layer of the network is linear, the NTK becomes static (not changing over
iterations), and the output of the network can be linearized (Liu et al., 2020):

ulin
t (w) ≈ u(w)|w0 + (w − w0)∇u(w)|w0 .

3 THEORETICAL RESULTS

3.1 CONVERGENCE OF GRADIENT DESCENT IN THE PRESENCE OF HIGH-FREQUENCY
FEATURES

Generally, the optimization problems corresponding to over-parametrized systems, even on a local
scale, are non-convex (Liu et al., 2022). A loss function L(w) of a µ-uniformly conditioned NN
satisfies the µ-PL∗ condition on a set S ⊂ Rm if:

∥∇w(L(w))∥2 ≥ µL(w) for all w ∈ S (3)

where µ is the lower bound of the tangent kernel K(w) of the NN. It has been shown that infinitely-
wide networks satisfy the µ-PL∗ condition, a variant of the Polyak-Lojasiewicz condition, and as
a result the (stochastic) gradient descent (SGD/GD) optimization algorithms will converge to the
optimal solution (Liu et al., 2022). The following proposition makes use of the µ-PL∗ condition to
provide a convergence analysis for an infinitely-wide PINN with a loss function as in Eq. 2 optimized
with GD (Appendix A).

Proposition 1. Let λbmax
and λrmax

, respectively, be the largest eigenvalues of the Hessians
∇2Lb(wt) and ∇2Lr(wt). Consider an infinitely-wide PINN optimized with the following update
rule:

wt+1 = wt − η∇L(wt),

where η is a constant learning rate. Then, provided η = O(1/(λbmax
+λrmax

)), the µ-PL∗ condition
is satisfied and the PINN will converge.

Although Proposition 1 provides a convergence guarantee for an infinitely wide-wide PINN, for
PDEs exhibiting stiff dynamics (those with high frequency modes), the eigenvalues (of the Hes-
sian) dictating convergence are often very large (Wang et al., 2021). For example, take the one-
dimensional Poisson equation:

∂2u

∂x2
= f(x), x ∈ Ω (4)

u(x) = g(x), x ∈ ∂Ω

with u(x) = sin(Cx). The norm of the Hessian H(wt) is of order O(C4) (Appendix B). Thus, as C
grows so does the bound on the eigenvalues of H(wt), indicating that at least one of λbmax

or λrmax

will be large. Consequently, the learning rate must be prohibitively small to guarantee convergence.
Therefore GD is unusable in practice.

3

Under review as a conference paper at ICLR 2023

Figure 1: Damped harmonic oscillators show three different characteristics.

3.2 WIDE PINN OPTIMIZATION USING GD WITH MOMENTUM

In order to accelerate learning, we investigate the training dynamics of PINNs under GD with mo-
mentum (GDM) (Du, 2019):

wt+1 = wt + α(wt − wt−1)− η∇wL(w), (5)

where α and η are fixed rates.Specifically, we analyze the gradient flow of the update rule in Eq. 5 by
leveraging the notion of the NTK. The following theorem (proof in Appendix C) reveals that GDM
has a different convergence behavior from GD:

Theorem 1. For an infinitely-wide PINN, the gradient flow of GDM is:

m

[
ü(xb,w(t))

D[ü](xr,w(t))

]
= −µ

[
u̇(xb,w(t))

D[u̇](xr,w(t))

]
− K

[
u(xb,w(t))− g(xb)

D[u](xr,w(t))− h(xr)

]
that is analogous to a point mass m undergoing a damped harmonic oscillation in a viscous medium
with a friction coefficient of µ(α) that is function of α, Furthermore, K is defined as:

K =

[
Kbb Krb

Kbr Krr

]
,

where:

Kbb(x,x′) = ∇wu(w, x)⊤∇wu(w, x′)

Kbr(x,x′) = ∇wu(w, x)⊤∇wD[u](w, x′)

Krr(x,x′) = ∇wD[u](w, x′)⊤∇wD[u](w, x′)

are three NTKs associated with the boundary and residual terms. Moreover, let γ = µ/2m, κi be
the i-th eigenvalue of K, and κ′

i =
κi

m . Then, the solutions to the gradient flow are of the form:

A1e
λi1 t +A2e

λi2 t

λi1,2 = −γ ±
√
γ2 − κ′

i

(6)

where A1 and A2 are constants.

By examining the analogous gradient flow for the vanilla GD, where the training error decays at the
rate e−κit (Wang et al., 2021), thus PINNs under vanilla GD suffer from spectral bias.

Once we add momentum, the decay rate analysis becomes more involved as Eq. 6 yields three
different cases of solutions. Each of the three cases is analogous to one of the solutions of a damped
harmonic oscillator Qian (1999); Arya (Fig. 1):

• Under-damped: Imaginary roots (γ2 < κ′
i)

• Critically-damped: Real and equal roots (γ2 = κ′
i)

4

Under review as a conference paper at ICLR 2023

• Over-damped: Real roots (γ2 > κ′
i).

Under-damped case As
√
γ2 − κ′

i has imaginary roots, Eq. 6 can be rewritten as:

Ae−γt cos (ω1t+ ϕ)

where ω1 =
√
κ′
i − γ2, and A and ϕ are two constants corresponding to the amplitude and the phase

of the damped oscillation. In physics, this solution corresponds to an oscillatory motion in which
the amplitude is decaying exponentially.

Critically-damped case The general solution of the critically-damped case can be written as:

(B1 +B2t)e
−γt

where B1 and B2 are constants. As the oscillation motion is not present, the decaying rate for this
case is much faster (Fig. 1).

Over-damped case Lastly, in the over-damped case the general solution is simplified as:

e−γt
(
C1e

ω2t+ C2e
−ω2t

)
where ω2 =

√
γ2 − κ′

i and C1 and C2 are constants. Similar to the critically-damped case, the
above equation states a fast decay.

Thus, depending on |κi|, the absolute value of the eigenvalues of the kernel matrix K, the dynamics
of the training error corresponding to different frequency components can differ. For larger eigen-
values, the training error corresponds to an under-damped solution, in which the amplitude of an
oscillatory motion is decaying exponentially, whereas for smaller eigenvalues the correspondence is
with an over-damped or critically-damped oscillation, with a much faster decay. Thus, when using
GDM instead of vanilla GD, the training process for the components of the target function that cor-
respond to the smaller eigenvalues will decay fast (undergoing the over-damped or critically-damped
motions), while the components that correspond to the larger eigenvalues will decay at a slower rate.
As a consequence, the effect of spectral bias will be less prominent (compared to vanilla GD). To
provide visualizations, in Appendix F the decay dynamics of GDM and vanilla GD are plotted using
a small and large eigenvalue.

4 NUMERICAL EXPERIMENTS

In the previous Section, we proved that for infinitely-wide networks GDM and Adam can diminish
the effect of spectral bias in theory. Here, we show that in practice, for sufficiently wide networks,
Adam and GDM can significantly diminish the effect of spectral bias. Using Poisson’s equation,
the transport function, and the reaction-diffusion problem we provide results from our numerical
experiments. Experiments for the reaction-diffusion problem are presented in Appendix H.2.

4.1 POISSON’S EQUATION

Poisson’s equation is a well-known elliptic PDE in physics. For example, in electromagnetism, the
solution to Poisson’s equation is the potential field of a given electric charge. In Eq. 4 the general
form of the one-dimensional Poisson’s equation was presented. Here, we write Poisson’s equation
for a specific source function and a specific boundary condition:

f(x) = −C2 sin(Cx), x ∈ [0, 1]

g(x) = 0, x = 0, 1

The defined loss function as well as the analytical solution of Poisson’s equation are shown in
Appendix G. We trained a network of two hidden layers of width 500, Nr = 100 and Nb = 100.
Of note, Wang et al. (2022) had shown that during the training process, the NTK of networks with a
width of 500 practically stayed constant.

Our numerical experiments confirmed that for a relatively small value of C = 5π (where the effect
of the spectral bias is not significant), after 55000 epochs, models trained via all three algorithms
could accurately estimate the solution (Fig. 2; top panel). The relative error ∥(u− û)/û∥ for vanilla

5

Under review as a conference paper at ICLR 2023

GD was on the order of 10−2. The relative error using GDM and Adam were respectively on
the order of 10−3 and 10−4 (Fig. 3a). As the parameters of a PDE increase, its solution contains
higher frequency modes, and as a result, convergence becomes more challenging. When C =
10π, after 55000 epochs, the solution obtained from training the network with vanilla GD was far
from the exact solution (Fig. 2; bottom panel), and it exhibited a relative error larger than 10−1

(Fig. 3b). Meanwhile, the trained models with GDM and Adam had relative errors of 10−2 and
10−4, respectively (Fig. 3b).

It is also of interest to investigate the behavior of the training loss function and its decay rate. For
the low-frequency case (C = 5π), the training loss via Adam had a faster convergence, however, all
three networks converged after about 30000 epochs (Fig. 4, left panel). For the high-frequency case
(C = 10π), the training loss via GD had a much slower decay rate, and after 35000 epochs it did
not converge. On the other hand, the training loss for both GDM and Adam could converge, and the
model trained via Adam converged after about 25000 epochs (Fig. 4, right panel).

Figure 2: 1D Poisson equation when C = 5π (top panel), and 10π (bottom panel). (a) Vanilla GD
after (b) GDM (c) Adam.

Figure 3: Estimated training error for 1D Poisson equation. a) C = 5π. b) C = 10π.

Figure 4: Left panel: training loss when C = 5π. Right panel: training loss when C = 10π.

Of note, using vanilla GD and training the model for 180000 epochs resulted in a small relative error
on the order of 10−2 (Fig. G.1). This confirmed our discussion presented in Section 3.1 that vanilla

6

Under review as a conference paper at ICLR 2023

GD will converge under large parameters, though due to the presence of high-frequency features it
is extremely slow.

4.2 EVOLUTION OF THE SOLUTION DURING LEARNING

Knowing the fundamental difference between GDM and GD, it is of interest to investigate how
under these two algorithms solutions are evolved (in time). Thus, for the Poisson equation when
C = 15π, we have plotted the solutions at epochs 2000, 10000, 20000, 30000, 40000, and 50000
(GD: Fig. 5 and GDM: Fig. 6). For GD: at epoch 10000, the solution has the correct sinusoidal
shape, however it is vertically shifted and clearly cannot satisfy the boundary conditions. Plotting
the eigenvalues of Kbb (Fig. F.1) confirms that they are much smaller than the eigenvalues of Krr

indicating that under GD the boundary and initial conditions are learnt much slower. As the training
continues in time, the solution becomes less vertically shifted and closer to the boundary condition
values. However, the learning process is slow, and even at epoch 50000 the estimation is far from
the particular solution. Meanwhile, GDM is much faster, and at epoch 10000 the solution already
has the correct sinusoidal shape and satisfies one end of the initial conditions. By epoch 20000 the
estimated solution has a low error on the order of 10−2.

Figure 5: The solution in different stages of the learning process via GD. a) 2000 epochs, b) 10000
epochs, c) 20000 epochs, d) 30000 epochs, e) 40000 epochs, and f) 50000 epochs.

Figure 6: The solution in different stages of the learning process via GDM. a) 2000 epochs, b) 10000
epochs, c) 20000 epochs, d) 30000 epochs, e) 40000 epochs, and f) 50000 epochs.

4.3 TRANSPORT EQUATION

The transport equation is a hyperbolic PDE that models the concentration of a substance flowing in
a fluid. Here, we focus on a one-dimensional transport equation:

∂u

∂t
+ β

∂u

∂x
= 0, x ∈ Ω, T ∈ [0, 1]

g(x) = u(x, 0), x ∈ Ω

7

Under review as a conference paper at ICLR 2023

where β is a control parameter (independent of x and t). To facilitate later comparisons with
Krishnapriyan et al. (2021), we used the same network architectures as their study: Nb = 100,
Nr = 1500, and a 4-layer network. We also chose the boundary and initial conditions to be
u(x, 0) = sin(x) and u(0, t) = u(2π, t). The defined loss function as well as the analytical so-
lution of the transport function are shown in Appendix G.

Similar to Poisson’s equation, for small β values, the models trained via vanilla GD, GDM, and
Adam could all easily converge to the solution, and had small relative errors. However, for β = 20,
after 125000 epochs the model trained with vanilla GD still failed to find the solution, and the
averaged relative error stood at a large value (on the order of 100). However, the model trained via
GDM after 55000 epochs could converge to the solution and the estimated solution had the relative
error on the order of 10−2. The estimated solution from training the model via Adam, after only
15000 epochs, had a small relative error also on the order of 10−2. The exact solution, the estimated
solutions (based on the three opti5izers), and the absolute difference between the exact and estimated
solutions are shown in Fig. 7.

Figure 7: 1D transport equation when β = 20: Top panels: The exact (analytical) solution. Middle
panels: The estimated solutions. Bottom panels: The absolute difference between the exact and
estimated solutions. (a) Vanilla GD, (b) GDM, (c) Adam.

4.4 COMPARISON WITH OTHER METHODS

Here, we compare the solutions for Poisson’s equation and the transport function (from a wide net-
work trained with Adam) with the solutions based on the curriculum learning (hereafter C-learning)
Krishnapriyan et al. (2021) and the adaptive weight approach (hereafter AW) presented in Wang
et al. (2022). Of note, C-learning used the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) algorithm that mimics the second-order optimization, as Krishnapriyan et al. (2021) re-
ported that, for their approach, using other optimization algorithms under performed compared to
L-BFGS. To reproduce the results we used the code respectively presented in Krishnapriyan et al.
(2021) and Wang et al. (2022). All networks were trained with the same architecture introduced in
Section (4).

We tested a 1D Poisson’s equation with different values of C. The comparison between the relative
errors of the estimated solutions is plotted in Fig. 8a. For C ≥ 8π, both AW and C-learning exhibited
errors of the order of 10−1. The errors using Adam were at most 10−3. For the 1D transport
function with initial condition sin2(x) and for different values of β ∈ [2, 20], the relative error of the
estimated solutions using the mentioned methods are plotted in Fig. 8b. As the values of β become
larger, the estimated solutions from C-learning and AW became less accurate. C-learning for β ≥ 15
and AW for β ≥ 10 had relative errors of the estimated solutions larger than 10−1. Furthermore,
using the C-learning methodology, in order to solve the transport function for β ≥ 5, we had to
train models for β = 9, 11, 13, 15, 17, 18, 19, 20 such that the optimized weights for the previous β

8

Under review as a conference paper at ICLR 2023

Figure 8: Top Panel: The relative errors of the estimated solutions of 1D transport and Poisson’s
equations for different values of β and C using the C-learning, AW, and Adam. Bottom Panel: the
training loss of different methods.

values were used to warm initialize the model for the next beta value. Of note, further comparisons
with other choices of initial condition are presented in Appendix H.3.

To further evaluate the effect that the optimization algorithms have on the spectral bias, we compared
the rate of training loss decay for wide GDM, wide Adam, AW, and C-learning. An experiment with
Poisson’s equation with C = 10π showed the training loss of the networks based on Adam had
much faster decay than AW (see Fig. 8d).

For the transport function with β = 20, the training loss under Adam converged much faster than
the loss under AW, C-learning, and GDM Fig. 8c. Another experiment with Poisson’s equation
when C = 10π showed the training loss of the network based on Adam had a faster decay than
AW (see Fig. 8d). Although C-learning also showed a fast training loss convergence, the relative
error of the estimate from C-learning was large (see Fig. 8b). This is not surprising, as the loss
landscape for PINNsof PDEs with high-frequency modes is compound Krishnapriyan et al. (2021),
and they contain many saddle points which attract second-order optimization algorithms Dauphin
et al. (2014). Our observation is consistent with (Markidis, 2021), where they also observed this
downside of L-BFGS and recommended using Adam for at least the first few epochs. It is also
important to mention that, unlike the other methods, the weight initialization for C-learning was not
random. Instead, it was based on the optimal solution achieved for lower frequency modes, which
requires extra training.

5 CONCLUSION

In the present study, through the lens of NTKs, we examined the dynamics of training PINNs via
GDM. We also showed that under GDM the convergence rate of low-frequency features becomes
slower (analogous to under-damped oscillation) and many high-frequency features undergo much
faster conversion dynamics (analogous to over-damped or critically-damped oscillations). Thus,
the effect of spectral bias becomes less prominent. Moreover, we discussed how training a PINN
via Adam can even further accelerate convergence, and showed it can be much faster than GDM.
Although we analyzed the theoretical dynamics of convergence by assuming an infinitely-wide net-
work, our experiments confirmed the estimated solutions obtained from the trained models via GDM
and Adam had high accuracy, using finite and practical widths.

REFERENCES

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of op-
timization and generalization for overparameterized two-layer neural networks. In International

9

Under review as a conference paper at ICLR 2023

Conference on Machine Learning, pp. 477–502. PMLR, 2019.

Atam P Arya. Introduction to classical mechanics, 1998.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Ronen Basri, David Jacobs, Yoni Kasten, and Shira Kritchman. The convergence rate of neural
networks for learned functions of different frequencies. In Advances in Neural Information Pro-
cessing Systems, volume 32, pp. 4763–4772, 2019.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, pp.
1–12, 2022.

Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the
spectral bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. Advances in neural information processing systems, 27, 2014.

Juan Du. The frontier of sgd and its variants in machine learning. In Journal of Physics: Conference
Series, volume 1229, pp. 012046. IOP Publishing, 2019.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc., 2010.

Xinquan Huang and Tariq Alkhalifah. Pinnup: Robust neural network wavefield solutions using
frequency upscaling and neuron splitting. Journal of Geophysical Research: Solid Earth, pp.
e2021JB023703, 2021.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in Neural Information Processing Systems, 31, 2018.

Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. Variational physics-informed
neural networks for solving partial differential equations. arXiv preprint arXiv:1912.00873, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Georgios Kissas, Yibo Yang, Eileen Hwuang, Walter R Witschey, John A Detre, and Paris Perdikaris.
Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non-
invasive 4d flow mri data using physics-informed neural networks. Computer Methods in Applied
Mechanics and Engineering, 358:112623, 2020.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34, 2021.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in Neural Information Processing Systems, 32, 2019.

Chaoyue Liu, Libin Zhu, and Misha Belkin. On the linearity of large non-linear models: when
and why the tangent kernel is constant. Advances in Neural Information Processing Systems, 33:
15954–15964, 2020.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss landscapes and optimization in over-
parameterized non-linear systems and neural networks. Applied and Computational Harmonic
Analysis, 2022.

Stefano Markidis. The old and the new: Can physics-informed deep-learning replace traditional
linear solvers? Frontiers in big Data, pp. 92, 2021.

10

Under review as a conference paper at ICLR 2023

Ben Moseley, Andrew Markham, and Tarje Nissen-Meyer. Finite basis physics-informed neural
networks (fbpinns): a scalable domain decomposition approach for solving differential equations.
arXiv preprint arXiv:2107.07871, 2021.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12
(1):145–151, 1999.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In International Confer-
ence on Machine Learning, pp. 5301–5310. PMLR, 2019.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based
on physics-constrained deep learning without simulation data. Computer Methods in Applied
Mechanics and Engineering, 361:112732, 2020.

Alexandre M Tartakovsky, Carlos Ortiz Marrero, Paris Perdikaris, Guzel D Tartakovsky, and David
Barajas-Solano. Learning parameters and constitutive relationships with physics informed deep
neural networks. arXiv preprint arXiv:1808.03398, 2018.

John Taylor, Wenyi Wang, Biswajit Bala, and Tomasz Bednarz. Optimizing the optimizer for
data driven deep neural networks and physics informed neural networks. arXiv preprint
arXiv:2205.07430, 2022.

Rohit K Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network surrogate models for
high dimensional uncertainty quantification. Journal of Computational Physics, 375:565–588,
2018.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient flow patholo-
gies in physics-informed neural networks. SIAM Journal on Scientific Computing, 43(5):A3055–
A3081, 2021.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

A CONVERGENCE OF WIDE PINNS

Proposition A. Let λbmax and λrmax , respectively, be the largest eigenvalues of the Hessians
∇2Lb(wt) and ∇2Lr(wt). Consider an infinitely-wide PINN optimized with the following update
rule:

wt+1 = wt − η∇L(wt),

where η is a constant learning rate. Then, provided η = O(1/(λbmax
+λrmax

)), the µ-PL∗ condition
is satisfied and the PINN will converge.

Proof. The loss function at time t+ 1 can be written as:

L(wt+1) ≈ L(wt) + (wt+1 − wt)
⊤∇L(wt) +

1

2
(wt+1 − wt)

⊤H(wt)(wt+1 − wt)

11

Under review as a conference paper at ICLR 2023

where H(wt) = ∇2Lb(wt) + ∇2Lr(wt) (Wang et al., 2021). Following the approach of (Wang
et al., 2021), let Q be an orthogonal matrix diagonalizing H(wt) and v = L(wt)/∥L(wt)∥. With
y = Qv, we have the following:

L(wt+1) ≈ L(wt)− η∥∇L(wt)∥2 +
η2

2
∥∇L(wt)∥2

(
Nb∑
i

λbiyi
2 +

Nr∑
i

λriyi
2

)

⪅ L(wt)− η∥∇L(wt)∥2 +
η2

2
∥∇L(wt)∥2(λbmax

+ λrmax
)

where the λbi and λri are the respective eigenvalues of the Hessians of Lb and Lr ordered non-
decreasingly, and the summation is taken over the components of y.

From here, fixing any bound B such that λbmax
+ λrmax

≤ B, we obtain the following inequality:

L(wt+1) ⪅ L(wt)− η∥∇L(wt)∥2
(
1− ηB

2

)
Witness that if η = 1/B, we can further simplify this to:

L(wt+1) ⪅ L(wt)− η∥∇L(wt)∥2

Since our NN satisfies the µ-PL∗ condition from Eq. 3 due to its width, we therefore have:

L(wt+1) ≤ (1− ηµ)L(wt),

which concludes the proof.

B HESSIAN FOR POISSON’S EQUATION

Proposition B. Let H be the Hessian of the loss function of an infinitely-wide PINN for the one-
dimensional Poisson equation defined by Eq. 4 with u(x) = sin(Cx). Then, we have H = O(C4).

Proof. The Hessian of loss on the collocation points is calculated following the methods introduced
in Wang et al. (2021), where the gradient of the loss function is:

∂Lr

∂w
=

∂
∫ 1

0
(∂

2uw

∂x2 − ∂2u
∂x2)

2dx

∂w
.

Here, w ∈ w, u(x) is the target solution (admitting some parameter C), and uw(x) is the NN
approximation of the output. Assuming that the approximation is a good representation of the actual
solution, it can be written as uw(x) = u(x)ϵw(x), where ϵw(x) is a smooth function taking values
in [0, 1], such that |ϵw(x)−1| < δ for some δ > 0 and ∥∂kϵw(x)

∂xk ∥ ≤ δ, where we have the L∞ norm.

The Hessian of the loss function will therefore be:

∂2Lr

∂w2
=

∂2
∫ 1

0
(∂

2uw

∂x2 − ∂2u
∂x2)

2

∂w2
=

∂I

∂w

where I = ∂Lr

∂w , and can be calculated to be:

I = 2
∂2uw

∂w∂x

(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0
− ∂uw

∂w

(
∂3uw

∂x3
− ∂3u

∂x3

) ∣∣∣1
0
+

∫ 1

0

∂uw

∂w

(
∂4uw

∂x4
− ∂4u

∂x4

)
dx.

12

Under review as a conference paper at ICLR 2023

The above equation contains 3 terms, which we call I1, I2, and I3 respectively. Note that ∂I
∂w =

∂I1
∂w + ∂I2

∂w + ∂I3
∂w . We calculate these terms as follows:

I1 = 2
∂2uw

∂w∂x

(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0

∂I1
∂w

= 2
∂(∂

2uw

∂w∂x)

∂w
(
∂2uw

∂x
− ∂2u

∂x2
)

(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0

= 2

(
∂

∂(u′(x)ϵw(x)+u(x)ϵ′w(x))
∂w

∂w

)(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0

= 2

(
∂(u′(x)∂ϵw(x)

∂w + u(x)
∂ϵ′w(x)
∂w)

∂w

)(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0

= 2

(
u′(x)

∂2ϵw(x)

∂w2
+ u(x)

∂2ϵ′w(x)

∂w2

)(
∂2uw

∂x2
− ∂2u

∂x2

) ∣∣∣1
0
.

Note that |u(x)| ≤ 1 and by the chain rule |u′(x)| ≤ C. An application of the triangle inequality
then yields: ∣∣∣∣u′(x)

∂2ϵw(x)

∂w2
+ u(x)

∂2ϵ′w(x)

∂w2

∣∣∣∣ ≤ C

∥∥∥∥∂2ϵw(x)

∂w2

∥∥∥∥+ ∥∥∥∥∂2ϵ′w(x)

∂w2

∥∥∥∥ .
Using the assumptions on ϵw(x) we get:∣∣∣∣∂2uw

∂x2
− ∂2u

∂x2

∣∣∣∣ ≤ (C2 + 2)δ.

Combing both of these, we see ∂I1
∂w = O(C3). Similarly, ∂I2

∂w = O(C3) and ∂I3
∂w = O(C4), which

concludes the proof.

C GRADIENT FLOW FOR GD WITH MOMENTUM

Theorem C. For an infinitely-wide PINN, the gradient flow of GDM is:

m

[
ü(xb,w(t))

D[ü](xr,w(t))

]
= −µ

[
u̇(xb,w(t))

D[u̇](xr,w(t))

]
− K

[
u(xb,w(t))− g(xb)

D[u](xr,w(t))− h(xr)

]
that is analogous to a point mass m undergoing a damped harmonic oscillation in a viscous medium
with a friction coefficient of µ(α) that is function of α, Furthermore, K is defined as:

K =

[
Kbb Krb

Kbr Krr

]
,

where:

Kbb(x,x′) = ∇wu(w, x)⊤∇wu(w, x′)

Kbr(x,x′) = ∇wu(w, x)⊤∇wD[u](w, x′)

Krr(x,x′) = ∇wD[u](w, x′)⊤∇wD[u](w, x′)

are three NTKs associated with the boundary and residual terms. Moreover, let γ = µ/2m, κi be
the i-th eigenvalue of K, and κ′

i =
κi

m . Then, the solutions to the gradient flow are of the form:

A1e
λi1

t +A2e
λi2

t

λi1,2 = −γ ±
√
γ2 − κ′

i

(7)

where A1 and A2 are constants.

13

Under review as a conference paper at ICLR 2023

Proof. Recall that as the NN becomes wider, the norm of the Hessian becomes smaller, such that in
the limit as N → ∞ the norm of Hessian becomes 0. One immediate consequence of small Hessian
for a NN is that its output can be estimated by a linear function Lee et al. (2019). The output of a
NN can thus be replaced by its first-order Taylor expansion:

ulin
t (w) ≈ u(w)|w0

+ (w − w0)∇u(w)|w0
.

The update rule for GDM can be written as Du (2019):
wt+1 = wt + α(wt − wt−1)− η∇wL(w).

The discrete updates to the output of NN become (see Appendix C.1):
ulin
t+1 = ulin

t + α(ulin
t − ulin

t−1)− η∇wL(w)∇wu(w)|w0

In the rest of this section, for simplicity, we will drop the “lin” term. The dynamics of GDM are
analogous to the equation of motion of a point mass m undergoing a damped harmonic oscillation
(Appendix C.2):

mü+ µu̇−∇wL(w)f(u) = 0
where f(u) is a linear function of u, and µ is the friction coefficient that is related to the momentum
term in GDM as such: α = m

m+µ∆t Qian (1999). Thus, the gradient flow of ut and D[u](x,w(t))

can be written as:
mü(xb,w(t)) =− µu̇(xb,w(t))− Kbb(x,x′)(w)(u(xr,w(t))− g(xb))

− Krb(x,x′)(w)(D[u](xr,w(t))− h(xr))

mD[ü](xr,w(t)) =− µD[u̇](xr,w(t))− Kbr(x,x′)(w)(u(xb,w(t))− g(xb))

− Krr(x,x′)(w)(D[u](xr,w(t))− h(xr)).

(C.1)

As mentioned earlier, in wide NNs if the last layer of the network is linear then the tanget kernels
are static.

We write Eq. C.1 in matrix form as follows:

m

[
ü(xb,w(t))

D[ü](xr,w(t))

]
= −µ

[
u̇(xb,w(t))

D[u̇](xr,w(t))

]
− K

[
u(xb,w(t))− g(xb)

D[u](xr,w(t))− h(xr)

]
(C.2)

As K is a positive semi-definite matrix Wang et al. (2021) Eq. C.2 can be viewed as a set of inde-
pendent differential equations, each one corresponding to an eigenvalue λi of the kernel. These give
rise to the individual general solutions of the form:

A1e
λi1

t +A2e
λi2

t

λi1,2 = −γ ±
√
γ2 − κ′

i

where A1 and A2 are constants, γ = µ/2, and κ′
i =

κi

m . Of note, µ and m are set by the user, which
in turn define the value of momentum. The choice of values of m and µ will determine the rate of
decay of the above equation.

C.1 LINEAR NN UPDATES

The Taylor expansions of the outputs at time steps t+ 1 and t are:
ulin
t+1(w) = u(w)|w0 + (wt+1 − w0)∇u(w)|w0

ulin
t (w) = u(w)|w0

+ (wt − w0)∇u(w)|w0
.

Thus, the difference between the outputs in the interval is:
ulin
t+1(w)− ulin

t (w) = ∇u(w)|w0
(wt+1 − wt)

= ∇u(w)|w0(α(wt − wt−1)− η∇L(wt))

where we used the update rule of GD with momentum within the equation. Similarly, we have:
ulin
t (w)− ulin

t−1(w) = ∇u(w)|w0(wt − wt−1)

and:

ulin
t+1(w)− ulin

t (w) = ∇u(w)|w0

(
α

(
ulin
t (w)− ulin

t−1(w)
∇u(w)|w0

)
− η∇L(wt)

)
.

Thus:
ulin
t+1(w) = ulin

t (w)− η∇L(wt) · ∇u(w)|w0 − α(ulin
t (w)− ulin

t−1(w)).

14

Under review as a conference paper at ICLR 2023

C.2 RELATION BETWEEN GDM AND DAMPED OSCILLATION

The dynamics of a point mass m undergoing a damped harmonic oscillation with a friction coeffi-
cient of µ are given by:

mẅ + µẇ = −∇wL(w) (3)
where ∇wL(w) is the force field. Qian (1999) showed that Eq. 3 in its discrete format can be written
as:

m
wt+∆t + wt−∆t − 2wt

∆t2
+ µ

wt+∆t − wt

∆t
= −∇wL(w).

After some algebraic simplifications, the above equation becomes:

wt+∆t − wt =
m

m+ µ∆t
(wt − wt−∆t)−

∆t2

m+ µ∆t
∇wL(w).

Clearly, m
m+µ∆t is equivalent to the momentum term in GDM, and ∆t2

m+µ∆t can be treated as the
learning term. The dynamics of the output of a wide network (Appendix C.1) under GDM are
similar.

D ANALYSIS OF ADAM FOR BAND-LIMITED FUNCTIONS

Adam is a commonly-used optimizer which can be interpreted as GDM adapted for variance
(Kingma & Ba, 2014; Balles & Hennig, 2018). Thus, it has the same properties as GDM related
to the diminishing of the spectral bias because of the momentum term (see Appendix E for more
details). However, because of the adaptive learning rate, it can be expected to be even faster than
GDM. Here, we briefly provide more insights into the general behavior of Adam.

Optimizing with Adam, we define:

g(w) =
∑
x∈X

∇ℓ(w; x)/M,

where ℓ = Lb,r, M is the batch size and X is the batch. Furthermore, the pointwise variance of
g(w) is written as σ = var g(w). We will use subscripts to denote entries, so that σi is i-th entry of
σ. With ∇L being the true gradient, at each epoch, Adam updates wi with a magnitude inversely
proportional to an estimator of σ2

i /∇L2
i (Balles & Hennig, 2018).

The goal of the training process is to find a weight w which minimizes the loss L across all collo-
cation and boundary points from Eq. 2. The role that variance adaptation plays in this speedup is
readily seen when the solution to a PDE is (or is well-approximated by) a band-limited function. A
band-limited function on a finite set of frequencies k has a form of:

u(x) =
∑
k∈K

αk exp(2πikx).

When using GD, the solutions eventually satisfy the following bound with high probability (Basri
et al., 2019; Arora et al., 2019):

L ⪅

√
2π
∑

k∈K α2
kk

2

N
.

This indicates that a network optimized with GD will learn better approximations of u(x) if lower
frequencies k are present (especially when compared to another solution with otherwise identical
amplitudes αk). Conversely, if u(x) is primarily high-frequency then L has very weak bounds.
Since our NN is infinitely-wide it satisfies the µ-PL∗ condition ∥∇L∥2 ≥ µL of Eq. 3. This implies
similarly weak bounds on ∥∇L∥ and thus ∇Li (since µ is constant). Furthermore, convergence
requires ∇Li ≈ 0 for all i, so if any ∇Li ≫ 0 the network has yet to converge. However, this
is precisely the situation in which Adam accelerates toward the solution fastest as its updates are
largest when σ2

i /∇L2
i close to zero. That is, in the presence of high-frequency features resulting

in poor bounds on the loss if optimizing with GD, Adam would instead benefit from accelerated
convergence. Combined with the inclusion of momentum as discussed earlier, this may provide the
framework for it outperforming even GDM. Our numerical experiments confirm that for sufficiently
wide NNs both GDM and Adam can converge to desirable solutions, but that Adam is even faster
than GDM (see Section 4).

15

Under review as a conference paper at ICLR 2023

E RELATION BETWEEN ADAM AND DAMPED OSCILLATION

It has been observed that Adam yields similar convergence rates to GDM (Kingma & Ba, 2014).
Here, we demonstrate that Adam also has dynamics equivalent to a damped oscillator, similar to
GDM (Appendix C.2). First, let us briefly recall the traditional update rule for Adam:

∆wt =
−η√
ν̂t + ϵ

m̂t

where mt and νt are defined as:

m̂t =
mt

1− β1
t+1 , mt = β1mt−1 + (1− β1)gt

ν̂t =
νt

1− β2
t+1 , νt = β2νt−1 + (1− β2)gt

2

g(t) = −∇wL(w).

Proposition E. The update rule for Adam can be written as:

wt+1 = wt − P (t)(wt − wt−1)−Q(t)∇wL(wt).

where:

P (t) =
β1(

√
νt−1 + ϵ)(1− β1(t− 1))

(
√
νt + ϵ)(1− β1t)

Q(t) =
η(1− β1t)

(
√
νt + ϵ)(1− β1t)

.

Proof. It is straightforward to show that the update rule can be written as:

wt+1 = wt −
ηβ1mt−1

(
√
νt + ϵ)(1− β1t)

− η(1− β1)

(
√
νt + ϵ)(1− β1t)

∇wL(wt).

Inserting wt = wt−1 − η√
ν̂t+ϵ

m̂t into the above equation shows:

wt+1 = wt −
β1(

√
νt−1 + ϵ)(1− β1(t− 1))

(
√
νt + ϵ)(1− β1t)

(wt −wt−1)−
η(1− β1t)

(
√
νt + ϵ)(1− β1t)

∇wL(wt). (E.1)

By the definition of P (t) and Q(t) we can rewrite Eq. E.1 as:

wt+1 = wt − P (t)(wt − wt−1)−Q(t)∇wL(wt) (E.2)

as claimed.

Clearly, Eq. E.2 has the same format of the GDM update rule. Thus, the weight updates for Adam
follows the same dynamics as SGDM, that of oscillatory motion of a point mass under friction (from
Appendix C.2).

However, based on the updated value of the second momentum of the gradient of loss function,
both the momentum and the learning rate can be updated by Adam at each iteration. Thus, the
convergence to the solution by Adam is much faster compared to GDM.

F DECAY COMPARISON BETWEEN GDM AND GD

F.1 NUMERICAL EVALUATION OF DECAY RATE FOR GD AND GDM

Here, the dynamics of the error decay of GDM and vanilla GD under a large eigenvalue (λ1 = 103)
and a relatively small eigenvalue (λ2 = 10−5) are plotted. For vanilla GD, the training error decays
at a rate of e−λit. As shown in Fig. E.1a, for the λ2 the training error decays slowly, however is
very fast for λ1 (almost immediately dropping to zero). Thus, components of the target function

16

Under review as a conference paper at ICLR 2023

that correspond to the large eigenvalues will be learned much faster. These are the eigenvalues
corresponding to lower frequencies in the target function, so clearly the network suffers from spectral
bias under GD.

In contrast, learning under GDM, the training error for λ1 decays following under-damped oscilla-
tion (the red curve in Fig. E.1b), while the training error for λ2 follows over-damped oscillation (the
blue curve in Fig. E.1a). The training error of both eigenvalues, the large λ1 and small λ2, decay at
approximately the same time. The components of the target function that correspond to the larger
eigenvalue are thus not learned any faster, so the effect of spectral bias is minimized.

Figure E.1: The comparison of the error decay for a small and a large eigenvalue, a) learning decay
during GD optimization process, b) learning decay during GDD optimization process.

F.2 THE EIGENVALUES OF Kbb AND Krr

As discussed in Section 3.2 under GD optimization, the total training error is evaluated based on
e−κit, where κi are the eigenvalues of K that encapsulated Kbb (NTK for boundary and initial data
points) and Krr (NTK for collocation points representing the PDE). Thus, the convergence rate of
the training error is evaluated based on the eigenvalues of Kbb, and Krr together. Consequently,
there might be a discrepancy between the absolute value of eigenvalues of Kbb, and Krr, meaning
that eigenvalues of one the two matrices be much larger, and the convergence rate of the training
error for them becomes much faster. Hence, the network becomes biased to learn the components
corresponding to those eigenvalues first.

In Fig. F.1, for Poisson’s equation when C = 15π, the eigenvalues at initialization for Kbb(left
panel) and Krr (right panel) (in descending order) are plotted. Clearly, the eigenvalues of Krr

that represents the PDE, are much larger than the eigenvalues of Kbb that represents the initial and
boundary data points (bcs). Hence, not surprisingly, in GD where the training errors decay based
on e−κit the network learns the PDE general form first and becomes slow in learning the bcs. This
bias in learning the PDE first can be minimized while we are implementing GDM. In fact, plotting
the terms of the loss function (PDE and bcs terms) also confirms that under GD the bcs are learnt
slowly (see Fig. F.2) and the rate of decay of loss for bcs (green curve) is much slower than the rate
of decay of loss in GDM (blue curve). Thus, clearly, we can see that under GD optimization, the

17

Under review as a conference paper at ICLR 2023

Figure F.1: Left panel: Eigenvalues for Kbb. Right panel: Eigenvalues for Krr

Figure F.2: The loss function during training via GDM and GD for the PDE term of the loss as well
as the boundary/initial term are plotted.

network is much slower in learning the bcs (compared to the PDE term). As explained earlier, this
is not surprising as the eigenvalues of Kbb are much smaller than the eigenvalues of Krr.

These observations are very insightful as they reveal a significant difference between PINNs and
regular neural networks. Perhaps to explain the difference, it is useful to investigate the evolution
of the solution via GD for a completely data-driven case. We trained a fully-connected forward
neural network with the same architecture as the above PINN. The training data-set contained 3000
synthetic data points generated based on the solution of Poisson’s equation, and we used the mean
squared error loss function. The solutions after 5000 and 50000 epochs are shown in Fig. F.3. As the
fully-connected network has no physics-informed regularization term, it has difficulties estimating
the correct solution. Despite this, it still exhibits spectral bias, as the estimated solutions at both 5000
and 50000 epochs represent low-frequency sinusoidal forms. However, unlike a PINN there is no
vertical shift in the solutions. Clearly, the physics-informed regularization term helps significantly
to resolve the classical spectral bias (dealing with high-order frequency target functions), learning
the correct sinusoidal shape faster. In return, the solutions are worse at satisfying the boundary
condition values. This is because the eigenvalues of the boundary kernel represent high-frequency
modes.

G LOSS FUNCTION OF EQUATIONS

G.1 LOSS FUNCTION FOR POISSON’S EQUATION

For Poisson’s equation:

f(x) = −C2 sin(Cx), x ∈ [0, 1]

g(x) = 0, x = 0, 1

u(x) = sin(Cx) is used as the exact solution. The corresponding loss function is written as:

L(w) := 1

Nb

Nb∑
i=1

(
û(xb

i,w)− g(xb
i)
)2

+
1

Nr

Nr∑
i=1

(
∂2û

∂x2
(xr

i,w)− f(xr
i)

)2

18

Under review as a conference paper at ICLR 2023

Figure F.3: The completely data-driven solution of the Poisson equation based on GD optimization
process. a) after 5000 epochs, b) after 50000 epochs.

where û is the output of the network.

G.2 LOSS FUNCTION FOR THE TRANSPORT FUNCTION

Using the methods of characteristics (Evans, 2010), the transport function has a well-defined ana-
lytical solution: u(x, t) = g(x − βt). This is used as the exact solution. The corresponding loss
function is written as:

L(w) := 1

Nb

Nb∑
i=1

(
û(xb

i, tb
i,w)− g(xb

i)
)2

+
1

Nr

Nr∑
i=1

(
∂û(xr

i, tb
i,w)

∂t
+ β

∂û(xr
i, tb

i,w)
∂x

)2

where û is the output of the network.

H EXPERIMENT PLOTS

H.1 POISSON EQUATION

Figure G.1: The estimation of the solution of the Poisson’s equation for C = 15π, using the vanilla
GD algorithm after 180000 epochs.

19

Under review as a conference paper at ICLR 2023

H.2 REACTION-DIFFUSION EQUATION

A reaction-diffusion equation contains a reaction and a diffusion term. Its general form is written
as:

∂u

∂t
= ν∆u+ f(u) (G.1)

where u(x, t) is the solution describing the density/concentration of a substance, ∆ is the Laplace
operator, ν is a diffusion coefficient, and f(u) is a smooth function describing processes that change
the present state of u (for example, birth, death or a chemical reaction). Here, we assume a one-
dimensional equation, where f(u) = ρu(1− u). For ρ independent of x and t, and with the defined
f(u), Eq. G.1, can be solved analytically (Evans, 2010). To estimate the solution using PINNs, the
loss function for the 1D reaction-diffusion PDE is written as:

L(w) := 1

Nb

Nb∑
i=1

(
û(xi

b, t
i
b,w)− g(xi

b)
)2

+
1

Nr

Nr∑
i=1

(
∂û

∂t
(xi

r, t
i
b,w)− ν

∂2û

∂x2
(xi

r, t
i
b,w)− ρû(xi

r, t
i
b)(1− û(xi

r, t
i
b))

)2

.

For consistency with Krishnapriyan et al. (2021), we used Nr = 1000, and Nb = 100. We also chose
the initial and boundary conditions u(x, 0) = exp− (x−π)2

π2/2 and u(0, t) = u(2π, t) respectively.
Similar to the previous experiments, for larger choices of ν and ρ the model trained via vanilla
GD (after 85000 epochs) had difficulty converging to the solution (Fig. G.3, left panel). However,
models trained via GDM and Adam (after 45000 epochs) could provide solutions with low error.
The plots of estimated and exact solutions for the three algorithms when ν = 3 and ρ = 5 are shown
in Fig. G.2.

Figure G.2: 1D reaction-diffusion equation for ν = 3 and ρ = 5. The solutions are obtained
by training a 4-layer network with width=500 at each layer. Top panels: The exact (analytical)
solution. Middle panels: The estimated solution. Bottom panels: The absolute difference between
the exact and estimated solutions. (a) Vanilla GD, (b) GDM, (c) Adam.

20

Under review as a conference paper at ICLR 2023

Figure G.3: Left Panel: The training losses of the network, when ν = 9 and ρ = 7), via AW, C-
learning, wide GDM, and wide Adam are plotted. Right Panel: The relative error of the estimated
solutions for different values of ν and ρ are plotted.

We further compared the solutions of the wide Adam, C-learning, and AW. Similar to the previous
experiments, for higher-frequency modes Adam showed superior results. The relative errors of the
estimated solutions for different values of ν and ρ were computed (Fig. 8 (left panel)). Furthermore,
when ν = 9 and ρ = 7), we observed that the loss function under GDM and Adam had much faster
decay than under AW. But, the loss under L-BFGS decayed as fast as under Adam. We reasoned as
to why in Section 4.4.

H.3 TRANSPORT FUNCTION: FURTHER COMPARISON WITH DIFFERENT INITIAL
CONDITIONS

We implemented different initial conditions for the transport function and ran several experiments.
For the initial condition of tanh(x), when β ≥ 6 both C-learning and AW estimated solutions of
showed large relative errors on the order of 10−1. However, the estimated solution of a wide network
trained via Adam had an acceptable relative error on the order of 10−2 (Fig. G.4). The estimated
solutions for all three optimizers when β = 6 are shown in Fig. G.5. All networks were trained using
a 4-layer network, and AW and Adam both had a width of 500 neurons. The estimated solutions are
based on training the model for 85000 epochs.

Figure G.4: The relative errors of the estimated solutions of 1D transport function, for different
values of β using the curriculum learning method (red dashed line), and our approach (blue dashed
line) are plotted.

21

Under review as a conference paper at ICLR 2023

Figure G.5: The estimated solutions of the transport function based on the initial condition of
tanh(x) when β = 6: a) The exact solution b) Estimated solution of a wide network trained via
Adam c) Estimated solution of C-learning d) Estimated solution of AW

For the initial condition of sin(x) cos(x), C-learning had small estimated errors (on the order of
10−2) for β ≤ 20, however for higher values of β the error grew larger (Fig. G.6). AW had errors
on the order of 10−2 for β ≤ 10, however the error began to grow for larger values of β. Adam
had errors on the order of 10−2 even up to β ≤ 25 (Fig. G.6). The estimated solutions based on
C-learning, AW, and wide Adam for β = 25 are shown in Fig. G.7. All networks were trained using
a 4-layer network. The estimated solutions are based on training the model for 85000 epochs.

Figure G.6: The relative errors of the estimated solutions of 1D transport function, based on the
initial condition of sin(x) cos(x), for different values of β using the curriculum learning method
(red dashed line), and our approach (blue dashed line) are plotted.

22

Under review as a conference paper at ICLR 2023

Figure G.7: The estimation of the solution of the transport function based on the initial condition of
sin(x) cos(x) when β = 25: a) The exact solution b) Estimated solution of a wide network trained
via Adam c) Estimated solution of C-learning d) Estimated solution of AW

23

	Introduction
	Preliminaries
	PINNs General Form
	Infinitely-Wide Neural Networks

	Theoretical Results
	Convergence of Gradient Descent in the Presence of High-Frequency Features
	Wide PINN Optimization using GD with Momentum

	Numerical Experiments
	Poisson's Equation
	Evolution of the Solution during learning
	Transport Equation
	Comparison with Other Methods

	Conclusion
	Convergence of Wide PINNs
	Hessian for Poisson's Equation
	Gradient Flow for GD with Momentum
	Linear NN Updates
	Relation between GDM and Damped Oscillation

	Analysis of Adam for Band-Limited Functions
	Relation between Adam and Damped Oscillation
	Decay Comparison between GDM and GD
	Numerical Evaluation of decay rate for GD and GDM
	The Eigenvalues of Kbb and Krr

	Loss Function of Equations
	Loss Function for Poisson's equation
	Loss Function for the Transport Function

	Experiment Plots
	Poisson Equation
	Reaction-Diffusion Equation
	Transport function: Further Comparison with different Initial Conditions

