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ABSTRACT

Recently, there has been considerable interests in understanding pretrained lan-
guage models. This work studies the hidden geometry of the representation space
of language models from a unique topological perspective. We hypothesize that
there exist a network of latent anchor states summarizing the topology (neighbors
and connectivity) of the representation space. we infer this latent network in a
fully unsupervised way using a structured variational autoencoder. We show that
such network exists in pretrained representations, but not in baseline random or
positional embeddings. We connect the discovered topological structure to their
linguistic interpretations. In this latent network, leave nodes can be grounded to
word surface forms, anchor states can be grounded to linguistic categories, and
connections between nodes and states can be grounded to phrase constructions
and syntactic templates. We further show how such network evolves as the em-
beddings become more contextualized, with observational and statistical evidence
demonstrating how contextualization helps words “receive meaning” from their
topological neighbors via the anchor states. We demonstrate these insights with
extensive experiments and visualizations.

1 INTRODUCTION

Recently, there has been large interests in analyzing pretrained language models (PLMs) (Rogers
et al., 2020; Hewitt & Manning, 2019; Hewitt & Liang, 2019; Chen et al., 2021; Chi et al., 2020; Liu
et al., 2019) due to their huge success. This work aims to investigate the topological properties, i.e.,
neighbors and connections of embeddings, of contextualized representations. Informally, we ask what
does the “shape” of the representation manifold “look like”, and what do they mean from a linguistic
perspective. Formally, we hypothesize that there exists a spectrum of latent anchor embeddings serve
as local topological centers within the manifold. As a quick first impression, Fig. 1 shows the latent
states that we will discover in the following sections. Since such structure cannot be straightforwardly
observed, we use unsupervised methods to infer the topology as latent variables.

Our unique topological perspective, combined with unsupervised latent variable induction technique,
offers a systematically different methodology than the mainstream probing work. Most existing
approaches usually define a supervised linear classifier as the probe (Hewitt & Manning, 2019;
Hewitt & Liang, 2019; Hewitt et al., 2021; Liu et al., 2019), targeting for pre-defined properties using
pre-annotated data. Such a priori approaches make maximal pre-assumptions and consequently, it
would be hard to make new discoveries other than those are already assumed from the very beginning.
Our work takes an a posteriori approach, which makes mininal pre-assumptions without using any
annotation for supervision. Consequently, we achieve systematically different (yet complementary)
results to the results from supervised probing literature. For example, while arguments make by
supervised probing are strictly aspect-specific (e.g., how specific properties like syntax can be
extracted out from other properties), our discoveries are more holistic and integrated (e.g., in Fig 1,
we visualize all local topological centers as latent states, ground their meaning to lexical, syntactical,
and semantic interpretations, and show how these properties are mixed with each other).

We use a structured variational autoencoder (VAE) (Diederik P. Kingma, 2013) to infer the latent
topology, as VAEs are common and intuitive models for learning latent variables. We focus on the
manifold where contextualized embeddings lay in (e.g., the last layer outputs of a fixed, not fine-tuned,
BERT Devlin et al., 2019). We hypothesize there exists a wide spectrum of static latent states within
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State id Interpretation Corresponding Words - Occurrence

SYN

Past tense426 ##ed 46 | ##ted 21 | ##d 18 | built 13 | caused 12 | . 11 | started 10 | made 10 | formed 9

[n’t]-suffix negation620 don 468 | doesn 173 | didn 119 | isn 93 | won 62 | aren 44

[ly]-suffix adverb280 ##ly 137 | actually 84 | exactly 43 | often 28 | completely 28 | usually 27 

SEM

Location1074 pitt 25 | berkeley 24 | cleveland 19 | chicago 19 | printer 18 | rochester 18 | toronto 17
Religion1016 god 310 | jesus 119 | bible 86 | israel 74 | church 66 | christian 64 | christ 63
Country242 armenian 60 | israeli 54 | turkish 54 | jewish 51 | arab 48 | christian 29 | american 26 
Tech1328 system 214 | software 111 | car 100 | systems 61 | hardware 52 | technology 30 | driver 28
Sports1887 game 101 | team 76 | children 67 | hockey 55 | games 50 | baseball 32 | players 31

LEX "Get"1424 get 492 | let 169 | got 121 | getting 79 | gets 38 | gotten 20
“Use”1746 use 421 | using 172 | used 164 | uses 53 | usage 8

Frequent words Infrequent words

A. Anchor States within 
Representation Space

Content States Function States

B. States - Words 
Correspondence  

Present continuous tense964 ##ing 168 | ##ling 22 | running 22 | posting 17 | moving 16 | driving 15 | ##ting 15

1984 people 620 | ##s 130 | those 49 | police 30 | users 27 | folks 26 | citizens 25[s]-suffix Plural

Figure 1: A: There exist a spectrum of latent anchor states spread over the representation space
serving as local topological centers. B and lower table: example linguistic interpretations and
corresponding word distributions of latent states. Latent states encode a rich mixture of lexical,
morphological, syntactic and semantic constructions.

this manifold and assume two basic and minimal generative properties of the states: (1). a state
should summarize the meaning of its corresponding words and contexts; (2). transitions between
different states should be able to reconstruct sentence structures. We model these two properties as
emission and transition potentials of a CRF (Sutton et al., 2012) inference network. Since a VAE is a
generative model trained by reconstructing sentences, essentially we infer states that are informative
enough to generate/ reconstruct words and sentences.

In our experiments, we first show that the hypothesized topology does exist in embeddings produced
by pretrained language models, but not in baseline (random and positional) embeddings. We further
ground the discovered topology, i.e., the local state-word emission and the global state-state transition,
to their linguistic interpretations. For local state-word emission, we show that states summarize rich
types word surface forms ranging from lexicon, morphology, syntax to semantics variations. For
global state-state transition, we differentiate two types of states within the space: states encoding
function words and states encoding content words. We identify function states that serve as “hubs” in
state transitions and attract content words of similar meanings to be close. Consequently, a rich set of
phrase construction phenomena can be reconstructed from state transitions.

Furthermore, we highlight one important finding about how contextualization directly changes the
underlying topological structure. We provide statistical and observational evidence. Statistically, we
show that before contextualization, most function words are concentrated around a few head states
and are isolated from content words; after contextualization, these function words spread over full
state distribution and are better mixed with content words. Observationally, we see word neighbor
structures change with contextualization. For example, before contextualization, the neighbors of
suffix #ed, #ing are just random tokens; after contextualization, the neighbors of #ed become past
tensed words like had, did and used, and the neighbors of #ing become present continuous tensed
words like running, processing and writing.
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Putting everything together, our results provide a holistic and analytical view of the representation
space topology. In our discovered latent network, leave nodes can be grounded to word surface forms,
anchor states can be grounded to linguistic categories, and connections between nodes and states
can be grounded to phrase constructions and syntactic templates. We hope our work can inspire new
insights and deeper understandings of pretrained language models.

2 RELATED WORK

Geometric Properties of Language Models We are interested in the geometrics properties of
contextualized embeddings (e.g., last layer output of BERT), which roughly asks what is the “shape”
of the space and what they represent. Generally, an accurate and comprehensive geometric description
of the manifold is challenging, due to its high-dimentional and non-linear nature. Previous work
focuses on different geometric aspects, such as distance metrics (Wang & Ponce, 2021; Reif et al.,
2019), linear subspaces (Hewitt & Manning, 2019; Cai et al., 2021), and hyperbolic geometry (Chen
et al., 2021). We focus on the topological structure, which studies how embeddings and states are
connected to each other thus forming meaningful latent networks.

Relation to Supervised Probing Collectively known as “Bertology” (Hewitt & Manning, 2019;
Rogers et al., 2020), the goal of probing is to discover what meaningful information are encoded
within large language models. The mainstream approach is mostly a priori, which starts from a target
linguistic property like part-of-speech (Liu et al., 2019; Hewitt et al., 2021), dependency edge (Tenney
et al., 2019b;a), syntax trees (Hewitt & Manning, 2019; Hewitt & Liang, 2019; Reif et al., 2019;
Chi et al., 2020), or sentiments (Chen et al., 2021; Wu et al., 2020), then fine-tune a supervised
weak classifier (a.k.a. a probe). The higher the classification score, the more information contained.
Our unsupervised approach takes a systematically different (and complementary) methodology from
three perspectives: (1). our method is posteriori (v.s. existing work is a priori), and we hold
minimal assumptions as we do not require supervision data, v.s., existing work holds maximal pre-
assumption by targeting some property at the very beginning; (2). from an information theoretical
perspective, existing work studies how to extract information from a channel (the probe) with
limited capacity (Pimentel et al., 2020; Voita & Titov, 2020), while we directly study the original
representation, without extracting information through a channel; (3). consequently, we show how
different information is mixed with each other in the raw representation space, while existing work
studies how one type of information can be extracted from the rest.

Other Unsupervised Methods There are also unsupervised works proposes to extract syntac-
tic (Kim et al., 2020), geometric (Cai et al., 2021), cluster-based (Dalvi et al., 2022), and other
information from PLMs (Wu et al., 2020; Michael et al., 2020). Our focus here is the network
topology within the representation space, which is not yet thoroughly studied. Amongst the large
volume of Bertology research, the closest unsupervised work to ours are: Dalvi et al. (2022) who use
clustering to discover latent concepts within BERT, and we will later use their results as a comparison
to our discoveries; Michael et al. (2020) who discovers latent ontology in an unsupervised way; Cai
et al. (2021) who study the geometric properties of BERT with a focus on isotropy. There is also
supervised method for extracting static embeddings from contextualized embeddings (Gupta & Jaggi,
2021). These work more or less involve cluster structures within BERT. Our major difference is that
we take an important further step from word clusters to state-state transitions and show how traversal
over states leads to sentence constructions. In the latent variable literature, our inference model uses
a classical CRF-VAE formulation (Fu et al., 2020; Mensch & Blondel, 2018). Existing work uses this
formation for other tasks like structured prediction (Ammar et al., 2014) or sentence generation (Li &
Rush, 2020) while we discover latent structures within PLMs.

3 METHOD

Latent States within Representation Space Given a sentence x = [x1, ..., xT ], we denote its
contextualized representations as [r1, ..., rT ] = PLM(x) where PLM(·) denotes a pretrained encoder
(here we use BERT and our method is applicable to any PLM). Representations r for all sentences lie
in one manifold M, namely the representation space of the language model. We hypothesize there
exists a set of N static latent states s1, ..., sN that function as anchors and outline the space topology
(recall Fig. 1). We emphasize that all parameters of the PLM are fixed (i.e., no fine-tuning), so all
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learned states are intrinsically within M. We focus on two topological relations: (1). state-word
relations, which represent how word embeddings may be summarized by their states and how states
can be explained by their corresponding words; (2). state-state relations, which capture how states
interact with each other and how their transitions denote meaningful word combinations. Taken
together, these two relations form a latent network within M (Fig. 1 and later Fig. 3).

Modeling For state-word relations, we associate each word embedding rt with a latent state indexed
by zt ∈ {1, ..., N}. We use an emission potential ϕ(xt, zt) to model how zt is likely to summarize
xt. The corresponding embedding of zt is then szt . For state-state relations, we assume a transition
matrix Φ(zt−1, zt) modeling the affinity about how state zt−1 are likely to transit to state zt. Together
ϕ(xt, zt) and Φ(zt−1, zt) form the potentials of a linear-chain CRF:

log ϕ(xt, zt) = r⊺t szt log Φ(zt−1, zt) = s⊺zt−1
szt (1)

where the vector dot product follows the common practice of fine-tuning contextualized representa-
tions. The probability of a state sequence given a sentence is:

qψ(z|x) =
T∏
t=1

Φ(zt−1, zt)ϕ(xt, zt)/Z (2)

where Z is the partition function. Note that only embeddings of states ψ = [s1, ..., sN ] are learnable
parameters of the inference model qψ . To infer s, we use a common CRF-VAE architecture shared by
previous work (Ammar et al., 2014; Li & Rush, 2020; Fu et al., 2022) and add a generative model on
top of the encoder:

pθ(x, z) =
∏
t

p(xt|z1:t) · p(zt|z1:t−1) ht = Dec(szt−1 ,ht−1) (3)

p(zt|z1:t−1) = softmax(FF([szt ;ht])) p(xt|z1:t) = softmax(FF(ht)) (4)

where θ denotes the decoder parameters, Dec(·) denotes the decoder (we use an LSTM), ht denotes
decoder states, and FF(·) denotes a feed-forward network. We optimize the β-ELBO objective:

LELBO = Eqψ(z|x)[log pθ(x, z)]− βH(qψ(z|x)) (5)

We further note that the decoder’s goal is for help inducing the latent states, rather than being
a powerful sentence generator. After training, we simply drop the decoder and only look at the
inferred states. Maximizing p(xt|z1:t) encourages z1:t (thus their embeddings sz) to reconstruct the
sentence and p(zt|z1:t−1) encourages previous z1:t−1 to be predictive to the next zt (so we can learn
transitions). Essentially, this formulation trys to find “generative” states s within the representation
space M that are able to predict sentences and their next states.

4 EXPERIMENTAL SETTING

Dataset, Model Parameters, and Learning We perform experiments on the 20News dataset (Kus-
ner et al., 2015), a common dataset for latent variable modeling (initially for topic modeling)
as our testbed. We primarily focus on the last layer output of a BERT-base-uncased model
(BERTLAST), yet our method is applicable to any larger size, GPT-styled, or encoder-decoder-styled
models. In terms of model parameters, the dimension of the states is the same as contextualized
embeddings, which is 768. We use a light parameterization of the decoder and set its hidden state
dimension to 200. Again, the purpose of the decoder is to help induce the states, rather than being a
powerful sentence generator. We set the number of latent states N to 2000. Recall that the vocabulary
size of uncased BERT is 30522, which means that if uniform each state approximately corresponds
to 15 words, serving as a type of “meta” word. We further note that setting N = 2000 is somehow
a sweet point according to our initial experiments: larger N (say 10K) is too fine-grained and
under-clusters (words of similar linguistic roles are divided into different states) while smaller N
(say 100) over-clusters (words of different roles are gathered into the same cluster). Gradient-based
learning of CRFs inference model is challenging due to the intermediate discrete structures. So
we use approximate gradient and entropy from Fu et al. (2022) which enables memory-efficient
differentiable training of our model. During training, we tune the β parameter in Eq. 5 to prevent
posterior collapse, which is a standard training technique for VAEs. All experiments are performed
on Nvidia 2080Ti GPUs.
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Table 1: Grounding inferred states to existing linguistic categories. POS and ENT can be inferred
from the word directly while DEP , CCG and BCN require more context. Meaningful states
emerge in BERTZERO and BERTLAST, but not in baseline POSITIONAL and RANDEMB.

POS ENT DEP CCG BCN

POSITIONAL 3 0 3 1 1
RANDEMB 392 21 366 241 334

BERTZERO 673 37 468 450 275
BERTLAST 804 51 740 583 628

Table 2: Human evaluation (averaged over 3 annotators) of states not grounded to existing annotations.
Although some states cannot be aligned with existing linguistic annotations, most of them are still
meaningful to the annotators and only a small portion of them are truly uninterpretable.

LEX SYN SEM Not Interpretable

BERTZERO 83 54 135 39
BERTLAST 26 40 56 22

Baseline Embeddings We compare against: (1). POSITIONAL states induced from positional
embeddings. As there is no content information, we expect the induced structures to be very poor.
(2). RANDEMB, fixed random state embeddings sampled from a Gaussian distribution sharing the
same mean and variance with BERTLAST embeddings. We also expect no meaningful topology from
this embedding. (3). BERTZERO, static word embeddings from the zeroth layer of BERT. We expect
linguistically meaningful topology emerge within BERTZERO and BERTLAST. Furthermore, we are
particularly interested in the comparison between BERTZERO and BERTLAST, as the differences can
shed light on what happens after contextualization.

5 DISCOVERIES

The first part of our experiments studies on local topology of the representation space, focusing on
how states serve as topological centers of their corresponding words. we first show that states from
language models can either be grounded to existing annotations like POS tags, or can be recognized by
human annotators as a lexical, syntactic, or semantic category, while states from baseline embeddings
cannot be grounded. Then show how contextualization shapes the space topology by comparing
BERTZERO and BERTLAST, highlighting how state-word connections change with contextualizaiton.

The second part of our experiments focus on global topology of the representation space, highlighting
how transitions between states form the backbone of the overall space structure. We identify important
function states that serve as hubs of the latent network, attracting content words of similar meaning to
be topologically close to each other. We also show how contextualization shapes the global transitions.
Finally, we put everything together and give a holistic statement of the space structure and their
linguistic interpretations.

5.1 LOCAL STATE-WORD TOPOLOGY

Emergence of Linguistically Meaningful States To see whether the inferred states are mean-
ingful, we ground them to common linguistic categories. Specifically, we consider: (1). POS, part
of speech tags; (2). ENT, named entities; (3). DEP, labels of dependency edges linking a word to
its dependency head; (4). CCG, CCG supertags which contain rich syntax tree information and are
usually referred as “almost parsing”(Liu et al., 2019); (5). BCN, BERT Concept Net from Dalvi et al.
(2022), a hierarchy of concepts induced from BERT, mostly about semantics and similar to a topic
model. We obtain the POS, ENT, DEP annotations on our 20News dataset using a pretrained parser
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A. States Inferred from BERT Zero B. States Inferred from BERT Last

Figure 2: Contextualization changes space topology. Each bar represents a latent state with height
equals to log frequency. Orange/ blue represents the portion of function/ content word corresponding
to a state. In BERTZERO, most function words are concentrated around head states. After contextual-
ization (BERTLAST), function words mix with content words and spread over all states.

with the spacy library. We obtain the CCG and BCN annotations from their own websites. After
training, we use Viterbi decoding to decode states, and each state may correspond to multiple copies
of the same word from different contexts. We say a latent state aligns with a predefined tag if 90% of
the word occurrence corresponds to this state also corresponds to a tag. For example, suppose state-0
occurs 100 times in the full validation set, 90 times of which correspond to either “happy” or “sad”
and 10 times correspond to other random words. In this case, “happy” and “sad” takes the dominant
portion of state-0 (90 out of 100), and both are adjectives, so we say state-0 aligns with the POS tag
adjective. We set the threshold to 90% because it is intuitively high enough. We select the model that
has the largest number of aligned tags to the union of the five types of annotations during validation.

Table 1 shows the grounding results. We see there are significantly less number of states in PO-
SITIONAL and RANDEMB that can be grounded to existing categories, and states inferred from
BERTZERO and BERTLAST can be better grounded (e.g, 804 states in BERTLAST can be grounded
to POS tags, while this number in RANDEMB is only 392). These results mean that meaningful states
emerges in embeddings from language models, but not in baseline embeddings. Note that although
there are still certain numbers of states from RANDEMB that can be grounded, it can be explained by
the fact that the training process still tries to place states that are useful for sentence resonstruction,
even these states are placed between random embeddings. We also notice that states from BERTLAST
aligns better with categories requiring more context (DEP, CCG and BCN), this is also expected as
BERTLAST is contextualized while BERTZERO is not.

For states that cannot be grounded to existing categories, we show that they are still linguistically
meaningful by human annotation. Specifically, we ask human annotators (three graduate students
with 100+ TOEFL test scores) to annotate if the corresponding words of a state are: (1). LEX: words
that are textually similar. (2). SYN: words share similar morphological-syntactic rules. (3). SEM:
words with related meaning. (4). N.I.: Not Interpretable. The results are show in Table 2. Generally,
most of the states still contain meaningful linguistic information from the annotators perspective and
only a small portion of them are truly uninterpretable.

Contextualization Shapes State Topology Now we show how contextualization shapes the
space topology by taking a closer look on what is encoded in BERTLAST and changes in BERTZERO.
To this end, we differentiate two types of words: (1). function words (e.g., preposition, conjunction,
determiner, punctuation .etc) whose main role is to help sentence construction but do not have
concrete meanings on their own; (2). content words (e.g., nouns, adjectives, verbs, adverbs) who
have concrete meaning. It turns out that contextualization results in very different behavior about the
encoding of these two types.

Figure 2 shows how function/ content words are encoded before/ after contextualization. We see
two effects of contextualization: (1) before contextualization, most function words are concentrated
around a few head states; after contextualization, these function words spread over the full distribution,
not just head states. This shows that the meaning of function words is distributed from head states to
all states according to their context. (2). before contextualization, most states are either function-only
or content-only (as most bars are either orange-only or blue-only); after contextualization, most states
contain both function and content states (as most bars have both blue and orange portions). This
shows that the meaning of function words is entangled together with their neighbor content words.
Intuitively, contextualization helps function words “receive” meaning from their context.
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Table 3: Contextualization changes local neighbor structures. Try comparing red tokens and see their
neighbor words before/ after contextualization. Tokens previously opaque (as their corresponding
latent state are not meaningful) gain linguistic clarity (as their corresponding states encode meaningful
linguistic constructions).

Before Contextualization (BERTZERO) After Contextualization (BERTLAST)

Symbol $2851 | size56 | type49 | numbers38 | number35 $248 | money76 | cost64 | pay54 | love42 | worth41

@13522 | same2110 | ordinary46 | average7 @1184 | com1146 | org232 | address91 | list75

Prefix re5635 | pre559 | mis481 | co258 | pr22 old657 | after42 | recently42 | years36 | pre36

un1922 | per871 | di468 | multi237 | #con159 un1524 | in562 | im275 | mis162 | con155 | um148

Suffix #ing1508 | #ting108 | #ley56 | #light36 #ing1563 | running226 | processing118 | writing98

#ly1722 | dear59 | thy36 | #more15 | #rous9 #ly983 | actually645 | exactly325 | simply282

#eg404 | #ed385 | #ve189 | #ize183 | #ig164 | #d1012 | had542 | #ed416 | did320 | used258

#s348 | #l102 | #t98 | #p85 | #m64 | #u62 #s1839 | files225 | books169 | machines123

#s335 | s333 | #t134 | #p120 | #u117 | it98 people4481 | #s682 | those361 | users210 | folks193

Lexicon decided250 | decision211 | decide189 | determine102
| determined99 | decisions82

decision220 | position206 | choose155 | command147
| actions106 | decide94

be7125 | been1591 | being257 | gone1 be7192 | are3099 | am1139 | is165 | become52

We now revisit Fig. 1 that we briefly mentioned in §1. Figure 1 is produced by t-SNE (Van der
Maaten & Hinton, 2008) jointly over the states and embeddings from BERTLAST and illustrates the
local topology (because t-SNE preserves more local information) of the representation space. Blue/
white circles in Fig. 1 correspond to blue/ orange bars in Fig. 2. It directly shows how states spread
over and “receive” meaning from their neighbor word embeddings and encode to different types of
word clusters.

We further highlight certain topological changes before/ after contextualization in Table 3. Before
contextualization, we see (1). the symbol $ does not have meaningful neighbors; (2). the suffix #ing
and #ed are just ordinary subwords; (3). the word be’s neighbor is its morphological variants. After
contextualization, we see (1). the symbol $ encodes money; (2). the suffix #ing and #ed encode tense;
(3). be’s neighbor becomes linking verbs. Contextualization makes these tokens “receive” meaning
from their contexts.

5.2 GLOBAL STATE TRANSITION TOPOLOGY

Now we move our focus from local topology (how states form local centers of their neighbor words)
to global topology (how all states are inter-connected to each other). We first visualize the transition
network to see how backbone of the space topology follows a clear long-tail structure. We show
state transitions encode meaningful phrase construction and contextualization changes the transition
topology. Finally, we put everything together and give a holistic statement of the space topology.

Overall State Transition Topology We visualize the induced state-state network in Fig. 3 using
t-SNE again (this time without word embeddings). Blue circles represent states with more content
words while white circles represent states with more function words. Circle size represents state
frequency. To see how states transit to each other, we compute the state transition statistics from
the state sequences decoded from the validation dataset. The transition histogram is also shown
in Fig. 4. We use blue edges to denote frequent (stronger) transitions and yellow edges to denote
less frequent (weaker) transitions. Table 4 shows example transitions and their corresponding word
bigram occurrences. In Fig. 3A we see: (1). both nodes and edges follow a long-tail distribution:
there are few frequent nodes/ edges taking the head portion of the distribution, and many infrequent
nodes/ edges taking the tail portion of the distribution. Note that the yellow background in Fig. 3A
consists of many weak edges. (2). frequent states are more inter-connected and tail states are more
spread. Fig. 3B zooms in the top states, and we see function states usually as the hub of the edges.
This is also evidenced in Table 4, as we can see many different content words transit to the function
word to (e.g., free-to, willing-to, go-to, went-to), and the function word “to” can transit to other
content words (e.g., to-buy, to-sell, to-build). Here the state encoding to is a hub connecting other
states and words.
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States - more content words & more frequent 

States - more content words & less frequent 

States - more function words & more frequent 

States - more function words & less frequent 

Stronger transition

Weaker transition

A. All 20K states B. Top 500 states

C. Example Transition

Figure 3: A: State transitions, as the backbone of the representation space, show a clear long-tail
structure. Tail states are more spread and transitions to tail states mostly are from head states (yellow
edges). Head states are more inter-connected (blue edges). Blue edges denote more frequent (stronger)
transitions and yellow edges denote less frequent (weaker) transitions. B: transitions between top
states, function states usually (white circles) serve as hubs of transitions (many white circles at the
center). C. Example transitions, see Table 4 below for their interpretations.

Table 4: Example state transitions. Function words (like “to”) serve as hubs that attract content
words of similar meanings to be within the same latent state. Subscript numbers denote occurrence.

Transition Example states from BERTLAST Explanation

Function word + content word
886-989 to-buy21 | to-sell13 | to-build5 | to-purchase5 | to-create4 | to-produce3 to do sth.
1671-1441 free-to14 | willing-to9 | hard-to6 | easy-to4 | happy-to3 | safe-to2 adjective + to
785-7 go-to19 | going-to10 | went-to5 | trip-to4 | moved-to3 | come-to2 movement + to
785-565 come-out9 | come-up6 | went-up4 | go-down3 | went-out3 | went-back1 move + direction
426-198 caused-by9 | #ed-by8 | #ted-by5 | produced-by4 | made-by4 | driven-by3 passive voice
303-426 is-made2 | be-converted2 | been-formed2 | are-formed2 | been-developed1 passive voice
Content word + content word
1537-1537 ms-windows13 | source-code5 | windows-program3 | operating-system3 computers
355-1201 three-years7 | five-years3 | 24-hours3 | ten-years2 | 21-days2 time
593-964 image-processing2 | meter-reading1 | missile-spotting1 | speed-scanning1 v.ing as noun

Figure 4 shows transition distribution. The bars here correspond to edges in Fig. 3. Color denote the
portion of function/ content words (node color in Fig. 3) and height correspond to edge color in Fig. 3.
We observe: (1). transitions are usually mixtures of function and content states. (2). contextualization
makes function words less concentrated around head transitions (in Fig. 4 left, BERTLAST has less
orange portion than BERTZERO), and more spread within the distribution (in Fig. 4 right, BERTLAST
has a longer tail of orange bars than BERTZERO).

5.3 A HOLISTIC STATEMENT OF LATENT SPACE TOPOLOGY

Now we can finally put everything together and reach a holistic and bottom-up description about how
words, phrases, and sentences are constructed within the space topology. This mechanism consists of
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Top 500 state transitions State bigrams of top 90% frequency

Figure 4: State transition distribution. Again, function words exist more at top transitions in
BERTZERO. After contextualization (BERTLAST), they become more spread within the distribution.
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to
buy

sell
purchase

produce

1. Function states 2. Content states
go

went
trip

move
a

the

an

3. Phrase construction

to buy a car+ 4. Sentence  

    Construction

Figure 5: Four steps illustration of how words, phrases, and sentences are constructed as nodes,
connections between nodes, and traversals over the latent topology. Numbers mean latent state index.
Structurally similar sentences share overlapped paths of latent states.

four steps, and is illustrated in Fig.5. Step 1: there exist function states that correspond to specific
function words (as is evidenced in Fig. 2). Step 2: there exist content states that correspond to content
words with similar lexical/ syntactic/ semantic meaning (as is evidenced in Table 1 and Fig. 1). Step
3: transitions between function and content states correspond to meaningful phrase constructions (as
is evidenced in Fig. 3 and 4, Table 4). Step 4: a traversal of states encodes a sentence within the space
(this is a corollary combining step 1-3). Fig. 5 shows sentences sharing overlapped traversal. State
transition chains encode the sentence templates and state-word emissions fill in the content. When
the transition chains of two sentences overlap, the two sentences tend to be syntactically similar.
Overall, in this latent network, leave nodes correspond to specific words, anchor states correspond to
linguistic categories, and connections between nodes and states correspond to phrase constructions
and syntactic templates.

6 CONCLUSIONS

In this work, we study the topological structure of the representation space of contextualized rep-
resentations. Our analytics starts from the hypothesis that there exists a latent network of states
that summarize the representation space topology. We verify such states exist in embeddings from
language models, but not in basedline embeddings. We further study how state transitions mark the
backbone of the representation space and encode meaningful phrase constructions. Contextualization
shapes both local and global topology of the representation space. We hope this work deepens the
understanding of language models and inspires new modeling techniques based on the topology of
the representations.
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You may include other additional sections here.
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