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ABSTRACT

Minimal sufficient reasons represent a prevalent form of explanation — the smallest
subset of input features which, when held constant at their corresponding values,
ensure that the prediction remains unchanged. Previous post-hoc methods attempt
to obtain such explanations but face two main limitations: (i) Obtaining these
subsets poses a computational challenge, leading most scalable methods to con-
verge towards suboptimal, less meaningful subsets; (ii) These methods heavily
rely on sampling out-of-distribution input assignments, potentially resulting in
counterintuitive behaviors. To tackle these limitations, we propose in this work a
self-supervised training approach, which we term sufficient subset training (SST).
Using SST, we train models to generate concise sufficient reasons for their predic-
tions as an integral part of their output. Our results indicate that our framework
produces succinct and faithful subsets substantially more efficiently than competing
post-hoc methods, while maintaining comparable predictive performance. Code is
available at: https://github.com/IBM/SAX/tree/main/ICLR25.

1 INTRODUCTION

Despite the widespread adoption of deep neural networks, understanding how they make decisions
remains challenging. Initial attempts focused on additive feature attribution methods (Ribeiro et al.
(2016); Lundberg & Lee (2017); Sundararajan et al. (2017)), which often treat the model’s behavior
as approximately linear around the input of interest. A different line of techniques, such as An-
chors (Ribeiro et al. (2018)) and SIS (Carter et al. (2019)), seek to pinpoint sufficient subsets of
input features that ensure that a prediction remains unchanged. Here, the goal often involves finding
the smallest possible sufficient subset, which is typically assumed to provide a better interpreta-
tion (Ribeiro et al. (2016); Carter et al. (2019); Ignatiev et al. (2019); Barceló et al. (2020); Wäldchen
et al. (2021)).

Building on this foundation, we adopt the common notation of a sufficient reason (Barceló et al.
(2020); Darwiche & Hirth (2020); Arenas et al. (2022)) to refer to any subset of input features S
that ensures the prediction of a classifier remains constant. We categorize previous approaches into
three broad categories of sufficiency, namely: (i) baseline sufficient reasons, which involve setting
the values of the complement S to a fixed baseline; (ii) probabilistic sufficient reasons, which entail
sampling S from a specified distribution; and (iii) robust sufficient reasons, which aim to confirm that
the prediction does not change for any possible assignment of values to S within a certain domain.

Several methods have been proposed for obtaining sufficient reasons for ML classifiers (baseline,
probabilistic, and robust) (Ribeiro et al. (2018); Carter et al. (2019); Ignatiev et al. (2019); Wang
et al. (2021); Chockler et al. (2021)). These methods are typically post-hoc, meaning their purpose
is to interpret the model’s behavior after training. There are two major issues concerning such
post-hoc approaches: (i) First, identifying cardinally minimal sufficient reasons in neural networks is
computationally challenging (Barceló et al. (2020); Wäldchen et al. (2021)), making most methods
either unscalable or prone to suboptimal results. (ii) Second, when assessing if a subset S is a
sufficient reason, post-hoc methods typically fix S’s values and assign different values to the features
of S. This mixing of values may result in out-of-distribution (OOD) inputs, potentially misleading
the evaluation of S’s sufficiency. This issue has been identified as a significant challenge in such
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Figure 1: An example of a sufficient reason generated by a model trained with sufficient subset
training (SST) on the IMAGENET dataset, compared to those generated by post-hoc methods on
standard-trained models. While explanations from Anchors and GS are larger, those from SIS are
less faithful and lack subset sufficiency (details in the experiments in Section 5). SST generates
explanations that are both concise and faithful, while performing this task with significantly improved
efficiency. Additional examples appear in appendix F.

methods (Hase et al. (2021); Vafa et al. (2021); Yu et al. (2023); Amir et al. (2024)), frequently
leading to the identification of subsets that do not align with human intuition (Hase et al. (2021)).

Our contributions. We start by addressing the previously mentioned intractability and OOD concerns,
reinforcing them with new computational complexity findings on the difficulty of generating such
explanations: (i) First, we extend computational complexity results that were limited only to the
binary setting (Barceló et al. (2020); Wäldchen et al. (2021)) to any discrete or continuous domain,
showcasing the intractability of obtaining cardinally minimal explanations for a much more general
setting; (ii) Secondly, we prove that the intractability of generating these explanations holds for
different relaxed conditions, including obtaining cardinally minimal baseline sufficient reasons as
well as approximating the size of cardinally minimal sufficient reasons. These results reinforce the
computational intractability of obtaining this form of explanation in the classic post-hoc fashion.

Aiming to mitigate the intractability and OOD challenges, we propose a novel self-supervised
approach named sufficient subset training (SST), designed to inherently produce concise sufficient
reasons for predictions in neural networks. SST trains models with two outputs: (i) the usual
predictive output and (ii) an extra output that facilitates the extraction of a sufficient reason for that
prediction. The training integrates two additional optimization objectives: ensuring the extracted
subset is sufficient concerning the predictive output and aiming for the subset to have minimal
cardinality.

We integrate these objectives using a dual propagation through the model, calculating two additional
loss terms. The first, the faithfulness loss, validates that the chosen subset sufficiently determines the
prediction. The second, the cardinality loss, aims to minimize the subset size. We employ various
masking strategies during the second propagation to address three sufficiency types. These include
setting S to a constant baseline for baseline sufficient reasons, drawing S from a distribution for
probabilistic sufficient reasons, or using an adversarial attack on S for robust sufficient reasons.

Training models with SST reduces the need for complex post-hoc computations and exposes models
to relevant mixed inputs, thereby reducing the sensitivity of subsets to OOD instances. Moreover,
our method’s versatility enables its use across any neural network architecture. We validate SST by
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testing it on multiple architectures for image and language classification tasks, using diverse masking
criteria. We compare our training-generated explanations with those from popular post-hoc methods
on standard (i.e., classification only) models. Our results show that SST produces sufficient reasons
that are concise and faithful, more efficiently than post-hoc approaches, while preserving comparable
predictive performance. Figure 1 illustrates an example of a sufficient reason generated by SST, in
comparison to post-hoc explanations.

2 FORMS OF SUFFICIENT REASONS

In this work, our focus is on local interpretations of classification models. Specifically, for a model
f : Rn → Rc and an input x ∈ Rn, we aim to explain the prediction f(x). Formally, we define
a sufficient reason (Barceló et al. (2020); Darwiche & Hirth (2020); Arenas et al. (2022)) as any
subset of features S ⊆ [n], such that fixing S to their values in x, determines the prediction f(x).
We specifically want the prediction f(xS ; zS̄) to align with f(x), where (xS ; zS̄) denotes an input
for which the values of S are drawn from x ∈ Rn and the values of S are drawn from z ∈ Rn. If
S includes all input features, i.e., S := {1, . . . , n}, it is trivially sufficient. However, it is common
to seek more concise sufficient reasons (Ribeiro et al. (2018); Carter et al. (2019); Ignatiev et al.
(2019); Barceló et al. (2020); Blanc et al. (2021); Wäldchen et al. (2021)). Another consideration
is the choice of values for the complement set S. We classify previous methods into three general
categories:
Definition 1. Given a model f , an instance x ∈ Rn and some baseline z ∈ Rn, we define S ⊆
{1, . . . , n} as a baseline sufficient reason of ⟨f,x⟩ with respect to z iff it holds that:

argmax
j

f(xS ; zS̄)j = argmax
j

f(x)j (1)

The baseline z represents the “missingness” of the complementary set S, but its effectiveness is highly
dependent on choosing a specific z. While it is feasible to use a small number of different baselines
to mitigate this dependency, such an approach is not practical across broader domains. However, in
certain cases, employing baselines may be intuitive, especially when they carry specific significance
in that scenario. For instance, in the context of language classification tasks where f represents a
transformer architecture, z could be assigned the widely recognized MASK token, which is utilized
during pre-training phases to address the concept of “missingness” in tokens (Devlin et al. (2018)).

Conversely, sufficiency can imply that the values of S dictate the prediction, regardless of any
assignment to S in some domain. This definition is particularly useful in cases where a strict
sufficiency of S is imperative, such as in safety-critical systems (Marques-Silva & Ignatiev (2022);
Ignatiev et al. (2019); Wu et al. (2024)). There, the presence of any counterfactual assignment over
S may be crucial. While in some instances the domain of S is unlimited (Ignatiev et al. (2019);
Marques-Silva & Ignatiev (2022)), a more feasible modification is to consider a limited continuous
domain surrounding x (Wu et al. (2024); La Malfa et al. (2021); Izza et al. (2024)). We define this
kind of sufficiency rationale as robust sufficient reasons:
Definition 2. Given a model f and an instance x ∈ Rn, we define S ⊆ {1, . . . , n} as a robust
sufficient reason of ⟨f,x⟩ on an ℓp-norm ball Bϵp

p of radius ϵp iff it holds that:

∀z ∈ Bϵp
p (x). [argmax

j
f(xS ; zS̄)j = argmax

j
f(x)j ],

s.t Bϵp
p (x) := {z ∈ Rn| ||x− z||p ≤ ϵp}

(2)

However, it is not always necessary to assume that fixing the subset S guarantees a consistent
prediction across an entire Bϵp

p (x) domain. Rather, when S is fixed, the classification may be
maintained with a certain probability (Ribeiro et al. (2018); Blanc et al. (2021); Wäldchen et al.
(2021); Wang et al. (2021)). We refer to these as probabilistic sufficient reasons. Under this
framework, fixing S and sampling values from S according to a given distribution D ensures that the
classification remains unchanged with a probability greater than 1− δ:
Definition 3. Given a model f and some distribution D over the input features, we define S ⊆
{1, . . . , n} as a probabilistic sufficient reason of ⟨f,x⟩ with respect to D iff:

3
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Pr
z∼D

[argmax
j

f(z)j = argmax
j

f(x)j | zS = xS ] ≥ 1− δ (3)

where zS = xS denotes fixing the features of S in the vector z to their corresponding values in x.

3 PROBLEMS WITH POST-HOC MINIMAL SUFFICIENT REASON COMPUTATIONS

Intractability. Obtaining cardinally minimal sufficient reasons is known to be computationally
challenging (Barceló et al. (2020); Wäldchen et al. (2021)), particularly in neural netowrks (Barceló
et al. (2020); Adolfi et al. (2024); Bassan et al. (2024)). Two key factors influence this computational
challenge — the first is finding a cardinally minimal sufficient reason, which may be intractable when
the input space is large. This tractability barrier is common to all of the previous forms of sufficiency
(baseline, probabilistic, and robust). A second computational challenge can emerge when verifying
the sufficiency of even a single subset proves to be computationally difficult. For instance, in robust
sufficient reasons, confirming subset sufficiency equates to robustness verification, a process that by
itself is computationally challenging (Katz et al. (2017); Sälzer & Lange (2021)). The intractability
of obtaining cardinally minimal sufficient reasons is further exemplified by the following theorem:
Theorem 1. Given a neural network classifier f with ReLU activations and x ∈ Rn, obtaining a
cardinally minimal sufficient reason for ⟨f, x⟩ is (i) NP-Complete for baseline sufficient reasons
(ii) ΣP

2 -Complete for robust sufficient reasons and (iii) NPPP-Hard for probabilistic sufficient reasons.

The highly intractable complexity class ΣP
2 encompasses problems solvable in NP time with constant-

time access to a coNP oracle, whereas NPPP includes problems solvable in NP time with constant-time
access to a probabilistic PP oracle. More details on these classes are available in Appendix A. For
our purposes, it suffices to understand that NP ⊊ ΣP

2 and NP ⊊ NPPP is widely accepted (Arora &
Barak (2009)), highlighting their substantial intractability (problems that are significantly harder than
NP-Complete problems).

Proof sketch. The full proof is relegated to Appendix B. We begin by extending the complexity results
for robust and probabilistic sufficient reasons provided by (Barceló et al. (2020); Wäldchen et al.
(2021)), which focused on either CNF classifiers or multi-layer perceptrons with binary inputs and
outputs. We provide complexity proofs for a more general setting considering neural networks over
any discrete or continuous input or output domains. Membership outcomes to continuous domains
stem from realizing that instead of guessing certificate assignments for binary inputs, one can guess
the activation status of any ReLU constraint. For hardness, we perform a technical reduction that
constructs a neural network with a strictly stronger subset sufficiency. We also provide a novel
complexity proof, which indicates the intractability of the relaxed version of computing cardinally
minimal baseline sufficient reasons, via a reduction from the classic CNF-SAT problem.

To further emphasize the hardness of the previous results, we prove that their approximation re-
mains intractable. We establish this through approximation-preserving reductions from the Shortest-
Implicant-Core (Umans (1999)) and Max-Clique (Håstad (1999)) problems (proofs provided in
Appendix C):
Theorem 2. Given a neural network classifier f with ReLU activations and x ∈ Rn, (i) ∀ϵ > 0

approximating cardinally minimal robust sufficient reasons with n
1
2−ϵ factor is ΣP

2 -Hard, (ii) ∀ϵ > 0
approximating cardinally minimal probabilistic or baseline sufficient reasons with factor n1−ϵ is
NP-Hard.

These theoretical limitations highlight the challenges associated with achieving exact computations
or approximations and do not directly apply to the practical execution time of methods that employ
heuristic approximations. Nevertheless, many such methods, including Anchors (Ribeiro et al. (2018))
and SIS (Carter et al. (2019)), face issues with scalability and often rely on significant assumptions.
For instance, these methods may substantially reduce the input size to improve the tractability of
features (Ribeiro et al. (2018); Carter et al. (2019)) or concentrate on cases with a large margin
between the predicted class’s output probability and that of other classes (Carter et al. (2019)).

Sensitivity to OOD counterfactuals. Methods computing concise sufficient reasons often use
algorithms that iteratively test inputs of the form (xS ; zS̄), comparing the prediction of f(xS ; zS̄)
with f(x) to determine S’s sufficiency (Ribeiro et al. (2018); Carter et al. (2019); Chockler et al.
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(2021)). A key issue is that (xS ; zS̄) might be OOD for f , potentially misjudging S’s sufficiency.
Iterative approaches aimed at finding cardinally minimal subsets may exacerbate this phenomenon,
leading to significantly suboptimal or insufficient subsets. A few recent studies focused on NLP
domains (Hase et al. (2021); Vafa et al. (2021)), aimed to enhance model robustness to OOD
counterfactuals by arbitrarily selecting subsets S and exposing models to inputs of the form (xS ; zS̄)
during training. However, this arbitrary masking process lacks clarity on two important questions —
(i) which features should be masked, and (ii) how many features should be masked . This, in turn,
poses a risk of inadvertently masking critical features and potentially impairing model performance.

4 SELF-EXPLAINING NEURAL NETWORKS WITH SUFFICIENT REASONS

To address the earlier concerns, we train self-explaining neural networks that inherently provide
concise sufficient reasons along with their predictions. This eliminates the need for costly post-
computations and has the benefit of exposing models to OOD counterfactuals during training.

4.1 LEARNING MINIMAL SUFFICIENT REASONS

Our model is trained to produce two outputs: the initial prediction and an explanation vector that
pinpoints a concise sufficient reason for that prediction. Each element in the vector corresponds to
a feature. Through a Sigmoid output layer, we select a feature subset S where outputs surpass a
threshold τ . More formally, we learn some: h : Rn → Rc × [0, 1]n where for simplicity we denote:
h(x) := (h1(x), h2(x)), for which h1 denotes the prediction component and h2, derived from a
final Sigmoid layer, denotes the explanation component; both share the same hidden layers. The
sufficient reason is taken by identifying S := {i | h2(x)i ≥ τ}. To ensure S is sufficient, we perform
a dual propagation through h, wherein the second forward pass, a new masked input is constructed by
fixing the features in S to their values in x and letting the features in S take some other values z. The
masked input (xS ; zS̄) is then propagated through h. This process is illustrated in Figure 2.

Figure 2: An illustration of the dual propagation incorporated during sufficient subset training

Besides the prediction task, we optimize two additional objectives to ensure that S is both sufficient
and concise. Our training incorporates three distinct loss terms: (i) the prediction loss, Lpred, (ii) a
faithfulness loss, Lfaith, enhancing the sufficiency of S concerning ⟨h1, x⟩, and a cardinality loss,
Lcard, minimizing the size of S. We optimize these by minimizing the combined loss:

Lθ(h) := Lpred(h) + λLfaith(h) + ξLcard(h) (4)

Here, we use the standard cross entropy (CE) loss as our prediction loss, i.e., Lpred(h) :=
LCE(h1(x), t), where t is the ground truth for x. We use CE also in the faithfulness loss, which
ensures the sufficiency of S by way of minimizing the discrepancy between the predicted probabilities
of the masked input h1(xS ; zS̄) and the first prediction h1(x):

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lfaith(h) := LCE(h1(xS ; zS̄), argmax
j

h1(x)j), s.t S := {i | h2(x)i ≥ τ} (5)

Training a model solely to optimize prediction accuracy and faithfulness may often result in larger
sufficient reasons, as larger subsets are more likely to be sufficient. Specifically, the largest subset
S := {1, . . . , n} always qualifies as sufficient, irrespective of the model or instance. Conversely,
excessively small subsets may compromise prediction performance, leading to a bias towards larger
subsets when these are the only objectives considered.

Hence, to train our model to produce concise sufficient reasons, we must include a third optimization
objective aimed at minimizing the size of S. We incorporate this by implementing a cardinality loss
which encourages the sparsity of S, by utilising the standard L1 loss, i.e., Lcard(h) := ||h2(x)||1.

4.2 MASKING

As noted earlier, during the model’s second propagation phase, a masked input (xS ; zS̄) is processed
by our model’s prediction layer h1. The faithfulness loss aims to align the prediction of h1(xS ; zS̄)
closely with h1(x). A key question remains on how to select the z values for the complementary
features S. We propose several masking methods that correspond to the different forms of sufficiency:

1. Baseline Masking. Given a fixed baseline z ∈ Rn, we fix the features of S to their
corresponding values in z and propagate h1(xS ; zS̄), optimizing S to constitute as a baseline
sufficient reason with respect to z.

2. Probabilistic Masking. Given some distribution D, we sample the corresponding as-
signments from D(z|zS = xS) and propagate h1(xS ; zS̄), optimizing S to constitute as a
probablistic sufficient reason concerning D.

3. Robust Masking. To ensure the sufficiency of S across the entire input range of Bϵp
p (x),

we conduct an adversarial attack on x. Here, we fix the values of S and perturb only
the features in S. This approach involves identifying the “hardest” instances, denoted by
(x′

S ; z′
S̄
) ∈ B

ϵp
p (xS ; zS̄), and optimizing the prediction of h1(x′

S ; z′
S̄
) to assimilate that of

h1(x). We achieve this by initially setting (xS ; zS̄)0 randomly within Bϵp
p (xS ; zS̄) and

updating it over N projected gradient descent (PGD) steps (Madry et al. (2017)):

(xS ; zS̄)n+1 = ΠBϵ(x)(xS ; zS̄)n + α · sign(∇(xS ;zS̄)nLpred(h1(xS ; zS̄)n, t)) (6)

where α is the step size, and Π is the projection operator. This process is similar to
adversarial training (Shafahi et al. (2019)), with the difference of not perturbing the features
in S.

5 EXPERIMENTS

We assess SST across image and language classification tasks, comparing the sufficient reasons
generated by our approach to those from state-of-the-art post-hoc methods. Following common
conventions (Wu et al. (2024); Ignatiev et al. (2019); Bassan & Katz (2023)), we evaluate these
subsets on three metrics: (i) the mean time taken to generate a sufficient reason, (ii) the mean size of
the sufficient reasons, and (iii) the mean faithfulness, i.e., how sufficient the subsets are. Particularly,
when evaluating faithfulness, we categorize the results into three distinct types of sufficiency: baseline,
probabilistic, and robust faithfulness. Each category measures the proportion of test instances where
the derived subset S remains sufficient under baseline, probabilistic, or robust masking.

5.1 SUFFICIENT SUBSET TRAINING FOR IMAGES

We train SST-based models on three prominent image classification tasks: MNIST (Deng (2012))
digit recognition using a feed-forward neural network, CIFAR-10 (Krizhevsky et al. (2009)) using
Resnet18 (He et al. (2016)), and IMAGENET using a pre-trained Resnet50 model (He et al. (2016)).
To simplify the training process, we set the threshold at τ = 0.5 and the faithfulness coefficient
at λ = 1, conducting the grid search exclusively over the cardinality coefficient ξ. Full training
details can be found in Appendix D. We assess the inherent sufficient reasons generated by SST and
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compare them with those from standard-trained models using post-hoc methods: Anchors (Ribeiro
et al. (2018)), SIS (Carter et al. (2019)), and a vision-based technique (Fong & Vedaldi (2017)) which
we term gradient search (GS).

Robust Sufficient Reasons in Images. In image classification tasks, it is common to evaluate the
robust sufficiency of the identified sufficient reasons, by ensuring they remain sufficient across a
continuous domain (Wu et al. (2024); Ignatiev et al. (2019); Bassan & Katz (2023)). We aim to
explore the ability of SST-based models to generate such subsets, initially training all models using
robust masking with a PGD ℓ∞ (ϵ = 0.12) attack on the features in S̄, as described in section 4.2.
Further details on the selection of ϵ = 0.12 can be found in Appendix D. We subsequently assess
these results against subsets produced by the aforementioned post-hoc methods over standard-trained
models (i.e., with only a prediction output, and no explanation) and examine their capacity to uphold
robust sufficiency. Figure 3 illustrates visualizations of these results, while Table 1 provides a
summary of the empirical evaluations.

Table 1: SST with robust masking vs. post-hoc methods. Results depict average explanation size (%),
10-minute timeouts (%), average time (seconds), and robust faithfulness (%).

MNIST CIFAR-10 IMAGENET
Size T/O Time Faith. Size T/O Time Faith. Size T/O Time Faith.

Anchors 8.98 0 0.11 97.51 20.88 0 0.8 86.47 20.29 1.09 118.6 88.94
SIS 2.35 0 4.34 98.08 0.87 0.14 195.25 84.64 0.15 0 262.42 77.32
GS 40.36 0 1.13 97.56 60.7 0 14.61 92.41 78.97 0 266.5 90.92
SST 1.42 0 ≈10−6 99.28 12.99 0 ≈10−5 90.43 0.46 0 ≈10−4 80.88

Figure 3: Examples of sufficient reasons produced by SST compared to the ones generated by post-
hoc approaches for MNIST, CIFAR-10, and IMAGENET. Additional examples appear in appendix F.

Results in Table 1 indicate that across all configurations, SST generated explanations with substantially
greater efficiency than post-hoc methods. SST typically produced smaller explanations, especially in
all comparisons with GS and Anchors, and in MNIST against SIS. Additionally, SST explanations
often demonstrated greater faithfulness, notably in MNIST against all post-hoc methods, and in
CIFAR-10 compared to Anchors and SIS. Typically, SIS offered concise subsets but at the cost of low
faithfulness, while GS provided faithful explanations that were considerably larger. Anchors yielded
more consistent explanations, yet they were often either significantly larger or less faithful compared

7
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to SST. Separately, concerning the accuracy shift for SST, MNIST showed a minor increase of 0.15%,
whereas CIFAR-10 experienced a decrease of 1.96%, and IMAGENET saw a reduction of 4.7%. Of
course, by reducing the impact of the cardinality and faithfulness loss coefficients, one can maintain
accuracy on all benchmarks, but this may compromise the quality of the explanations.

Different Masking Strategies for images. We aim to analyze different masking strategies for SST in
image classification, focusing on MNIST. We utilize two additional masking methods: probabilistic
masking, where the assignments of features in the complement S are sampled from a uniform
distribution to enhance probabilistic faithfulness, and baseline masking, where all the features in
S are set to zero (using the trivial baseline z := 0n), hence optimizing baseline faithfulness. This
specific baseline is intuitive in MNIST due to the inherently zeroed-out border of the images. We
compare these approaches to the same post-hoc methods as before, evaluating them based on their
baseline, probabilistic, or robust faithfulness, and present these results in Table 2.

Table 2: SST (different masks) vs. post-hoc methods: Mean explanation size (%), accuracy gain (%),
mean inference time (seconds), and baseline, probabilistic, and robust faithfulness (%).

Masking Size Acc. Gain Time Faithfulness
Robust Probabilistic Baseline

Anchors — 8.98 — 0.11 97.51 91.06 16.06
SIS — 2.35 — 4.34 98.08 90.72 46.1
GS — 40.36 — 1.13 97.56 94.11 16.72

robust 1.42 +0.15 ≈10−6 99.28 — —
SST baseline 23.69 -1.26 ≈10−6 — — 96.52

probabilistic 0.65 +0.36 ≈10−6 — 99.11 —

Results in Table 2 demonstrate the impact of SST with various masking strategies. Each strategy
improved compared to post-hoc methods in its respective faithfulness measure. Robust and prob-
abilistic masking strategies produced very small subsets and even slightly increased accuracy. In
contrast, the baseline masking strategy resulted in larger subsets and a larger accuracy drop. This
likely occurs because setting the complement S to a fixed baseline strongly biases the model towards
OOD instances, whereas uniform sampling or a bounded ϵ-attack are less prone to this issue.

Figure 4: The faithfulness-cardinality tradeoff
in baseline-masking SST models for MNIST
with varying cardinality loss coefficients, ξ,
shows that higher ξ increases mask size S but
reduces faithfulness, and vice versa.

Faithfulness-Cardinality Trade-off. Optimizing
models trained with SST involves a trade-off between
two primary factors: (i) the size of the generated sub-
set and (ii) the faithfulness of the model. For instance,
a full set explanation (S := {1, . . . , n}) scores low
in terms of the optimization for small subset sizes but
guarantees perfect faithfulness. Conversely, an empty
set explanation (S := ∅) achieves the best score for
subset size due to its minimal cardinality but gener-
ally exhibits poor faithfulness. In our experiment,
we aim to illustrate this trade-off, which can be bal-
anced by altering the cardinality loss coefficient ξ.
Greater ξ values emphasize the subset size loss com-
ponent, leading to smaller subsets at the cost of their
faithfulness. Conversely, smaller ξ values reduce the
component’s impact, resulting in larger subsets with
better faithfulness. Figure 4 provides a comparative
analysis of this dynamic using the MNIST dataset
with baseline masking. For greater ξ values, the car-
dinality of the mask is maximal. As ξ → 0, the
explanation size converges to 50% of the input. We believe this happens because the threshold is set
to the default value of τ := 0.5 (see Appendix D for more details), resulting in the arbitrary selection
of a 50% sufficient subset due to random initialization at the beginning of training. This subset is
likely sufficient to determine the prediction on its own (as demonstrated in Table 2, even 23.69% of
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the input may be sufficient for a prediction). Consequently, as the cardinality loss coefficient gets
very close to zero, the parameters of the explanation component (i.e., h2, as discussed in Section 4)
remain nearly unchanged throughout training, with the explanation size fixed at 50%.

5.2 SUFFICIENT SUBSET TRAINING FOR LANGUAGE

Table 3: Baseline/probabilistic SST (B-SST, P-SST) vs. post-hoc techniques: Mean inference
time (seconds), 10-minute timeouts (%), mean explanation size (%), and probabilistic and baseline
faithfulness (%)

IMDB SNLI
Time T/O Size P-Faith. B-Faith. Time T/O Size P-Faith. B-Faith.

Anchors 22.42 20.05 1.12 89.1 39.6 94.78 3.6 10 35.24 40.24
S-Anchors 19.65 12.26 1.16 89.14 23.37 160.92 9.76 18 28.55 33.94
SIS 14.9 0 22.57 88.97 97.89 23.13 0 12.74 44.84 49.29
B-SST ≈10−3 0 28.96 — 98.05 ≈10−3 0 39 — 95.88
P-SST ≈10−3 0 49.7 95.67 — ≈10−3 0 53.69 95.35 —

We assess our results using two prevalent language classification tasks: IMDB sentiment analy-
sis (Maas et al. (2011)) and SNLI (Bowman et al. (2015)). All models are trained over a BERT
base (Devlin et al. (2018)). We implement two typical masking strategies for testing sufficiency in
language classification (Hase et al. (2021); Vafa et al. (2021)): (i) using the pre-trained MASK token
from BERT (Devlin et al. (2018)) as our baseline (baseline masking) and (ii) randomly sampling
features uniformly (probabilistic masking) . We evaluate the performance of SST-generated subsets
against post-hoc explanations provided by either Anchors or SIS. In the Anchors library, an additional
method assesses sufficiency for text domains by sampling words similar to those masked, leading us
to two distinct configurations which we denote as: Anchors and Similarity-Anchors (S-Anchors).

Table 3 shows that in the language setting, similarly to vision, SST obtains explanations much more
efficiently than post-hoc methods. Although SST produces larger subsets than post-hoc methods,
these subsets are significantly more faithful. For instance, SST achieves a baseline faithfulness
of 98.05% on IMDB, compared to only 23% for S-Anchors. The convergence of SST towards
larger subsets likely stems from our optimization of both faithfulness and minimal subset cardinality.
Increasing the cardinality loss coefficient may yield smaller subsets but could decrease faithfulness.
Separately, SST maintained comparable accuracy levels for both of these tasks — the decrease in
accuracy for IMDB was 0.87% and 0.89% with probabilistic and baseline masking, respectively.
For SNLI, probabilistic masking resulted in a 0.61% drop, whereas baseline masking saw a smaller
decrease of 0.32%.

Figure 5: Explanations generated by SST using baseline vs. probabilistic masking. When each
token in the complement S is replaced with the MASK token, the prediction stays negative. In the
probabilistic setting, the prediction remains negative when values from S are randomly sampled.
Further examples can be found in Appendix F.

Explanations generated using probabilistic masking were larger on average compared to those
generated using baseline masking. This is likely because random token perturbations present a more
challenging constraint than fixing the MASK token. Figure 5 illustrates two explanations produced
by SST using probabilistic or baseline masking for IMDB. Although both are intuitive, the baseline
sufficient reason suffices by fixing only specific relevant terms like “don’t” and “off”. These terms
are enough to preserve the negative classification when all other tokens are fixed to the MASK token.
However, the probabilistic subset has larger negating phrases like “wandering off the TV” or “really
hard” because it involves random perturbations of the complementary set, which may potentially
shift the classification to positive.
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6 RELATED WORK

Post-hoc sufficient reason techniques. Some common post-hoc approaches include An-
chors (Ribeiro et al. (2018)), or SIS (Carter et al. (2019)), and typically seek to obtain concise
subsets which uphold probablistic sufficiency (Wang et al. (2021); Ribeiro et al. (2018); Blanc et al.
(2021)) or baseline sufficiency (Hase et al. (2021); Chockler et al. (2021); DeYoung et al. (2019)).
A different set of works is dedicated to obtaining robust sufficient reasons, where sufficiency is
determined for some entire discrete or continuous domain. These are often termed abductive explana-
tions (Ignatiev et al. (2019); Bassan et al. (2023)) or prime implicants (Ignatiev et al. (2019); Shih
et al. (2018)). Due to the complexity of producing such explanations, they are commonly obtained on
simpler model types, such as decision trees (Izza et al. (2020)), tree ensembles (Izza & Marques-Silva
(2021); Ignatiev et al. (2022)), linear models (Marques-Silva et al. (2020)), or small-scale neural
networks (Ignatiev et al. (2019); Wu et al. (2024); La Malfa et al. (2021); Bassan & Katz (2023)).

Self-explaining neural networks. Unlike post-hoc methods, some techniques modify training
to improve explanations (Ismail et al. (2021); Chen et al. (2019b); Hase et al. (2021); Vafa et al.
(2021)) or develop self-explaining models that inherently provide interpretations for their decisions.
Self-explaining models typically provide inherent additive feature attributions, assigning importance
weights to individual or high-level features. For example, Chen et al. (2019a) and Wang & Wang
(2021) describe model outputs by comparing them to relevant “prototypes”, while Alvarez Melis &
Jaakkola (2018) derive concept coefficients from feature transformations. Other approaches, like
those by Agarwal et al. (2021) and Jain et al. (2020), focus on feature-specific neural networks or
apply classifiers to snippets for NLP explanations, respectively. Koh et al. (2020) predict outcomes
based on high-level concepts. Due to their focus on additive attributions, these methods generally
operate under the implicit or explicit assumption that the model’s behavior can be approximated as
linear under certain conditions (Yeh et al. (2019); Lundberg & Lee (2017)). This assumption is crucial
as it underpins the approach of decomposing a model’s output into independent, additive contributions
from individual features, and may hence overlook nonlinear interactions among features (Slack et al.
(2020); Ribeiro et al. (2018); Yeh et al. (2019)). In contrast, we propose a self-explaining framework
that provides a distinct form of explanation — sufficient reasons for predictions — which do not
depend on assumptions of underlying linearity (Ribeiro et al. (2018)). To our knowledge, this is the
first self-explaining framework designed to generate such explanations.

7 LIMITATIONS

A primary limitation of SST is the need to tune additional hyperparameters due to multiple op-
timization objectives. We simplified this by conducting a grid search solely over the cardinality
loss coefficient ξ, as detailed in Appendix D. Additionally, the dual-propagation training phase is
twice more computationally demanding than standard training, and this complexity escalates with
challenging masking strategies, such as robust masking (see Appendix E for more details). However,
this investment in training reduces the need for complex post-training computations, as highlighted in
Section 5. Lastly, overly optimizing our interpretability constraints can sometimes reduce predictive
accuracy. Our experiments showed this was true for IMAGENET, though all other benchmarks
retained comparable accuracy levels (within 2%, and under 1% for all language-model benchmarks).
Interestingly, accuracy even improved under some configurations for MNIST classification. Future
research endeavors could further investigate the conditions under which SST can be utilized not only
for its inherent explanations but also to enhance predictive accuracy.

8 CONCLUSION

Obtaining (post-hoc) minimal sufficient reasons is a sought-after method of explainability. However,
these explanations are challenging to compute in practice because of the computationally intensive
processes and heavy dependence on OOD assignments. We further analyze these concerns and
propose a framework to address them through sufficient subset training (SST). SST generates small
sufficient reasons as an inherent output of neural networks with an optimization goal of producing
subsets that are both sufficient and concise. Results indicate that, relative to post-hoc methods, SST
provides explanations that are consistently smaller or more faithful (or both) across different models
and domains, with significantly greater efficiency, while preserving comparable predictive accuracy.
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Appendix
The following appendix is organized as follows:

Appendix A contains background for the computational complexity proofs.
Appendix B contains the proof of theorem 1.
Appendix C contains the proof of theorem ii.
Appendix D contains technical specifications, related to the models, and training.
Appendix E contains information regarding the training time of SST compared to standard training.
Appendix F contains supplementary results.

A COMPUTATIONAL COMPLEXITY BACKGROUND

In this section, we will introduce formal definitions and establish a computational complexity
background for our proofs.

Computational Complexity Classes. We start by briefly introducing the complexity classes that
are discussed in our work. It is assumed that readers have a basic knowledge of standard complexity
classes which include polynomial time (PTIME) and nondeterministic polynomial time (NP and
coNP). We also will mention the common complexity class within the second order of the polynomial
hierarchy, ΣP

2 . This class encompasses problems solvable within NP, provided there is access to
an oracle capable of solving co-NP problems in O(1) time. It is generally accepted that NP and
co-NP are subsets of ΣP

2 , though they are believed to be strict subsets (NP, co-NP ⊊ ΣP
2 ) (Arora &

Barak (2009)). Furthermore, the paper discusses the complexity class PP, which describes the set of
problems that can be solved by a probabilistic Turing machine with an error probability of less than
1
2 for all underlying instances.

Multi Layer Perceptrons. Our hardness reductions are performed over neural networks with ReLU
activation functions. We assume that our neural network is some function f : Rn → Rc where n
is the number of input features and c is the number of classes. The classification of f is chosen by
taking argmaxj f(x)j . For us to resolve cases where two or more distinct classes are assigned the
same value, we assume that the set of c classes is ordered (i1 ≻ i2 . . . ≻ ic), and choose the first
maximal valued class. In other words, if there exist a set of ordered classes i1, . . . , ik ∈ [c] for which
i1 ≻ i2 ≻ . . . ≻ ik and f(x)i1 = . . . = f(x)ik = argmaxj f(x)j then, without loss of generality, i1
is chosen as the predicted class.

In the described MLP, the function f is defined to output f := g(t). The first (input) layer g(0) is
x ∈ Rn. The dimensions of both the biases and the weight matrices are represented by a sequence of
positive integers {d0, . . . , dt}. We focus on weights and biases that are rational, or in other words,
W (j) ∈ Qdj−1×dj and b(j) ∈ Qdj . These parameters were obtained during the training of f . From
our previous definitions of the dimensions of f it holds that d0 = n and dt = c. We focus here on
ReLU activation functions. In other words, σ(i) is defined by ReLU(x) = max(0, x).

B PROOF OF THEOREM 1

Theorem 1. Given a neural network classifier f with ReLU activations, and x ∈ Rn, obtaining
a cardinally minimal sufficient reason for ⟨f, x⟩ is (i) NP-Complete for baseline sufficient reasons
(ii) ΣP

2 -Complete for robust sufficient reasons and (iii) NPPP-Hard for probablistic sufficient reasons.

Proof. We follow computational complexity conventions (Barceló et al. (2020); Arenas et al. (2022)),
focusing our analysis on the complexity of the decision problem which determines if a set of features
constitutes a cardinally minimal sufficient reason. Specifically, the problem involves determining
whether a subset of features S ⊆ {1, . . . n} qualifies as a sufficient reason while also satisfying |S| ≤
k. This formulation is consistent with and extends the problems addressed in earlier research (Barceló
et al. (2020); Arenas et al. (2022); Wäldchen et al. (2021)). The complexity problem is defined as
follows:
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MSR (Minimum Sufficient Reason):
Input: A neural network f , and an input instance x ∈ Rn.
Output: Yes if there exists some S ⊆ {1, . . . , n} such that S is a sufficient reason with respect to
⟨f, x⟩, and No otherwise

We observe that earlier frameworks evaluating the complexity of the MSR query concentrated on
cases where x ∈ {0, 1}n, a more straightforward scenario. Our focus extends to broader domains
encompassing both discrete and continuous inputs and outputs. We are now set to define our queries,
aligning with the definitions of sufficiency outlined in our work:

P-MSR (Probabilistic Minimum Sufficient Reason):
Input: A neural network f , some distribution D over the features, 0 ≤ δ ≤ 1, and x.
Output: Yes if there exists some S ⊆ {1, . . . , n} such that S is a probabilistic sufficient reason with
respect to ⟨f, x⟩, D and δ, and No otherwise

R-MSR (Robust Minimum Sufficient Reason):
Input: A neural network f , an input instance x ∈ Rn, and (possibly) some ϵ > 0.
Output: Yes if there exists some S ⊆ {1, . . . , n} such that S is a robust sufficient reason with respect
to ⟨f, x⟩ (over the ϵ-ball surrounding x, or over an unbounded domain) and No otherwise

B-MSR (Baseline Minimum Sufficient Reason):
Input: A neural network f , an input instance x ∈ Rn, and some baseline z ∈ Rn.
Output: Yes if there exists some S ⊆ {1, . . . , n} such that S is a baseline sufficient reason with
respect to ⟨f, x⟩, and z, and No otherwise

We will begin by presenting the complexity proof for the R-MSR query:

Lemma 1. Solving the R-MSR query over a neural network classifier f , an input x ∈ Rn, and
(possibly), some ϵ > 0, where f has either discrete or continuous input and output domains is
ΣP

2 -Complete.

Proof. Our proof is an extension of the one provided by the work of Barceló et al. (2020), who
provided a similar result for multi-layer perceptrons that are restricted to binary inputs and outputs.
We expand on this proof and show how it can hold for any possible input and output discrete or
continuous domains.

Membership. In the binary instance, proving membership in ΣP
2 can be done by guessing some

subset of features S and then using a coNP oracle for validating that this subset is indeed sufficient
concerning ⟨f, x⟩. When dealing with binary inputs, validating that a subset of features is in coNP
is trivial since one can guess some assignment z ∈ {0, 1}n and polynomially validate whether
f(xS ; zS̄) ̸= f(x) holds.

When addressing continuous domains, the process of guessing S remains consistent, but the method
for confirming its sufficiency changes. This alteration arises because the guessed certificate z may
not be polynomially bounded by the input size and could be unbounded. When guessing values in R,
it becomes crucial to consider a limit on their size, which ties back to the feasibility of approximating
these values with sufficient precision.

To determine the complexity of obtaining cardinally minimal sufficient reasons, it is often helpful to
first determine the complexity of a relaxed version of this query, which simply asks for the complexity
of validating whether one specific given subset is a sufficient reason. We will use this as a first step in
solving our unresolved inquiry for proving membership for continuous domains. The problem of
validating whether one subset is sufficient is formalized as follows:

CSR (Check Sufficient Reason):
Input: A neural network f , a subset S ⊆ {1, . . . , n}, and an input instance x ∈ Rn, and possibly
some ϵ > 0.
Output: Yes, if S is a sufficient reason with respect to ⟨f, x⟩ (over some ϵ ball, or over an unbounded
domain), and No otherwise
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The process of obtaining a cardinally minimal sufficient reason (the MSR query) is computationally
harder than validating whether one specific subset is sufficient (the CSR query). However, it is often
helpful to determine the complexity of CSR, as a step for calculating the complexity of MSR.

We adopt the proof strategy from Sälzer & Lange (2021), which demonstrated the complexity that
the complexity of the NN-Reachability problem is NP-Complete — an intricate extension of the
initial proof in Katz et al. (2017). Intuitively, in continuous neural networks, rather than guessing
binary inputs as our witnesses, we can guess the activation status of each ReLU constraint. This
approach allows us to address the verification of neural network properties efficiently using linear
programming. We begin by outlining the NN-Reachability problem as defined by Sälzer & Lange
(2021):
Definition 1. Let f : Rn → Rm be a neural network. We define the specification ϕ as a property
that is a conjunction of linear constraints ϕin on the input variables X and a set of linear constraints
ϕout on the output variables Y. In other words, ϕ := ϕin(X) ∧ ϕout(Y).

NNReach (Neural Network Reachability):
Input: A neural network f , an input specification ϕin(x), and an output specification ϕout(y)
Output: Yes if there exists some x ∈ Rn and some y ∈ Rm such that the specification ϕ holds, i.e.,
ϕin(x) is true and ϕout(y) is true, and No otherwise

Lemma 2. Solving the CSR query for neural networks with continuous input and output domains
can be polynomially reduced to the NNReach problem.

Proof. We will begin by demonstrating the unbounded version (where no ϵ is provided as input),
followed by an explanation of how we can extend this proof to a specific ϵ-bounded domain. Given an
instance ⟨f, S, x⟩ we can construct an instance ⟨f, ϕin, ϕout⟩ for which we define ϕin as a conjunction
of linear constraints: Xi = xi for each i ∈ S. We use Xi = xi to denote an assignment of the input
variable Xi to the assignment xi ∈ R. Assume that f(x) is classified to some class t (i.e., it holds
that f(x)t ≥ f(x)i for all i ̸= t). Then, we define ϕout as a disjunction of linear constraints of the
form: Yt < Yi for all i ̸= t.

S is a sufficient reason with respect to ⟨f, x⟩ if and only if setting the features X to there corresponding
values in x determines that the prediction f(x) always stays t. Hence, S is not a sufficient reason if
and only if there exist some assignments x ∈ Rn and an assignment y ∈ Rm for which all features in
X are set to their values in x and f(x) is not classified to t, implying that for all i ̸= t it holds that
f(x)t < f(x)i. This concludes the reduction. This reduction can be readily adapted for scenarios
where sufficiency is defined within a bounded ϵ domain. This involves specifying that for all i ∈ S,
we include constraints such as: Xi ≤ xi + ϵ and Xi ≥ xi − ϵ.

Finishing the Membership Proof. Membership of MSR for continuous input domains can now be
derived from the fact that we can guess some partial assignment to some subset S ∈ {1, . . . n} of size
k. Then we can utilize Lemma 2 to incorporate a coNP-oracle which validates whether S is sufficient
concerning ⟨f, x⟩ over the continuous domain Rn.

Hardness. Prior work (Barceló et al. (2020)) demonstrated that MSR is ΣP
2 -hard for MLPs limited to

binary inputs and outputs. To comprehend how this proof might be adapted to continuous domains,
we will initially outline the key elements of the proof in the binary scenario. This involves a reduction
from the Shortest-Implicant-Core problem, which is known to be ΣP

2 -Complete (Umans (2001)). We
begin by defining an implicant for Boolean formulas:
Definition 2. Let ϕ be a boolean formula. An implicant C for ϕ is a partial assignment of the
variables of ϕ such that any assignment to the remaining variables evaluates to true.

The reduction also makes use in the following Lemma (whose proof appears in Barceló et al. (2020)):
Lemma 3. Any boolean circuit ϕ can be encoded into an equivalent MLP over the binary domain
{0, 1}n → {0, 1} in polynomial time.

We will now begin by introducing the reduction for binary-input-output MLPs from the Shortest-
Implicant-Core problem (Barceló et al. (2020)). The Shortest-Implicant-Core problem is defined as
follows:
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Shortest Implicant Core:
Input: A formula in disjunctive normal form (DNF) ϕ := t1 ∨ t2 . . . ∨ tn, an implicant C of ϕ, and
an integer k.
Output: Yes, if there exists an implicant C ′ ⊆ tn of ϕ of size k, and No otherwise

Initially, we identifyXc as the set of features not included in tn. Subsequently, each variable xj ∈ Xc

can be divided into k + 1 distinct variables x1j , . . . x
k+1
j . For each i ∈ {1, . . . , k + 1}, we can

construct a new formula ϕ(i) by substituting every instance of the variable xj in Xc with xij . Finally,
we can define ϕ′ as the conjunction of all the ϕ(i) formulas. In summary:

ϕ(i) := ϕ[xj → xij ,∀xj ∈ Xc],

ϕ′ :=

k+1∧
i=1

ϕ(i)
(7)

The reduction then applies Lemma 3 to transform ϕ′ into an MLP f with binary inputs and outputs. It
also constructs a vector x, setting the value to 1 for all features in tn that are positive literals, and 0 for
the rest. According to the reduction in Barceló et al. (2020), then ⟨ϕ,C, k⟩ ∈ Shortest-Implicant-Core
if and only if there exists a subset S of size k such that, when S is fixed to its values in x, then
f(xS ; zS̄) consistently predicts 1, for any assignment z ∈ {0, 1}n. This implies that ⟨ϕ,C, k⟩ ∈
Shortest-Implicant-Core if and only if ⟨f, x, k⟩ ∈MSR for MLPs with binary inputs and outputs,
demonstrating that MSR for binary-input-output MLPs is ΣP

2 -Hard.

However, it is important to note that the previous lemma may not apply when the MLP in question
does not exclusively handle binary inputs and outputs. We will now demonstrate how we can
transform f to another MLP f ′, in polynomial time. We then will prove that when f is defined such
that f : {0, 1}n → {0, 1} and f ′ is defined such that f ′ : Rn → R2, a sufficient reason of size k
exists for ⟨f, x⟩ if and only if one exists for ⟨f ′, x⟩. This reduction will extend the reduction from the
Shortest-Implicant-Core to MSR for MLPs with non-binary inputs and outputs, thereby providing a
proof of ΣP

2 -hardness for non-binary inputs and output MLPs.

Typically, f ′ will be developed based on f , but it will include several additional hidden layers
and linear transformations. To begin, we will introduce several constructions that are crucial for
this development. We will specifically demonstrate how these constructions can be implemented
using only linear transformations or ReLU activations, allowing them to be integrated into our MLP
framework. The initial construction we will discuss was proposed by Sälzer & Lange (2021):

z := ReLU(
1

2
− x) + ReLU(x− 1

2
)− 1

2
(8)

In Sälzer & Lange (2021), it is demonstrated that the construction is equivalent to:

z =

{
−x if x < 1

2

x− 1 otherwise
(9)

From this, it can be directly inferred that z = 0 if and only if x = 0 or x = 1, and z ̸= 0 for any
other values of x ∈ R. This construction will prove useful in our reduction. We will also utilize a
second construction, which is described as follows:

z := ReLU(x) + (−1) · ReLU(−x) = |x| (10)

The reduction. We will now explain how to convert f into the appropriate f ′ to ensure the validity
of our reduction. We begin with the foundational structure of f as the skeleton for f ′. Initially, we
add extra neurons to the first hidden layer and link them to the input layer as follows. Each input
feature xi is processed through a series of computations, which, leveraging the two constructions
previously mentioned, can be performed solely using ReLU activations. Specifically, for each feature
xi, we compute:
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x′i := ReLU(ReLU(
1

2
− xi) + ReLU(xi −

1

2
)− 1

2
)+

(−1) · ReLU(−ReLU(
1

2
− xi)− ReLU(xi −

1

2
) +

1

2
) =

|ReLU(
1

2
− xi) + ReLU(xi −

1

2
)− 1

2
|

(11)

The existing structure of f (and thus f ′) features a single output neuron, which, when given an
input from the domain x ∈ {0, 1}n, returns a single binary value from {0, 1}. Let us denote the
value of this output neuron as o1. To develop f ′, we introduce additional hidden layers that connect
sequentially after o1. Initially, we link o1 to two new output neurons, denoted o1,1 and o1,2. These
neurons are configured as follows: o1,2 is directly tied to o1 with a linear transformation of value 1,
effectively making o1,2 = o1. For the other output, we establish the weights and biases through the
following computation:

o1,1 := ReLU(o1)− 1 (12)

It is evident that the following equivalence is maintained:

o1,1 =

{
1 if o1 = 0

0 o1 = 1
(13)

We will now outline the construction of the output layer of f ′, which consists of two outputs: o2,1
and o2,2. Adhering to our formalization of MLP, we assume the following order: o21 ≻ o2,2, without
loss of generality. This means that in cases where a specific assignment z ∈ Rn is processed through
f ′ and results in o21 = o2,2, then f ′ is classified under class o2,1. Conversely, f ′ is classified as class
o2,2 only if the value at o2,2 is strictly larger than that at o2,1. The constructions for o2,1 and o2,2 are
as follows:

o2,1 := ReLU(o1,1) + (−1) · ReLU(−o1,1) +
∑
i∈[m]

x′i,

o2,2 := ReLU(o1,2) + (−1) · ReLU(−o1,2) +
∑
i∈[m]

x′i + o2,1
(14)

Which is equivalent to:

o2,1 := |o1,1|+
∑
i∈[m]

x′i,

o2,2 := |o1,2|+
∑
i∈[m]

x′i + o2,1
(15)

Reduction Proof. We will now establish the correctness of the reduction. Once more, we will begin
by establishing correctness for the unbounded domain (where no ϵ is provided as input), before
outlining the necessary adjustments for the bounded domain. Initially, by design, we note that
x ∈ {0, 1}n because the input vector, derived from the Shortest-Implicant-Core, contains only binary
features. Following the specified construction of x where all positive features in tn within the formula
ϕ′ are set to 1, and all other features are set to 0, it results in tn evaluating to True. Consequently, ϕ′
evaluates to true, thereby causing f to evaluate to 1. This means that when x is processed through f ,
the single output value o1 is determined to be 1. Since the connections from the input layer to the
output o1 in f ′ remain unchanged from those in f , when x is input into f ′, o1 also evaluates to 1.

From the design of f ′, we observe that o1,1 = 0 and o1,2 = 1. Given that x comprises only binary
values, our earlier construction ensures that all x′i values are equal to 0. Consequently, this results in:
o2,1 = 0 and o2,2 = 1, leading to the classification of f under class o2,2.
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Additionally, we observe that by definition, x′i ≥ 0 for all i, which implies that it invariably holds
that:

[o2,1 = |o1,1|+
∑
i∈[m]

x′i ≥ 0] ∧ [o2,2 = |o1,2|+
∑
i∈[m]

x′i + o2,1 ≥ 0] (16)

Since the precedence o2,1 ≻ o2,2 is established, it follows that f ′ is classified under class o2,1 if and
only if o2,1 = 0. This condition arises because if o2,1 ̸= 0, then it necessarily means that o2,2 > o2,1
resulting in f ′ being classified under o2,2. Conversely, if o2,2 = 0, then o2,1 = o2,2, and thus f ′ is
classified under o2,1 by virtue of o2,1 ≻ o2,2.

Assuming that ⟨ϕ,C, k⟩ ∈ Shortest-Implicant-Core, as previously mentioned, it follows that there is
a subset S of features, each of size k, where fixing the features in S to their values in x results in the
output o1 in f ′ consistently remaining at 1, irrespective of how the features in S̄ are set within the
binary domain {0, 1}n. However, we need to establish a more robust claim —– that this sufficiency
extends to any values assigned to the features of S̄ from the continuous domain z ∈ Rn. Specifically,
we need to demonstrate that when the values of the features in S are fixed as they are in x, the
prediction of f ′ consistently remains at o2,2, no matter what real values are assigned to the features
in S̄.

We have established that fixing the values of S to those in x results in o1 in f ′ consistently equaling
1, irrespective of how the values of S̄ are set within {0, 1}n. Given that x′

i ̸= 0 for all i under our
conditions, it follows that both o2,1 and o2,2 are greater than 0. We have previously demonstrated
that if o2,1 > 0, then f ′ is classified as o2,2. Therefore, for any potential assignment of the features
in S̄ within the domain {0, 1}n, f ′ is classified under o2,2. Since the original prediction is o2,2, this
confirms that there is indeed a subset S of size k, which, when fixed at their values, ensures that the
prediction of f ′ remains consistently at o2,2.

Let us consider the scenario where the values for the complementary set S̄ are sourced not exclusively
from the {0, 1}n domain, meaning they are derived from z ∈ Rn \ {0, 1}n. In more precise terms,
there exists at least one feature i within S̄ such that for the assignment z ∈ Rn, zi ̸= 1 and zi ̸= 0.
We must demonstrate that under these circumstances, the prediction for f ′ still stabilizes at o2,2. For
this particular feature zi, it is confirmed that:

ReLU(
1

2
− zi) + ReLU(zi −

1

2
)− 1

2
̸= 0 (17)

This also suggests that within the newly constructed hidden layers of f ′, there are some x′i values
such that:

x′
i = |ReLU(

1

2
− zi) + ReLU(zi −

1

2
)− 1

2
| > 0 (18)

We now can conclude that:

o2,1 = |o1,1|+
∑
i∈[m]

x′i > 0 (19)

Consequently, f is classified under class o2,2 even when the features in S̄ are assigned values from
the domain Rn \ {0, 1}n. In summary, this indicates that there exists a subset S which consistently
remains sufficient for ⟨f ′, x⟩ when assessing sufficiency across any possible value in Rn.

For the converse direction of the reduction, let us assume that ⟨ϕ,C, k⟩ /∈ Shortest-Implicant-Core.
This implies that there is no subset S of size k or smaller such that f consistently evaluates to class o1
when the values of z come solely from the binary domain {0, 1}n. This also means that for any subset
S of size k or smaller, there exists some z ∈ {0, 1}n where f(xS ; zS̄) is evaluated to 0 (resulting in
a misclassification). Since (xS ; zS̄) is entirely binary, all hidden neurons x′

i evaluate to 0, leading to
o2,1 = 0 and thus, f ′ is misclassified to o2,1. This overall demonstrates that there is no subset S of
size k or less that is sufficient concerning ⟨f ′,x⟩, when the sufficiency of S is assessed relative to
Rn. This completes the reduction.
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We now need to demonstrate how to adjust the following reduction when ϵ is an input parameter,
with the sufficiency of S restricted to an ϵ-ball rather than being unbounded. The reduction can
simply set ϵ > 1. Since x ∈ {0, 1}n, the sufficiency of S is then defined over a continuous ϵ-ball that
includes all inputs in {0, 1}n. Let’s refer to this domain as F. In our reduction, we have shown that
any contrastive assignment achievable in f ′ must also be achieved over the domain {0, 1}n. Thus,
sufficiency for S in the domain Rn \ {0, 1}n is equivalent to sufficiency in F \ {0, 1}n, which implies
that our reduction is applicable even in such a bounded domain.

Lemma 4. Solving the B-MSR query over a neural network classifier f with either continuous or
discrete input and output domains is NP-Complete.

Proof. We begin by proving membership. Membership in NP is established because one can guess a
subset of features S and then verify whether f(xS ; x′

S̄
) ̸= f(x) and whether |S| ≤ k.

Hardness. We demonstrate hardness by presenting a reduction from the classic CNF-SAT problem,
which is known to be NP-Complete and defined as follows:

CNF-SAT:
Input: A formula in conjunctive normal form (CNF): ϕ.
Output: Yes, if there exists an assignment to the n literals of ϕ such that ϕ is evaluated to True, and
No otherwise

We denote 1n as a vector of size n containing only 1’s, and 0n as a vector of size n containing only
0’s. Given some input ϕ, we can first assign 1n to ϕ (setting all variables to True). If ϕ evaluates to
True, then there exists a Truth assignment to ϕ, so the reduction can construct some trivially correct
encoding. We can hence assume that ϕ(1n) = 0. We now denote the following:

ϕ2 := (x1 ∧ x2 ∧ . . . xn),
ϕ′ := ϕ ∨ ϕ2

(20)

ϕ′, is no longer a CNF, however, we can still use Lemma 3 to transform ϕ′ into an MLP f which
behaves equivalently to ϕ′ under the domain {0, 1}n. The reduction then finally constructs ⟨f, x :=
1n, x′ := 0n, k = n− 1⟩.
We first note that ϕ2(x) = 1, and hence both ϕ′(x) = 1 and f(x) = 1. If ⟨ϕ⟩ ∈ CNF-SAT, then there
exists an assignment of variables that evaluates ϕ to True. This means there is some assignment in
{0, 1}n that evaluates f to True. Since we have assumed that this is not the assignment x = 1n,
it must be some assignment x′ ∈ {0, 1}n ̸= x. This implies that there exists an assignment of
size k < n that evaluates 1n to True. Consequently, there exists a subset S where |S| ≤ k and
f(1S ;0S̄) = f(xS ; x′

S̄
) = 1 = f(1n).

For the second direction, we assume that ⟨ϕ⟩ ̸∈ CNF-SAT. This implies that no assignment evaluates
ϕ to True. Consequently, there is no assignment with fewer than n variables that evaluates ϕ2 =
(x1∧x2∧ . . .∧xn) to True. Therefore, there is no assignment of size k = n−1 or less that evaluates
either ϕ or ϕ2 to True. From this, we conclude that there is no subset S ⊆ [n] of size k or less for
which f(xS ; x′

S̄
) ̸= f(x) = f(1n) = 1, thus completing the reduction.

Lemma 5. Solving the P-MSR query on a neural network classifier f is NPPP-Hard.

Proof. The reduction is derived by integrating the proof from Wäldchen et al. (2021) with Lemma 3.
The work in (Wäldchen et al. (2021)) established that finding a cardinally minimal probabilistic
sufficient reason for a CNF classifier, given a discrete uniform distribution over {0, 1}n, is NPPP-Hard.
Using Lemma 3, we can transform ψ into an MLP f , applicable to either discrete or continuous
domains. This allows us to construct ⟨f, x′ := x, k′ = k⟩ and define D as the uniform distribution
over {0, 1}n. Given that x is an input for a CNF classifier, it directly follows that x ∈ {0, 1}n. It
hence follows that a cardinally minimal probabilistic sufficient reason for ψ exists if and only if one
exists for ⟨f, x⟩ concerning the distribution D, thereby completing the reduction.
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We observe that since the previous proof establishes hardness over the uniform distribution, this hard-
ness persists under any distributional assumption that includes this distribution, such as independent
distributions or more expressive ones, like the Markovian distributions examined by (Marzouk &
de La Higuera).

C PROOF OF THEOREM II

Theorem 2. Given a neural network classifier f with ReLU activations, and x ∈ Rn, (i) ∀ϵ > 0

approximating cardinally minimal robust sufficient reasons with n
1
2−ϵ factor is ΣP

2 -Hard, (ii) ∀ϵ > 0
it is NP-Hard to approximate cardinally minimal probabilistic or baseline sufficient reasons with
factor n

1
2−ϵ.

Proof. We follow common conventions and when discussing the inapproximability of obtaining
cardinally minimal sufficient reasons, refer to the optimization-version of these problems, or in other
words obtaining a cardinally minimal sufficient reason, instead of asking whether there exists such a
subset of size k (which is the decision version). To avoid confusion, we will refer to these problems
as R-MSR∗, B-MSR∗ and P-MSR∗. We start by proving the first complexity class:
Lemma 6. Given a neural network classifier f with ReLU activations, and x ∈ Rn, ∀ϵ > 0

approximating cardinally minimal robust sufficient reasons with n
1
2−ϵ factor (i.e., solving the R-MSR∗

query) is ΣP
2 -Hard

Proof. We first note a known inapproximability result for the Shortest-Implicant-Core prob-
lem (Umans (1999)) which will be used to prove the inapproximability result for our case:
Lemma 7. Given a DNF formula ψ, then for all ϵ > 0, approximating the Shortest Implicant Core
of ψ to within factor n1−ϵ is ΣP

2 -Hard.

We acknowledge, however, that despite the difficulty of the MSR query being established through a
reduction from the Shortest Implicant Core problem (as proven in Barceló et al. (2020) and discussed
in Lemma 1), this approach cannot be directly utilized because the reduction is not necessarily
approximation preserving. Specifically, the reduction discussed in Lemma 1, which follows Barceló
et al. (2020), involves an MLP with an input space considerably larger than that of the boolean
formula. If the input size of the boolean circuit is n, then the input size of the constructed MLP in the
worst-case scenario will be n · (k + 1).

Note that if k = n, the problem has a trivial solution. Therefore, we can assume the problem is
addressed for cases where n > k, or equivalently n ≥ k + 1. Let us denote the optimal solution
for the MSR query in MLPs as OPTMSR and the optimal solution for the shortest implicant core as
OPTCORE. Given that k remains constant in both reductions, it follows that OPTMSR = OPTCORE.
However, we still need to demonstrate that the same approximation ratios are applicable.

Let us suppose there exists some ϵ > 0 such that an algorithm can solve the optimization problem of
obtaining a cardinally minimal sufficient reason for MLPs with an approximation factor of n

1
2−ϵ. We

will denote the solution provided by this algorithm as k′. Consequently, we observe that:

k′ ≤ OPTMSR · (n · (k + 1))
1
2−ϵ = OPTCORE · (n · (k + 1))

1
2−ϵ ≤

OPTCORE · (n · n) 1
2−ϵ ≤ OPTCORE · n1−2·ϵ ≤ OPTCORE · n1−ϵ

(21)

This results in an n1−ϵ factor approximation algorithm for the shortest implicant core problem. Con-
sequently, we conclude that approximating the optimization problem of obtaining robust cardinally
minimal sufficient reasons is ΣP

2 -Hard to approximate within a factor of n
1
2−ϵ.

Lemma 8. Given a neural network classifier f with ReLU activations, and x ∈ Rn, ∀ϵ > 0
approximating cardinally minimal probablistic sufficient reasons with n1−ϵ factor is NP-Hard

This result can be extracted from the inapproximability results for obtaining cardinally minimal
probabilistic sufficient reasons for CNF classifiers that were proven by Wäldchen et al. (2021). This
result is as follows:
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Lemma 9. Given a CNF classifier, ψ, and some instance x, for all ϵ > 0 obtaining a probablistic
sufficient reason concerning ⟨ψ, x⟩ under the uniform distribution defined over {0, 1}n, is NP-Hard
to approximate within factor n1−ϵ.

Using Lemma 3, we can replicate the process described under Lemma 5. We begin with ψ and
develop an MLP f , ensuring that a cardinally minimal sufficient reason applicable to f is also valid
for ψ. This reduction is approximation preserving, as both k′ := k and n′ := n, indicating that
the same approximation ratio is preserved. Consequently, the hardness results established for CNF
classifiers are equally applicable to any MLP with discrete or continuous input domains.
Lemma 10. Given a neural network classifier f with ReLU activations, and x ∈ Rn, ∀ϵ > 0
approximating cardinally minimal baseline sufficient reasons with n1−ϵ factor is NP-Hard

We will perform an approximation preserving reduction from the Max-Clique problem, which is
known to be hard to approximate. The problem is defined as follows:

Max-Clique:
Input: A graph G := (V,E)
Output: a clique in G (i.e., a subset of vertices C ⊆ V where each two vertices in C are adjacent),
which has maximal cardinality.

The following inapproximability result is known for the Max-Clique problem (Håstad (1999)):
Lemma 11. Given a graph G = (V,E), for any ϵ > 0 it is NP-Hard to approximate the maximum
clique of G with approximation factor n1−ϵ.

We now present an (approximation-preserving) reduction from the Max-Clique problem to B-MSR∗

for neural networks. Consider a graph G = (V,E). We define a Boolean formula ψ that corresponds
to G. ψ will have |V | variables: x1, . . . , xV (each variable representing a vertex in the graph). We
define ψ as follows:

ψ :=
∧

(u,v)̸∈E

(¬xu ∨ ¬xv) (22)

Using Lemma 3, we encode ψ into an MLP f . We assert that a subset C ⊆ V constitutes a maximal
clique if and only if S := E \ C is a cardinally minimal baseline sufficient reason for ⟨f,0n⟩ with
respect to the baseline 1n.

First, we note that f(0n) = 1, since all variables are set to True in this case. Therefore, a sufficient
reason for f concerning the baseline 1n would be a subset of features S such that setting the features
in S to 1 keeps the classification as 1. We will prove that C is a clique in G if and only if S = E \ C
is a sufficient reason for ⟨f,0n⟩ concerning the baseline 1n.

If C is not a clique in G, there exist vertices u, v ∈ C such that (u, v) /∈ E. Therefore, the clause
¬xu∨¬xv is included in ψ. Given that u, v ∈ C, they also belong to S, and their features are modified
from a 0 assignment to a 1 assignment. As a result, ¬xu ∨ ¬xv = False, leading to ψ = False and
f(0S ;1S̄) = 0. This demonstrates that in this case, S is not sufficient concerning the baseline 1n.
Conversely, if C is a clique in G, then for any (u, v) ∈ C, (u, v) ∈ E. This ensures that for any
clause ¬xu ∨ ¬xv in ψ, both xu and xv remain fixed at the value 0, resulting in ¬xu ∨ ¬xv = True
and thus f(0S ;1S̄) = 1. This confirms that S is a sufficient reason concerning the baseline 1n.

From the previous claim, it follows directly that a sufficient reason S is of minimal cardinality if and
only if the cardinality of E \ C is minimal (when C is a clique in G). This is equivalent to requiring
that C has maximal cardinality, thereby concluding our proof.

D TECHNICAL SPECIFICATIONS

We provide detailed model specifications for reproducibility purposes. While our evaluations are
conducted on specific benchmarks, the SST methodology can be adapted to any neural network
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classifier. We compare the sufficient reasons derived from SST-trained models with explanations
from post-hoc methods on traditionally trained models. To ensure a fair comparison, we perform a
separate grid search for each configuration to determine the optimal model. For traditional models,
we optimize based solely on validation predictive accuracy, whereas for SST models, we consider a
combination of accuracy, faithfulness, and subset cardinality. For SST-based models, we consistently
set the threshold value τ := 1

2 and the faithfulness coefficient λ := 1, conducting the grid search
focusing only on the learning rate α and the cardinality coefficient ξ.

We begin by outlining general training details applicable to either all image or all language classifica-
tion tasks, followed by a discussion of benchmark-specific implementations.

Image Classification Experiments. All image classification configurations underwent a grid search
across various learning rates α, with values {10−2, 10−3, 10−4, 10−5, 10−6, 10−7} for both standard
and SST training. For SST, additional grid searches were conducted for the cardinality coefficient ξ
options: {10−5, 10−6, 10−7, 10−8, 10−9, 10−10, 10−11}. All models were trained using the Adam
optimizer, a batch size of 64, and held-out validation and test sets. For robust masking, a PGD
ℓ∞ attack with ϵ := 0.12 was used, consisting of 10 steps each of size α′ := 10−2. The value of
ϵ := 0.12 was selected to strike a balance between allowing a sufficiently large perturbation for
learning, while avoiding excessive distortion of the image. On one hand, this creates a challenging
task for learning (as opposed to smaller perturbations). On the other hand, it prevents excessive
distortion (as might occur with larger perturbations), which could result in the complementary set
S containing images that are entirely outside the desired distribution. Lastly, we apply a black
background to mask the MNIST images, both for SST and post-hoc approaches, leveraging their
naturally zeroed-out borders, which provides a clearer interpretation of the portions of the digit
that fall within the sufficient reason. Moreover, for CIFAR-10 and IMAGENET images, we select
images from these benchmarks where a specific object is highlighted against a white background.
The sufficient reasons for these images are depicted over the same white background, allowing the
explanation to remain focused on the object itself. This approach is applied consistently for both SST
and the post-hoc methods.

Language Classification Experiments. All language classification experiments utilized a pre-trained
Bert-base (Devlin et al. (2018)) model (applicable to both standard training and SST). The grid search
focused on learning rates α := {2e−5, 3e−5, 5e−5}, which are the typical values used for optimizing
pre-trained Bert models (Devlin et al. (2018)). For SST, an additional grid search was conducted for
the cardinality coefficient ξ options: {10−4, 10−5, 10−6, 10−7, 10−8}. Optimization was performed
using the standard AdamW optimizer, with a batch size of 32 and held-out validation and test sets.

D.1 MNIST

We trained a simple feed-forward neural network consisting of two hidden layers with sizes 128
and 64, respectively. The experiments were conducted using four Intel(R) Xeon(R) Gold 6258R @
2.70GHz CPUs. For the standard training scenario, the optimal configuration selected was α := 10−4.
For the SST-based models, the optimal configurations were: for robust masking α := 10−4 and
ξ := 10−7, and for both probabilistic masking and baseline masking, α := 10−3 and ξ := 10−7.

D.2 CIFAR-10

We train a ResNet18 architecture (He et al. (2016)) (which is not pre-trained) as our base model using
four Intel(R) Xeon(R) Gold 6258R @ 2.70GHz CPUs and one Nvidia A100-SXM4-80GB GPU. We
use a batch size of 64 and the Adam optimizer. For the robust masking-based SST configuration, the
chosen hyperparameters are α := 10−3 and ξ := 10−8.

D.3 IMAGENET

We train an SST-based model on a pre-trained ResNet50 (He et al. (2016)) for IMAGENET classifica-
tion using nine Intel(R) Xeon(R) Gold 6258R @ 2.70GHz CPUs and one Nvidia A100-SXM4-80GB
GPU. The optimal configuration for robust masking was α := 10−6 and ξ := 10−9.
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D.4 SNLI

We train our models using a pre-trained Bert-base (Devlin et al. (2018)) on the SNLI classification
task. The training is conducted on 16 Intel(R) Xeon(R) Gold 6258R CPUs at 2.70GHz and one
Nvidia A100-SXM4-80GB GPU. For standard training on SNLI, the optimal learning rate was set at
α := 2e−5. In the SST scenario, the best configuration with probabilistic masking was α := 2e−5

and ξ := 10−7, whereas, for baseline masking, it was α := 2e−5 and ξ := 10−6.

D.5 IMDB

Our models were trained using a Bert-base (Devlin et al. (2018)) pre-trained on IMDB sentiment
analysis. The setup included 16 Intel(R) Xeon(R) Gold 6258R CPUs at 2.70GHz and one Nvidia
A100-SXM4-80GB GPU. The optimal setting for standard training on IMDB was established at
α := 2e−5. For SST, the most effective configuration with probabilistic masking was α := 2e−5 and
ξ := 10−7, while for baseline masking, it was α := 2e−5 and ξ := 10−6.

E TRAINING TIME

One drawback of our approach is its higher computational demand compared to conventional training.
Specifically, the dual-propagation procedure we employ doubles the training cost. This increase is
more pronounced with complex masking techniques like robust masking, which involves an adver-
sarial attack at each iteration, slowing down the process and potentially complicating convergence.
These issues are similar to those encountered in adversarial training (Shafahi et al. (2019)). However,
we argue that this additional training effort reduces the necessity for computationally intensive
post-computations to derive concise sufficient reasons, as highlighted in our paper. Furthermore,
future studies could investigate various strategies to improve the efficiency of our training method,
drawing on techniques used in adversarial training (Shafahi et al. (2019)).

We now will highlight the training time gain incorporated by SST for each particular benchmark, as
opposed to a standard training configuration.

Image classification tasks. For MNIST, Standard training required 311.03 seconds (over 43 epochs),
whereas baseline-masking SST was completed in just 26.55 seconds (over 2 epochs). This significant
speed increase in the training, despite involving a dual-propagation process, was primarily due to
the optimal learning rate for SST with baseline masking being set at 10−3, compared to 10−4 for
standard training. For probabilistic masking, the training duration was 180.83 seconds (over 11
epochs), where the enhanced efficiency stemmed, again, from achieving optimal results at a higher
learning rate. However, robust masking, which is more computationally demanding, took substantially
longer, clocking in at 1796.99 seconds (over 49 epochs). For IMAGENET, standard training using
the robust masking configuration ran for 287056.81 seconds (over 22 epochs) while the parallel
standard-training configuration for IMAGENET ran for 74141.85 seconds, over 43 epochs (around 4
times faster). For CIFAR-10, SST using the robust masking that was mentioned in the paper took
3159.15 seconds (over 53 epochs) compared to standard training which took 477.42 seconds (over 49
epochs).

Language Classification tasks. For IMDB sentiment analysis, standard training ran for 4974.33
seconds (over 1 epoch), while SST with baseline masking ran for 9713.42 seconds (over 2 epochs) and
SST with probabilistic masking clocked at 21516.37 seconds (over 3 epochs). For SNLI classification,
standard training ran for 5353.71 seconds (over 2 epochs), while SST with a probabilistic masking
ran for 6084.66 seconds (over 1 epoch), SST with a baseline masking ran for 10440 seconds (over 2
epochs).

F SUPPLEMENTARY RESULTS

In this section, we will present additional results to support our evaluations.
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F.1 MNIST

We begin by offering more image samples to contrast post-hoc explanations generated over MNIST
with SST explanations trained using robust masking, for comparison purposes.

Figure 6: Examples of comparisons between explanations produced by SST compared to post-hoc
approaches for MNIST

F.2 CIFAR-10

We now transition to showcasing further comparison findings for CIFAR-10, contrasting post-hoc
explanations with those generated using SST and robust masking techniques.

To further illustrate examples of explanations under various masking configurations, we conducted
an ablation study using SST-based explanations on CIFAR-10. We implemented baseline masking
by zeroing out the complement S (the trivial baseline: z := 0n), probabilistic masking, where we
sampled features over S from a uniform distribution either over the entire input domain (ϵ := 1) or
within a bounded region surrounding x (ϵ := 0.12). Additionally, we performed robust masking by
executing a PGD ℓ∞ attack within an ϵ := 0.12 ball with 10 steps each of size α′ := 10−2.

Regarding average explanation sizes: robust masking accounted for 12.99%, probabilistic masking
with ϵ = 0.12 was 9.40%, probabilistic masking with ϵ := 1 was 50.75%, and baseline masking was
50.8%. The average faithfulness was 89.77% for baseline masking, 87.92% for bounded-probabilistic
masking, 90.43% for robust masking, and only 15.95% for unbounded-probabilistic masking. Results
are presented in Figure 8.
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Figure 7: Examples of comparisons between explanations produced by SST compared to post-hoc
approaches for CIFAR-10

F.3 IMAGENET

Lastly, we present a comparative analysis of SST-based models and post-hoc approaches for IM-
AGENET. Since IMAGENET inputs are high-dimensional and individual pixels are too small to
be discernible to the human eye, we patch each pixel with the surrounding 5× 5 pixels, centering
the corresponding pixel for visualization purposes. This approach is applied in all visualizations of
IMAGENET image results, including both SST and post-hoc methods.

In this segment, we also perform an ablation study to evaluate the performance of IMAGENET using
different masking techniques. We train IMAGENET using either robust masking through a PGD ℓ∞
attack within an ϵ := 0.12 ball, taking 10 steps each of size α′ := 10−2, or probabilistic masking by
sampling features uniformly from the same ϵ := 0.12 ball around x. The average explanation size
was 0.07% for probabilistic masking (compared to 0.46% for robust masking), with a faithfulness
score of 80.05% (compared to 80.88% for robust masking).

F.4 IMDB

We now offer more examples of sufficient reasons produced by SST-based models, beginning with
cases of IMDB sentiment analysis. As noted in the main paper, subsets derived via probabilistic
masking tend to be larger compared to those from baseline masking. This difference arises because
the randomness of perturbing various tokens imposes a stricter constraint than simply applying a
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Figure 8: An ablation study comparing between different masking techniques for CIFAR-10

fixed MASK token. Figure 11 provides further comparisons between explanations obtained through
probabilistic and baseline masking methods.

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Figure 9: Examples of comparisons between explanations produced by SST compared to post-hoc
approaches for IMAGENET

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 10: An ablation study comparing different masking techniques for IMAGENET
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Figure 11: IMDB sentiment analysis sufficient reasons that were inherently generated using SST
(baseline vs. probabilistic)

F.5 SNLI

Here, we illustrate examples of sufficient reasons generated by SST-based models for the SNLI
classification tasks. In this task, the input contains both a premise and a hypothesis and the classi-
fication task is to determine the nature of their relationship, categorized as follows: (i) entailment,
where the hypothesis is a logical consequence of the premise; (ii) contradiction, where the hypothesis
is logically inconsistent with the premise; and (iii) neutral, where the hypothesis neither logically
follows from nor contradicts the premise.

Figure 12: Sufficient reasons that were inherently generated using SST for the SNLI benchmark
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