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Abstract

When automating plan generation for a real-world sequential
decision problem, the goal is often not to replace the human
planner, but to facilitate the tedious work. In an iterative pro-
cess, the human’s role is to guide the planner according to
their preferences and expert experience. Explanations that re-
spond to users’ questions are crucial to increase trust in the
system and improve understanding of the sample solutions.
To enable natural interaction with such a system, we present
an explanation framework agnostic architecture for interac-
tive natural language explanations that enables user and con-
text dependent interactions. We propose conversational inter-
faces based on Large Language Models (LLMs) and instan-
tiate the explanation framework with goal-conflict explana-
tions. As a basis for future evaluation, we provide a tool for
domain experts that implements our interactive natural lan-
guage explanation architecture.

1 Introduction
One can think of planning as the task of finding a plan that
satisfies a set of properties. But also as the iterative pro-
cess that starts before the goals, objectives and preferences
are fully defined (Smith 2012), and ends when a satisfac-
tory plan from the point of view of all involved agents is
found. From this perspective, explanations serve the pur-
pose of accelerating the convergence of preferences elicita-
tion by human agents. Even though interactive planning has
now become a relatively well-accepted paradigm, interactive
explanations are a somewhat lost second cousin. Neverthe-
less, explanations are by nature interactive, as explanation
is something that one person (the explainer) does for the
sake of another (the explainee). The request for an expla-
nation arises because the explainee has a conceptual prob-
lem (Bromberger 1962; Achinstein 1980); there is some-
thing they do not understand. The explainer’s task is to rem-
edy or remove the conceptual problem. However, fixing a
conceptual problem may not be a one shot deal; it may take
several interactions to arrive at an explanation that is satis-
factory for the explainee – hence the inherent interactivity of
explanations.

If explanations are ideally interactive, then to provide ap-
propriate explanations for a planning system, we need some-
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Figure 1: Architecture of our approach to interactive expla-
nations with LLMs. This figure describes a single question-
answer interaction in a single planning iteration step.

thing with conversational capacities, something that is able
to respond to an initial request for an explanation, but also to
follow-up questions and remarks. LLMs fill this need; they
are conversationally fluent and have impressive flexibility in
translating natural language to formal languages, which a
symbolic planner even when coupled with a template inter-
face cannot do. LLMs have conversational capacities that
will enable truly interactive explanations that go along with
interactive planning. However, LLMs cannot do everything.
Empirical evidence demonstrates that LLMs cannot reliably
perform complex planning tasks independently (Valmeekam
et al. 2023) and there are theoretical reasons to suspect mod-
els using current transformer architectures never will (see
Section 3). Nevertheless, they can serve valuable support-
ing roles (Kambhampati et al. 2024). Our work extends this
view showing how LLMs can be effectively integrated into



the planning process – specifically for explanations and nat-
ural language interaction – while delegating the core com-
putational planning tasks to specialized algorithms designed
for that purpose.

To fully leverage these conversational capabilities of
LLMs in planning systems, we need to understand the dif-
ferent modes of interaction they can support. We distinguish
between two types of interactivity: across-step interactivity
to refer to the inherent interactivity of explanations in
iterative planning systems (see Section 4), and intra-step
interactivity to refer to the interactivity of explanations in a
single planning iteration step. LLMs, with their conversa-
tional capacities, enable intra-step interactivity as well as
naturally improving over the course of an iterative planning
session, enhancing across-step interactivity.

Our main contributions are the following:

• we formalize a general framework for iterative planning
with explanations (Section 4),

• we instantiate this framework with goal-conflict based
explanations with LLM interfaces (Section 6),

• we present an evaluation tool of this framework that will
be used during a follow-up user study (Section 7).

2 Our Vision
To enable natural interactions between users and planning
systems, we need to accommodate different ways in which
a user might formulate their question in natural language
or express the problem that moved them to ask for an ex-
planation. An LLM excels at handling such varied natural
language inputs. On the other hand, given that LLMs can-
not reliably plan, we need to access a formal planner that
requires a logically explicit input in a fixed format, which
we cannot expect a lay person to provide. To accommo-
date both of these desiderata, we need a method for trans-
lating between varied natural language inputs and formal
queries to the planning system. Our proposal is to introduce
a new framework for interactive planning with explanations:
a multi-agent architecture that uses LLMs as specialized
translators. These translators mediate between natural lan-
guage conversations and the formal representations required
by the planning system. The use of prompt-based techniques
makes it possible to adapt to new domains with minimal ef-
fort, and our framework is agnostic with respect to particular
planning and explanation frameworks. We illustrate our ap-
proach in the following sections with oversubscription plan-
ning with a logistics use case and simple deductively valid
explanations.

Our iterative explanation framework (Figure 1), described
in detail in Section 4, leverages these LLMs in three distinct
roles: first as a translator of questions that the user may have
for the system; second as a translator of questions’ topic for
the explanation framework; third as an explanation transla-
tor. As we mentioned in the introduction section, a pragmat-
ically suitable explanation should resolve a conceptual prob-
lem of the explainee, which is typically linguistically intro-
duced by certain kinds of questions. These questions will

determine the form of the explanation; answers to why ques-
tions differ from answers to a what-if question; e.g., “Why
can’t I deliver package P1?” versus “What if the truck has
20 liters more fuel?”. However, the type of question by itself
does not suffice to provide an explanation; we also need to
specify the topic that the explanation must address. For ex-
ample, a question like “Why can’t I deliver package P1?”
has a different answer from “Why can’t I visit the coffee
shop?”. The question and question-topic translators trans-
late a natural language question into a formal specification
to which the planner can respond with a formal explana-
tion. The explanation translator takes the formal explana-
tion of the planner back into what linguists call a natural
language dialogue move or sequence of moves in the con-
versation with the user. We say sequence of dialogue moves,
because in an interactive system the explanation may extend
over several clauses, even over several different interactions
with the user.

Having flexible translators on top of a formal explana-
tion framework not only allows a more natural interface for
an interaction that could still exist differently, e.g. using a
template-based translation. It is also motivated by new fea-
tures like explanation selection or summarization, which has
been shown to be central in humans explanations (Miller
2019).

While the translation features of the proposed framework
within each step of the iterative planning process are our
main topic here, in-context learning capabilities of LLMs
should improve interactions between users and the formal
planner over the planning iterations by providing a much
more natural conversational interface.

3 Background
3.1 Large Language Models
Large Language Models (LLMs) are neural networks based
on the transformer architecture (Vaswani et al. 2017) that
have been pre-trained on vast amounts of text data. These
models process text as sequences of tokens and use self-
attention mechanisms to capture relationships between dif-
ferent parts of the input. Through their pre-training, LLMs
have acquired capabilities in various natural language tasks,
including text generation, translation, summarization and
understanding complex instructions. Such models are typi-
cally referred to as Foundation Models (Touvron et al. 2023;
Bommasani et al. 2021) when it is possible to access their
parameters to specialize them to a specific purpose.

LLMs can be adapted in two main ways: fine-tuning,
which involves additional training on specific tasks, or
prompting, which uses carefully crafted input text to guide
the model’s behavior. The latter approach, called in-context
learning (Brown et al. 2020), has been widely adopted since
it allows users to adapt LLM behavior without parameter
modifications, often requiring fewer than 10 examples to
achieve strong performance across many tasks.

While LLMs excel at natural language understanding and
generation, they face limitations in tasks requiring precise
logical reasoning (Bhar and Asher 2024; Asher et al. 2023;
Mirzadeh et al. 2024; Kambhampati 2024). In addition, us-



ing communication complexity (Kushilevitz 1997), (San-
ford, Hsu, and Telgarsky 2024; Peng, Narayanan, and Pa-
padimitriou 2024) analyze the computational powers of the
attention calculation and show that there are severe limita-
tions in their ability to compose functions. This is directly
relevant for deterministic planning, according to which ac-
tions are understood as functions that take an input state
and output a transformed one. Such results make LLMs bet-
ter suited for tasks involving natural language understand-
ing, generation and translation rather than direct problem-
solving in domains like automated planning.

Multi-Agent LLM Approaches Multi-agent LLM ap-
proaches involve multiple large language models working
collaboratively to solve complex tasks (Guo et al. 2024).
These systems typically leverage individual LLM strengths
by assigning specific roles to each agent, allowing for spe-
cialization and improved performance through in-context
learning tailored to specific functions.

While a single LLM could theoretically be fine-tuned
for complex planning tasks, this faces key challenges: in-
sufficient task-specific training data and limited generaliza-
tion beyond the training distribution. Even approaches using
complex in-context learning like chain-of-thought prompt-
ing can be unreliable for multi-task scenarios.

To address these limitations, we propose decomposing
complex tasks into specialized subtasks handled by differ-
ent LLM agents working in concert. This architecture lever-
ages LLMs’ natural strengths in language understanding and
translation while mitigating their weaknesses in complex
reasoning tasks.

3.2 Planning Formalism
A lifted planning task is a tuple τ = ⟨P,O,A, I, G⟩ where
P is a finite set of first-order predicates and O a set of ob-
jects. P is a ground predicate or atom if all variables have
been replaced by objects. The goals G is a set of atoms. A
state is a set of atoms. I is the initial state. Each action
schema A ∈ A has a list XA of parameter variables and a
precondition preA, an add list addA and a delete list delA
which are sets of predicates from P where all variables are
replaced by an element in XA ∪ O. We obtain a (ground)
action a from an action schema A by replacing all variables
XA in preA, addA, and delA with an object from O. A ac-
tion a is applicable in a state s if prea ⊆ s and A(s) de-
notes the set of all applicable actions in s. Applying action
a in state s, results in the state sJaK = (s \ dela) ∪ adda.
The state resulting from an iteratively applicable sequence
of actions π=⟨a1, . . . , an⟩ is denoted by sJπK. A plan is an
action sequence π where G ⊆ IJπK. A task τ is solvable if
a plan exists. By Π(τ) we denote the set of all plans of task
τ and by τ(G′) we denote the task τ ′=⟨P,O,A, I, G′⟩

In the following we consider a setting similar to over-
subscription planning (Smith 2004; Domshlak and Mirkis
2015), where not all the goals can be satisfied, due for ex-
ample to insufficient resources. But instead of finding a sub-
set of goals that maximize a utility, we are interested in con-
flicts between a set of reference goalsGref. For a task τ these
conflicts and possible resolutions are given by minimal un-

solvable subsets (MUS) Eifler et al. (2020a) and minimal
correction sets (MCS) respectively. A set of goals C ⊆ Gref

is a MUS if τ(C) is unsolvable but for all G ⊂ C, τ(G) is
solvable. A set of goals R ⊆ G is a MCS if τ(Gref \ R)
is solvable but for all G ⊂ R, τ(Gref \ G) is unsolvable.
By GMUS(τ,Gref) and GMCS(τ,Gref) we denote the set of all
MUS and MCS for task τ with respect to the reference goals
Gref. Both sets can be exponentially large. The following re-
lation holds between MUS and MCS over the same set of
goals G: GMCS(τ,G) = HIT(GMUS(τ,G)), where HIT(S) is
the set of all minimal hitting sets of the sets in S. For al-
gorithms to compute GMUS(τ,G) we refer to (Eifler et al.
2020a,b).

Temporal Goals By using a compilation approach
(Edelkamp 2006; Baier and McIlraith 2006; De Giacomo,
De Masellis, and Montali 2014) for temporal properties de-
fined in finite linear temporal logic (LTLf), it is possible to
not only reason about the conflicts of goals facts but over
properties of plans (Eifler et al. 2020b). In the following
we assume that all goals are defined in LTLf over atoms.
LTLf formulas are interpreted over a finite sequence of states
(trace) σ = s0s1 · · · sn. We denote si · · · sn by σi. Given a
trace σ and a LTLf formula ϕ we say σ |= ϕ iff:

• σi |= final iff i = n

• σi |= true and σi ⊭ false

• σi |= φ where φ is an atom iff φ ∈ si
• σi |= ¬φ iff σi ⊭ φ
• σi |= ϕ ∧ ψ iff σi |= ϕ and σi |= ψ

• σi |= ⃝ϕ iff i < n and σi+1 |= ϕ

• σi |= ϕ U ψ iff ∃j : i ≤ j ≤ n : σi |= ψ and
∀k : i ≤ k < j : σk |= ϕ

In addition, the following standard temporal operators are
used: eventually ♢ϕ := true U ϕ and always □ϕ := ¬♢¬ϕ.
We refer to the set of all well-formed LTLf formulas of task
τ as L(τ). An action sequence π satisfies LTLf formula ϕ in
state s, iff ϕ holds in the state sequence σ(π, s) that results
from executing π in s, i.e. iff σ(π, s) |= ϕ. A task τ(G)
with temporal goals G is solvable if there exists an action
sequence π such that for all ϕ ∈ G : σ(π, I) |= ϕ.

4 Iterative Planning with Explanations
Iterative planning is based on the idea formalized by (Smith
2004) that in many real-world scenarios it is not purposeful
to generate just one plan. Given conflicting objectives and
goals and users who have not yet fully formed their pref-
erences, an iterative exploration of possible plans is more
suitable. In this framework explanations are crucial, espe-
cially those that help the user to understand the dependen-
cies between the objectives, goals and preferences. Next we
define a generic framework for iterative planning with expla-
nations, focusing on the interaction points with the users. In
the next section we will provide a concrete implementation
of the explanatory framework.

In iterative planning, the process for determining a final
plan is divided into individual iteration steps. Each step δi
represents one snapshot of the user’s exploration of the plan



space, defined by a set of reference goals Gref
i , a set of en-

forced goals Genf
i , and a sample plan πi satisfying Genf

i :
Definition 4.1 (Iteration Step). Given a planning task τ ,
an iteration step is a tuple δ = ⟨Gref, Genf, π⟩, where
Gref is a set of (temporal) goals for τ , Genf ⊆ Gref, and
π ∈ Π(τ(Genf)) if τ(Genf) is solvable and π = ϵ otherwise.

As depicted on the left in Figure 2, based on the sample
plan πi, the user defines the set of reference goalsGref

i+1 con-
sidered in the next step. These reference goals represent the
objects, goals and preferences that the user is currently in-
terested in. Finally, the user must select a subset of goals
Genf

i+1 ⊆ Gref
i+1 that should be satisfied by the sample plan

πi+1 in the next iteration.
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Figure 2: Intra-step and across-steps user interaction via
translators.

The reference goals must be defined in a language the sys-
tem understands, here we are using LTLf. However, this lan-
guage is not suitable for a lay person as an input language.
Thus, we require a goal translator.
Definition 4.2 (Goal Translator). Given a task τ with well-
formed temporal goals L(τ), a goal translator is a function
TG : NL 7→ L(τ) ∪ ϵ, that maps a natural language input to
a goal ϕ ∈ L(τ) and to ϵ if the natural language description
does not describe a goal represented by any formula in L(τ).

The task of translating natural language to LTL or LTLf
has been explored in different fields with different ap-
proaches (Brunello, Montanari, and Reynolds 2019). More
recently, approaches based on LLMs that use prompting
have been used to implement tools such as NL2LTL (Fug-
gitti and Chakraborti 2023) a template-based classifier,
Lang2LTL (Liu et al. 2022) which works without templates
and only provides the available literals to the LLM and
nl2spec (Cosler et al. 2023) which addresses sub-formulas
iteratively to counteract ambiguities.

A more advanced goal translator could also include a
feedback loop with the user to recover from misunderstand-
ings or to notify the user that a very similar property is al-
ready part of the reference goals. For such features the trans-
lator T C

G needs to depend on the interaction context C reflect-
ing the previous interaction with the translator:

Definition 4.3 (Interaction Context). The interaction con-
text for translator T is a sequence C(T ) = ι0ι1 · · · ιn of in-
teractions ι = ⟨δ, INP, T (INP)⟩, where each interaction ι is
associated with an iteration step δ and contains the translator
input INP and the translation result T (INP).

To facilitate the decision of which goals to enforce in the
next iteration, explanations can be provided. Those explana-
tions can address different objectives such as clarifications
about the model (Sreedharan, Chakraborti, and Kambham-
pati 2021), identifying the trade-offs between plan quality
measures (Krarup et al. 2024) or a better understanding of
the dependencies between the goals (Eifler et al. 2020a).
Our implementation of such a framework is described in the
next section. Explanations are provided as answers to spe-
cific user questions. Note that depending on whether the en-
forced goals Genf

i are satisfiable and therefore a sample plan
πi exists or whether the enforced goals are unsolvable, the
user’s questions will vary. In the former case, the question
may relate to how the sample plan solves the task whereas
in the latter, the user is more interested in why Genf

i is not
satisfiable. Formally we define a question as follows.

Definition 4.4 (Question). Given a task τ and a set of ques-
tion types MQ, a question is a tuple κ = ⟨µQ, args⟩ where
µQ ∈ MQ is the question type and args ⊆ P(L(τ)) are the
question arguments.

The question types MQ depend on the explanation frame-
work used. In the Section 5 we introduce the question types
our explanation framework supports. Until then an example
is the question type S-why-not, i. e. “Why is g not sat-
isfied by plan π”, which requires one argument g signifying
some goal. Roughly, each question word in natural language,
e. g. who, what, why, how maps to a different type of ques-
tion, but other types of questions can be formed from these
elements and boolean operators – e. g. “What if p?”, “Why
p and ¬q?”.

This is the second interaction point with the user and the
framework. Thus, we again require a translator to allow the
users to ask their question in natural language, which is then
translated to a question format which can be processed by
the explanation framework:

Definition 4.5 (Question Translator). Given a task τ , and a
set of question types MQ, a question translator is a func-
tion TQ : NL 7→ (MQ × P(L(τ))) ∪ ϵ, that maps a natural
language expression to a question type and its parameters
and to ϵ if no matching question type exists.

A context-dependent question translator T C
Q with access

to the previously asked questions enables follow-up ques-
tions with implicit references. For example, for the questions
“Why don’t you deliver package P0?” or “Can you enforce
it?’, the delivery location or even the entire question argu-
ment depend on the context.

The explanation framework computes a set of formal
explanations E(κ) based on the translated question κ =
⟨µQ, args⟩ and all additional required data, for example the
planning task τ and the current iteration step δi.

For now, we do not place any restrictions on the exact
format or language of an explanation E ∈ E(κ), and will



simply refer to the language as LX . However, we assume
that each explanation E ∈ E(κ) is sufficient in itself to an-
swer the question. Thus, E(κ) can be regarded as a selection
of possible explanations.

These explanations must be communicated to the user,
and thus we again need a translator function.

Definition 4.6 (Explanation Translator). An explanation
translator is a function TE : P(LX) 7→ NL, that maps a
set of formal explanations to a natural language explanation.

This is a simple version of an explanation translator that
does not offer a user or context dependent translation. How-
ever, the explanation translator is crucial for the usefulness
of the explanation and the acceptance and trust of the user.
User-dependent translation is important to customize the vo-
cabulary to the user and to provide an answer with the ex-
pected level of detail. Incorporating the interaction-context
can have several benefits, from the possibility to ask follow-
up questions, which naturally increases the interactivity, to
the inclusion of previous interactions into the selection and
summarization of the explanations. Thus, in the following
we discuss possible extensions of a context-dependent ex-
planation translator T C

E .

Explanation Vocabulary A desirable feature is to provide
natural language explanations that correspond to the vocab-
ulary used by the user. One user might describe the planning
problem, goals and frame their questions differently from
another user. Vasileiou and Yeoh (2023) achieve such per-
sonalized explanations in terms of abstraction level and vo-
cabulary by relying on a predefined user vocabulary. While
we cannot address this issue in its full generality, a context
dependent translator can take into account the natural lan-
guage questions and descriptions of the references goals in
addition to the previous queries. This provides a reference
to the user’s vocabulary for the given domain. Since the ref-
erence goals Gref

i reflect the properties of the plans in which
the user is currently interested, it makes sense to provide ex-
planations based on these properties. This also leads to ex-
planations at an appropriate level of abstraction for the user.

Selecting Explanations The explanation framework can
provide a selection of explanations, each of which answers
the question κ on its own. However, some causes or prop-
erties may not be as relevant as others or may not fit into
the interaction context because, for example, they relate to
a completely different topic than what was previously dis-
cussed. It can therefore be advantageous to use the explana-
tions Ê ⊆ E(κ) that best match the user’s expectations and
the interaction flow. These selection criteria are in line with
the insight from social science (Miller 2019) that humans
select small relevant explanations given the context.

Often simply the size of the explanations is chosen as
selection criteria (Chakraborti et al. 2017). The most rele-
vant explanations are referred to as preferred explanations
by (Junker 2004). Users are asked in an upstream or in-
terleaved process to provide some sort of preference rank-
ing over the properties that will later on be used in select-
ing or computing explanations. This approach is suitable if
the preferences are already known to the user and do not

change drastically during the iterative planning process. It
would however be better if the explanation translator could
extract the users’ preferences from the interaction context,
to automatically select the best suited explanations.

Summarizing Explanations Instead of selecting a small
explanation, it may be preferable to convey multiple expla-
nations offered by the explanation framework. However, this
approach can result in an overly lengthy explanation if the
natural language translation is too literal and repetitive. A
summary of the explanations is therefore desirable in order
to convey a common reason more compactly.

Selecting the correct abstraction level for the explanations
(Sreedharan et al. 2019) also leads to a summarization in
a sense of leaving out not required or known details. The
aim of summarizing explanations is in line with how humans
provide explanations (Miller 2019): conveying only relevant
information as effectively as possible in the given context.

In the following we will consider two options for sum-
marization: lossless and lossy summarization. With lossless
summarization, all information is retained, and only an at-
tempt is made to transmit it efficiently. With lossy summa-
rization, information is discarded to result in smaller expla-
nations. This can lead to incomplete or even incorrect expla-
nations that no longer answer the user’s question. Our aim is
therefore to only discard information that does not affect the
correctness.

As for the explanation selection, the user questions can
provide an indication of the level of detail expected of the
explanation. Generally, a very detailed question calls for a
detailed answer. Of course, there are exceptions to this rule,
e.g. if there is a very simple reason that the user was not
aware of, then the translation should not overcomplicate it.
Also, the interaction context can be used to enable or facili-
tate the summarization by referring to previously addressed
questions or explanations.

Although both ultimately lead to a smaller natural lan-
guage explanation, there is a clear distinction between selec-
tion and summarization. Selection attempts to decide which
explanations are relevant for the user, possibly based on pre-
vious interactions, while summarization is about efficiently
conveying a given number of explanations.

5 Goal Conflict Explanations
In the following, we extend the explanation framework by
(Eifler et al. 2020a,b) to address a larger number of ques-
tion types, allowing a richer user interaction. The questions
have been collected during a user study conducted at Airbus
with the end users of explainable planning systems (Moran-
dini et al. 2024). All answers of the framework EFCC are
based on either the minimal Conflicts (MUS) or minimal
Corrections (MCS) of the reference goals Gref and the ar-
guments of the question. In the following definitions we as-
sume the user asks questions only about goals already in-
cluded in Gref. If this is not the case then they can be simply
added to Gref before calling the MUS or MCS computation.
We list all supported question types and the corresponding
formal explanations. To clarify the meaning of the question
and answer we include one possible natural language ver-



sion of both question and answer. As an input we require
the task τ , the iteration step δ = ⟨Gref, Genf, π⟩ and the
question κ = ⟨µQ, args⟩ with question type µQ and argu-
ments args. The produced explanations E(κ) are all subsets
of Gref, which means the formal language of an explanation
is LX = P(L(τ)).

If τ(Genf) is unsolvable we support the following two
question types:

US-why: “Why is the task unsolvable?”:

E(⟨US-why, ∅⟩) = GMUS(τ,Genf)

• “The task is unsolvable because it is not possible to sat-
isfy any of the conflicts in E(⟨US-why, ∅⟩).”

US-how: “How can I make the task solvable?”

E(⟨US-how, ∅⟩) = GMCS(τ,Genf)

• “To make the task solvable you have to forego one of the
goal sets in E(⟨US-how, ∅⟩).”

If τ(Genf) is solvable, we support question types referring to
goals not satisfied by the sample plan π. ByGtrue(π) = {ϕ ∈
Gref | σ(π, I) |= ϕ} we denote the goals satisfied by π, and
by Gfalse(π) = Gref \ Gtrue(π) the goals not satisfied by π.
For all the following question types, the arguments must not
be satisfied by the current plan, args ⊆ Gfalse(π).

The answers to the question type µQ ∈
{S-why-not,S-what-if,S-can} are based on
the same information, however the answers are phrased
differently.

E(⟨µQ, args⟩) = {C \ args |
C ∈ GMUS(τ,Gref), C ⊆ Gtrue(π) ∪ args}

S-why-not: “Why are args not satisfied?”

• E(⟨S-why-note, args⟩) = ∅: “args can be satisfied
without foregoing any of the already satisfied goals.”

• ∅ ∈ E(⟨S-why-not, args⟩): “The goals in args cannot
be satisfied together.”

• otherwise: “There is a conflict between args and all the
goal subsets in E(⟨S-why-not, args⟩).”

S-what-if: “What happens if we enforce args?”

• E(⟨S-what-if, args⟩) = ∅: “args can be satisfied
without foregoing any goal satisfied by the plan.”

• ∅ ∈ E(⟨S-what-if, args⟩): “Then the problem would
be unsolvable.”

• otherwise: “You could no longer satisfy any of the goal
sets in E(⟨S-what-if, args⟩).”

In the yes/no question type S-can, the intention that none
of the currently satisfied goals should be given up is im-
plicit. This interpretation is based on the sample responses
of the human planners who did not consider the option of
foregoing any satisfied goals in Gtrue(π).

S-can: “Can args be satisfied?”

• E(⟨S-can, args⟩) = ∅: “args can be satisfied.”
• otherwise: “It is not possible.”

S-how: “How can args be satisfied?”

E(⟨S-how, args⟩) = {C \Gfalse(π) |
C ∈ GMCS(τ,Gref), C ∩ args = ∅}

• ∅ ∈ E(⟨S-how, args⟩): “args can be satisfied without
foregoing any goals satisfied by the plan.

• E(⟨S-how, args⟩) = ∅: “It is not possible.”
• otherwise: “You have to forego one of the goal sets in
E(⟨S-how, args⟩).”

Both the number of MUS and MCS can be exponential in the
number of goals, but for all question types µQ ∈ {US-why,
US-how,S-why-not,S-what-if,S-can} = MQ one
goal subset E ∈ E(⟨µQ, args⟩) is sufficient to answer the
question. However, some conflicts may be more relevant, or
it may be easier to forego some corrections. Therefore, a
selection of Ê ⊆ E(⟨µQ, args⟩) and a summarization of the
explanations Ê is desirable.

6 Implementing Translators with LLMs
In this section, we describe our implementation of the in-
teractive explanation framework of Figure 1 using goal-
conflicts explanations (Section 5).

Each translator, as well as the planner and explainer ser-
vices (which we now consider black-boxes that generate
plans and explanations when provided a correct request) are
agents that communicate with each other to solve the com-
plex task of exploring the plan-space to find a satisfying plan
with the help of a human agent via a chat interface.

6.1 Design Choices
The goal, question and explanation translator are imple-
mented using LLMs. Several design choices are possible
such as using a single LLM to act as all three translators or
several LLMs, namely one for each translator. In this work
we explore the second option where each task is handled by
a different model, but still instantiated from the same base
model (we use gpt-4o-2024-11-20, OpenAI’s current
flagship model). This allows us to completely separate the
instructions for each LLM-based agent and manage their
contexts as described at the end of this section.

We use OpenAI Assistants1 to implement the translators.
This API allows us to easily manage agents and to keep track
of the context of the conversation of each translator sepa-
rately. Relevant context that comes from other agents (trans-
lators, the planning system and explanation framework) is
provided to each translator, as described in Subsection 6.3.

6.2 Communication Protocol
When users write a message in the chat interface (Figure 5),
it is passed sequentially to the other agents in the order de-
scribed in Figure 1. An exception is made when the question
topic is about a goal already used in a previous planning

1https://platform.openai.com/docs/assistants/overview



iteration step (i.e, in Gref
all=

⋃
Gref

i ): in this case, the goal
translator is bypassed and the (already known) LTLf formula
corresponding to the goal is retrieved deterministically.

Each LLM agent receives inputs as a structured string
containing distinct sections corresponding to different input
components (see Table 1 and prompts in Appendix A). The
output is also a string and can be structured in different parts:
the question translator TQ classifies the question type µQ,
and also outputs a goal description args, and a binary in-
dicator of whether the goal has been used before. The goal
translator TG produces both the LTLf formula and a concise
natural language description of the goal for UI reference. To
ensure seamless interaction between other tool components
and translators, these outputs must follow a specific format.
While robust methods exist for enforcing output structures
(Liu et al. 2024), we opted for a straightforward approach
given our consistent and simple output requirements: out-
puts fields are delimited by semicolons (e.g., "S-why-not
; C never on table ; ALREADY-USED" for the
question translator). While this simple delimiter-based ap-
proach served our immediate needs, developing a more ro-
bust solution remains as future work.

The iteration step and the planning task are automatically
provided to the translators, so that the translators have ac-
cess to the necessary information to perform their tasks. For
example, the question translator TQ needs to know if the cur-
rent task is solvable, as well as the lists of goals currently en-
forced (Genf) or not (Gref \Genf), and for the latter, whether
they are satisfied (in Gtrue) or unsatisfied (in Gfalse) in the
current planning iteration.

Table 1: Input, Provider, and Output structure of each trans-
lator. τ is the planning task ⟨P,O,A, I, G⟩, δ is the cur-
rent iteration step ⟨Gref, Genf, π⟩, Gref

all is the set of reference
goals

⋃
Gref

i across all iteration steps ∆ =
⋃
δi.

Component Input Provider Output

Goal
Translator

(TG)

NL Goal User/TQ
ϕ
Goal Name

P τ
O τ
Gref

all δ

Question
Translator

(TQ)

NL Question User

µQ

args
Used

Genf δ
Gtrue(π) δ
Gfalse(π) δ
Gref

all ∆
Solvability δ

Explanation
Translator

(TE )

NL Question User

NL Expl.

µQ TQ
args TQ
E(⟨µQ, args⟩) EFCC
P τ
O τ
Genf δ
Gtrue(π) δ
Gfalse(π) δ
Gref

all ∆

6.3 Context Management
By using the inputs and outputs specification from Table 1,
we can develop a context-independent version of our im-
plementation where translators have sufficient information
to provide their translations without having access to previ-
ous user interactions. Here, we describe a context-dependent
version that leverages context memory of LLMs to improve
intra-step interactivity, motivated in Section 4.

The translators maintain their context across iteration
steps, enabling explanations to build upon previous interac-
tions. Translators only have access to their own previous in-
puts and outputs, but are provided directly in their input with
other translators’ relevant inputs and outputs (for example,
the exact natural language question asked by the user is rele-
vant to the explanation translator). Thus, our implementation
supports across-step interactivity.

6.4 Goal Translation
Translating natural language to LTLf formulas is a non-
trivial task with many possible ambiguities. We imple-
mented a similar translator as what Liu et al. (2022) call
End-to-End Approach. We do not restrict formulas to match
a set of predefined templates like Fuggitti and Chakraborti
(2023) do. This has the advantage of potentially being able
to translate more complex goals and is easier to implement
but can be unreliable. Future work could include a more so-
phisticated approach to goal translation.

6.5 Explanation Selection and Summarization
We expect the explanation translator T C

E to leverage prompt
examples to understand how it is supposed to select and/or
summarize explanations. It is thus a domain-specific de-
sign choice to provide examples of the expected selection/-
summarization strategy. For the current implementation, we
stick to simple examples that do not require summarization,
but the example shown in the prompt Appendix A.4 shows
how the translator can perform selection. Future work in-
cludes ensuring users can actively request summarization or
selection in follow-up requests.

7 Evaluation Tool
We develop a web-based platform (built on top of previous
work (Eifler et al. 2022) with an improved UI and the ad-
dition of LLM features) implementing our framework. The
planning service is based on Fast Downward (Helmert 2006)
and the explanations service computes the MUS and MCS
using the algorithms introduced in (Eifler et al. 2020b) also
implemented in Fast Downward. We will release our code
publicly upon acceptance. We demonstrate the features us-
ing a reasonably sized instance of a transportation domain.

The tool provides an overview of the iteration steps (left
Figure 3) and a detailed view for each step with access to
the sample plan and the explanations (Figure 5). During the
inspection of this information users can create the next iter-
ation step in a sidebar by choosing enforced goals Genf and
soft goals Gref \Genf (right Figure 3).

Goals can be created using predefined templates or a chat
interface with T C

G, as illustrated in Figure 4. The translated



Figure 3: Screenshot of the project view where users can
navigate between planning iteration steps and create new
ones using the panel on the right side.

LTLf formulas shown in this figure are intended to be shown
exclusively to expert users. The example illustrated a multi-
step interaction with T C

G to refine the goal which is only pos-
sible with a context-dependent translator.

Figure 4: Screenshot of the goal creation using templates
baseline (left) and LLM-based goal translator (right).

Figure 5 compares the template and the LLM based gener-
ation of natural language explanations. When using the tem-
plates the user is restricted to the questions in the bottom of
the chat window and the answer simply lists the conflicts. In
the LLM-based chat, users can freely formulate questions.
The response goes beyond listing conflicts; it attempts to an-
swer the user’s question by providing coherent text that can
perform selection or summarization, refer to previous inter-
actions, and adapt to the user’s vocabulary.

8 Conclusion and Future Work
In this paper we presented a high-level architecture that pro-
vides a framework for producing interactive explanations in
the context of iterative planning. We motivated our frame-
work by noting that interactive explanations require a fluid

Figure 5: Screenshot of the explanation chat for a solvable it-
eration step using templates-based baseline (left) and LLM-
based multi-agent interface.

and flexible natural language interface, which is something
that LLMs can effectively provide. On the other hand, given
that prior research has shown that LLMs on their own are
not ideal planners, we need a formal planning system that
can guarantee the correctness of the explanations the system
proposes. Our framework thus uses a multi agent LLM, in
which agents handle translations from a user’s natural lan-
guage requests to formal queries to system and back from
formal explanations to an explanation in natural language.
We illustrated our framework with goal-conflict explana-
tions in planning and we provided an implementation de-
signed to be accessible to non-experts, which will serve as a
basis for evaluating our proposed framework.

Future work includes developing more robust and flexible
communication protocols between agents, supporting feed-
back and clarification at each step of the process, and miti-
gating LLMs potential limitations like hallucinations.

We are also investigating the extension of this approach
to other explanations frameworks. This includes MUS and
MUC based approaches used in CP (Povéda et al. 2024;
Gamba, Bogaerts, and Guns 2023) but also other ap-
proaches used in planning (Krarup et al. 2021; Sreedharan,
Chakraborti, and Kambhampati 2021). In addition to the
classification of the question type, this adds the challenge
of deciding which explanation approach is most suitable to
answer the question.
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A LLM Agent Prompts

Each agent has an associated instruction prompt that pre-
cedes a few (3-5) domain-specific examples of the task. In
this section, we will only show the instruction prompt and
one example from a transport domain. The full prompts in-
cluding all provided examples will be made available in the
code repository associated with this paper.

A.1 System Prompt

This prompt is used as a prefix for each LLM agent below.

System Prompt

You are an AI assistant that faithfully answers user
questions using the help of multiple modules. Care-
fully follow the instructions without any deviation
and never add any comments of your own.



A.2 Question Translator

Question Translator Prompt

You are an AI assistant that faithfully answers user
questions using the help of multiple modules. Care-
fully follow the instructions without any deviation
and never add any comments of your own. You will
be given a user question that is semantically equiva-
lent to one of these questions :
US-WHY: ”Why is the task unsolvable?” ;
US-HOW: ”How can I make the task solvable?” ;
S-WHY-NOT: ”Why are Q not satisfied?” ;
S-WHAT-IF: ”What happens if we enforce Q?”;
S-CAN: ”Can Q be satisfied?” ;
S-CAN: ”How can Q be satisfied?”/”How can I im-
prove the plan with respect to o?” ;
Any question you will be given can be mapped to
one of these questions. Return the question type and
the goal or plan property the user is refering to, with-
out any additional comments of any kind. First, try to
see if the question is about a property that is already
existing. If it is, return ALREADY-USED as the last
part of your answer and use the exact same name.
If it is not, invent a name for this property and use
the encoding NEVER-USED. If the question is not
about a specific property but about the unsolvability
of the task, return NOGOAL as the second part of
your answer and ALREADY-USED as the last
Examples :
Question: What happens if we enforce using the
same truck for p1 and p2?
Enforced Goals: [p0 to bank before p1 to cafe, p0 to
cafe]
Satisfied Goals: [p2 to smith]
Unsatisfied Goals: [Never different trucks for p1 and
p2]
Existing Plan Properties: [p0 to bank before p1 to
cafe, p0 to cafe, p2 to smith, Never different trucks
for p1 and p2]
Solvable: True
Return: S-WHAT-IF ; Never different trucks for p1
and p2 ; ALREADY-USED
End of the examples.
[Additional examples omitted for brevity]

A.3 Goal Translator

Goal Translator Prompt

You are an AI assistant that faithfully answers user
questions using the help of multiple modules. Care-
fully follow the instructions without any deviation
and never add any comments of your own.You will
be given a goal and a list of allowed predicates and
objects from a planning problem and domain.
Return the LTLf formula corresponding to the goal,
followed by a short summary of the goal in natural
language (the fewer words the better) that will be
used to refer to it. The LTLf formula must be well-
formed and must only contain the predicates and ob-
jects given to you. Users might reference previous
messages they sent or implicit objects. You should
infer that when possible based on the provided infor-
mation and previous messages. If it is not possible to
express the property in LTL using the provided ob-
jects and predicates, return UNSUPPORTED ; Un-
supported property.
Examples :
Goal: make sure p1 visits the packingstation at some
point
Predicates: [(at ?o - object ?l - location), (in ?p -
package ?t - truck), (empty ?t - truck), (fuel ?truck
- truck ?level - fuellevel)]
Objects: [postoffice, supermarket, taylor, cafe, bank,
lopez, jones, smith, packingstation, t1, t2, p0, p1, p2,
p3, p4]
Existing Plan Properties: [p0 to cafe, p2 to smith, t1
always above level5]
Return: F at(p1,packingstation) ; p1 visits pack-
ingstation
End of the examples.
[Additional examples omitted for brevity]



A.4 Explanation Translator
Explanation Translator Prompt

You are an AI assistant that faithfully answers user
questions using the help of multiple modules. Care-
fully follow the instructions without any deviation
and never add any comments of your own.You will
be given a question, a list of achieved and un-
achieved goals, and a conflict list with each con-
flict presented as a Minimum Unsolvable Goal Sub-
set (MUGS) except if the original question is a How
question. In that case, you are provided with list of
resolutions, presented using Minimal Goal Correc-
tion Sets (MGCS).
All goals in a MUGS cannot be achieved in the same
plan, but any strict subset of them can be achieved.
For example the conflict : [a,b,c] means that it is pos-
sible to achieve (a and b) or (a and c) or (b and c) in
the same plan, but not (a and b and c). If provided
with MGCS, each set represent a set of goals it is
sufficient to forgo to make the planning task solv-
able. Choosing any of these and making sure that
none are enforced should be sufficient.
Answer the question using the explanation frame-
work to help users to understand what conflict
causes their problem and what they can do to solve
it. It is crucial to base anwsers on conflicts or res-
olutions, to ensure providing faithful explanations.
Never mention MUGS or MGCS, refer to them as
”conflicts” or ”resolutions” and only use vocabulary
users will understand.
Examples :
Question: Why is p2 to jack unsatisfied?
Question Type: S-WHY-NOT
Question Arguments: p2 to jack
MUGS: [[p0 to bank, p3 to lopez], [p1 same truck as
p2, p1 to smith],[p1 same truck as p2, p3 to lopez]]
MGCS:
Enforced Goals: [p0 to bank, p1 to smith, p1 same
truck as p2]
Satisfied Goals: [p3 to lopez]
Unsatisfied Goals: [p4 to coffee, p2 to jack]
Existing Plan Properties: [p0 to bank, p1 to smith, p2
to jack, p3 to lopez, p4 to coffee, p1 same truck as
p2, Always visit packingstation before supermarket,
Never different trucks for p1 and p2]
Return: The main conflict is that you can’t have p1
and p2 delivered while enforcing using the same
truck for them. If you still choose to deliver p2, you
will have to choose between p0 and p3, and choose
between delivering p3 or using the same truck for p1
and p2.
End of the examples.
[Additional examples omitted for brevity]


