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Abstract

Molecular Representation Learning (MRL) has emerged as a powerful tool for
drug and materials discovery in a variety of tasks such as virtual screening and
inverse design. While there has been a surge of interest in advancing model-
centric techniques, the influence of both data quantity and quality on molecular
representations is not yet clearly understood within this field. In this paper, we delve
into the neural scaling behaviors of MRL from a data-centric viewpoint, examining
four key dimensions: (1) data modalities, (2) dataset splitting, (3) the role of
pre-training, and (4) model capacity. Our empirical studies confirm a consistent
power-law relationship between data volume and MRL performance across these
dimensions. Additionally, through detailed analysis, we identify potential avenues
for improving learning efficiency. To challenge these scaling laws, we adapt seven
popular data pruning strategies to molecular data and benchmark their performance.
Our findings underline the importance of data-centric MRL and highlight possible
directions for future research.

1 Introduction

The research enthusiasm for Molecular Representation Learning (MRL) is steadily increasing,
attributed to its potential in expediting drug and materials discovery processes compared with
conventional in vitro and in vivo experiments [1—4]. Within the context of MRL, the central objective
is to leverage specific featurizations, or modalities, of molecules in order to learn continuous vector
representations. These representations aim to capture comprehensive chemical semantics and exhibit
high expressiveness, thereby effectively addressing various downstream tasks [5—17].

A trend in the field is developing neural architectures and training strategies to improve the ex-
pressiveness of the learned representations. However, the influence of varying data scales on the
performance of MRL under different learning scenarios is yet to be fully understood. To fill this gap,
we draw attention to the following questions: What are the neural scaling behaviors of molecular
representation learning? Do they align with the previous scaling laws such as the power-law, es-
tablished in other domains [18—20]? Beyond common research objects in neural scaling laws such
as the impact of pre-training and model parameter sizes [21, 18, 22], MRL further presents unique
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data-oriented challenges. These include the selection of appropriate modality [23] and issues related
to Out-Of-Distribution (OOD) generalization [24].

To provide a comprehensive understanding of these complexities, we investigate the impact of various
design dimensions on MRL from a data-centric perspective. Specifically, our exploration spans four
core design dimensions: (1) data modalities (molecular featurizations), (2) data splitting, (3) the role
of pre-training, and (4) model capacity. We identify five scientific questions and outline our key
observations as follows. A succinct summary of contribution of this work is present in Figure 1.

(Section 3.1) How does performance scale with data quantities? We conduct extensive experiments
on four large-scale molecular property prediction datasets. These datasets contain a number of classifi-
cation and regression tasks, both in single-task and multi-task settings, focusing on properties ranging
from quantum mechanical properties to macroscopic influence on human body. The experimental
results indicate that the model performance generally follows a power-law relationship with data
quantities. Compared with the neural scaling laws in Natural Language Processing (NLP) and Com-
puter Vision (CV) domains, there is no apparent performance plateau [21] within the range of datasets
we explored, regardless of low-data and high-data regimes, which implies that the performance
improvement with increasing dataset size in MRL is highly predictable.

(Section 3.2) How do different molecular modalities influence scaling laws? Since distinct
molecular featurizations might carry different semantic meanings and their corresponding neural
encoders have different inductive bias, the selection of appropriate modalities (molecular featuriza-
tions) in MRL remains an open question. In our investigation, we specifically choose three commonly
used modalities (2D graphs [6, 8, 24], SMILES strings [25-28], and Morgan fingerprints [23]) and
compare their performance on three classification tasks. We find that different modalities exhibit
distinct learning behaviors in MRL; graphs and fingerprints are identified as the most data-efficient
modalities, exhibiting the largest power-law exponent. In comparison, SMILES strings demonstrate
lower performance improvement with the same data increment.

(Section 3.3) Does pre-training consistently result in positive transfer across all data scales in
MRL? While previous studies tend to argue that molecular pre-training can improve performance on
downstream tasks, these conclusions are often drawn based on evaluations on the entirety of available
datasets [29-33, 30, 34]. Our work further probes into the effects of graph-based pre-training across
varying scales of downstream datasets. The results show that pre-training indeed brings improvements
in low-data regimes. However, the power-law exponent of the performance curve, reflecting the rate
of growth with incremental data sizes, is smaller with pre-training compared to training from scratch.
We suppose that pre-training only delivers stable gains when the downstream dataset is relatively
small—under 40K samples, for instance. As the downstream dataset scales up, this positive gains
diminish and might even revert to a negative transfer in the high-data regime.

(Section 3.4) What influence do dataset splits exert on scaling laws? Out-of-Distribution (OOD)
generalization poses a great challenge in MRL [24]. Given that the training distributions, which
typically encompass known compounds, often differ from the test distributions containing unknown
compounds, this divergence is particularly prevalent in drug discovery. However, the impact of dataset
splitting strategies on neural scaling laws remains largely unknown. To bridge this gap, we study
three splitting strategies: random, imbalanced, and scaffold splitting. These strategies differ primarily
in the degree of overlap between their respective training and test sets. Our empirical findings
indicate that while all three splitting schemes adhere to the scaling laws, the exponent associated
with random splitting is the smallest, suggesting that as the divergence between training and test
distributions increases, the efficiency with which the model utilizes data samples decreases. Such
results accentuate the inherent challenges of MRL in practical scenarios, which face with ubiquitous
problems of distribution shifts.

(Section 3.5) How does the model capacity affect the scaling laws? The model capacity stands as
another crucial factor impacting the performance of MRL models [18, 22] as it significantly influences
the requisite amount of training data. To study the effect of model capacity in MRL, we vary the
parameter size of Graph Isomorphism Networks (GIN) [5], a widely adopted graph neural network
architecture and examine its performance on three classification tasks. We observe that, while model
capacity does affect data utilization efficiency, there is not a clear correlation between the dataset size
and the optimal model capacity required to obtain saturation performance. Unexpectedly, we find
that the optimal model capacity for a task with a smaller training set could be larger than that of a
task with a larger training set, which contradicts our intuition that larger models usually need larger
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Figure 1: Summary of contributions of this work. We conduct a comprehensive data-centric study to
examine the neural scaling laws in molecular representation learning. We explore four dimensions
affecting the data utilization efficiency: (1) data modalities, (2) the role of pre-training, (3) dataset
splitting, and (4) model capacity. Additionally, we study the subset selection problem by adapting
seven data pruning strategies to molecular graphs.

training datasets. It suggests the need for further exploration of the interplay between model capacity
and data scale, rather than applying a one-size-fits-all approach.

(Section 3.6) Can a curated subset from the full dataset yield comparable or even superior
results? In CV and NLP domains, the utility of data pruning has been extensively explored due to the
computational burden imposed by increasingly large models and massive amounts of data [35-37].
In MRL, however, the extend of data redundancy and the potential of pruning strategies to alleviate
computational burden remain largely unexplored. To address this gap, we benchmark seven data
pruning strategies originally proposed for image data and adapt them to molecular graph models
on three classification tasks. The results show that these data pruning methods do not significantly
outperform random selection, which highlights the need for developing data pruning strategies
specifically tailored to molecular data.

Based on our empirical analysis, we identify several factors that can enhance data utilizaiton efficiency
of MRL. These include the utilization of graph and fingerprint modalities as input data, the application
of pre-trained models on small-scale downstream datasets, and the design of data pruning strategies
specifically tailored to molecular data. To the best of our knowledge, our study is the first to approach
MRL from a data-centric perspective. We envision that this work could provide valuable insights that
facilitate future explorations in the field.

2 Experimental Settings

In order to answer the six scientific questions through empirical investigation, we conduct a series of
experiments on the neural scaling behaviors between model performance and varied data quantities.
Specifically, we divide the whole dataset into nine proportional subsets: [1%, 5%, 10%, 20%, 30%,
40%, 60%, 80%, 100%], and for each configuration, we randomly select five seeds and report the
mean performance. Then, we study how each design dimension of interest in MRL models influences
the scaling laws. To demonstrate the trend of neural scaling laws, we employ the least square model
to fit the performance curve.

2.1 Datasets and Tasks

Given the potential issues of over-fitting and spurious correlations that may arise with limited samples,
we focus on relatively large-scale datasets containing more than 40K molecules in MoleculeNet [38].
Also, these datasets should cover both classification and regression tasks, are diverse in task settings
(i.e. single- and multi-task settings), and focus on important biophysics and quantum mechanics
properties. As a result, we choose four datasets ranging from molecular-level properties to macro-
scopic influences on human body for experimental investigation: HIV [39], MUV [40], PCBA [41] and
QM9 [42]. Readers can refer to Appendix B for a more detailed discussion on datasets and tasks.



2.2 Implementation Details

In the following, we briefly introduce the implementation details of our experiments. Note that our
experiments cover multiple dimensions, and thus all experimental settings will remain consistent
except for the design dimension to be studied. Please refer to Appendix A for a detailed introduction
of implementation details.

Modalities. Molecular featurizations translate chemical information of molecules into representations
that can be understood by machine learning algorithms. Each featurization can thus be regarded as a
modality of the molecular data. Here, we consider the following four molecular modalities: (1) 2D
topology graphs model atoms and bonds as nodes and edges respectively, (2) 3D geometric graphs
include coordinates of atoms into their representation to depict how atoms are positioned relative
to each other in 3D space, (3) Morgan fingerprints [23] encode molecules into fixed-length bit
vectors which map certain structures of the molecule within certain radius of molecular bonds, and
(4) SMILES strings [25] represent chemical structures in a linear notation using ASCII characters,
with explicit information about atoms, bonds, rings, connectivity, aromaticity, and stereochemistry.

MRL models. Since our experiments involve four different data modalities, each modality is modeled
with its corresponding encoders.

* For 2D graphs, we utilize the Graph Isomorphism Network (GIN) [5] as the encoder. To ensure the
generalizability of our research findings, we adopt the commonly recognized experimental settings
proposed by Hu et al. [24], with 5 layers, 300 hidden units in each of layer, and 50% dropout ratio.

* For 3D geometries, we employ the widely-used SchNet model [43] as the encoder. We set the
hidden dimension and the number of filters in continuous-filter convolution to 128. The interatomic
distances are measured with 50 radial basis functions, and we stack 6 interaction layers in SchNet.

* For fingerprints, we first use RDKit [44] to generate 1024-bit molecular fingerprints with a radius
R = 2, which is roughly equivalent to the ECFP4 scheme [7]. Given the lack of established en-
coders for fingerprints, we conduct a comparison between two classic encoders, a single-layer MLP
and a single-layer Transformer. Please refer to Appendix C.4 for the detailed results. According
to the experiments, we choose the Transformer model [45] with 8 attention heads for modeling
fingerprints. The bit embedding dimension is set to 64, and the hidden dimension is set to 300.

» For SMILES strings, we employ the same model architecture as the fingerprints to ensure a fair
comparison. The only difference is the dictionary size, which will be discussed in Section 3.2.

Training details. We follow the settings proposed by Hu et al. [24]. The dataset is split randomly.
For classification tasks, we employ an 80%/10%/10% partition for the training, validation, and
test sets, respectively. Meanwhile, for regression tasks, the dataset is split into 110K molecules
for training, 10K for validation, and another 10K for testing. All models are initialized using the
Glorot initialization [46]. The Adam optimizer [47] is employed for training with a batch size of 256.
For classification tasks, the learning rate is set at 0.001 and we opt against using a scheduler. For
regression tasks, we align with the original experimental settings of SchNet, setting the learning rate
to 5 x 10~* and incorporating a cosine annealing scheduler.

Evaluation metrics. For HIV and MUV datasets, performance is measured using the Area Under
the ROC-Curve (ROC-AUC), while report the performance on PCBA in terms of Average Precision
(AP) —higher values in both metrics indicate better performance. When assessing quantum property
predictions, the Mean Absolute Error (MAE) is used as the performance metric, with lower values
indicating better accuracy.

3 Empirical Studies

In this section, we summarize our empirical studies on the aforementioned dimensions of MRL.
Firstly, we show the neural scaling laws between model performance and data quantities. Then, we
demonstrate the impact of four design dimensions of MRL: data modalities, the role of pretraining,
data splits, and model capacity. Lastly, we study data pruning strategies for molecular graphs.
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Figure 2: The general neural scaling laws of molecular representation learning. The first row displays
the relationship between model performance with respect to varied data sizes in linear coordinates
and the second row shows the same on a logarithmic scale.

3.1 General Neural Scaling Laws for Molecular Data

Early studies of both classical learning theory and neural scaling laws [48, 18] show that the test
performance L(n) increases polynomially with the training data size n:

L(n) =46 -n%, (1

where § is the coefficient and « is the exponent of the power law. We start our investigation on whether
MRL also adheres to this power law relationship with the most common setting of graph-based
MRL. Specifically, on the QM9 dataset, we study GINs on 2D graphs for classification tasks and
SchNet on 3D geometric graphs for regression tasks. Figure 2 demonstrates the relationship of model
performance with respect to the data size across all datasets, where the first row displays the curves
in linear coordinates and the second row shows the same on a logarithmic scale.

Observation 1. It can be observed that figures in the second row generally exhibit a linear relationship,
which suggests alignment with the aforementioned power law. Unlike previous findings in the NLP
and CV domains [18], there is no apparent performance plateau within the range of datasets we
explored. This pattern remains consistent in both low- and high-data regimes, which suggests that the
performance of supervised MRL is highly predictable and consistently improves with increasing data
quantity. We note that we observe the same phenomenon consistently when applying other modalities,
as we will show later in Figure 3. Furthermore, we also validate the neural scaling laws by examining
them on a large-scale dataset PCQM4Mv2 [49] from Open Graph Benchmark (OGB) [50], as well as
by employing two advanced 3D GNN encoders PaiNN [51] and SphereNet [52] on QM9. Readers of
interest may refer to Appendix C.2 for detailed results and analysis.

3.2 Scaling Laws with Different Molecular Modalities

The choice of the most appropriate modalities in MRL remains a topic of continuous discussion.
Also, there is a lack of fair comparisons regarding data efficiency across these modalities. In this
section, we compare the learning behaviors of the three modalities: 2D graphs, SMILES strings, and
fingerprints. To ensure a fair comparison, we maintain roughly equivalent parameter sizes across the
modality encoders. Such configurations are selected to maximize the expressiveness of each model.
Specifically, we employ a 5-layer GIN model for the 2D graph modality and a 1-layer transformer
model for both SMILES strings and fingerprints. It is noting that transformers used for SMILES
and fingerprints differ in vocabulary sizes: while the former has a size of 2 for fingerprints due to
the binary nature of fingerprint strings, the latter adopts a more expansive vocabulary size of 7,924
for SMILES, following ChemBERTa [26]. We present the results illustrating model performance
in relation to different data sizes for the three encoders in Figure 3, with anomalous performance
explicitly marked in red.

Observation 2. In general, we observe that different modalities exhibit distinct learning behaviors.
Among the three modalities, the graph modality consistently demonstrates superior data utilization
efficiency across all three tasks, emerging as the most efficient modality for MRL. Fingerprints, char-
acterized with a lower exponent, deliver a slightly lower performance improvement with equivalent
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Figure 3: Neural scaling laws with three encoders: 2D graphs, SMILES strings, and fingerprints.
Anomalous performance is explicitly marked in red.

data increments. SMILES strings, on the contrary, are the least data efficient modalities. On the
MUV dataset, we even notice counter-intuitive performance degradation that breaks the power law 3.
However, it is important to recognize that several studies have underscored the efficacy of language
models pre-trained on large-scale SMILES string datasets, which exhibit remarkable performance in
the downstream tasks [28, 26]. This points towards the superior transferability of the SMILES-based
modality and we will leave this performance gap between pre-trained and those trained from scratch
for future research.

3.3 Influence of Pre-training on the Scaling Laws

Molecular pre-training studies how to leverage unlabeled molecular data to improve the learned
representations [53]. Previous studies have generally suggested that pre-training can induce a positive
transfer to downstream tasks [33, 30, 29]. However, we argue that the existing evaluations rely on
the entirety of available datasets. We hypothesize that when fine-tuning with datasets of varied sizes,
the extent of this positive transfer might fluctuate. Therefore, in this section, we explore whether
pre-training consistently leads to positive transfer with different sizes of fine-tuning datasets.

In the experiments, we focus on the state-of-the-art molecular pre-training model GraphMAE [33],
which involves masking the atom type of partial atoms in the molecules, re-masking the encoded
atom representations from the backbone model, and eventually using a decoder model to reconstruct
the original atom features. The GraphMAE model is first pre-trained on PCQM4Mv2 and then
fine-tuned on three classification tasks. The results in Figure 4 compares the performance curve with
and without pre-training on downstream datasets of varied sizes.

Observation 3. Our empirical results reveal that, while pre-trained models still adhere to a power law
as their downstream data size varies, they differ from models trained from scratch by having a higher
intercept and a lower exponent in the logarithm-scaled plots. This implies that while pre-trained
models benefit from better initializations, they demonstrate reduced data efficiency when fine-tuned
on downstream datasets.

Our findings also indicate that the benefits of pre-training are particularly pronounced when fine-
tuning with smaller datasets and such advantages start to diminish as the size of downstream datasets
increases. This is evidenced by the PCBA dataset, where we observe a crossover in performance at a
data scale of 40K. Beyond this threshold, the performance of pre-trained models starts to fall behind
its non-pretrained counterpart. This behavior suggests the phenomenon of parameter ossification [54]
in pre-trained models, suggesting that pre-training can inadvertently “freeze” the model weights in a

3We confirm that the performance degradation is a common phenomenon rather than an outcome of limited
model capacity by further altering the number of model layers. Readers can refer to Appendix C for more
discussions.
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Figure 4: Comparison of scaling laws with and without pre-training on varied downstream data sizes.

way that limits their adaptability to the fine-tuning distribution, especially in large-data scenarios.
Consequently, we believe the role and implications of pre-training in MRL warrant careful evaluation.

3.4 Influence of Dataset Splits on the Scaling Laws

The practice of dataset splitting in MRL is usually around two methodologies: random and scaffold
splitting [38]. Random splitting ensures that both training and test samples are sourced from the same
distribution, representing a uniform distribution setting. Conversely, scaffold splitting simulates the
Out-Of-Distribution (OOD) scenario, wherein the training and test distributions are entirely distinct,
pushing the boundaries of OOD generalization capabilities of MRL models. However, the realities of
drug discovery often diverge from these two extremes. It is frequent for test compounds to possess
substructures already encountered in the training samples [55]. To address this more realistic situation,
we introduce imbalanced splitting, which generates the training, validation, and test sets based on
scaffolds at first and then moves a fraction of the samples (5% in our experiments) from both test and
validation sets to the training set. This approach serves as a trade-off between random and scaffold
splitting, offering a more realistic reflection of real-world scenarios.

In this section, we still focus on 2D graph modalities and the learning behaviors on these three
splitting methods by changing the scale of downstream datasets are shown in Figure 5. For readers
interested in a deeper exploration, we append additional experiments in Appendix C.3 that analyze
the neural scaling laws of two other modalities fingerprints and SMILES strings.

Observation 4. Our empirical observations validate that regardless of the dataset splitting methods,
model performance conforms to a power law. Note that the performance curve with random splitting
has the highest exponent, which suggests that this uniform setting has a higher data utilization
efficiency compared to the other two OOD settings. We also observe outlier performance in the
imbalanced splitting of the MUYV dataset, where certain data scales (e.g., 80% and 100%) break
the the power laws, which we suspect is due to the examples selected outside the training set could
mislead the model to capture spurious relationship between label and features. Importantly, these
findings underscore the inherent challenges of MRL in real-world scenarios, which often face with
the pervasive issues of distribution shifts.

3.5 Influence of the Model Capacity on the Scaling Laws

This section we study the relationship between model performance and capacity. In our MRL models,
the capacity is largely determined by the number of layers (depth D) and hidden units (width W).
Therefore, we characterize model capacity as D x W, since the parameters of the embedding layer and
output layer are the same across different models and hence can be sidelined from our evaluation. In
the experiments, we focus on 2D topology graphs with GIN as encoders. Due to the inherit drawbacks
of message-passing networks, such as as over-smoothing and over-squashing, we carefully select
four experimental configurations with reasonable increments: [64 x 2,100 x 3,300 x 5,600 x 10].
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Figure 6: Neural scaling laws with the model capacity. We study four configurations of a GIN model
with 128, 300, 1.5K, and 6K parameters respectively.

The performance with these four model configurations across different datasets is summarized in
Figure 6.

Observation 5. The experimental results demonstrate that the relationship between model perfor-
mance and capacity also adheres to the power law However, it is observed that the optimal model
capacity varies across different tasks and that a smaller model could be sufficient to achieve the
optimal performance for some tasks. For example, for HIV and PCBA datasets, the model with a
capacity of 1.5K parameters achieves the best performance. On the contrary, the smallest model with
a capacity of 128 parameters achieves optimal performance on the MUV dataset. An interesting
observation is that, on the PCBA dataset with over 400K data samples, there is significant difference
in power law exponents among different model capacity. The models with lower capacity achieve
saturated performance quickly as the data scales up, whereas this phenomenon is not evident in HIV
and MUYV datasets. In summary, we believe it is important to carefully select the appropriate model
capacity according to the characteristics of datasets and tasks.

3.6 Data Pruning for Molecular Representation Learning

Lastly, we investigate the data pruning strategies in MRL, which identify a representative subset of
the complete dataset. Such strategies have been proved effective to improving training efficiency in



Table 1: Empirical performance of data pruning strategies on eight subsets of the PCBA dataset in
terms of ROC-AUC (%, 7). Results that are significantly higher or lower than random pruning (with
a p-value of less than 5% in the significance test) are highlighted.

Uniform 1% 5% 10% 20% 30% 40% 60% 80%
Random 5.2z0.1 9.6:02 13.2:02 17.7z05 20.0z06 22.2:06 24.9:05 26.8:04
Herding 3.7+15  9.7:06  10.2:36 15.8:37  20.7x07 22.6:06 25.4108 24.5:34
Entropy 5.4:02 10.0:04 13.7:06 17.6:01 20.2z06 22.1x04 25.0:03 26.6:04
Least Confidence  5.3:0.1 9.7:03 13.7:05  17.6:04 20.3:03 22.0:05 25.0:03 26.5:02
Forgetting 5.5:02 9.8:04  13.5:04 17.5:03 20.4203 22.1x02 24.7:06 26.5:02
GraNd 5.5:03  9.7x03 13.3x04  17.5204 20.3z05 22.1x05 24.9:03 26.8:03
k-means 4102  8.1:03 11.6203  16.5:02 20.4:04 22.6:03 249104 26.3:0.1

Imbalanced 1% 5% 10% 20% 30% 40% 60% 80%
Random 6.1:02  9.9:02 12.4:05 14.9:03 16.5202 17.7:02 19.2:01  20.4202
Herding 4.7:06  8.5:05  11.5:03 13.4x16 14.7x28 16.5:21 16.8:36 17.9+3.
Entropy 6.0:03  9.9:04  12.3:04 15.1z05 16.8z05 17.8x02 19.3:04  20.5:03
Least Confidence  6.0:03  9.9:02 12.3x04 153203 17.0z05 17.9203 19.4:03  20.5:0.1
Forgetting 5.7:03  9.9:02  12.2:03 14.7:02 15.8203 17.8x02 19.3z05 20.3:03
GraNd 5.9:04  9.7x03 12.2+05 15.0z06 16.8203 17.8:04 19.4:02  20.7:05
k-means 4.6:03  8.1:03 10.7:03 13.9202 16.4:04 17.2:03 19.6:05 20.4=0.

CV and NLP domains [35-37] but their roles in MRL remain under-explored. In our experiments,
we benchmark seven data pruning strategies originally designed for image data and adapt them
for 2D molecular graphs: Herding [56], Entropy [57], Least Confidence [57], Forgetting [58],
GraNd [59], and k-means [60]. We also include random pruning as a baseline method. Please refer
to Appendix C.7 for a detailed description of these adopted data pruning strategies.

For all experiments, we employ each data pruning strategy to curate eight subsets, which are
constituted of the following percentages of the whole dataset: [1%, 5%, 10%, 20%, 30%, 40%, 60%,
80%]. For a comprehensive investigation, we compare the results with two data splitting schemes
to discern if performance of pruning strategies might be influenced by data distribution disparities.
Table 1 summarizes the results on PCBA, one of our largest datasets, where we highlight significant
results with a p-value less than 5% in the significance test (t-test) compared with random pruning.

Observation 6. Our empirical analysis reveals that no adopted pruning strategy consistently outper-
forms random pruning across various data subsets, irrespective of the dataset splitting methodology.
The performance difference among these pruning strategies also remain narrow. These trends are con-
sistently observed across the MUV and HIV datasets as well, with details provided in Appendix C.7.
This leads us to postulate two potential hypotheses. First, the current molecular encoders might be
adept at extracting the information from the tested datasets, thereby suggesting a minimal presence of
data redundancy. This suggests a potential need for significantly larger datasets to showcase the effi-
cacy of data pruning methods in MRL. Second, existing data pruning strategies, originally proposed
for image data, may not transfer their effectiveness to molecular data. For example, similarity-based
approaches like Herding might need the infusion of domain-specific knowledge when measuring the
similarity of molecular graphs.

4 Conclusions

In this paper, we conduct a series of data-centric experiments on Molecular Representation Learning
(MRL) spanning four dimensions, including (1) data modality, (2) dataset splitting, (3) the role
of pre-training and (4) model capacity, to investigate the model performance under different data
scales. Our empirical results demonstrate that the scaling behaviors generally conform to a power
law, implying the marginal effect of adding more molecular data. Moreover, we observe that there is
no one-size-fits-all configuration to different MRL datasets, which calls for task-specific analysis in
real-world application. We also benchmark seven data pruning strategies and observe that none of
these methods outperform random sampling. Our analysis underscores the unique challenges inherent
in MRL, such as distribution shift in molecular discovery and the non-Euclidean nature of molecular



datasets. We anticipate that our findings will catalyze further research, driving more data-efficient
methodologies for molecular representation learning.

Limitations. We conduct our experiments using widely-adopted model architectures in the field,
such as GIN for the 2D topology graph, SchNet for the 3D geometry graph, and Transformer for
SMILES string and Fingerprint. However, the rapid development of molecular representation learning
in recent years has led to the emergence of models with improved expressiveness. The neural scaling
laws on these models is still to be explored. Moreover, our focus is primarily on investigating the
impact of various dimensions on supervised molecular representation learning. Despite that we have
considered the effect of pre-training, we do not explore the neural scaling behaviors between data
scales in pre-training and the corresponding performance on the downstream tasks.

Future work. In closing, we point out several prospective avenues for further exploration. (1) Neural
scaling laws in molecular generative tasks. In this paper, our exploration has concentrated solely
on predictive tasks, leaving an unexplored domain of generative tasks. Potential research might
investigate neural scaling laws on tasks such as generation of drugs, conformations, and docking
poses, to name a few. (2) Refinement of pre-training strategies. In our experiments, we discover that
pre-training on molecular data does not improve efficiency of leveraging downstream data. Future
work could consider to address the issues of parameter ossification to improve data efficiency in
pre-trained MRL models. (3) In-depth analysis of data pruning strategies for molecular data. We
observe that the existing image pruning methods do not significantly improve MRL performance.
Such observations call for a rigorous evaluation of data pruning methodologies, potentially on more
larger-scale datasets, to ascertain the potential advantages of data pruning techniques. Moreover,
the design of efficient pruning strategies specifically tailored to molecular data is also a promising
direction, which yet remain largely unexplored.
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A Implementation Details

A.1 Molecular Encoders

In this section, we detail the implementation of each encoder. We denote the representation for node
(atom) v; as h; and the representation at the graph (molecule) level as z.

Embedding 2D graphs. Graph Isomorphism Network (GIN) [5] is a simple and effective model to
learn discriminative graph representations, which is proved to have the same representational power as
the Weisfeiler-Lehman test [61]. Recall that each molecule is represented as G = (A, X, E), where
A is the adjacency matrix, X and E are features for atoms and bonds respectively. The layer-wise
propagation rule of GIN can be written as:

A= (e S (W ALV ED) | @
JEN(3)

where the input features h§°) = x;, N (4) is the neighborhood set of atom v;, and faom, foond are two
MultiLayer Perceptron (MLP) layers for transforming atoms and bonds features, respectively. By
stacking K layers, we can incorporate K -hop neighborhood information into each center atom in the
molecular graph. Then, we take the output of the last layer as the atom representations and further
use the mean pooling to get the graph-level molecular representation:

1
2P =5 h 3)
S%

Embedding 3D graphs. We use the SchNet [43] as the encoder for the 3D geometry graphs.
SchNet models message passing in the 3D space as continuous-filter convolutions, which is composed
of a series of hidden layers, given as follows:

N
A = e (S fra (Y rimy) | + R, “

j=1

where the input h§0> = a; is an embedding dependent on the type of atom v;, frg(-) denotes the
filter-generating network. To ensure rotational invariance of a predicted property, the message passing
function is restricted to depend only on rotationally invariant inputs such as distances, which satisfying
the energy properties of rotational equivariance by construction. Moreover, SchNet adopts radial
basis functions to avoid highly correlated filters. The filter-generating network is defined as follow:

fea(@j,mi,my) = aj - er(ri — r5) = @ - exp(—|l[|rs — 72 — pll3)- &)

Similarly, for non-quantum properties prediction concerned in this work, we take the average of the
node representations as the 3D molecular embedding:

1

3D _ (K)

zo = N E h;"/, 6)
2%

where K is the number of hidden layers.

Embedding fingerprints & SMILES strings. Due to the discrete and extremely sparse nature
of fingerprint vectors, we first transform all F binary feature fields into a dense embedding matrix

F1p ¢ RF/"XDr yig embedding lookup, while we transform SMILES tokens in the same way via
another embedding lookup F*™ € RF""*D¥_Then, we introduce a positional embedding matrix

P ¢ RF*Dr (o capture the positional relationship among bits in the fingerprint vector, which is
defined as:

P, 2; = sin(p/10000%/Pr ), (7)
P, i1 = cos(p/10000%/Pr), ®)
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where p denotes the corresponding bit position and ¢ is corresponds to the i-th embedding dimension.
The positional embedding matrix will be added to the transformed embedding matrix:

F=F +P. ©)

Thereafter, we use a multihead Transformer [45] to model the interaction among those feature fields.
Specifically, we first transform each feature into a new embedding space as:

Q(h) — FWéh), (10)
K® = Fw", (11)
v — Fw, (12)

where the three linear transformation matrices Wéh), Wéh), W\Eh) € RPF*P/H parameterize the

query, key, and value transformations for the h-th attention head, respectively. Following that, we
compute the attention scores among all feature pairs and then linearly combine the value matrix from
all H attention heads:

(R) (KT
Wéh) = softmax u , (13)
v Dy
7 [Wil)V(l); W/£2)V(2); o WliH)V(H) , (14)

Finally, we perform sum pooling on the resulting embedding matrix Z € RF*Dr and use a linear
model fix to obtain the final fingerprint or SMILES string embedding z € RP:

Dr
z = fuN (Z 2d> . (15)

d=1
A.2 Computing infrastructures

Software infrastructures. All of the experiments are implemented in Python 3.7, with the following
supporting libraries: PyTorch 1.10.2 [62], PyG 2.0.3 [63], RDKit 2022.03.1 [64] and HuggingFace’s
Transformers 4.17.0 [65].

Hardware infrastructures. We conduct all experiments on a computer server with 8§ NVIDIA
GeForce RTX 3090 GPUs (with 24GB memory each) and 256 AMD EPYC 7742 CPUs.

A.3 Code availability

The source code of our empirical implementation can be accessed at https://github.com/Dat
a-reindeer/NSL_MRL.

B Datasets and Tasks

In the following, we will elaborate on the adopted datasets and the statistics are summarized in
Table 2.

Datasets. We consider four datasets ranging from molecular-level properties to macroscopic influ-
ences on human body for experimental investigation: HIV [39], MUV [40], PCBA [41] and QM9 [42].

* HIV (AIDS Antiviral Screen) was developed by the Drug Therapeutics Program (DTP) [39], which
is designed to evaluate the ability of molecular compounds to inhibit HIV replication.

* Maximum Unbiased Validation (MUV) group was selected from PubChem BioAssay via a refined
nearest neighbor analysis approach, which is specifically designed for validation of virtual screening
techniques [40].

* PubChem BioAssay (PCBA) is a database consisting of biological activities of small molecules
generated by high-throughput screening [41].

17


https://github.com/Data-reindeer/NSL_MRL
https://github.com/Data-reindeer/NSL_MRL

Table 2: Statistics of datasets used in experiments.

Dataset Data Type #Molecules Avg. #atoms Avg. #bonds #Tasks Avg. degree
Pre-training PCQM4Mv2 SMILES 3,746,620 14.14 14.56 - 2.06
MUV SMILES 93,087 2423 26.28 17 2.17
Classification ~ HIV SMILES 41,127 25.51 2747 1 2.15
PCBA SMILES 437,929 25.96 28.09 92 2.16
QMO-€g4p SMILES, 3D 130,831 18.03 18.65 1 2.07
Regression ~ QM9-UO SMILES, 3D 130,831 18.03 18.65 1 2.07
QM9-ZPVE  SMILES, 3D 130,831 18.03 18.65 1 2.07

* QM9 is a comprehensive dataset that provides geometric, energetic, electronic and thermodynamic
properties for a subset of GDB-17 database, comprising 134 thousand stable organic molecules
with up to nine heavy atoms [42]. In our experiments, we delete 3,054 uncharacterized molecules
which failed the geometry consistency check [66]. We include the €g,p, UO, and ZPVE in our
experiment, which cover properties related to electronic structure, stability, and thermodynamics.
These properties collectively capture important aspects of molecular behavior and can effectively
represent various energetic and structural characteristics within the QM9 dataset.

* PCQM4Mv2 is a quantum chemistry dataset originally curated under the PubChemQC project [49].
Based on the PubChemQC, Hu et al. [50] define a meaningful ML task of predicting DFT-calculated
HOMO-LUMO energy gap of molecules given their 2D molecular graphs. The HOMO-LUMO
gap is one of the most practically-relevant quantum chemical properties of molecules since it is
related to reactivity, photoexcitation, and charge transport.

C Additional Experimental Results

C.1 The Neural Scaling Law on PCQM4Myv2 Dataset

Following the experimental settings of Section 3.1, we conduct additional experiments on the
PCQM4Mv2, a large-scale challenge dataset provided by OGB *. To the best of our knowledge, it
is currently the largest labeled molecular dataset available, containing over 3.7 million molecular
samples. It is worth noting that due to the unavailability of official test labels, we selected 50% from
the validation set as the test data and report the results in Figure 7.

PCQM4Mv2 PCQM4Mv2 (log-log)
0.401 4x107!
w 0.35 w
< <
= * 3x107
0.30 1
0.25
1%10%  30% 60% ' 100% 10-2 10-1 10°
Select Ratio Select Ratio

Figure 7: The neural scaling law of molecular representation learning on PCQM4Myv?2 dataset.

C.2 The Effect of Equivariant Representations on the Scaling Law

To further explore the scaling laws of more powerful 3D graph representations, we have extended our
investigation to include SE(3) invariant model (SphereNet) and E(3) equivariant model (PaiNN) in
the context of Section 3.1. The empirical results are demonstrated in Figure 8. It can be observed that
most of the performances generally adhere to the power-law relationship and the difference lies in the
coefficients and exponents of the power law. Furthermore, the relative differences in performance

*nttps://ogb.stanford.edu/docs/lsc/pcqmimy2
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Figure 8: The neural scaling law of equivariant representations with 3D graph modality.

between the three models tend to vary with distinct predictive tasks. For instance, in the U0 prediction
task, the power law relationships of the three models exhibit a noticeable parallel pattern in the
log-log plot, whereas in the other two tasks, a crossing effect becomes evident.

.
C.3 More Results of the Effect of Data Split
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Figure 9: The effect of data split on the scaling law with fingerprint modality.

To enhance the robustness of our findings in Section 3.4, in addition to the comparison of the 2D graph
modality across various data splits provided in the main text, we also conduct analogous experiments
on the fingerprint and SMILES modalities. The empirical results, illustrated in Figure 9 and Figure 10,
align with our observations in the Section 3.4: (1) Most performance within these modalities adhere to
the power law relationship. (2) The SMILES modality still exhibits a performance drop phenomenon
in the MUYV dataset. The only deviation lies in the smallest dataset, HIV, where the performance
variation under imbalanced/scaffold split settings does not conform to the power law. This deviation
might be attributed to the small scale of the HIV dataset, posing challenges for models to generalize
and extrapolate effectively.

C.4 Comparison of Different Fingerprint Encoders

Given the absence of established encoder design for fingerprints in the field, we conduct a comparison
between two classic encoders, a single-layer MLP and a single-layer Transformer, in terms of their
performance variation. The results indicate that both encoders exhibit a strong adherence to the
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Figure 11: The Effect of Model Architecture on the Scaling Law with fingerprint Modality.

power law relationship in their scaling behavior. As such, the choice of encoder does not impact the
robustness of our conclusions.

C.5 Single-property performance of MUYV dataset with SMILES modality

In order to gain a more detailed understanding of the performance degradation phenomenon in the
multitask scenario of MUV, we specifically demonstrate the neural scaling behavior of the SMILES
modalities in single-property ROC-AUC, as shown in Figure 12. Despite some ascending behavior,
the bulk of properties exhibit varying degrees of performance drop in the last few proportions, which
accounts for the overall performance drop in the multi-task setting.

C.6 Results of different-layers Transformer with SMILES modality.

Figure 13 presents the scaling behavior of transformers with different numbers of layers in terms of
their performance. It can be observed that ROBERTa achieves the overall best performance, followed
by a 1-layer Transformer, and the worst performance is exhibited by a 3-layer one. In contrast to
fingerprint, the SMILES modality could experience a performance drop on some datasets (HIV and
MUYV) in the high-data regime. Additionally, the varying numbers of Transformer layers do not affect
our conclusions in Section 3.2 regarding modality comparison, as even the superior ROBERTa model
overall does not surpass the performance of graph and fingerprint modalities.
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Figure 12: The neural scaling law of single-property performance (ROC-AUC) of MUV dataset with
SMILES modality.
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Figure 13: The neural scaling law of different-layer model (Transformer) performance with SMILES
modality.

C.7 Data pruning strategies and additional results

Problem statement. Consider a learning scenario where we have a large training set denoted as

T = (zi,yi) \17:'|1, consisting of input-output pairs (x;, y; ), where x; € X represents the input and
y; € Y denotes the ground-truth label corresponding to z;. Here, X and ) refer to the input and
output spaces, respectively. The objective of data pruning is to identify a subset S C 7T, satisfying
the constraint |S| < |7, that captures the most informative instances. This subset, when used to
train a model denoted as 6%, should yield a similar or better generalization performance to that of the
model 87, which is trained on the entire training set 7 .

Data pruning strategies. In our data pruning experiments, we implement a total of seven data
pruning (or coreset selection) strategies: Herding [56], Entropy [57], Least Confidence [57], For-
getting [58], GraNd [59], K-means [60] and we additionally include random pruning as a baseline
method. These seven strategies are widely used in the field of CV [67] and have potential in mitigat-
ing the issue of data redundancy in large-scale datasets, thereby saving computational and storage
resources. Here we provide a brief overview to each of them.

* Herding [56] operates by selecting data points in the feature space based on the distance between
the coreset center and the original center. It follows an incremental and greedy approach, adding
one sample at a time to the coreset in order to minimize the distance between the centers.
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Table 3: Empirical performance of data pruning strategies on eight subsets of the MUV dataset in
terms of ROC-AUC (%, 7). Results that are significantly higher or lower than random pruning (with
a p-value of less than 5% in the significance test) are highlighted.

Uniform 1% 5% 10% 20% 30% 40% 60% 80%
Random 47435 583134  59.6:47  68.9:21 T71.2s34 T702s30 T729:17 774428
Herding 48.4x47  51.9x48 53.1:x103 61.5x49 68.5:73 65.1ss6 T1.7:64  T78.7:50
Entropy 48.9:55  58.5:51 62.8:40  63.8:42 68.7x34 T71.0s37  75.0:25  79.0:33
Least Confidence  52.0:79 57.4:57  61.1:33  66.3:221  67.6:48 70.0:36  75.1x25  78.5+22
Forgetting 471221 58.6x21 60952  63.3:18  67.1x30 70.5228 T4.5:26 76.9:33
GraNd 473234  52.2:71  64.T+510 659131 64459  T1.4sa4  T2.5:825 762432
k-means 49.9:47  60.5:78  65.5:37  68.0x2 65.5:37 67.1:x28 72.1:14  76.9x40

Imbalanced 1% 5% 10% 20% 30% 40% 60% 80%
Random 47735 583134  60.4:47  64.1:221 668134 674130 T2.4:17 663128
Herding 50.2:47  55.8248 59.3:103 58.8x49 64.5:73 65.6:56 65.8:64 69.6x50
Entropy 47.7s55  57.5:51  61.0x40  68.0:42 64.4:34 67.2:37  68.1:25 69.5:38
Least Confidence  50.4:79 52.9:57  60.5:33  64.2:21  65.5:48 683136 694425 66.4+2
Forgetting 49321 51421  58.7:52  64.0:18  65.7:30 66.5:28 67.7:26 68.8:338
GraNd 52.0:34 553271 63.8+51  63.4:31  67.0s59 68.6x44 T0.3225 69.0:32
k-means 52.7+47 56.0278 58.5+37 61.0x42 634237 634228 67.1x14 70.0x40

* Entropy and Least Confidence [57] iteratively select samples with lower entropy and least
confidence, respectively. These methods identify informative samples by considering that lower
uncertainty can provide more information gain, thereby benefiting model training and reducing
data redundancy.

* Forgetting [58] calculates the frequency of forgetting that occurs during the training process, which
refers to the number of times the samples correctly classified in the previous epoch are misclassified
in the current epoch. Those unforgettable samples, exhibiting robust performance across epochs,
have minimal impact on model performance when removed.

* GraNd [59] measures the average impact of each sample on the reduction of training loss during
the initial epochs. Training samples are more important if they contribute more to the error or loss
when training neural networks.

* k-means [60] employs the application of k-means clustering in the latent space to define the
difficulty of each data point based on its Euclidean distance to its nearest cluster centroid. Simple
samples (with low difficulty) are considered for removal to reduce data redundancy. It is noteworthy
that this method, unlike the aforementioned approaches, does not require any label information or
training and can be directly applied to the dataset.

Additional data pruning results. Here we include additional results of data pruning performance
on MUV and HIV datasets, as shown in Table 3 and Table 4. Observing the performance of these data
pruning strategies, none of these methods consistently outperform random sampling, which aligns
with our observation in Section 3.6. Note that in the case of MUV with an imbalanced data split,
several data pruning methods such as Random, GraNd, and Least Confidence even demonstrate a
performance decline when the subset scale surpasses 60%.

D Related Work

The following section provides a more broad literature review across the spectrum of molecular
representation learning and neural scaling law.

D.1 Molecular representation learning

The past decade has seen remarkable success in the application of deep learning in a variety of
biochemical tasks, spanning from virtual screening [68] to molecular property prediction [6]. Within
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Table 4: Empirical performance of data pruning strategies on eight subsets of the HIV dataset in
terms of ROC-AUC (%, 7). Results that are significantly higher or lower than random pruning (with
a p-value of less than 5% in the significance test) are highlighted.

Uniform 1% 5% 10% 20% 30% 40% 60% 80%
Random 63428 69.8222  75.0:27 78.5:12  79.0:22  79.0s13  81.5:17  83.8:08
Herding 60.2:39  63.3:38 64.7:50 69.5:54 T71.8:70 75.8266 80.0x28  82.6:12
Entropy 67.9x22 71.1s37  T42:s16  762+12  T77.0220 79.2218  81.4:19  83.2:14
Least Confidence  66.2:40 70.4:21  72.8:39 76.7+23  78.0:10 | 81.0:14 81.6:16 83.3z06
Forgetting 67.7:12  75.2:13  75.1x19  76.2:17 80.0:18  79.8z16  82.8:10 83.7:14
GraNd 66.2+40 69.3x26 73.6220 T78.1x11 T8.1:16  T78.6:10 82.3:08 83.2:14
k-means 63.8248 644234 65.7:18 68.1x16 T1.5:14 72535 79.2:05 823102

Imbalanced 1% 5% 10% 20% 30% 40% 60% 80%
Random 66.6:1.7  68.6231  69.9:37  T70.9:14  T70.7xa1 72130 T4.1:11 T4.4s10
Herding 571130 63.0:38 64.9:36 65.8:59 673160 72.6x18 73.3x22  73.7x06
Entropy 67.7:75  T1.5228  70.1x11 712221  73.2:23 717226 74.7:13 T4.8:10
Least Confidence 66.8+52  71.4:10 71.3+26 71.8227 69.5228 73.7+34 73.4x26 73.8+138
Forgetting 66.1:3.1  69.7:58  70.2:36  71.9:19 71.6:18 71420 73.9:14 742423
GraNd 62.7+45 T1.0x26 69.2:36 = 73.1x19 70.0:34 729130 T4.4+18 | 75.9+12
k-means 67918 654232  65.0619 67.1:43  69.1:40 68.5:43 T2.8:12 74417

this context, molecular representation learning (MRL) serves as a pivotal link between the molecular
modalities and the target tasks, efficiently capturing and encoding rich chemical semantic information
into vector representations.

One of the mainstream research approaches in MRL is based on 2D topology graphs. The advance-
ments in Graph Neural Networks (GNNs) have enabled the application of more powerful GNN
models in the field of molecular chemistry [5, 8, 11, 9, 10, 14], which has proven effective in en-
hancing the discriminability between representations and capturing underlying chemical semantics.
The study of the expressive power of GNNSs using the Weisfeiler-Lehman graph isomorphism test
has been widely applied in MRL. GIN [5], as one of the most representative works, develops a
simple and effective architecture based on a multi-perceptron layer (MLP) that has been proven
to be as powerful as the WL test. Some works propose improvements in the expressive power of
GNNs to address issues related to long-range interactions [11, 10], higher-order structures [9, 8]
and substructure recognition [14] from different perspectives. Unlike traditional message passing
mechanisms, Graphormer [12] have explored the direct application of Transformers [45] to graph
representation with tailor-made positional encoding. A few research [13, 32] focus more on the
ad-hoc model design for biochemical tasks, incorporating constraints based on molecular physics and
chemical properties.

More recently, 3D graph representation for molecules has been largely explored thanks to its im-
portance in modeling the dynamical behaviors of molecular structures [42, 69]. Different from 2D
graph representation, euclidean group symmetry (E(3)/SE(3)) including translation, rotation and
reflection needs to be baked into the design of the models. Specifically, SchNet [43] is one of the
earliest work that incorporates euclidean distances between each pair of nodes as features which
make the model E(3)-invariant. In addition to pairwise distance features, angle (between three atoms)
and dihedral angle (between four atoms) are later on introduced as features into E(3)/SE(3)-invariant
models [52, 70, 71]. Instead of invariant models, another branch of work explore equivariant design of
3D graph neural networks. EGNN [72] devises a simple equivariant update layer such that only linear
transformation is applied to vector input to achieve equivariance in which similar ideas have also been
applied to GVP [73] and PaiNN [51]. ClofNet [74] and LEFTNet [75] on the other side improves
the expressiveness of such design by building local frams to scalarize equivariant inputs from there
any neural architecture could be applied then transform back to vectors through a vectorization block
without information loss. Another noticeable line of work leverage spherical harmonics and tensor
product to construct equivariant layers [76-80].

In the advancements of supervised MRL, there has been limited progress in the model designs
specifically tailored to the SMILES string and fingerprint modalities. It is worth noting that the
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early benchmark models proposed in MoleculeNet [38] have maintained their competitiveness over
time. With the rise of pre-training research paradigms, there has been promising progress in recent
years towards pre-training approaches based on these two modalities [27, 28, 26, 16] as well as the
former two. By employing contrastive [29-32] and generative [33, 30, 34] self-supervised strategies,
molecular pre-training approaches guide the model training and subsequently facilitate positive
transfer to downstream tasks. However, as mentioned in Section 3.3, existing molecular pre-training
still suffer from issues such as parameter ossification [54], necessitating further exploration for more
data-efficient and training-efficient models.

D.2 Neural scaling law

The study of neural scaling law can be traced back to early theoretical analyses of bounding general-
ization error [8§1-84]. These works, based on assumptions about model capacity and data volume,
reveal power-law relationships between the bounds of model generalization error and the amount
of data. However, the conclusions drawn from these theoretical studies often yield loose or even
vacuous bounds, leading to a disconnection between the theoretical findings and the empirical results
of generalization error.

Early follow-on research have investigated empirical generalization error scaling, which represents
an initial attempt at exploring the neural scaling law. Bango and Bill [85] conduct experiments on a
language modeling problem called confusion set disambiguation, using subsets of a large-scale text
corpus containing billions of words. Their findings suggest a power-law relationship between the
average disambiguation validation error and the size of the training data. Similarly, Sun et al. [21]
demonstrate that the accuracy of image classification models improves with larger data sizes and
conclude that the accuracy increases logarithmically based on the volume of the training data size.

Hestness et al. [18] empirically validate that model accuracy improves as a power-law as growing
training sets in various domains, which exhibit consistent learning behavior across model architectures,
optimizers and loss functions. However, there exists generalization error plateau in small data region
and irreducible error region. With a broader coverage, Michael et al. [22] present findings that
consistently show the scaling behavior of language model log-likelihood loss in relation to non-
embedding parameter count, dataset size, and optimized training computation. They leverage these
relationships to derive insights into compute scaling, the extent of overfitting, early stopping step,
and data requirements in the training of large language models.

In recent years, several investigations of neural scaling laws specific to particular tasks have been
conducted [86, 19, 87, 60]. Unlike previous research, while power-law relationships hold within
specific ranges of data size or model parameter count, certain tasks exhibit unique and uncommon
learning behaviors. For instance, only marginal performance gains are expected beyond a few
thousand examples in image reconstruction [20]. Moreover, there is a relevant study sharing a
common spirit with our work in analyzing MRL from a scaling behavior viewpoint [88]. However,
our research diverges in the following aspects: (1) Scope of Neural Scaling Law Investigation: The
study of Frey et al. primarily considers large language models for generative chemical modeling
and quantum property tasks. In contrast, our work encompasses a broader range of dimensions,
such as modalities, data distributions, pre-training and model capacity, to investigate the influence
of various factors on neural scaling laws. (2) Different contributions: Their contribution primarily
revolves around developing strategies for scaling deep chemical models, notably large language
models, and introducing novel model architectures. In contrast, our focus lies in exploring the
impact of different dimensions on data utilization efficiency through a data-centric perspective and
benchmarking existing data pruning strategies on MRL tasks.
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