

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HDC-X: EFFICIENT MEDICAL DATA CLASSIFICATION FOR EMBEDDED DEVICES

Anonymous authors

Paper under double-blind review

ABSTRACT

Energy-efficient medical data classification is essential for modern disease screening, particularly in home and field healthcare where embedded devices are prevalent. While deep learning models achieve state-of-the-art accuracy, their substantial energy consumption and reliance on GPUs limit deployment on such platforms. We present HDC-X, a lightweight classification framework designed for low-power devices. HDC-X encodes data into high-dimensional hypervectors, aggregates them into multiple cluster-specific prototypes, and performs classification through similarity search in hyperspace. We evaluate HDC-X across three medical classification tasks; on heart sound classification, HDC-X is $350\times$ more energy-efficient than Bayesian ResNet with less than 1% accuracy difference. Moreover, HDC-X demonstrates exceptional robustness to noise, limited training data, and hardware error, supported by both theoretical analysis and empirical results, highlighting its potential for reliable deployment in real-world settings.

1 INTRODUCTION

Medical data classification enables automated disease screening without constant involvement of medical professionals (Tan et al., 2024). With the growing adoption of portable devices, health assessments are increasingly carried out in home and field settings where computational resources and power budgets are limited (Rahman & Morshed, 2025). This highlights the need for classification models that can operate effectively on embedded platforms (Khan et al., 2022).

Deep learning models currently dominate medical classification tasks and achieve state-of-the-art accuracy, but their high energy consumption and reliance on GPUs limit deployment on low-power, near-sensor hardware (Chen et al., 2021). In contrast, an optimal medical classifier for embedded devices should: (1) minimize energy consumption, (2) support GPU-free inference, and (3) process data locally to preserve patient privacy.

To address this, we present Hyperdimensional Computing - Next Generation (HDC-X), a lightweight classification framework that extends standard Hyperdimensional Computing (HDC) while significantly improving its performance. HDC-X encodes each sample into a high-dimensional sample hypervector (Sample-HV), aggregates them into a compact set of cluster prototypes (Cluster-HVs), and performs classification by selecting the Cluster-HV with the highest similarity.

Evaluated across three medical classification tasks, HDC-X consumes far less energy than deep learning baselines while achieving notable accuracy gains over standard HDC. On heart sounds classification, HDC-X is $350\times$ more energy-efficient per inference than the state-of-the-art Bayesian ResNet, while providing $>10\%$ accuracy improvement over standard HDC (Figure 1). HDC-X also demonstrates exceptional robustness: accuracy drops by only 1.39% under 15% input noise, 1.78% with 40% training data, and 2.84% with 20% parameter corruption (Figure 4). We provide theoretical analysis explaining this robustness, supporting HDC-X’s reliability for real-world deployment. Our main contributions are:

- We propose HDC-X, a lightweight classification framework extended from Hyperdimensional Computing (HDC). It achieves significantly higher accuracy than standard HDC and other efficient models while preserving energy efficiency.

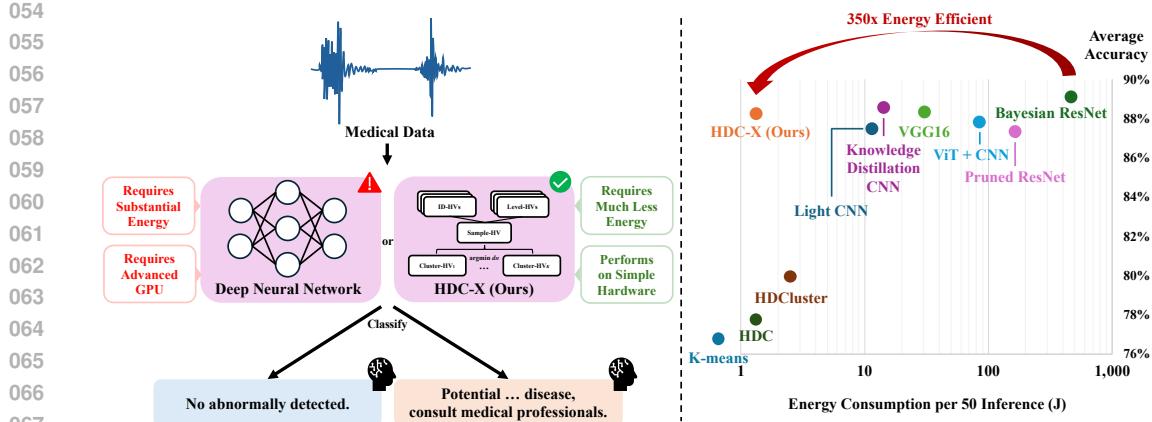


Figure 1: Automated disease screening through medical data classification (left) and HDC-X performance on heart sound classification (right). HDC-X is 350 \times more energy-efficient than Bayesian ResNet and supports GPU-free inference, highlighting its potential for embedded deployment.

- We demonstrate that HDC-X consumes far less energy than deep learning baselines across three medical tasks. On heart sound classification, it is 350 \times more energy-efficient than Bayesian ResNet while maintaining comparable accuracy.
- We provide both theoretical and empirical evidence of HDC-X’s robustness to input noise and hardware error. To the best of our knowledge, our theorems on binary hypervectors, although some are widely recognized, have not been formally proven in prior HDC research.

This paper is organized as follows. Section 2 reviews the fundamentals of hyperdimensional computing. Section 3 details the proposed HDC-X framework. Section 4 presents experimental results and sensitivity analysis, and Section 5 concludes the paper.

2 HYPERDIMENSIONAL COMPUTING (HDC)

Hyperdimensional Computing is a computational paradigm inspired by the information processing mechanisms of the brain (Pentti Kanerva, 2009). Compared with traditional computing that operates on raw numerical data, the human brain processes information via high-dimensional patterns of neural activity (Masse et al., 2009). HDC emulates this approach by projecting input data into high-dimensional representations to efficiently perform cognitive tasks (Thomas et al., 2021).

The versatility of HDC has been demonstrated across a wide array of domains, including image classification (Billmeyer & Parhi, 2021), language identification (Alonso et al., 2021), acoustic signal analysis (Imani et al., 2017), and fault detection (Kleyko et al., 2018). Across these applications, HDC demonstrates superior energy efficiency and robustness compared to deep neural networks.

Specifically, HDC defines a set of elementary operations, like Binding (e.g., point-wise multiplication) and Bundling (e.g., point-wise addition with majority function), on a high-dimensional bipolar vector space $\mathcal{H}^D = \{-1, +1\}^D$ called hyperspace (Pentti Kanerva, 2009). The space is equipped with a distance measure called Hamming distance $d_H : \mathcal{H}^D \times \mathcal{H}^D \rightarrow [0, 1]$, which is defined as the ratio of the different bits between two hypervectors (i.e., hyperspace vectors). Please refer to Appendix A.1 for the detailed notations and definitions.

HDC exhibits several ideal properties when its dimensionality D is very large. For example, the Hamming distance of two hypervectors remains unchanged after bound to the same hypervector (Lemma 2); or when randomly selecting two hypervectors, their Hamming distance is almost always around 0.5 (Lemma 3). Based on these properties, HDC can encode a low-dimensional input $s \in \mathbb{R}^d$ ($d \ll D$) from a continuous feature space into the high-dimensional hyperspace. By transferring the calculation to hyperspace, HDC-based approaches can achieve computational efficiency (Ge & Parhi, 2020), robustness to input noise (Thomas et al., 2021), and higher training data efficiency (Asgarinejad et al., 2020).

108 **3 MEDICAL DATA CLASSIFICATION THROUGH HDC-X**
 109

110 We propose Hyperdimensional Computing - Next Generation (HDC-X), an extension of the HDC
 111 framework that significantly improves accuracy while preserving energy efficiency. Algorithm 1 and
 112 Figure 3 illustrate the overall HDC-X pipeline. In this work, medical samples are first encoded into
 113 sample hypervectors (Section 3.1). These sample hypervectors are then clustered into a compact set
 114 of cluster prototypes, and classification is performed by similarity search against these prototypes
 115 (Section 3.2). An optional retraining stage may further enhance accuracy (Section 3.3). Formal
 116 definitions, lemma, and theorems supporting this framework are provided in Appendix A.
 117

118 **3.1 ENCODE SAMPLE INTO HYPERVECTOR**
 119

120 HDC-X requires numeric features as input. For heart sound classification, we extract $d = 720$
 121 features using Mel-frequency Cepstral Coefficients (MFCC) (Davis & Mermelstein, 1980) and Dis-
 122 crete Wavelet Transform (DWT) (Mallat, 1989), two widely used frequency-domain representations
 123 in audio analysis. For breast cancer classification, we use $d = 30$ features from fine-needle aspirate
 124 (FNA) breast mass images, and for EMG classification, we use $d = 8$ features.

125 Each sample’s feature vector $s \in \mathbb{R}^d$ is encoded into a high-dimensional binary hypervector called
 126 Sample Hypervector (Sample-HV): $S \in \mathcal{H}^D = \{-1, +1\}^D$, $d \ll D$. The encoder is designed to
 127 be continuous so that relative distances between samples are preserved. The first step of encoding
 128 divides each feature’s value range into M intervals: the middle 96% of values are split into M
 129 equal-width intervals, while the top and bottom 2% are directly mapped to the first and last intervals
 130 (Figure 2). This is formalized by function l in Definition 5.

131 Each interval in Figure 2 is repre-
 132 sented by a predefined Level Hy-
 133 pervector (Level-HV), denoted as
 134 $L^{(m)} \in \mathcal{H}^D$, $m \in \{1, 2, \dots, M\}$.
 135 The Level-HVs are generated in
 136 a way that neighboring Level-HVs
 137 have a low Hamming distance (i.e.
 138 low percentage of different bits):
 139 starting from a randomly gener-
 140 ated $L^{(1)}$, each subsequent Level-
 141 HV is formed by randomly flipping
 142 $D/(M-1)$ bits from the previous
 143 vector, with each bit flipped only once across the sequence (Definition 4). This ensures that the
 144 Hamming distance between any two Level-HVs satisfies:
 145

$$d_H(L^{(i)}, L^{(j)}) = \frac{|i - j|}{M - 1}. \quad (1)$$

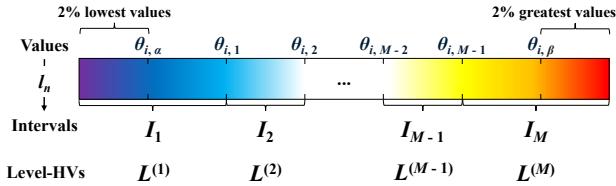


Figure 2: Divide feature n ’s value range into M intervals.

146 The Level-HVs are shared across all features. To distinguish identical Level-HVs under different
 147 features, each feature is assigned a randomly sampled Identity Hypervector (ID-HV), denoted as
 148 $ID^{(n)} \in \mathcal{H}^D$, $n \in \{1, 2, \dots, d\}$. A value in interval I_m under feature n would be represented
 149 as $ID^{(n)} \otimes L^{(m)}$, where \otimes denotes the binding operation implemented by point-wise multi-
 150 plication (Definition 2). Since ID-HVs are randomly sampled, their pairwise Hamming distance is ap-
 151 proximately 0.5 (Lemma 3), ensuring feature-wise independence: Hamming distance between two
 152 Level-HVs remains unchanged after binding to the same ID-HV (Lemma 2), while those bound to
 153 different ID-HVs become effectively unrelated.

154 Finally, with the predefined Level-HVs and ID-HVs, the encoder maps each medical sample to a
 155 Sample-HV by bundling the representations of each feature:
 156

$$S^{(i)} = \left[\sum_{n=1}^d ID^{(n)} \otimes L^{(l_n(s_n^{(i)}))} \right], \quad (2)$$

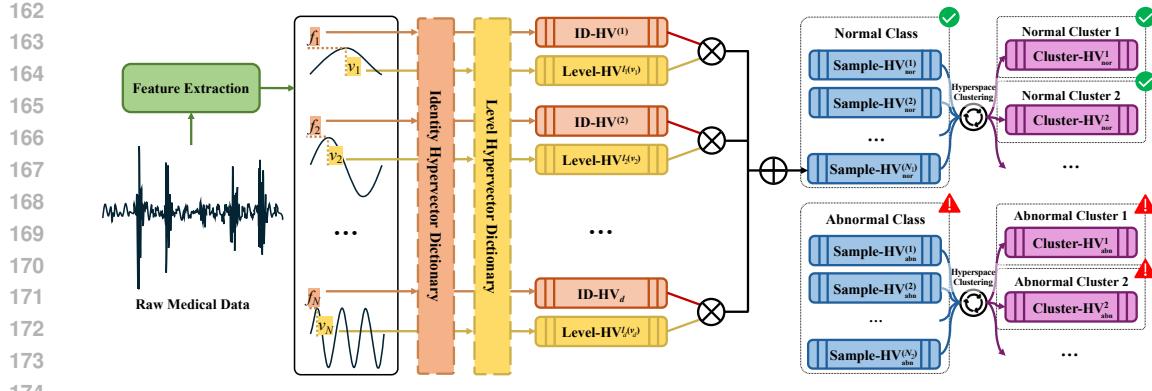


Figure 3: Medical data classification through HDC-X: Training samples are encoded into sample hypervectors (Sample-HVs) and aggregated into a compact set of cluster prototypes (Cluster-HVs); new samples are classified by selecting the Cluster-HV with highest similarity. The figure illustrates a binary classification example, though HDC-X is not limited to binary tasks.

where $s_n^{(i)}$ denotes the value of the n^{th} feature in sample $s^{(i)}$, and $[\cdot]$ is the element-wise majority function: it outputs $+1$ for positive sum, -1 for negative sum, and equally random samples from $\{-1, +1\}$ for zero sum (Definition 2).

We demonstrate the inherent robustness of this encoding to input noise through Theorem 1. When noise is applied to a feature vector $s^{(1)}$, producing a perturbed version $s^{(2)}$, the theorem shows that as long as the noise is bounded by a relative ratio δ , the Hamming distance between the corresponding Sample-HVs $S^{(1)}$ and $S^{(2)}$ has an upper bound. This upper bound, expressed as $g(\delta)$, remains quantitatively small even under moderate noise. The formal proof and definition of $g(\delta)$ are provided in Proof 1

Theorem 1 (Robustness to Input Noise). *Let $s^{(1)}, s^{(2)} \in \mathcal{S} \subseteq \mathbb{R}^d$ be two feature vectors. $S = f_{\mathcal{ID}, \mathcal{L}, \Theta}(s)$ denotes the hypervector encoding defined in Equation 2. Suppose that for all indices of the features $n \in \{1, \dots, d\}$,*

$$\frac{|x_n^{(1)} - x_n^{(2)}|}{\Delta_i} \leq \delta, \quad (3)$$

where Δ_i is the difference between the upper and lower bounds of the i^{th} feature value, and $\delta \in [0, 1]$ denotes the maximum distance ratio of the corresponding features. Then, with a sufficiently large D , the expected upper-bound Hamming distance between $S^{(1)} = f_{\mathcal{ID}, \mathcal{L}, \Theta}(s^{(1)})$ and $S^{(2)} = f_{\mathcal{ID}, \mathcal{L}, \Theta}(s^{(2)})$ converges to a monotonically increasing function g with parameter δ :

$$\mathbb{E} \left[\sup \left(d_H \left(S^{(1)}, S^{(2)} \right) \right) \right] \rightarrow g(\delta). \quad (4)$$

This implies that the Hamming distance between a sample and its noisy variant is almost surely bounded by $g(\delta)$.

3.2 CLASS-WISE HYPERSPACE CLUSTERING

Medical data often exhibit substantial intra-class variability beyond simple class labels. For example, heart sounds sharing the same ‘abnormal’ label can differ due to the type and stage of cardiac disease, the stethoscope used, and the recording site on the body (Zipes et al., 2019). Such heterogeneity challenges the standard HDC pipeline, which rely on a single prototype to represent all samples within one class.

To address this, HDC-X introduces class-wise hyperspace clustering. The clustering process is inspired by K-means, but performed in hyperspace on Sample-HVs and applied independently within each class. Unlike K-means which computes arithmetic means, HDC-X uses the bundling operation (Definition 2) to form cluster prototypes (Cluster-HVs). Leveraging hypervectors rather than raw numeric features provides the robustness formalized in Theorem 1.

216 **Algorithm 1** HDC-X: Hyperdimensional Computing - Next Generation (Without Retraining)

217 1: $\{ID^{(n)}\}_{n=1}^d \leftarrow \text{identity_hypervectors}(d)$ ▷ Generate ID-HV Dictionary.
 218 2: $\{L^{(m)}\}_{m=1}^M \leftarrow \text{level_hypervectors}(M)$ ▷ Generate Level-HV Dictionary.
 219 3: **for** $s^{(i)} \in S$ **in** training set **do**
 220 4: $S^{(i)} \leftarrow [\sum_{n=1}^d ID^{(n)} \otimes L^{(l_n(s^{(i)}))}]$ ▷ Encode sample $s^{(i)}$ into Sample-HV $S^{(i)}$.
 221 5: **end for**
 222 6: **for** $j = 1$ **to** number of classes J **do**
 223 7: **for** $S_j^{(i)} \in$ class j **do**
 224 8: $\text{init_cluster_idx} \leftarrow \text{randint}(K)$ ▷ Random assign $S_j^{(i)}$ to one of K clusters.
 225 9: $\mathcal{C}_j^{\text{init_cluster_idx}} \leftarrow \mathcal{C}_j^{\text{init_cluster_idx}} \cup \{S_j^{(i)}\}$
 226 10: **end for**
 227 11: **for** $t = 1$ **to** number of clustering iterations T **do**
 228 12: **for** $k = 1$ **to** number of clusters K **do**
 229 13: $C_j^k \leftarrow [\sum_{S_j^{(i)} \in \mathcal{C}_j^k} S_j^{(i)}]$ ▷ Generate Cluster-HV C_j^k to represent cluster \mathcal{C}_j^k .
 230 14: **end for**
 231 15: **for** $S_j^{(i)} \in$ class j **do**
 232 16: $\text{cluster_idx} \leftarrow \text{argmin}_{k=1}^K d_H(S_j^{(i)}, C_j^k)$ ▷ Reassign $S_j^{(i)}$ to closest cluster.
 233 17: $\mathcal{C}_j^{\text{cluster_idx}} \leftarrow \mathcal{C}_j^{\text{cluster_idx}} \cup \{S_j^{(i)}\}$
 234 18: **end for**
 235 19: **end for**
 236 20: **end for**
 237 21: $(\text{class_idx}, \text{cluster_idx}) \leftarrow \text{argmin}_{(j,k) \in [J] \times [K]} d_H(S_j^{\text{new}}, C_j^k)$ ▷ Classify new sample.
 238 22: **return** class_idx

241

242 Specifically, for each class j , clustering begins by randomly assigning its Sample-HVs $\{S_j^{(i)}\}$ to K
 243 clusters $\{\mathcal{C}_j^k\}_{k=1}^K$. Each Cluster-HV $C_j^k \in \mathcal{H}^D$ is computed by bundling the Sample-HVs in that
 244 cluster:
 245

$$C_j^k = [\sum_{S_j^{(i)} \in \mathcal{C}_j^k} S_j^{(i)}]. \quad (5)$$

246 Next, the Sample-HVs are reassigned to the cluster whose prototype has the lowest Hamming dis-
 247 tance:
 248

$$S_j^{(i)} \rightarrow \underset{k \in [K]}{\text{argmin}} d_H(S_j^{(i)}, C_j^k), \quad [K] := \{1, 2, \dots, K\}. \quad (6)$$

249 This bundling and reassigning process is repeated for T iterations until convergence, yielding the
 250 final set of Cluster-HVs $\{C_j^k\}_{k=1}^K$ for class j . After clustering all J classes, HDC-X may classify an
 251 unseen new sample by encoding it as Sample-HV S^{new} and assigning it to the Cluster-HV with the
 252 highest similarity (i.e., lowest Hamming distance):
 253

$$S^{\text{new}} \rightarrow \underset{(j,k) \in [J] \times [K]}{\text{argmin}} d_H(S^{\text{new}}, C_j^k). \quad (7)$$

254 The sample is then classified according to the class label of the selected cluster.
 255

256 Theorem 2 provides theoretical insight into our clustering-by-bundling method in Equation 5 (Proof
 257 2). It shows that the Hamming distance between the Cluster-HV C and any Sample-HV that
 258 constitutes the cluster is almost always less than the typical distance of $d_H = 0.5$ between two random
 259 hypervectors. This supports that the Cluster-HV can sufficiently represent all samples in the cluster.
 260 Moreover, since Sample-HVs within a cluster are typically more similar to one another than two
 261 randomly drawn hypervectors, the Cluster-HV is expected to preserve even stronger relationships in
 262 practice than those guaranteed under the random hypervector assumption in the theorem.
 263

270 **Theorem 2** (Distance Between Cluster Prototype and Constituents). *Let $S^{(1)}, S^{(2)}, \dots, S^{(N)} \in \mathcal{H}^D$ be independently sampled random hypervectors. Define their bundling sum as $C = [S^{(1)} + S^{(2)} + \dots + S^{(N)}]$. As $D \rightarrow \infty$, for any random hypervector $S^* \in \mathcal{H}^D$, index $j \in \{1, \dots, N\}$, the Hamming distance between C and any component $S^{(n)}$ satisfies*

$$276 \quad P \left(d_H(C, S^{(n)}) < d_H(C, S^*) \right) \rightarrow 1. \quad (8)$$

279 3.3 RETRAIN CLUSTER PROTOTYPES

281 To further improve accuracy, HDC-X optionally applies a retraining procedure that adjusts Cluster-
282 HVs based on misclassified training samples. The retraining stage operates exclusively on the train-
283 ing set with no reference to test data.

284 Recall that each Cluster-HV C_j^k is generated by bundling the Sample-HVs assigned to cluster \mathfrak{C}_j^k ,
285 i.e., $C_j^k = [\sum_{S_j^{(i)} \in \mathfrak{C}_j^k} S_j^{(i)}]$. Let S^{err} be a misclassified Sample-HV from the training set. Suppose
286 $S^{\text{err}} \in \mathfrak{C}_{j_1}^{k_1}$, but its nearest Cluster-HV in Hamming distance is a different Cluster-HV $C_{j_2}^{k_2}$. This
287 implies that the Cluster-HV $C_{j_1}^{k_1}$, constructed from cluster $\mathfrak{C}_{j_1}^{k_1}$, does not adequately represent S^{err} .
288

289 To correct this, HDC-X performs two adjustments: (1) Subtracts S^{err} from the incorrect Cluster-HV
290 $C_{j_2}^{k_2}$ and (2) Re-bundles S^{err} onto the correct Cluster-HV $C_{j_1}^{k_1}$. We generalize this operation across
291 all misclassified training samples. Let $\mathcal{E}_j^{\text{k,out}}$ denote Sample-HVs outside cluster \mathfrak{C}_j^k that incorrectly
292 match closest to C_j^k ; while $\mathcal{E}_j^{\text{k,in}}$ denote the Sample-HVs within \mathfrak{C}_j^k but are closer to a Cluster-HV
293 of a different cluster. The retrained Cluster-HV representing cluster \mathfrak{C}_j^k is computed as
294

$$297 \quad C_j^{k'} = \left[\sum_{S_j^{(i)} \in \mathfrak{C}_j^k} S_j^{(i)} - \sum_{S_j^{(i)} \in \mathcal{E}_j^{\text{k,out}}} S_j^{(i)} + \sum_{S_j^{(i)} \in \mathcal{E}_j^{\text{k,in}}} S_j^{(i)} \right]. \quad (9)$$

300 4 RESULTS AND DISCUSSIONS

303 4.1 DATASETS

305 **PhysioNet/CinC Challenge 2016** (Clifford et al., 2016) provides a collection of 3,153 heart sound
306 recordings sourced from six distinct databases. These recordings were collected by multiple research
307 teams across various countries using different equipment and methodologies, often under noisy
308 conditions. Each recording is labeled as either ‘normal’ or ‘abnormal’.

309 **Wisconsin Breast Cancer** (William Wolberg et al., 1995) is a widely used benchmark for breast
310 cancer diagnosis. It contains real-valued features extracted from digitized images of fine-needle
311 aspirates (FNA) of breast masses, with each sample labeled as either ‘benign’ or ‘malignant’.

312 **Cerqueira sEMG Muscle Fatigue** (Cerqueira et al., 2024) offers surface electromyography
313 (sEMG) recordings using a Delsys Trigno system at a sampling frequency of 1259Hz. Each sample
314 is annotated into three fatigue levels: relax, mild fatigue, and fatigue.

316 4.2 EXPERIMENT SETUP

318 **Platform:** Large deep learning baselines were trained and evaluated on an NVIDIA GeForce RTX
319 4090 GPU (24GB VRAM). HDC-X, other one-shot models, and efficient neural networks were
320 trained and evaluated on an Intel Xeon Gold 6430 CPU (120GB RAM). All experiments were con-
321 ducted on Ubuntu 22.04.1 LTS (Linux kernel 5.15.0-97-generic).

323 **Energy Measurement:** We define *energy* as device-level energy consumption (joules). Training
and inference energy were computed by integrating measured power over time.

324

325

Table 1: Performance and Energy Comparison of HDC-X and Baseline Models

326

327

Models	10-Folds Accuracy (%)	Energy (Train, J)	Energy (1000 Inferences, J)
PhysioNet Challenge 2016:			
Bayesian ResNet (H. Krones et al., 2022)	89.105 \pm 1.543	142997 \pm 5465	9455 \pm 899
Knowledge Distillation CNN (Song et al., 2023)	88.580 \pm 2.186	32808 \pm 2582	289 \pm 116
VGG16 (Shuvo et al., 2023)	88.271 \pm 1.718	165840 \pm 5443	605 \pm 131
ViT + CNN (Han & Shaout, 2025)	87.808 \pm 1.996	889920 \pm 36748	1661 \pm 209
Light CNN (Li et al., 2021)	87.408 \pm 1.497	10164 \pm 1204	227 \pm 88
Pruned Bayesian ResNet (H. Krones et al., 2022)	87.190 \pm 2.508	142997 \pm 5465	3307 \pm 214
Class-Wise K-Means	76.759 \pm 4.937	9 \pm 2	very low
HDCluster (Imani et al., 2019)	79.877 \pm 2.589	318 \pm 3	50 \pm 2
HDC	77.840 \pm 2.419	135 \pm 10	26 \pm 4
HDC-X (Ours)	88.180 \pm 1.746	246 \pm 6	27 \pm 3
Wisconsin Breast Cancer:			
DNN (Zheng, 2024)	96.842 \pm 2.579	698.626 \pm 82.403	11.842 \pm 1.470
GRU (Jony & Arnob, 2024)	96.668 \pm 1.994	2710.461 \pm 109.069	97.283 \pm 2.408
CNN (Jony & Arnob, 2024)	95.439 \pm 2.956	312.416 \pm 7.874	12.458 \pm 0.368
Class-Wise K-Means	93.595 \pm 3.106	3.045 \pm 0.379	0.070 \pm 0.007
HDC	94.382 \pm 0.039	2.489 \pm 0.174	0.717 \pm 0.021
HDC-X (Ours)	96.314 \pm 0.027	3.801 \pm 0.340	0.823 \pm 0.015
Cerdeira sEMG Muscle Fatigue:			
GRU (Aviles et al., 2024)	91.955 \pm 3.084	874.511 \pm 42.378	34.018 \pm 1.013
LSTM (Aviles et al., 2024)	91.710 \pm 2.705	135.828 \pm 7.453	32.416 \pm 1.483
CNN (Moniri et al., 2021)	91.367 \pm 3.626	250.685 \pm 21.217	10.426 \pm 0.884
Class-Wise K-Means	88.596 \pm 5.135	3.367 \pm 0.247	0.076 \pm 0.010
HDC (Moin et al., 2018)	84.984 \pm 0.043	2.634 \pm 0.169	0.445 \pm 0.025
HDC-X (Ours)	91.592 \pm 2.927	2.813 \pm 0.205	0.422 \pm 0.029

345

346

347 4.3 COMPARISON WITH BASELINE MODELS

348

349 Table 1 summarizes the performance of HDC-X against baseline models across three medical
350 datasets. HDC-X achieves substantially higher energy efficiency than deep neural networks and
351 outperforms other efficient methods in terms of accuracy. For instance, on the heart sounds classi-
352 fication task, HDC-X is 580 \times more energy-efficient in training and 350 \times in inference compared to
353 the best-performing Bayesian ResNet (H. Krones et al., 2022), while also delivering a 10% accuracy
354 improvement over standard HDC.

355

356

357 4.4 IMPACT OF HDC-X HYPERPARAMETERS

358

359 As discussed in Section 3, a sufficiently large dimensionality D is critical for HDC-X to maintain
360 robustness against input noise (Theorem 1) and to ensure that Cluster-HVs accurately capture the
361 aggregate features of their clusters (Theorem 2). Likewise, an adequate number of clusters K are
362 essential for forming stable hyperspace clusters. A few retrain epochs can further fine-tune Cluster-
363 HVs to better align with the Sample-HVs assigned to each cluster.

364

365 However, excessively large values of these hyperparameters introduce unnecessary computational
366 overhead, reducing the energy efficiency HDC-X is designed to achieve. Our experiments also in-
367 dicate that allocating too many clusters or performing excessive retraining can lead to overfitting.
368 Figure 4 (a-c) illustrates HDC-X’s performance on heart sound classification across different hyper-
369 parameter settings.

370

371 4.5 ROBUSTNESS FOR REAL-WORLD DEPLOYMENT

372

373 4.5.1 RESILIENCE TO INPUT NOISE

374

375 Real-world medical signals often contain persistent environmental noise, which can impair classi-
376 fication performance (Clifford et al., 2016). The inherent robustness of HDC-X’s encoding mech-
377 anism, as supported by Theorem 1, allows it to maintain high accuracy even with noisy inputs. As
378 shown in Figure 4(d), HDC-X experiences only 1.39% drop in accuracy under 15% input noise,
379 demonstrating its reliability in noisy settings.

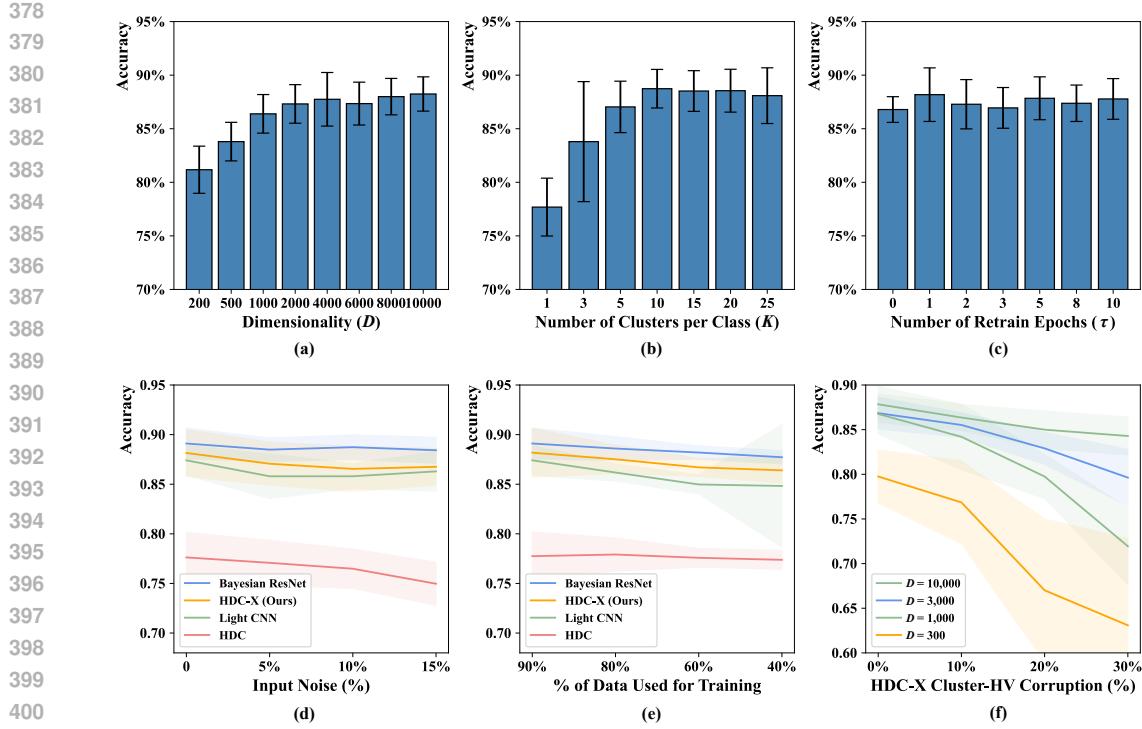


Figure 4: HDC-X sensitivity to hyperparameters, input noise, limited training data, and hardware errors on PhysioNet 2016.

4.5.2 RESILIENCE TO LIMITED TRAINING DATA

Many medical datasets are limited in size due to privacy constraints. As shown in Figure 4(e), HDC-X remains robust under reduced training data, with only a 1.78% drop in accuracy when trained on 40% of the PhysioNet 2016 dataset.

4.5.3 RESILIENCE TO HARDWARE ERRORS

Neural architectures are known for their fault tolerance through redundant representations, unlike traditional binary systems where single-bit failures are critical (Pentti Kanerva, 2009). Similarly, brain-inspired hyperdimensional encodings offer inherent robustness to hardware malfunctions by distributing information across high-dimensional vectors (Kanerva et al., 2000).

To evaluate this robustness in HDC-X, we conducted a perturbation analysis by randomly flipping elements (+1 to -1 and vice versa) in all stored Cluster-HVs to simulate hardware instability. Theorem 3 demonstrates that, with sufficient dimensionality, flipping up to 50% of the elements has minimal impact on classification accuracy (Proof 3). The theorem is supported empirically: as shown in Figure 4(f), with $D = 10,000$, flipping 20% of elements results in only a 2.84% drop in accuracy.

Theorem 3 (Robustness to Hardware Error). *Assume we have a Sample-HV S and two Cluster-HVs C_1 and C_2 , whose initial Hamming distances satisfy:*

$$d_H(S, C_1) = d_1 \quad \text{and} \quad d_H(S, C_2) = d_2, \quad (10)$$

where $d_2 - d_1 = \epsilon > 0$.

We randomly flip a proportion p ($p < 0.5$) of the bits in both C_1 and C_2 , yielding two new hyper-vectors C'_1 and C'_2 . As $D \rightarrow \infty$, we have

$$P(d_H(S, C'_1) < d_H(S, C'_2)) \rightarrow 1 \quad (11)$$

432 4.6 CONCEPTUAL HARDWARE FRAMEWORK
433

434 The current implementation of HDC-X
435 is in Python, which does not fully ex-
436 ploit the hardware-level efficiency of bi-
437 nary hypervectors enabled by single-bit
438 operations and parallel computing. Prior
439 work on HDC hardware has shown that
440 fundamental operations such as binding
441 and bundling can be implemented with
442 extremely lightweight digital logic: bind-
443 ing reduces to bitwise XOR, bundling to
444 majority voting circuits, and similarity
445 search to parallelized Hamming distance
446 computation (Imani et al., 2017). These
447 properties allow HDC systems to oper-
448 ate with low energy consumption and
449 high throughput compared to conven-
tional floating-point ML models.

450 Building on these insights, we outline a
451 conceptual hardware framework speci-
452 fically tailored for HDC-X (Figure 5). To
453 validate its feasibility, we prototyped the framework on a Xilinx FPGA platform and are able to
454 achieve the accuracy reported in Table 1. We plan to further refine and evaluate this hardware-
455 oriented design in future work.

456 5 CONCLUSION
457

459 This paper introduces HDC-X, an energy-efficient classification framework extended from Hyper-
460 dimensional Computing (HDC). HDC-X demonstrates significant advantage in medical data classi-
461 fication: on heart sound classification, it is $350\times$ more efficient than Bayesian ResNet, and provide
462 $> 10\%$ accuracy improvement over standard HDC.

463 We evaluated HDC-X’s robustness both theoretically and empirically. The model maintains high
464 accuracy under challenging conditions: showing only a 1.39% drop under 15% input noise, 1.78%
465 when trained on just 40% of the dataset, and 2.84% when 20% of its learned parameters are cor-
466 rupted. These results highlight HDC-X’s reliability on real-world medical applications.

468 From a societal perspective, HDC-X can help expand access to medical screening in underserved
469 settings by enabling assessments on low-cost, GPU-free devices. However, overreliance on the
470 screening tool without clinical oversight could lead to misdiagnoses; therefore, the system should
471 be designed to recommend follow-up with a medical professional when abnormalities are detected.

472 473 REPRODUCIBILITY STATEMENT
474

475 We are committed to ensuring the reproducibility of our results. To this end, we have released the
476 complete HDC-X codebase along with a detailed installation guide in the Supplementary Materials.
477 The repository contains all datasets used in our experiments as well as the exact hyperparameter
478 configurations adopted for training and evaluation. This enables researchers to fully replicate our
479 experiments and verify the reported results.

480 481 REFERENCES
482

483 Pedro Alonso, Kumar Shridhar, Denis Kleyko, Evgeny Osipov, and Marcus Liwicki. HyperEmbed:
484 Tradeoffs Between Resources and Performance in NLP Tasks with Hyperdimensional Comput-
485 ing Enabled Embedding of n-gram Statistics. In *2021 International Joint Conference on Neu-*
486 *ral Networks (IJCNN)*, pp. 1–9, Shenzhen, China, July 2021. IEEE. ISBN 978-1-66543-900-

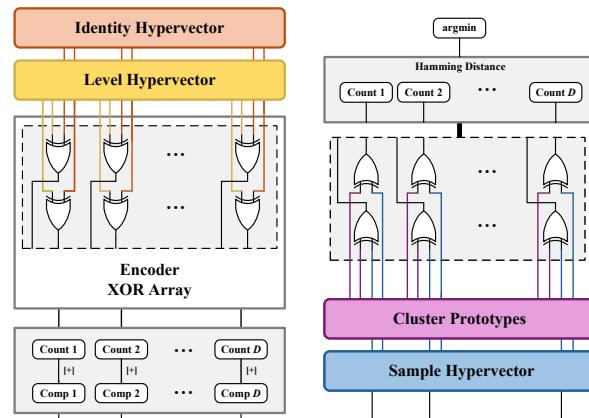


Figure 5: Conceptual hardware framework for HDC-X.

486 8. doi: 10.1109/IJCNN52387.2021.9534359. URL <https://ieeexplore.ieee.org/document/9534359/>.

487

488

489 Fatemeh Asgarinejad, Anthony Thomas, and Tajana Rosing. Detection of Epileptic Seizures from
490 Surface EEG Using Hyperdimensional Computing. In *2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 536–540, July
491 2020. doi: 10.1109/EMBC44109.2020.9175328. URL <https://ieeexplore.ieee.org/document/9175328/?arnumber=9175328>. ISSN: 2694-0604.

492

493

494 Marcos Aviles, José Manuel Alvarez-Alvarado, Jose-Billerman Robles-Ocampo, Perla Yazmín
495 Sevilla-Camacho, and Juvenal Rodríguez-Reséndiz. Optimizing RNNs for EMG Signal Clas-
496 sification: A Novel Strategy Using Grey Wolf Optimization. *Bioengineering*, 11(1):77, January
497 2024. ISSN 2306-5354. doi: 10.3390/bioengineering11010077. URL <https://www.mdpi.com/2306-5354/11/1/77>.

498

499

500 Ryan Billmeyer and Keshab K. Parhi. Biological Gender Classification from fMRI via Hyperdi-
501 mensional Computing. In *2021 55th Asilomar Conference on Signals, Systems, and Comput-
502 ers*, pp. 578–582, Pacific Grove, CA, USA, October 2021. IEEE. ISBN 978-1-66545-828-3.
503 doi: 10.1109/IEEECONF53345.2021.9723179. URL <https://ieeexplore.ieee.org/document/9723179/>.

504

505 Sara M. Cerqueira, Rita Vilas Boas, Joana Figueiredo, and Cristina P. Santos. A Comprehensive
506 Dataset of Surface Electromyography and Self-Perceived Fatigue Levels for Muscle Fatigue Anal-
507 ysis. *Sensors*, 24(24):8081, December 2024. ISSN 1424-8220. doi: 10.3390/s24248081. URL
508 <https://www.mdpi.com/1424-8220/24/24/8081>.

509

510 Yanjiao Chen, Baolin Zheng, Zihan Zhang, Qian Wang, Chao Shen, and Qian Zhang. Deep Learning
511 on Mobile and Embedded Devices: State-of-the-art, Challenges, and Future Directions. *ACM
512 Computing Surveys*, 53(4):1–37, July 2021. ISSN 0360-0300, 1557-7341. doi: 10.1145/3398209.
513 URL <https://dl.acm.org/doi/10.1145/3398209>.

514

515 Gari Clifford, Chengyu Liu, David Springer, Benjamin Moody, Qiao Li, Ricardo Abad, Jose Millet,
516 Ikaro Silva, Alistair Johnson, and Roger Mark. Classification of Normal/Abnormal Heart Sound
517 Recordings: the PhysioNet/Computing in Cardiology Challenge 2016. In *2016 Computing in
518 Cardiology Conference*, September 2016. doi: 10.22489/CinC.2016.179-154. URL <http://www.cinc.org/archives/2016/pdf/179-154.pdf>.

519

520 S. Davis and P. Mermelstein. Comparison of parametric representations for monosyllabic word
521 recognition in continuously spoken sentences. *IEEE Transactions on Acoustics, Speech, and
522 Signal Processing*, 28(4):357–366, August 1980. ISSN 0096-3518. doi: 10.1109/TASSP.1980.
523 1163420. URL <https://ieeexplore.ieee.org/abstract/document/1163420>.

524

525 Lulu Ge and Keshab K. Parhi. Classification Using Hyperdimensional Computing: A Review.
526 *IEEE Circuits and Systems Magazine*, 20(2):30–47, 2020. ISSN 1558-0830. doi: 10.1109/
527 MCAS.2020.2988388. URL <https://ieeexplore.ieee.org/document/9107175/?arnumber=9107175>. Conference Name: IEEE Circuits and Systems Magazine.

528

529 "Felix H. Krones, Benjamin Walker, Adam Mahdi, Ivan Kiskin, Terry Lyons, and Guy Parsons".
530 Dual Bayesian ResNet: A Deep Learning Approach to Heart Murmur Detection. December
531 2022. doi: 10.22489/CinC.2022.355. URL <https://www.cinc.org/archives/2022/pdf/CinC2022-355.pdf>.

532

533 Jih Han and Adnan Shaout. ENACT-Heart – ENsemble-based Assessment Using CNN and Trans-
534 former on Heart Sounds, February 2025. URL <http://arxiv.org/abs/2502.16914>.
535 arXiv:2502.16914 [cs].

536

537 Mohsen Imani, Deqian Kong, Abbas Rahimi, and Tajana Rosing. VoiceHD: Hyperdimensional
538 Computing for Efficient Speech Recognition. In *2017 IEEE International Conference on Re-
539 booting Computing (ICRC)*, pp. 1–8, Washington, DC, November 2017. IEEE. ISBN 978-1-
539 5386-1553-9. doi: 10.1109/ICRC.2017.8123650. URL <http://ieeexplore.ieee.org/document/8123650/>.

540 Mohsen Imani, Yeseong Kim, Thomas Worley, Saransh Gupta, and Tajana Rosing. HDClus-
 541 ter: An Accurate Clustering Using Brain-Inspired High-Dimensional Computing. In *2019 De-*
 542 *sign, Automation & Test in Europe Conference & Exhibition (DATE)*, pp. 1591–1594, March
 543 2019. doi: 10.23919/DATE.2019.8715147. URL [https://ieeexplore.ieee.org/](https://ieeexplore.ieee.org/document/8715147/?arnumber=8715147)
 544 document/8715147/?arnumber=8715147. ISSN: 1558-1101.

545 Akinul Islam Jony and Arjun Kumar Bose Arnob. Deep Learning Paradigms for Breast Cancer
 546 Diagnosis: A Comparative Study on Wisconsin Diagnostic Dataset. *Malaysian Journal of Science*
 547 and *Advanced Technology*, pp. 109–117, March 2024. ISSN 2785-8901. doi: 10.56532/mjsat.
 548 v4i2.245. URL <https://mjsat.com.my/index.php/mjsat/article/view/245>.

550 Pentti Kanerva, Jan Kristoferson, and Anders Holst. Random Indexing of Text Samples for Latent
 551 Semantic Analysis. *Proceedings of the 22nd Annual Conference of the Cognitive Science Society*,
 552 pp. 1036, 2000.

554 Firoz Khan, Balusupati Veera Venkata Siva Prasad, Salman Ali Syed, Imran Ashraf, and Laksh-
 555 mana Kumar Ramasamy. An Efficient, Ensemble-Based Classification Framework for Big Medi-
 556 cal Data. *Big Data*, 10(2):151–160, April 2022. ISSN 2167-6461, 2167-647X. doi: 10.1089/big.
 557 2021.0132. URL <https://www.liebertpub.com/doi/10.1089/big.2021.0132>.

558 Denis Kleyko, Evgeny Osipov, Nikolaos Papakonstantinou, and Valeriy Vyatkin. Hyperdimensional
 559 Computing in Industrial Systems: The Use-Case of Distributed Fault Isolation in a Power Plant.
 560 *IEEE Access*, 6:30766–30777, 2018. ISSN 2169-3536. doi: 10.1109/ACCESS.2018.2840128.
 561 URL <https://ieeexplore.ieee.org/document/8367786/>.

563 Tao Li, Yibo Yin, Kainan Ma, Sitao Zhang, and Ming Liu. Lightweight End-to-End Neural Network
 564 Model for Automatic Heart Sound Classification. *Information*, 12(2):54, February 2021. ISSN
 565 2078-2489. doi: 10.3390/info12020054. URL [https://www.mdpi.com/2078-2489/](https://www.mdpi.com/2078-2489/12/2/54)
 566 12/2/54. Number: 2 Publisher: Multidisciplinary Digital Publishing Institute.

567 S.G. Mallat. A theory for multiresolution signal decomposition: the wavelet representation.
 568 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 11(7):674–693, July 1989.
 569 ISSN 1939-3539. doi: 10.1109/34.192463. URL [https://ieeexplore.ieee.org/](https://ieeexplore.ieee.org/document/192463)
 570 document/192463.

572 Nicolas Y. Masse, Glenn C. Turner, and Gregory S.X.E. Jefferis. Olfactory Information Process-
 573 ing in Drosophila. *Current Biology*, 19(16):R700–R713, August 2009. ISSN 09609822. doi:
 574 10.1016/j.cub.2009.06.026. URL <https://linkinghub.elsevier.com/retrieve/pii/S0960982209013013>.

576 Ali Moin, Andy Zhou, Abbas Rahimi, Simone Benatti, Alisha Menon, Senam Tamakloe, Jonathan
 577 Ting, Natasha Yamamoto, Yasser Khan, Fred Burghardt, Luca Benini, Ana C. Arias, and Jan M.
 578 Rabaey. An EMG Gesture Recognition System with Flexible High-Density Sensors and Brain-
 579 Inspired High-Dimensional Classifier. In *2018 IEEE International Symposium on Circuits and*
 580 *Systems (ISCAS)*, pp. 1–5, Florence, 2018. IEEE. ISBN 978-1-5386-4881-0. doi: 10.1109/ISCAS.
 581 2018.8351613. URL <https://ieeexplore.ieee.org/document/8351613/>.

583 Ahmad Moniri, Dan Terracina, Jesus Rodriguez-Manzano, Paul H. Strutton, and Pantelis Georgiou.
 584 Real-Time Forecasting of sEMG Features for Trunk Muscle Fatigue Using Machine Learning.
 585 *IEEE Transactions on Biomedical Engineering*, 68(2):718–727, February 2021. ISSN 0018-9294,
 586 1558-2531. doi: 10.1109/TBME.2020.3012783. URL <https://ieeexplore.ieee.org/>
 587 document/9152074/.

588 Pentti Kanerva. Hyperdimensional Computing: An Introduction to Computing in Distributed Rep-
 589 resentation with High-Dimensional Random Vectors, January 2009.

591 Mahfuzur Rahman and Bashir I. Morshed. Resource-Constrained On-Chip AI Classifier for Beat-
 592 by-Beat Real-Time Arrhythmia Detection with an ECG Wearable System. *Electronics*, 14(13):
 593 2654, June 2025. ISSN 2079-9292. doi: 10.3390/electronics14132654. URL <https://www.mdpi.com/2079-9292/14/13/2654>.

594 Samiul Based Shuvo, Syed Samiul Alam, Syeda Umme Ayman, Arbil Chakma, Prabal Datta Barua,
 595 and U Rajendra Acharya. NRC-Net: Automated noise robust cardio net for detecting valvular
 596 cardiac diseases using optimum transformation method with heart sound signals. *Biomedical
 597 Signal Processing and Control*, 86:105272, September 2023. ISSN 1746-8094. doi: 10.1016/
 598 j.bspc.2023.105272. URL <https://www.sciencedirect.com/science/article/pii/S174680942300705X>.
 599

600 Zikai Song, Lixian Zhu, Yiyian Wang, Mengkai Sun, Kun Qian, Bin Hu, Yoshiharu Yamamoto,
 601 and Björn W. Schuller. Cutting Weights of Deep Learning Models for Heart Sound Classi-
 602 fication: Introducing a Knowledge Distillation Approach. In *2023 45th Annual International
 603 Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)*, pp. 1–4, July
 604 2023. doi: 10.1109/EMBC40787.2023.10340704. URL <https://ieeexplore.ieee.org/abstract/document/10340704>. ISSN: 2694-0604.
 605

606 Si Ying Tan, Jennifer Sumner, Yuchen Wang, and Alexander Wenjun Yip. A systematic review
 607 of the impacts of remote patient monitoring (RPM) interventions on safety, adherence, quality-
 608 of-life and cost-related outcomes. *npj Digital Medicine*, 7(1):192, July 2024. ISSN 2398-
 609 6352. doi: 10.1038/s41746-024-01182-w. URL <https://www.nature.com/articles/s41746-024-01182-w>.
 610

611 Anthony Thomas, Sanjoy Dasgupta, and Tajana Rosing. A Theoretical Perspective on Hyperdi-
 612 mensional Computing. *Journal of Artificial Intelligence Research*, 72:215–249, October 2021.
 613 ISSN 1076-9757. doi: 10.1613/jair.1.12664. URL <https://www.jair.org/index.php/jair/article/view/12664>.
 614

615 William Wolberg, W. Street, and Olvi Mangasarian. Breast Cancer Wisconsin (Prognostic), 1995.
 616

617 Lily Zheng. Training Artificial Neural Network for Breast Cancer Detection: a High Accuracy
 618 Model to Compare Different Features of Breast Cell Nuclei in Breast Cancer Diagnosis. October
 619 2024.

620 Douglas P. Zipes, Peter Libby, Robert O. Bonow, Douglas L. Mann, Gordon F. Tomaselli, and
 621 Eugene Braunwald (eds.). *Braunwald's heart disease: a textbook of cardiovascular medicine*.
 622 Elsevier, Philadelphia, PA, eleventh edition, international edition edition, 2019. ISBN 978-0-323-
 623 46342-3 978-0-323-46299-0 978-0-323-55592-0.
 624

625 A THEORY

626 A.1 NOTATIONS AND DEFINITIONS

627 **Definition 1** (Hyperspace). *The hyperspace \mathcal{H}^D is the set of all bipolar hypervectors of dimension
 628 D , where each element takes a value from $\{+1, -1\}$. Formally,*

$$629 \mathcal{H}^D := \{-1, +1\}^D = \{A \in \mathbb{R}^D \mid a_i \in \{+1, -1\}, \forall i \in \{1, 2, \dots, D\}\} \quad (12)$$

630 where a_i denotes the i -th component of the hypervector A .

631 *Unless otherwise specified, for a random hypervector $A \in \mathcal{H}^D$, each component a_i is drawn inde-
 632 pendently and identically distributed (i.i.d.) from a binary distribution over $\{-1, +1\}$ with equal
 633 probability:*

$$634 \mathbb{P}(a_i = +1) = \mathbb{P}(a_i = -1) = 0.5, \quad \forall i \in \{1, \dots, D\}. \quad (13)$$

635 **Definition 2** (Elementary Functions). *Given any hypervectors $A, B \in \mathcal{H}^D$, we define the following
 636 elementary functions:*

- 637 • The number of $+1$ elements in A :

$$638 pos(A) := \sum_{i=1}^D \mathbb{I}(a_i = +1) \quad (14)$$

648 • The number of -1 elements in A :

649
650
$$neg(A) := \sum_{i=1}^D \mathbb{I}(a_i = -1) \quad (15)$$

651 • Binding of A and B :

652
$$A \otimes B := A \times B \quad (16)$$

653 • Bundling of A and B :

654
$$A \oplus B := [A + B] \quad (17)$$

655 where $\mathbb{I}(\cdot)$ denotes the indicator function that returns 1 if the condition is true and 0 otherwise, \times is
656 an element-wise multiplication, $+$ is an element-wise addition, and $[\cdot]$ is the element-wise majority
657 function that outputs -1 for negative sum, $+1$ for positive sum, and equally random drawn from
658 $\{-1, +1\}$ for zero sum.

659 **Definition 3** (Hamming Distance). Given two hypervectors $A, B \in \mathcal{H}^D$, the Hamming distance be-
660 tween them is defined as the ratio of positions where the corresponding components differ. Formally,
661

662
$$d_H : \mathcal{H}^D \times \mathcal{H}^D \rightarrow [0, 1], \quad d_H(A, B) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(a_i \neq b_i) = \frac{1}{D} neg(A \otimes B). \quad (18)$$

663 **Definition 4** (Level Set). We define a set of M hypervectors $\mathcal{L} = \{L^{(j)}\}_{j \in \{1, 2, \dots, M\}} \subset \mathcal{H}^D$ as a
664 level set if it can be generated by:

665 • Randomly sample a base hypervector $L^{(1)} \in \mathcal{H}^D$
666 • Initialize an empty set $\mathcal{B} = \emptyset$ to record flipped bit positions.
667 • For each $i \in \{2, 3, \dots, M\}$:
668 – Randomly select $\frac{D}{M-1}$ positions from $\{1, \dots, D\} \setminus \mathcal{B}$ (i.e., bits not yet flipped). To
669 – avoid unnecessary complexity, we assume that $M-1$ divides D exactly here, i.e.,
670 – $\frac{D}{M-1} \in \mathbb{N}$.
671 – Flip the selected bits in $L^{(i-1)}$ to obtain $L^{(i)}$;
672 – Update \mathcal{B} to include the newly flipped bit positions.

673 In the constructed level set \mathcal{L} , the Hamming distance between any two levels $L^{(i)}$ and $L^{(j)}$ satisfies

674
$$d_H(L^{(i)}, L^{(j)}) = \frac{|i - j|}{M-1}.$$

675 **Definition 5** (Mapping with Levels). Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a continuous feature vector space. Define inde-
676 pendently sampled d random hypervectors $\mathcal{ID} = \{ID^{(1)}, ID^{(2)}, \dots, ID^{(d)}\} \subset \mathcal{H}^D$ and a random
677 level set $\mathcal{L} = \{L^{(1)}, L^{(2)}, \dots, L^{(M)}\} \subset \mathcal{H}^D$. Next, for each feature dimension $n \in \{1, \dots, d\}$,
678 define $M-1$ real-valued thresholds $\theta_{n,1} < \theta_{n,2} < \dots < \theta_{n,M-1}$, partitioning \mathbb{R} into M intervals:
679

680
$$I_0 = (-\infty, \theta_{n,1}), \quad I_1 = [\theta_{n,1}, \theta_{n,2}), \quad \dots, \quad I_{M-1} = [\theta_{n,M-1}, +\infty).$$

681 Based on the intervals defined by $\Theta = \{\theta_{n,m}\}_{n \in \{1, \dots, d\}, m \in \{1, \dots, M\}}$, we select the unique $m =$
682 $l_n(x_i[n])$ for $x_i[n] \in \mathbb{R}$ that $x_i[n] \in I_m$.

683 In this task, the mapping function for feature n is defined by

684
685
$$l_n(x) = \begin{cases} 1 & x \in (-\infty, \theta_{n,\alpha}) \\ \lfloor \frac{x - \theta_{n,\alpha}}{\theta_{n,\beta} - \theta_{n,\alpha}} \times M + 1 \rfloor & x \in [\theta_{n,\alpha}, \theta_{n,\beta}) \\ M & x \in [\theta_{n,\beta}, \infty) \end{cases},$$

686 where $\theta_{n,\alpha}$ and $\theta_{n,\beta}$ denote the 2% and 98% quantiles of values in feature n , respectively.

702 A.2 LEMMAS AND PROPOSITIONS
703704 **Lemma 1** (Hamming Distance between product and multiplier). *Given hypervectors $A, B \in \mathcal{H}^D$,
705 the Hamming distance $d_H(A, A * B)$ depends only on B . Specifically,*

706
$$d_H(A, A * B) = \frac{1}{D} \text{neg}(B). \quad (19)$$

707
708

709 *Proof.* By the definition of Binding, the i -th element of $A * B$ is $a_i * b_i$, which behaves as:
710

711
$$a_i * b_i = \begin{cases} a_i, & \text{if } b_i = +1, \\ -a_i, & \text{if } b_i = -1. \end{cases} \quad \text{or } a_i \neq (a_i * b_i) \iff b_i = -1$$

712
713

714 Therefore,

715
$$d_H(A, A * B) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(a_i \neq (a_i * b_i)) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(b_i = -1) = \frac{1}{D} \text{neg}(B).$$

716
717
718

719 \square 720 **Lemma 2** (Hamming Distance Preservation under Multiplication). *Given hypervectors $A, B, C \in$
721 \mathcal{H}^D , we have*

722
$$d_H(A * B, B * C) = d_H(A, C). \quad (20)$$

723

724 *Proof.* By the definition of Binding, the i -th elements of $A * B$ and $B * C$ are $a_i * b_i$ and $b_i * c_i$.
725726 Since $b_i \neq 0$, we have $a_i * b_i \neq b_i * c_i \iff a_i \neq c_i$. Therefore,

727
$$d_H(A * B, B * C) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(a_i * b_i \neq b_i * c_i) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(a_i \neq c_i) = d_H(A, C).$$

728
729
730

731 \square 732 **Lemma 3** (Hamming distance between two Random Hypervectors). *Let $A, B \in \mathcal{H}^D$ be two random
733 hypervectors, Then, for any $\epsilon > 0$,*

734
$$\lim_{D \rightarrow \infty} \mathbb{P}(|d_H(A, B) - 0.5| > \epsilon) = 0. \quad (21)$$

735
736

737 *Proof.* Define random variables $X_i := \mathbb{I}(a_i \neq b_i)$, where $X_i = 1$ if $a_i \neq b_i$ and $X_i = 0$ otherwise.
738 By definition,

739
$$d_H(A, B) = \frac{1}{D} \sum_{i=1}^D X_i.$$

740
741

742 Since A and B are random hypervectors, their components a_i and b_i are drawn i.i.d. from a binary
743 distribution over $\{-1, +1\}$ with equal probability. Thererfore,

744
$$\mathbb{P}(a_i \neq b_i) = 0.5, \quad \mathbb{P}(a_i = b_i) = 0.5,$$

745 indicating that each X_i is an independent Bernoulli random variable with $\mathbb{E}[X_i] = 0.5$. Furthermore,
746 we know that the average of i.i.d. sequence $\{X_i\}$, $\frac{1}{D} \sum_{i=1}^D X_i$ follows a scaled Binomial
747 distribution:

748
$$d_H(A, B) = \frac{1}{D} \sum_{i=1}^D X_i \sim \frac{1}{D} \text{Binomial}(D, \frac{1}{2}).$$

749
750
751

752 Applying the Weak Law of Large Numbers to the i.i.d. sequence $\{X_i\}$, for any $\epsilon > 0$,
753

754
$$\lim_{D \rightarrow \infty} \mathbb{P} \left(\left| \frac{1}{D} \sum_{i=1}^D X_i - 0.5 \right| > \epsilon \right) = 0.$$

755

756 Thus,

$$\lim_{D \rightarrow \infty} \mathbb{P}(|d_H(A, B) - 0.5| > \epsilon) = 0.$$

□

760 **Lemma 4.** Let $A, B \in \mathcal{H}^D$ be two random hypervectors, Then, for any $\epsilon > 0$,

$$\lim_{D \rightarrow \infty} \mathbb{P}(|d_H(A, A * B) - 0.5| > \epsilon) = 0.$$

764 *Proof.* From the Lemma 1, we know that

$$766 \quad d_H(A, A * B) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(b_i = -1) = \frac{\text{neg}(B)}{D}.$$

768 Since B is a random hypervector, each component b_i is drawn i.i.d. from a binary distribution over
769 $\{-1, +1\}$ with equal probability. Again, by the Weak Law of Large Numbers,

$$771 \quad \lim_{D \rightarrow \infty} \mathbb{P}\left(\left|\frac{\text{neg}(B)}{D} - 0.5\right| > \epsilon\right) = 0,$$

773 thus leading to

$$775 \quad \lim_{D \rightarrow \infty} \mathbb{P}(|d_H(A, A * B) - 0.5| > \epsilon) = 0.$$

□

778 **Proposition 1** (Hamming Distance with sufficiently large D). Let two hypervectors $A, B \in \mathcal{H}^D$
779 that satisfy

$$780 \quad d_H(A, B) = \delta,$$

781 and the random variable Z_i indicates the situation of the i^{th} bit

$$782 \quad Z_i = \mathbb{I}(a_i \neq b_i).$$

784 With sufficiently large D , the Z_i can be approximately viewed as an i.i.d. Bernoulli distribution

$$786 \quad Z_i \sim_{\text{i.i.d.}} \text{Bernoulli}(\delta), \forall i \in \{1, 2, \dots, D\}.$$

788 *Proof.* With the definition of Hamming distance, we have

$$790 \quad \frac{1}{D} \sum_{i=1}^D Z_i = d_H(A, B) = \delta.$$

793 Observe that this is an empirical mean of $\{Z_i\}$ over D bits. Notice that the Z_i are NOT independent — their sum is fixed to be exactly δD . However, we make the following observations and
794 assumptions to justify such a approximation:

796 • With sufficiently large D , the possibility of the Hamming distance of A and B completely
797 falls into an arbitrarily small interval around the δ is almost 1

$$799 \quad \mathbb{P}\left(\left|\frac{1}{D} \sum_{i=1}^D Z_i - \delta\right| > \epsilon\right) \leq 2 \exp(-2D\epsilon^2).$$

802 • If A and B are generated randomly and conditioned on their Hamming distance being δD ,
803 then the mismatch positions mentioned above are uniformly random for every index;

805 □

807 To summarize, this proposition provides a new perspective to define the Hamming distance in the
808 large hyperspace. With sufficiently large dimensionality D , Hamming distance between hyper-
809 vectors can be interpreted statistically as the empirical mean of i.i.d. Bernoulli random variables,
yielding a probabilistic characterization of similarity.

810 A.3 THEOREMS
811

812 **Theorem 1** (Robust to Input Noise). *Let $s^{(1)}, s^{(2)} \in \mathcal{S} \subseteq \mathbb{R}^d$ be two feature vectors. $S =$
813 $f_{\mathcal{ID}, \mathcal{L}, \Theta}(s)$ denotes the hypervector mapping defined in Equation 2. Suppose that for all indices
814 of the features $n \in \{1, \dots, d\}$,*

$$815 \frac{|x_n^{(1)} - x_n^{(2)}|}{\Delta_i} \leq \delta, \\ 816 \\ 817$$

818 where Δ_i is the difference between the upper and lower bounds of the i^{th} feature value, and $\delta \in$
819 $[0, 1]$ denotes the maximum distance ratio of the corresponding features. Then, with a sufficiently
820 large D , the expected upper-bound Hamming distance between $S^{(1)} = f_{\mathcal{ID}, \mathcal{L}, \Theta}(s^{(1)})$ and $S^{(2)} =$
821 $f_{\mathcal{ID}, \mathcal{L}, \Theta}(s^{(2)})$ converges to a monotonically increasing function g with parameter δ

$$823 \mathbb{E} \left[\sup \left(d_H \left(S^{(1)}, S^{(2)} \right) \right) \right] \rightarrow g(\delta), \quad (22) \\ 824$$

825 This implies that the Hamming distance between a sample and its noisy variant is almost surely
826 bounded by $g(\delta)$.
827

828 *Proof.* We consider the $L^{(l_n(x_n^{(1)}))}, L^{(l_n(x_n^{(2)}))}$ first. Since $\frac{|x_i^{(1)} - x_i^{(2)}|}{\Delta_i} \leq \delta$, we can bound the difference
829 of their corresponding Level Hypervectors. By definition 4, we have
830
831

$$832 \begin{aligned} d_H \left(L^{(l_n(x_i^{(1)}))}, L^{(l_n(x_i^{(2)}))} \right) \\ 833 &= \frac{l_n(x_i^{(1)}) - l_n(x_i^{(2)})}{M-1} \\ 834 &\leq \frac{1}{M-1} \left(\frac{\delta \Delta_i}{\theta_{i,M-1} - \theta_{i,1}} (M-2) + 2 \right) \\ 835 &\leq \frac{M}{M-1} \delta + \frac{2}{M-1} = \delta_d, \end{aligned} \quad (23)$$

842 With the random flipping performed by $\otimes ID^{(i)}$, $\{L^{(l_n(x_i^{(1/2)}))} \otimes ID^{(i)}\}$ can be viewed as a new set
843 of randomly generated hypervectors, denoted as $\{T^{i(1/2)}\}$, which satisfy the following relationship
844 with Lemma 2

$$845 \begin{aligned} d_H \left(T^{i(1)}, T^{i(2)} \right) \\ 846 &= d_H \left(L^{(l_n(x_i^{(1)}))} \otimes ID^{(i)}, L^{(l_n(x_i^{(2)}))} \otimes ID^{(i)} \right) \\ 847 &= d_H \left(L^{(l_n(x_i^{(1)}))}, L^{(l_n(x_i^{(2)}))} \right) \leq \delta_d. \end{aligned} \quad (24)$$

851 To estimate the upper bound, we treat the inequality as an equality. Furthermore, with Proposition 1,
852 we consider the Hamming distance constraint as a statistically condition, so that for every $T^{i(1)}$ and
853 $T^{i(2)}$ pair, the equality situation at the j^{th} index follows a Bernoulli distribution
854

$$855 \mathbb{I} \left(T_j^{i(1)} \neq T_j^{i(2)} \right) \sim_{i.i.d.} \text{Bernoulli}(\delta_d), \forall j \in \{1, 2, \dots, D\}. \\ 856$$

857 Next, we consider the situation on the j^{th} index of $S^{(1)} = \bigoplus_{i=1}^d T^{i(1)}$ and $S^{(2)} = \bigoplus_{i=1}^d T^{i(2)}$ as a
858 random variable Z_j that satisfies
859

$$860 \\ 861 Z_j = \mathbb{I} \left(S_{(j)}^{(1)} \neq S_{(j)}^{(2)} \right) \\ 862$$

863 Let $p_j^{(1/2)}$ be the number of $+1$ in the $\{T_j^{i(1/2)}\}_{i=\{1,2,\dots,d\}}$, so that the probability of $Z_j = 1$ is

864

$$865 \quad P(Z_j = 1) = \sum_{n=0}^d P(Z_j = 1 | p_j^{(1)} = n) \times P(p_j^{(1)} = n).$$

$$866$$

$$867$$

868 Specifically, by considering the $\{T_j^{i(1)}\}_{i=\{1,2,\dots,d\}}$ follow the i.i.d. Bernoulli(0.5), we have

$$869$$

$$870 \quad P(p_j^{(1)} = n) = \frac{C_d^n}{2^d}.$$

$$871$$

$$872$$

873 Consider the situation where $n < \frac{d}{2}$ and d is an odd number to avoid unnecessary complexity, we
874 have the number of +1 in the second sample follow a combined Binomial distribution

$$875$$

$$876 \quad p_j^{(2)}|_{p_j^{(1)}=n} \sim \text{Binomial}(n, 1 - \delta_d) + \text{Binomial}(d - n, \delta_d),$$

$$877$$

878 Therefore,

$$879$$

$$880 \quad P(Z_j = 1 | p_j^{(1)} = n) = \sum_{k=\frac{d+1}{2}}^d \sum_{i=\max(0, k-d+n)}^{\min(n, k)} C_n^i \cdot C_{d-n}^{k-i} \cdot \delta^{n+k-2i} (1-\delta)^{d-n-k+2i}.$$

$$881$$

$$882$$

883 For situation that $n > \frac{d}{2}$, we obtain an entirely analogous result

$$884$$

$$885 \quad P(Z_j = 1 | p_j^{(1)} = n) = \sum_{k=0}^{\frac{d-1}{2}} \sum_{i=\max(0, k-d+n)}^{\min(n, k)} C_n^i \cdot C_{d-n}^{k-i} \cdot \delta^{n+k-2i} (1-\delta)^{d-n-k+2i}.$$

$$886$$

$$887$$

888 With the derived results, we can calculate the probability of $P(Z_j = 1)$ as a function of δ_d .

$$889$$

$$890 \quad g(\delta) = p(\delta_d) = p\left(\frac{M}{M-1}\delta + \frac{2}{M-1}\right) \quad (25)$$

$$891$$

$$892$$

893 Finally, we consider the average with all the indices make the distribution arbitrarily close to the
894 expectation, which is the probability we just calculated in Eqn. 25, thus complete the proof.

$$895 \quad \square$$

$$896$$

897 This theorem establishes an approximate form of "continuity", showing that the designed mapping
898 ensures that when the input noise is small, the distance between the corresponding mapped outputs
899 is also bounded. In particular, this design exhibits better rejection properties against small perturba-
900 tions with sufficiently large dimensionality D and relatively large features d .

901 **Theorem 2** (Distance Between Cluster Prototype and Constituents). *Let $S^{(1)}, S^{(2)}, \dots, S^{(N)} \in \mathcal{H}^D$
902 be independently sampled random hypervectors. Define their sum as $C = [S^{(1)} + S^{(2)} + \dots + S^{(N)}]$.
903 As $D \rightarrow \infty$, for any random hypervector $S^* \in \mathcal{H}^D$, index $j \in \{1, \dots, N\}$, the Hamming distance
904 between C and any component $S^{(n)}$ satisfies*

$$905 \quad P\left(d_H(C, S^{(n)}) < d_H(C, S^*)\right) \rightarrow 1.$$

$$906$$

$$907$$

908 *Proof.* We begin with analyzing the probability that the i^{th} index of C and $S^{(n)}$ is different.

$$909$$

910 Let $Z_i^{(n)} = \sum_{k \neq n} S_i^{(k)}$, where $S_i^{(k)}$ is the i^{th} value of $S^{(k)}$, so that:

$$911$$

$$912 \quad C_i = \left[\sum_{k=1}^N S_i^{(k)} \right] = \left[S_i^{(n)} + \sum_{k \neq n} S_i^{(k)} \right] = \left[S_i^{(n)} + Z_i^{(n)} \right].$$

$$913$$

$$914$$

915 Since the random hypervectors are independently sampled, the $N - 1$ terms $S_i^{(k)}$ ($k \neq n$) are
916 independent random variables satisfying:

$$917$$

$$\mathbb{P}(S_i^{(k)} = +1) = \mathbb{P}(S_i^{(k)} = -1) = 0.5.$$

918 Since $\frac{S_i^{(k)} + 1}{2} \sim \text{Bernoulli}(0.5)$, their i.i.d. sum $Z_i^{(n)}$ follows a shifted binomial distribution:
 919

$$920 \quad 921 \quad Z_i^{(n)} \sim 2 * \text{Binomial}(N - 1, 0.5) - (N - 1)$$

922 Given $S_i^{(n)} = +1$, we have $C_i = [1 + Z_i^{(n)}]$. Without losing generality, we only consider the
 923 situation when $N - 1$ is an even number, which lead to
 924

$$925 \quad P(C_i \neq S_i^{(k)}) = P([1 + Z_i^{(n)}] \neq 1) = P(Z_i^{(n)} < -1) + \frac{1}{2}P(Z_i^{(n)} = -1) = P(Z_i^{(n)} < -1),$$

927 where $P(Z_i^{(n)} = -1) = 0$ since the sum can only take even values.
 928

929 With the distribution of $Z_i^{(n)}$, we can further calculate the specific probability:
 930

$$931 \quad 932 \quad P(C_i \neq S_i^{(n)}) = \frac{1}{2} - 2^{-N}C_{N-1}^{\frac{N-1}{2}}.$$

933 By symmetry, the same calculation applies if $S_i^{(n)} = -1$. Notice that $\mathbb{I}(C_i \neq S_i^{(n)})$ presents a
 934 Bernoulli distribution and this process is independently carried out for every index, we can derive
 935 the distribution of the Hamming distance $d_H(C, S^{(n)})$:
 936

$$937 \quad 938 \quad d_H(C, S^{(n)}) = \frac{1}{D} \sum_{i=1}^D \mathbb{I}(C_i \neq S_i^{(n)}) \sim \frac{1}{D} \text{Binomial}(D, \frac{1}{2} - p(N))$$

940 where $p(N) = 2^{-N}C_{N-1}^{\frac{N-1}{2}}$.
 941

942 Due to independently sampling, we can view S^* and B just as two random hypervectors in the
 943 hyperspace, so we can apply the result from Lemma 3, we know that
 944

$$945 \quad 946 \quad d_H(C, S^*) \sim \frac{1}{D} \text{Binomial}(D, \frac{1}{2}).$$

947 With central limit theorem, these two distributions converge to normal distributions as $D \rightarrow \infty$
 948

$$949 \quad d_H(C, S^*) \sim \mathcal{N}(\frac{1}{2}, \frac{1}{4}D^{-1}), \quad d_H(C, S^{(n)}) \sim \mathcal{N}(\frac{1}{2} - p(N), (\frac{1}{4} - p^2(N))D^{-1}).$$

950 Based on that, we have,
 951

$$952 \quad \begin{aligned} & P(d_H(C, S^{(n)}) - d_H(C, S^*) \geq 0) \\ &= P\left((d_H(C, S^{(n)}) - \frac{1}{2} - \frac{p(N)}{2}) - (d_H(C, S) - \frac{1}{2} - \frac{p(N)}{2}) \geq 0\right) \\ &\leq P\left((d_H(C, S^{(n)}) - \frac{1}{2} - \frac{p(N)}{2}) \geq 0\right) + P\left((d_H(C, S) - \frac{1}{2} - \frac{p(N)}{2}) \leq 0\right) \quad (26) \\ &\leq P\left(\left|d_H(C, S^{(n)}) - \frac{1}{2} - p(N)\right| \geq \frac{p(N)}{2}\right) + P\left(\left|d_H(C, S) - \frac{1}{2}\right| \geq \frac{p(N)}{2}\right) \\ &= 2 * \Phi(-p(N)D^{\frac{1}{2}}) + 2 * \Phi\left(-\frac{p(N)}{\sqrt{1 - 4p^2(N)}}D^{\frac{1}{2}}\right) \end{aligned}$$

953 we can select appropriate $D = D(p(N))$ to allow the right-hand side of the equation to approach
 954 zero arbitrarily by letting $p(N)D^{\frac{1}{2}} \rightarrow \infty$. Thus we have the result
 955

$$956 \quad 957 \quad P(d_H(C, S^{(n)}) < d_H(C, S^*)) \rightarrow 1,$$

958 where Φ is the Cumulative Distribution Function of the standard normal distribution.
 959

960 Moreover, we further know that the convergence is roughly characterized $\Phi(-p(N)D^{\frac{1}{2}})$.
 961

972 Notice that $p(N) \rightarrow 0$ as $N \rightarrow \infty$, and the dimension D is required to be dependent on $p(N)$ to
 973 make the scale become effective, we apply $N \gg D$ for the implementation. Intuitively speaking,
 974 we require a sufficiently large N to divide this two normal peak apart given a small $p(N)$.
 975 □

977 **Theorem 3** (Robustness to Hardware Error). *Assume we have a sample hypervector S and two
 978 cluster hypervectors C_1 and C_2 , whose initial Hamming distances satisfy:*

$$979 \quad d_H(S, C_1) = d_1 \quad \text{and} \quad d_H(S, C_2) = d_2,$$

980 where $d_2 - d_1 = \epsilon > 0$.
 981

982 We randomly flip a proportion p ($p < 0.5$) of the bits in both C_1 and C_2 , yielding two new hyper-
 983 vectors C'_1 and C'_2 . As $D \rightarrow \infty$, we have

$$985 \quad P(d_H(S, C'_1) < d_H(S, C'_2)) \rightarrow 1$$

987 *Proof.* Again, we begin with the situation at the i^{th} index. Let X_i and Y_i be the indicator variables
 988 denoting whether the i -th bit differs from S after corruption:
 989

$$990 \quad X_i = \mathbf{1}_{\{(C'_1)_i \neq S_i\}}, \quad Y_i = \mathbf{1}_{\{(C'_2)_i \neq S_i\}},$$

991 so that the post-corruption Hamming distances are:

$$992 \quad d_H(S, C'_1) = \frac{1}{D} \sum_{i=1}^D X_i, \quad d_H(S, C'_2) = \frac{1}{D} \sum_{i=1}^D Y_i.$$

995 Next, we analyze the expectation of each X_i and Y_i . With the view of Proposition 1, with a suffi-
 996 ciently large D , we can transfer the Hamming distance d as a random event with probability d :

998 • For each i , if C_1 and S originally differ at bit i , which happens with probability d_1 , then
 999 flipping that bit with probability p yields:

$$1000 \quad \mathbb{P}(X_i = 1 \mid \text{originally different}) \rightarrow 1 - p, \quad \mathbb{P}(X_i = 0 \mid \text{originally different}) \rightarrow p.$$

1002 • If they originally agree (probability $1 - d_1$), then:

$$1003 \quad \mathbb{P}(X_i = 1 \mid \text{originally same}) \rightarrow p, \quad \mathbb{P}(X_i = 0 \mid \text{originally same}) \rightarrow 1 - p.$$

1004 Hence, the expectation becomes:

$$1006 \quad \mathbb{E}[X_i] \rightarrow d_1(1 - p) + (1 - d_1)p = d_1(1 - 2p) + p.$$

1007 Similarly,

$$1008 \quad \mathbb{E}[Y_i] = d_2(1 - 2p) + p.$$

1009 Since $d_2 = d_1 + \epsilon$ and $1 - 2p > 0$, we have:

$$1011 \quad \mathbb{E}[Y_i] - \mathbb{E}[X_i] = (d_2 - d_1)(1 - 2p) = \epsilon(1 - 2p) > 0.$$

1012 Now define the total difference in post-corruption Hamming distances:

$$1014 \quad Z = \sum_{i=1}^D (Y_i - X_i).$$

1016 Then:

$$1017 \quad \mathbb{E}[Z] = D \cdot (\mathbb{E}[Y_i] - \mathbb{E}[X_i]) = D \cdot \epsilon(1 - 2p).$$

1019 Because X_i, Y_i are bounded, independent random variables, and the variance of each term is
 1020 bounded, we can apply Hoeffding's inequality to show that:

$$1021 \quad \mathbb{P}(Z < 0) \leq \exp(-cD)$$

1022 for some constant $c > 0$. This implies:

$$1023 \quad \mathbb{P}(d_H(S, C'_1) < d_H(S, C'_2)) = \mathbb{P}(Z > 0) \rightarrow 1 \quad \text{as } D \rightarrow \infty.$$

1025 □