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ABSTRACT

Energy-efficient medical data classification is essential for modern disease screen-
ing, particularly in home and field healthcare where embedded devices are preva-
lent. While deep learning models achieve state-of-the-art accuracy, their substan-
tial energy consumption and reliance on GPUs limit deployment on such plat-
forms. We present HDC-X, a lightweight classification framework designed for
low-power devices. HDC-X encodes data into high-dimensional hypervectors, ag-
gregates them into multiple cluster-specific prototypes, and performs classification
through similarity search in hyperspace. We evaluate HDC-X across three medical
classification tasks; on heart sound classification, HDC-X is 350 x more energy-
efficient than Bayesian ResNet with less than 1% accuracy difference. Moreover,
HDC-X demonstrates exceptional robustness to noise, limited training data, and
hardware error, supported by both theoretical analysis and empirical results, high-
lighting its potential for reliable deployment in real-world settings.

1 INTRODUCTION

Medical data classification enables automated disease screening without constant involvement of
medical professionals (Tan et al., [2024). With the growing adoption of portable devices, health as-
sessments are increasingly carried out in home and field settings where computational resources and
power budgets are limited (Rahman & Morshed, [2025). This highlights the need for classification
models that can operate effectively on embedded platforms (Khan et al.l 2022]).

Deep learning models currently dominate medical classification tasks and achieve state-of-the-art
accuracy, but their high energy consumption and reliance on GPUs limit deployment on low-power,
near-sensor hardware (Chen et al.l |2021). In contrast, an optimal medical classifier for embedded
devices should: (1) minimize energy consumption, (2) support GPU-free inference, and (3) process
data locally to preserve patient privacy.

To address this, we present Hyperdimensional Computing - Next Generation (HDC-X), a lightweight
classification framework that extends standard Hyperdimensional Computing (HDC) while signif-
icantly improving its performance. HDC-X encodes each sample into a high-dimensional sample
hypervector (Sample-HV), aggregates them into a compact set of cluster prototypes (Cluster-HVs),
and performs classification by selecting the Cluster-HV with the highest similarity.

Evaluated across three medical classification tasks, HDC-X consumes far less energy than deep
learning baselines while achieving notable accuracy gains over standard HDC. On heart sounds
classification, HDC-X is 350 x more energy-efficient per inference than the state-of-the-art Bayesian
ResNet, while providing >10% accuracy improvement over standard HDC (Figure[I)). HDC-X also
demonstrates exceptional robustness: accuracy drops by only 1.39% under 15% input noise, 1.78%
with 40% training data, and 2.84% with 20% parameter corruption (Figure ). We provide theoret-
ical analysis explaining this robustness, supporting HDC-X’s reliability for real-world deployment.
Our main contributions are:

e We propose HDC-X, a lightweight classification framework extended from Hyperdimen-
sional Computing (HDC). It achieves significantly higher accuracy than standard HDC and
other efficient models while preserving energy efficiency.
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Figure 1: Automated disease screening through medical data classification (left) and HDC-X per-
formance on heart sound classification (right). HDC-X is 350 x more energy-efficient than Bayesian
ResNet and supports GPU-free inference, highlighting its potential for embedded deployment.

o We demonstrate that HDC-X consumes far less energy than deep learning baselines across
three medical tasks. On heart sound classification, it is 350X more energy-efficient than
Bayesian ResNet while maintaining comparable accuracy.

e We provide both theoretical and empirical evidence of HDC-X’s robustness to input noise
and hardware error. To the best of our knowledge, our theorems on binary hypervectors, al-
though some are widely recognized, have not been formally proven in prior HDC research.

This paper is organized as follows. Section [2]reviews the fundamentals of hyperdimensional com-
puting. Section 3| details the proposed HDC-X framework. Section [4] presents experimental results
and sensitivity analysis, and Section [5]concludes the paper.

2 HYPERDIMENSIONAL COMPUTING (HDC)

Hyperdimensional Computing is a computational paradigm inspired by the information processing
mechanisms of the brain (Pentti Kanerva, [2009). Compared with traditional computing that operates
on raw numerical data, the human brain processes information via high-dimensional patterns of
neural activity (Masse et al., 2009). HDC emulates this approach by projecting input data into
high-dimensional representations to efficiently perform cognitive tasks (Thomas et al., 2021).

The versatility of HDC has been demonstrated across a wide array of domains, including image
classification (Billmeyer & Parhil, [2021)), language identification (Alonso et al., [2021)), acoustic sig-
nal analysis (Imani et al., 2017), and fault detection (Kleyko et al.,[2018]). Across these applications,
HDC demonstrates superior energy efficiency and robustness compared to deep neural networks.

Specifically, HDC defines a set of elementary operations, like Binding (e.g., point-wise multiplica-
tion) and Bundling (e.g., point-wise addition with majority function), on a high-dimensional bipolar
vector space H” = {—1,+1} called hyperspace (Pentti Kanerva, 2009). The space is equipped
with a distance measure called Hamming distance dy : HY x HP — [0, 1], which is defined as
the ratio of the different bits between two hypervectors (i.e., hyperspace vectors). Please refer to
Appendix [A.T]for the detailed notations and definitions.

HDC exhibits several ideal properties when its dimensionality D is very large. For example, the
Hamming distance of two hypervectors remains unchanged after bound to the same hypervector
(Lemma [2); or when randomly selecting two hypervectors, their Hamming distance is almost al-
ways around 0.5 (Lemma 3). Based on these properties, HDC can encode a low-dimensional input
s € Ré(d < D) from a continuous feature space into the high-dimensional hyperspace. By trans-
ferring the calculation to hyperspace, HDC-based approaches can achieve computational efficiency
(Ge & Parhil, 2020)), robustness to input noise (Thomas et al., 2021)), and higher training data effi-
ciency (Asgarinejad et al., 2020).
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3 MEDICAL DATA CLASSIFICATION THROUGH HDC-X

We propose Hyperdimensional Computing - Next Generation (HDC-X), an extension of the HDC
framework that significantly improves accuracy while preserving energy efficiency. Algorithm|[T|and
Figure [3illustrate the overall HDC-X pipeline. In this work, medical samples are first encoded into
sample hypervectors (Section [3.1). These sample hypervectors are then clustered into a compact set
of cluster prototypes, and classification is performed by similarity search against these prototypes
(Section [3.2). An optional retraining stage may further enhance accuracy (Section [3.3). Formal
definitions, lemma, and theorems supporting this framework are provided in Appendix [A]

3.1 ENCODE SAMPLE INTO HYPERVECTOR

HDC-X requires numeric features as input. For heart sound classification, we extract d = 720
features using Mel-frequency Cepstral Coefficients (MFCC) (Davis & Mermelstein, [1980) and Dis-
crete Wavelet Transform (DWT) (Mallat, 1989), two widely used frequency-domain representations
in audio analysis. For breast cancer classification, we use d = 30 features from fine-needle aspirate
(FNA) breast mass images, and for EMG classification, we use d = 8 features.

Each sample’s feature vector s € R? is encoded into a high-dimensional binary hypervector called
Sample Hypervector (Sample-HV): S € HP = {—1,+1}P, d < D. The encoder is designed to
be continuous so that relative distances between samples are preserved. The first step of encoding
divides each feature’s value range into M intervals: the middle 96% of values are split into M
equal-width intervals, while the top and bottom 2% are directly mapped to the first and last intervals
(Figure[2). This is formalized by function [ in Definition

Each interval in Figure [2] is repre-
sented by a predefined Level Hy-
pervector (Level-HV), denoted as Values P 0, 0, Oy Oy O
L™ e HP m e {1,2,...,M}. . : : wwr G O

The Level-HVs are generated in 1 -: LT ;

/]
T T T :

a way that neighboring Level-HVS  intervais I, I,
have a low Hamming distance (i.e.
low percentage of different bits):
starting from a randomly gener-
ated L1, each subsequent Level- Figure 2: Divide feature n’s value range into M intervals.
HV is formed by randomly flipping

D/ (M — 1) bits from the previous

vector, with each bit flipped only once across the sequence (Definition {). This ensures that the
Hamming distance between any two Level-HVs satisfies:

2% lowest values 2% greatest values

IM—] IM

Level-HVs Lo L® LM-1) L

dp (LD, V) = % (1)

The Level-HVs are shared across all features. To distinguish identical Level-HVs under different
features, each feature is assigned a randomly sampled Identity Hypervector (ID-HV), denoted as
ID™ € HP n € {1,2,...,d}. A value in interval I,, under feature n would be represented
as ID™ @ L™ where ® denotes the binding operation implemented by point-wise multiplica-
tion (Definition [2). Since ID-HVs are randomly sampled, their pairwise Hamming distance is ap-
proximately 0.5 (Lemma [3)), ensuring feature-wise independence: Hamming distance between two
Level-HVs remains unchanged after binding to the same ID-HV (Lemma [2), while those bound to
different ID-HVs become effectively unrelated.

Finally, with the predefined Level-HVs and ID-HVs, the encoder maps each medical sample to a
Sample-HV by bundling the representations of each feature:

d
S — [Z ID™ & L(ln(sﬁf)))L )

n=1
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Figure 3: Medical data classification through HDC-X: Training samples are encoded into sample
hypervectors (Sample-HVs) and aggregated into a compact set of cluster prototypes (Cluster-HVs);
new samples are classified by selecting the Cluster-HV with highest similarity. The figure illustrates
a binary classification example, though HDC-X is not limited to binary tasks.
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where sgf) denotes the value of the n'" feature in sample s(*), and [[] is the element-wise majority
function: it outputs +1 for positive sum, —1 for negative sum, and equally random samples from

{—1,+1} for zero sum (Definition 2).

We demonstrate the inherent robustness of this encoding to input noise through Theorem [T} When
noise is applied to a feature vector s(!), producing a perturbed version s(?), the theorem shows that as
long as the noise is bounded by a relative ratio d, the Hamming distance between the corresponding
Sample-HVs S(Y) and S has an upper bound. This upper bound, expressed as g(9), remains
quantitatively small even under moderate noise. The formal proof and definition of g(9) are provided
in Proof1]

Theorem 1 (Robustness to Input Noise). Let s s e § C R? be two feature vectors. S =
fzp.£,0(s) denotes the hypervector encoding deﬁned in Equation El Suppose that for all indices of
the featuresn € {1,...,d},

‘stl) — Tn

<9, 3)

%

where N\, is the difference between the upper and lower bounds of the i*" feature value, and § €
[0, 1] denotes the maximum distance ratio of the corresponding features. Then, with a sufficiently
large D, the expected upper-bound Hamming distance between SV = fID,g)@(S(l)) and S =
frp.c.o (5?)) converges to a monotonically increasing function g with parameter §:

E [sup (dH (S(l), 5(2)>>} — g(9). 4

This implies that the Hamming distance between a sample and its noisy variant is almost surely
bounded by g(9).

3.2 CLASS-WISE HYPERSPACE CLUSTERING

Medical data often exhibit substantial intra-class variability beyond simple class labels. For example,
heart sounds sharing the same ‘abnormal’ label can differ due to the type and stage of cardiac disease,
the stethoscope used, and the recording site on the body (Zipes et all |2019). Such heterogeneity
challenges the standard HDC pipeline, which rely on a single prototype to represent all samples
within one class.

To address this, HDC-X introduces class-wise hyperspace clustering. The clustering process is in-
spired by K-means, but performed in hyperspace on Sample-HVs and applied independently within
each class. Unlike K-means which computes arithmetic means, HDC-X uses the bundling operation
(Definition 2) to form cluster prototypes (Cluster-HVs). Leveraging hypervectors rather than raw
numeric features provides the robustness formalized in Theorem|[T}
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Algorithm 1 HDC-X: Hyperdimensional Computing - Next Generation (Without Retraining)

1: {IDM}4_| + identity_hypervectors(d) > Generate ID-HV Dictionary.
2: {LU™YM_ « level_hypervectors(M) > Generate Level-HV Dictionary.
3: for s(Y) € S in training set do

4 SO [ 1D @ L)) > Encode sample s(*) into Sample-HV S(*).
5: end for

6: for j = 1 to number of classes J do
7. for S](-Z) € class j do

8: init_cluster_idx + randint(K) > Random assign Sj(i) to one of K clusters.
. init_cluster_id init_cluster_id (#)
9. Q:.ljl'll CUSeI‘lXHQ:‘ljnl CuSerlXU{Sj }
10:  end for
11:  for ¢t = 1 to number of clustering iterations 7" do
12: for k = 1 to number of clusters K do
13: CJ’»C — [ZSJ(.“EQ‘;“ sz ] > Generate Cluster-HV CJ’»C to represent cluster Qf?.
14: end for
15: for Sj(-z) € class j do
16: cluster_idx < argmins_, dH(Sj(i), Cj’?) > Reassign S;i) to closest cluster.
. luster.id luster.id ()
17: Q;uaerlx%gguserlxu{sj }
18: end for
19:  end for
20: end for
21: (class-idx, cluster_idx) <— argmin; y)crsx k] dH (577, C]k) > Classify new sample.

22: return class_idx

Specifically, for each class j, clustering begins by randomly assigning its Sample-HVs {S](i)} to K

clusters {€¥}/,. Each Cluster-HV C} € #P” is computed by bundling the Sample-HVs in that
cluster:

cr=13 s ®

(4) c ok
S; e

Next, the Sample-HVs are reassigned to the cluster whose prototype has the lowest Hamming dis-
tance:

S — argmindy (S, C%),  [K]={1,2,...,K}. (6)
ke[K]

This bundling and reassigning process is repeated for 7" iterations until convergence, yielding the
final set of Cluster-HV's {C’Jk S| for class j. After clustering all J classes, HDC-X may classify an
unseen new sample by encoding it as Sample-HV S™*" and assigning it to the Cluster-HV with the
highest similarity (i.e., lowest Hamming distance):

S"Y —  argmin dH(S“eW7C]]?). @)
(7,k) €I ([K]

The sample is then classified according to the class label of the selected cluster.

Theorem 2] provides theoretical insight into our clustering-by-bundling method in Equation 5| (Proof
[2). It shows that the Hamming distance between the Cluster-HV C' and any Sample-HV that con-
stitutes the cluster is almost always less than the typical distance of dg = 0.5 between two random
hypervectors. This supports that the Cluster-HV can sufficiently represent all samples in the cluster.
Moreover, since Sample-HVs within a cluster are typically more similar to one another than two
randomly drawn hypervectors, the Cluster-HV is expected to preserve even stronger relationships in
practice than those guaranteed under the random hypervector assumption in the theorem.
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Theorem 2 (Distance Between Cluster Prototype and Constituents). Ler S, S . §(N) ¢ P
be independently sampled random hypervectors. Define their bundling sum as C = [S W+ 53 4
<o+ SN As D — oo, for any random hypervector S* € HP, index j € {1,...,N}, the
Hamming distance between C and any component S™) satisfies

P (dH(a SMY) < dy(C, 5*)) 1 )

3.3 RETRAIN CLUSTER PROTOTYPES

To further improve accuracy, HDC-X optionally applies a retraining procedure that adjusts Cluster-
HVs based on misclassified training samples. The retraining stage operates exclusively on the train-
ing set with no reference to test data.

Recall that each Cluster-HV CJ’»C is generated by bundling the Sample-HV's assigned to cluster C’? ,
ie., Cf = [ZSJ(.”eQ‘? S](-i)]. Let S be a misclassified Sample-HV from the training set. Suppose
ST ¢ @?11, but its nearest Cluster-HV in Hamming distance is a different Cluster-HV CJ]-“;. This
implies that the Cluster-HV C’-“ll, constructed from cluster Cfll, does not adequately represent S°'".
To correct this, HDC-X performs two adjustments: (1) Subtracts S°* from the incorrect Cluster-HV
C]]-"z"‘ and (2) Re-bundles S onto the correct Cluster-HV CJ’?. We generalize this operation across
all misclassified training samples. Let Sf’out denote Sample-HVs outside cluster q‘f that incorrectly
match closest to C;“ while £ ]k 1 denote the Sample-HVs within Qﬁi but are closer to a Cluster-HV

of a different cluster. The retrained Cluster-HV representing cluster Qif; is computed as

=13 s N s N s )

(%) k (i) - ok,out (i) - ok,in
Sj S Sj esj Sj GS].

4 RESULTS AND DISCUSSIONS

4.1 DATASETS

PhysioNet/CinC Challenge 2016 (Clifford et al.,|2016) provides a collection of 3,153 heart sound
recordings sourced from six distinct databases. These recordings were collected by multiple research
teams across various countries using different equipment and methodologies, often under noisy
conditions. Each recording is labeled as either ‘normal’ or ‘abnormal’.

Wisconsin Breast Cancer (William Wolberg et al.l [1995) is a widely used benchmark for breast
cancer diagnosis. It contains real-valued features extracted from digitized images of fine-needle
aspirates (FNA) of breast masses, with each sample labeled as either ‘benign’ or ‘malignant’.

Cerqueira SEMG Muscle Fatigue (Cerqueira et al.l [2024) offers surface electromyography
(sEMG) recordings using a Delsys Trigno system at a sampling frequency of 1259Hz. Each sample
is annotated into three fatigue levels: relax, mild fatigue, and fatigue.

4.2 EXPERIMENT SETUP

Platform: Large deep learning baselines were trained and evaluated on an NVIDIA GeForce RTX
4090 GPU (24GB VRAM). HDC-X, other one-shot models, and efficient neural networks were
trained and evaluated on an Intel Xeon Gold 6430 CPU (120GB RAM). All experiments were con-
ducted on Ubuntu 22.04.1 LTS (Linux kernel 5.15.0-97-generic).

Energy Measurement: We define energy as device-level energy consumption (joules). Training
and inference energy were computed by integrating measured power over time.
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Table 1: Performance and Energy Comparison of HDC-X and Baseline Models

Models 10-Folds Accuracy (%) Energy (Train, J) Energy (1000 Inferences, J)
PhysioNet Challenge 2016:
Bayesian ResNet (H. Krones et al.|[2022) 89.105 £ 1.543 142997 + 5465 9455 + 899
Knowledge Distillation CNN (Song et al.|[2023) 88.580 +2.186 32808 + 2582 289 + 116
VGG16 (Shuvo et al.|2023) 88.271 £ 1.718 165840 + 5443 605 + 131
ViT + CNN (Han & Shaout|[2025) 87.808 + 1.996 889920 + 36748 1661 + 209
Light CNN (L1 et al.|[2021) 87.408 + 1.497 10164 + 1204 227+ 88
Pruned Bayesian ResNet (H. Krones et al.|2022) 87.190 + 2.508 142997 + 5465 3307 +214
Class-Wise K-Means 76.759 +£4.937 9+ 2 very low
HDCluster (Imani et al.|[2019) 79.877 £2.589 318+ 3 50+ 2
HDC 77.840 +£2.419 135+ 10 26+ 4
88.180 + 1.746 246 + 6 27+ 3
Wisconsin Breast Cancer:
DNN (Zheng|[2024) 96.842 £2.579  698.626 + 82.403 11.842 + 1.470
GRU (Jony & Arnob![2024) 96.668 £ 1.994  2710.461 = 109.069 97.283 +2.408
CNN (Jony & Arnob|[2024) 95.439 £2.956 312416+ 17.874 12.458 +£0.368
Class-Wise K-Means 93.595 £ 3.106 3.045+ 0.379 0.070 £+ 0.007
HDC 94.382 +0.039 2489+ 0.174 0.717 £0.021
96.314 £ 0.027 3.801+ 0.340 0.823 £ 0.015
Cerqueira SEMG Muscle Fatigue:
GRU (Aviles et al.|[2024) 91.955 +3.084 874.511 £42.378 34.018 £ 1.013
LSTM (Aviles et al.[[2024) 91.710 £ 2.705 135.828 + 7.453 32.416 +1.483
CNN (Monirt et al.[[2021) 91.367 £3.626 250.685 +21.217 10.426 + 0.884
Class-Wise K-Means 88.596 + 5.135 3367 + 0.247 0.076 £ 0.010
HDC (Moin et al.|[2018) 84.984 + 0.043 2.634+ 0.169 0.445 £ 0.025
91.592 +2.927 2.813+ 0.205 0.422 £ 0.029

4.3 COMPARISON WITH BASELINE MODELS

Table |1| summarizes the performance of HDC-X against baseline models across three medical
datasets. HDC-X achieves substantially higher energy efficiency than deep neural networks and
outperforms other efficient methods in terms of accuracy. For instance, on the heart sounds classi-
fication task, HDC-X is 580x more energy-efficient in training and 350 in inference compared to
the best-performing Bayesian ResNet (H. Krones et al.|[2022), while also delivering a 10% accuracy
improvement over standard HDC.

4.4 IMpPACT OF HDC-X HYPERPARAMETERS

As discussed in Section 3] a sufficiently large dimensionality D is critical for HDC-X to maintain
robustness against input noise (Theorem |1)) and to ensure that Cluster-HVs accurately capture the
aggregate features of their clusters (Theorem [2). Likewise, an adequate number of clusters K are
essential for forming stable hyperspace clusters. A few retrain epochs can further fine-tune Cluster-
HVs to better align with the Sample-HV's assigned to each cluster.

However, excessively large values of these hyperparameters introduce unnecessary computational
overhead, reducing the energy efficiency HDC-X is designed to achieve. Our experiments also in-
dicate that allocating too many clusters or performing excessive retraining can lead to overfitting.
Figure ] (a-c) illustrates HDC-X’s performance on heart sound classification across different hyper-
parameter settings.

4.5 ROBUSTNESS FOR REAL-WORLD DEPLOYMENT
4.5.1 RESILIENCE TO INPUT NOISE

Real-world medical signals often contain persistent environmental noise, which can impair classi-
fication performance (Clifford et al., 2016). The inherent robustness of HDC-X’s encoding mech-
anism, as supported by Theorem |I| allows it to maintain high accuracy even with noisy inputs. As
shown in Figure [(d), HDC-X experiences only 1.39% drop in accuracy under 15% input noise,
demonstrating its reliability in noisy settings.
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Figure 4: HDC-X sensitivity to hyperparameters, input noise, limited training data, and hardware
errors on PhysioNet 2016.

4.5.2 RESILIENCE TO LIMITED TRAINING DATA

Many medical datasets are limited in size due to privacy constraints. As shown in Figure[e), HDC-
X remains robust under reduced training data, with only a 1.78% drop in accuracy when trained on
40% of the PhysioNet 2016 dataset.

4.5.3 RESILIENCE TO HARDWARE ERRORS

Neural architectures are known for their fault tolerance through redundant representations, unlike
traditional binary systems where single-bit failures are critical (Pentti Kanerva, 2009). Similarly,
brain-inspired hyperdimensional encodings offer inherent robustness to hardware malfunctions by
distributing information across high-dimensional vectors (Kanerva et al.} 2000).

To evaluate this robustness in HDC-X, we conducted a perturbation analysis by randomly flipping el-
ements (+1 to -1 and vice versa) in all stored Cluster-HVs to simulate hardware instability. Theorem
[3]demonstrates that, with sufficient dimensionality, flipping up to 50% of the elements has minimal
impact on classification accuracy (Proof ). The theorem is supported empirically: as shown in
Figure ), with D = 10,000, flipping 20% of elements results in only a 2.84% drop in accuracy.

Theorem 3 (Robustness to Hardware Error). Assume we have a Sample-HV S and two Cluster-HVs
C1 and C5, whose initial Hamming distances satisfy:

dH(S,Ol):dl and dH(S,CQ)IdQ, (10)

where dy — d; = € > 0.

We randomly flip a proportion p (p < 0.5) of the bits in both C; and Cs, yielding two new hyper-
vectors C and C. As D — oo, we have

P(dg(S,C1) < du(S,C5)) — 1 (11)
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4.6 CONCEPTUAL HARDWARE FRAMEWORK

The current implementation of HDC-X

is in Python, which does not fully ex- -

ploit the hardware-level efficiency of bi- [ ‘ ‘Ide“m‘y‘Hypm“t” - ]

nary hypervectors enabled by single-bit O —— Hamming Distance
operations and parallel computing. Prior
work on HDC hardware has shown that S S
fundamental operations such as binding i :
and bundling can be implemented with i :
extremely lightweight digital logic: bind- i ]
ing reduces to bitwise XOR, bundling to 5 J
majority voting circuits, and similarity Encoder - T
search to parallelized Hamming distance NOR Array

computation (Tmani et al 2017). These Cluster Prototypes ]
properties allow HDC systems to oper- ”SampllelHypervecm -
ate with low energy consumption and ‘ ‘ ‘

high throughput compared to conven-
tional floating-point ML models.

Building on these insights, we outline a Figure 5: Conceptual hardware framework for HDC-X.

conceptual hardware framework specifi-

cally tailored for HDC-X (Figure [5). To

validate its feasibility, we prototyped the framework on a Xilinx FPGA platform and are able to
achieve the accuracy reported in Table [l We plan to further refine and evaluate this hardware-
oriented design in future work.

5 CONCLUSION

This paper introduces HDC-X, an energy-efficient classification framework extended from Hyper-
dimensional Computing (HDC). HDC-X demonstrates significant advantage in medical data classi-
fication: on heart sound classification, it is 350 x more efficient than Bayesian ResNet, and provide
> 10% accuracy improvement over standard HDC.

We evaluated HDC-X’s robustness both theoretically and empirically. The model maintains high
accuracy under challenging conditions: showing only a 1.39% drop under 15% input noise, 1.78%
when trained on just 40% of the dataset, and 2.84% when 20% of its learned parameters are cor-
rupted. These results highlight HDC-X’s reliability on real-world medical applications.

From a societal perspective, HDC-X can help expand access to medical screening in underserved
settings by enabling assessments on low-cost, GPU-free devices. However, overreliance on the
screening tool without clinical oversight could lead to misdiagnoses; therefore, the system should
be designed to recommend follow-up with a medical professional when abnormalities are detected.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. To this end, we have released the
complete HDC-X codebase along with a detailed installation guide in the Supplementary Materials.
The repository contains all datasets used in our experiments as well as the exact hyperparameter
configurations adopted for training and evaluation. This enables researchers to fully replicate our
experiments and verify the reported results.
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A THEORY

A.1 NOTATIONS AND DEFINITIONS

Definition 1 (Hyperspace). The hyperspace HP is the set of all bipolar hypervectors of dimension
D, where each element takes a value from {+1, —1}. Formally,

HP = {-1,+1}P = {A € RP | q; € {+1,-1}, Vi € {1,2,...,D}} (12)
where a; denotes the i-th component of the hypervector A.

Unless otherwise specified, for a random hypervector A € HP, each component a; is drawn inde-
pendently and identically distributed (i.i.d.) from a binary distribution over {—1,+1} with equal
probability:

P(a; = +1) =P(a; = —1) = 0.5, Vie{1,...,d}. (13)

Definition 2 (Elementary Functions). Given any hypervectors A, B € HP, we define the following
elementary functions:

o The number of +1 elements in A:

pos(A) := Z]I(ai =+1) (14)
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o The number of —1 elements in A:

neg(A) := Zﬂ(ai =-1) (15)

* Binding of A and B:
A®B:=AxB (16)

* Bundling of A and B:
A® B:=[A+ B] (17)

where 1(-) denotes the indicator function that returns 1 if the condition is true and 0 otherwise, X is
an element-wise multiplication, + is an element-wise addition, and ['] is the element-wise majority
function that outputs —1 for negative sum, +1 for positive sum, and equally random drawn from
{=1,+1} for zero sum.

Definition 3 (Hamming Distance). Given two hypervectors A, B € HP, the Hamming distance be-
tween them is defined as the ratio of positions where the corresponding components differ. Formally,

D
dp - HP x HP —[0,1], dH(A,B):%Z (a; #£b;) = neg(A@B) (18)
i=1

Definition 4 (Level Set). We define a set of M hypervectors L = {L(j)}je{l,&“. My C HP asa
level set if it can be generated by:

e Randomly sample a base hypervector LY € HP
* Initialize an empty set B = () to record flipped bit positions.
o Foreachi € {2,3,...,M}:

— Randomly select % positions from {1,..., D} \ B (i.e., bits not yet flipped). To
avozd unnecessary complexity, we assume that M — 1 divides D exactly here, i.e.,
e N
M 1

— Flip the selected bits in LU~V to obtain LD;
— Update B to include the newly flipped bit positions.

In the constructed level set L, the Hamming distance between any two levels L") and LY) satisfies

dp (LW, LW) = jl&il

Definition 5 (Mapping with Levels). Let X C R? be a continuous feature vector space. Define inde-
pendently sampled d random hypervectors TD = {ID(l)7 ID@ ... 7ID(d)} C HP and a random
level set L = {LM, L3 LMY c HP. Next, for each feature dimension n € {1,...,d},
define M — 1 real-valued thresholds 0,1 < 0 2 < - < 0y, apr—1, partitioning R into M intervals:

Ip=(-00,0n1), ©I1i=[0i1,0n2), -5 In—1=I[0nn—1,+00).
Based on the intervals defined by © = {9n,m}n€{1 _____ dy,me{1,...,M}, we select the unique m =
ln(zi[n]) for x;[n] € R that x;[n] € L.

In this task, the mapping function for feature n is defined by

x € (—00,0n.4)
ly(z) = L(,jf';,a X M+1| z€[0pabng) ,
x € [0n,5,00)

where 0,, o and 0,, g denote the 2% and 98% quantiles of values in feature n, respectively.
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A.2 LEMMAS AND PROPOSITIONS

Lemma 1 (Hamming Distance between product and multiplier). Given hypervectors A, B € HP,
the Hamming distance dg (A, A x B) depends only on B. Specifically,

1
(A, Ax B) = Bneg(B). (19)
Proof. By the definition of Binding, the i-th element of A * B is a; * b;, which behaves as:

a;, lbe:+1, .
ai*bi_{—ai, it = 1. or a; # (a; xb;) < b; =

Therefore,
D D 1
dp (A, Ax B) =5 ; a; # (a; * b;) ; Bneg(B).

O

Lemma 2 (Hamming Distance Preservation under Multiplication). Given hypervectors A, B,C &€
HP, we have

w(AxB,BxC)=dg(A,QC). 20)
Proof. By the definition of Binding, the i-th elements of A x B and B x C are a; * b; and b; * ¢;.
Since b; # 0, we have a; x b; # b; x ¢; <= a; # ¢;. Therefore,

dg(A*B,B*C) = Zﬂal*b £bx¢) = Z]Ial#cl)—dH(AC)

i=1

O

Lemma 3 (Hamming distance between two Random Hypervectors). Let A, B € HP be two random
hypervectors, Then, for any € > 0,

lim P (|dg (A, B) — 0.5 > ¢) = 0. 1)

D—oo

Proof. Define random variables X; := I(a; # b;), where X; = 1 if a; # b; and X; = 0 otherwise.
By definition,

1
dn (A, B) = 5 > X

Since A and B are random hypervectors, their components a; and b; are drawn i.i.d. from a binary
distribution over {—1, +1} with equal probability. Thererfore,

indicating that each X; is an independent Bernoulli random variable with E[X;] = 0.5. Further-

more, we know that the average of i.i.d. sequence {X;}, % ZZI X, follows a scaled Binomial
distribution:

L

dy ZX ~ Bmomlal(D 5

Applying the Weak Law of Large Numbers to the i.i.d. sequence { X}, for any ¢ > 0,

D
, 1
[)lgnooP<‘D;Xi—05 >e> =0.

14
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Thus,
lim P (|dg(A, B) —0.5] >¢€) =0.
D—oo

Lemma 4. Let A, B € HP be two random hypervectors, Then, for any € > 0,
Dlim P(|dg(A, Ax B) —0.5] > ¢€) = 0.
— 00

Proof. From the Lemma|[I] we know that

neg(B)
o

D
1
d (A, AxB) = & > (b =-1) =
i=1

Since B is a random hypervector, each component b; is drawn i.i.d. from a binary distribution over
{—1, 41} with equal probability. Again, by the Weak Law of Large Numbers,

lim P ( neg(B) > e> —0,
D—oo

D
lim P(|dg(A, A*x B) —0.5| >¢) =0.
D—oo

- 0.5

thus leading to

O

Proposition 1 (Hamming Distance with sufficiently large D). Let two hypervectors A, B € HP
that satisfy
di (A, B) =4,

and the random variable Z; indicates the situation of the i*" bit

With sufficiently large D, the Z; can be approximately viewed as an i.i.d. Bernoulli distribution

Z; ~i.i.4. Bernoulli(0),¥i € {1,2,...,D}.
Proof. With the definition of Hamming distance, we have
1 2
52 Zi=du(A,B)=4.
i=1

Observe that this is an empirical mean of {Z;} over D bits. Notice that the Z; are NOT indepen-
dent — their sum is fixed to be exactly dD. However, we make the following observations and
assumptions to justify such a approximation:

» With sufficiently large D, the possibility of the Hamming distance of A and B completely
falls into an arbitrarily small interval around the  is almost 1

1 D
P(DZZ,-—d

i=1
 If A and B are generated randomly and conditioned on their Hamming distance being dD,
then the mismatch positions mentioned above are uniformly random for every index;

> e) < 2exp(—2Dé?).

O

To summarize, this proposition provides a new perspective to define the Hamming distance in the
large hyperspace. With sufficiently large dimensionality D, Hamming distance between hyper-
vectors can be interpreted statistically as the empirical mean of i.i.d. Bernoulli random variables,
yielding a probabilistic characterization of similarity.
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A.3 THEOREMS

Theorem 1 (Robust to Input Noise). Let sV, s(2) € S C R? be two feature vectors. S =
frp,c,0(s) denotes the hypervector mapping defined in Equation 2| Suppose that for all indices
of the features n € {1,...,d},

‘xg) _ ng)

i

<4

f— )

where A\; is the difference between the upper and lower bounds of the i*" feature value, and § €
[0, 1] denotes the maximum distance ratio of the corresponding features. Then, with a sufficiently
large D, the expected upper-bound Hamming distance between S(V) = fI'D7[,7@(S(1)) and S?) =
foc.e (5(2)) converges to a monotonically increasing function g with parameter §

E [sup (dH (S(l),S(2)>)} — g(9), (22)

This implies that the Hamming distance between a sample and its noisy variant is almost surely
bounded by g(9).

. L (2D L (2@ ) |x§1)7$§2>‘ .
Proof. We consider the L{!» (%), L{(2:) first. Since : < 4, we can bound the difference

of their corresponding Level Hypervectors. By definition [ we have

dy (L(lﬂ(f‘”fgl)))7 L(ln(fﬁgw)))

L (@M) — 1,2

M -1
1 0N\
< - M -2 2
T~ M-1 <0i,1V11_9i,1( )+ )

< M5+ 2
- M-1 M-1"

(23)

6d7

With the random flipping performed by @D, {L(l"(zgl/z) )) @ ID™W} can be viewed as a new set
of randomly generated hypervectors, denoted as {7(}/2)}, which satisfy the following relationship

with Lemma 2]
dy (Tz‘u),Ti(z))
=dy (L(ln(xgl))) @ IDW, L) ® ]D(i)) (24)

—dy (Lun(zE”)),L(lnui”») <5,

To estimate the upper bound, we treat the inequality as an equality. Furthermore, with Proposition|T]
we consider the Hamming distance constraint as a statistically condition, so that for every 7*(Y) and
T%2) pair, the equality situation at the j** index follows a Bernoulli distribution

L(1}® # 7)) ~i..0. Bemoulli(dg), ¥j € {1,2,..., D}.

Next, we consider the situation on the j** index of S(V) = @?:1 T/1) and S = G}le T2 asa
random variable Z; that satisfies

o 1) (2)
Z;=1 (S(j) + S(j))

(1/2) : i(1/2)y o 1
Let p; /™ be the number of +1 in the {Tj }i={1,2,....d}» S0 that the probability of Z; = 1 is
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d
P(Zj=1)=Y P(Z =1]p\" =n) x P! =n).

n=0

Specifically, by considering the {T;(l)}i:{m _____ ay follow the i.i.d. Bernoulli(0.5), we have

Ci

24

Consider the situation where n < g and d is an odd number to avoid unnecessary complexity, we
have the number of +1 in the second sample follow a combined Binomial distribution

Pl =n) =

| _,, ~ Binomial (n, 1 — d,) + Binomial (d — n, ),

Therefore,

min(n, k)
P(Z; = 1\p(1) Z Z ci . C{Iic_—:'L .5n+k72i(1 _ 6)d7n7k+2i.

k= '1+1i max (0, k—d+n)

For situation that n > g, we obtain an entirely analogous result

min(n, k)
P(Z — 1|p(1) =n) Z Z C’:L . Cc]?:':z . 5n+k72i(1 _ 6)d7nfk+2i.
k=0 i=max(0, k—d+n)

With the derived results, we can calculate the probability of P(Z; = 1) as a function of 4.

9(8) = p(a) = (L 54 2 ) 25)

(M—l M—-1

Finally, we consider the average with all the indices make the distribution arbitrarily close to the
expectation, which is the probability we just calculated in Eqn. 25] thus complete the proof.

O

This theorem establishes an approximate form of “continuity”, showing that the designed mapping
ensures that when the input noise is small, the distance between the corresponding mapped outputs
is also bounded. In particular, this design exhibits better rejection properties against small perturba-
tions with sufficiently large dimensionality D and relatively large features d.

Theorem 2 (Distance Between Cluster Prototype and Constituents). Ler S(V, §?) 8 (V) ¢ 1P

be independently sampled random hypervectors. Define their sum as C = [S() +8 @y 450N )].
As D — oo, for any random hypervector S* € HP, index j € {1,..., N}, the Hamming distance

between C and any component S\"™) satisfies

P (dH(C,S(”)) <du(C, s*)) =1

Proof. We begin with analyzing the probability that the i*" index of C' and S(™ is different.
Let Z( " = Zk?&n S( ), where S( ) is the it" value of S(* , so that:

Sf’”

SN 5B =[50 4z
; | )

Since the random hypervectors are independently sampled, the N — 1 terms Si(k) (k # n) are
independent random variables satisfying:

P(S" = +1) = P(S{") = ~1) = 0.5.
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s(’“)+

Since ~ Bernoulli(0.5), their i.i.d. sum ZZ-(”) follows a shifted binomial distribution:

Z{™ ~ 2« Binomial(N — 1,0.5) — (N — 1)

Given Si(n) = +1, we have C; = [1 + Z,i(")]. Without losing generality, we only consider the
situation when N — 1 is an even number, which lead to

PO # 85 = P14+ 2] # 1) = P2 < —1) + L P(20) = —1) = P2 < 1),

where P(Zi(") = —1) = 0 since the sum can only take even values.

With the distribution of Zi(") , we can further calculate the specific probability:

n 1 _ N—-1
P(C; # 5™ = 52 V0N,
By symmetry, the same calculation applies if SZ-(") = —1. Notice that I(C; # Si(”)) presents a

Bernoulli distribution and this process is independently carried out for every index, we can derive
the distribution of the Hamming distance dg (C, S™):

dg(C, 8¢ =5 Z s # 9, DBmomlal(D7 5 p(N))

N—1
where p(N) = 27NC 2.

Due to independently sampling, we can view S* and B just as two random hypervectors in the
hyperspace, so we can apply the result from Lemma [3] we know that

1 1
u(C,S%) ~ EBinomial(D, 5)

With central limit theorem, these two distributions converge to normal distributions as D — co

11 1 1
dp(C,8*) ~ N(g, ZD—l), dp(C, 80 ~ /\/(5 — p(N), (Z —p?(N))D™Y).

Based on that, we have,

P(dH(C,S(") A (C,8%) > )

2 2 2 2
SP((dH(C s<n>)_%_@)zo +P((dH(C,S)—;—p(2N))SO> 26)
< 7 (jan(c.5) - 3 -0 2 280 4 p (faw(crs) - 5 = 22)
9 B 1 e (. PWV) 1
=220(-p(N)DH) + 25 0L D)

we can select appropriate D = D(p(N)) to allow the right-hand side of the equation to approach
zero arbitrarily by letting p(IV )D% — 00. Thus we have the result

P (dH(C, S™M) < dy(C, S*)) =1
where @ is the Cumulative Distribution Function of the standard normal distribution.

Moreover, we further know that the convergence is roughly characterized ®(—p(N)D?).

18
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Notice that p(N) — 0 as N — oo, and the dimension D is required to be dependent on p(N) to
make the scale become effective, we apply N >> D for the implementation. Intuitively speaking,
we require a sufficiently large N to divide this two normal peak apart given a small p(NV).

O

Theorem 3 (Robustness to Hardware Error). Assume we have a sample hypervector S and two
cluster hypervectors C1 and Cy, whose initial Hamming distances satisfy:

dH(S7 Ol) = dl and dH(S, CQ) = d27
where do — d; = € > 0.

We randomly flip a proportion p (p < 0.5) of the bits in both C and Cs, yielding two new hyper-
vectors C| and Ch. As D — oo, we have

P(dH(S, Cy) <du(S, Cé)) —1
Proof. Again, we begin with the situation at the i*" index. Let X; and Y; be the indicator variables

denoting whether the i-th bit differs from S after corruption:

Xi=yopizsy,  Yi= Lyopzsys
so that the post-corruption Hamming distances are:

u(S,C) = ZX“ dy (S, Ch) = %ZY;.
=1

Next, we analyze the expectation of each X; and Y;. With the view of Proposition[I} with a suffi-
ciently large D, we can transfer the Hamming distance d as a random event with probability d:

* For each i, if C1 and S originally differ at bit 7, which happens with probability d;, then
flipping that bit with probability p yields:

P(X; = 1| originally different) — 1 — p, P(X; = 0| originally different) — p.

* If they originally agree (probability 1 — d;), then:
P(X; = 1| originally same) — p, P(X; = 0| originally same) — 1 —p

Hence, the expectation becomes:

Similarly,
E[Yi] = da(1 —2p) +p

Since do = d; + € and 1 — 2p > 0, we have:
ElY;] — E[X;] = (d2 — d1)(1 — 2p) = €(1 — 2p) > 0.

Now define the total difference in post-corruption Hamming distances:
D
Z=) (Yi-Xy).
i=1

E[Z] = D - (E[Yi] - E[X.)) = D- (1 - 2p).

Then:

Because X;,Y; are bounded, independent random variables, and the variance of each term is
bounded, we can apply Hoeffding’s inequality to show that:

P(Z < 0) < exp(—cD)
for some constant ¢ > 0. This implieS'
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