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Abstract

This paper proposes a method that enables a
language agent to give feedback to a vision-
language model (VLM) to adapt text gener-
ation to the agent’s preferences. Using our
proposed method, we find that the VLM can
supply multimodal scene descriptions to help
the LLM better understand multimodal context.
Our method leads to improvements of more
than 13% in absolute accuracy compared to the
baseline multimodal approach. Extensive ex-
periments provide insights on how and why the
method works and its limitations.

1 Introduction

Large Language Models (LLMs) or Language
Agents have emerged as powerful tools for pro-
cessing and generating textual data. They have
significantly advanced natural language process-
ing by achieving near-human-level performance
across a wide range of text-centric tasks, includ-
ing text classification, reasoning, and open-domain
question answering, content generation, and oth-
ers (Guo et al., 2025; Brown et al., 2020; Radford
et al., 2018; Dam et al., 2024; Qian et al., 2025;
Wang et al., 2025; Jansen et al., 2025; Huang et al.,
2025). An active area of research is to make these
agents multimodal (Li et al., 2023; Achiam et al.,
2023; Liu et al., 2024) to support a wider range
of human-Al interactive tasks. However, a key
drawback persists: these models typically require
training from scratch, or extensive retraining of pre-
existing LL.Ms, which is costly and prohibitive to
train for many.

To address this issue, we propose a slightly dif-
ferent approach: to describe the multimodal world
in text for a language agent to process. By enabling
this, we would only need to train lightweight adap-
tors that describe multimodal features with text.
Additionally, this would give us an interpretable
‘latent’ text modality to help us understand what the

language agent’s decision was based on — which
is broadly impactful for safe Al systems. Once
the multimodal information has been described in
text, we can take advantage of an agent’s reasoning
capabilities to incorporate it into decision making.

However, there are challenges to making this
work properly. First it is unclear what the agent
needs from different modalities to make the right
decision, such as for classification. For example
we found that when converting visual modalities
to text using a captioning model, and using this
as the visual context for an agent to process can
lead to an overall decrease in performance (See
Tab. 1). It is crucial that multimodal context is
incorporated because it can modify the meaning of
inputs from a single modality (BaltruSaitis et al.,
2018). Another challenge is that it is unclear how
we can describe the multimodal in the way the
agent expects. Because, such a method would need
to be adaptable to many modalities at scale and
account for agent preferences.

To address these issues, we propose a novel
framework in which we ask the agent to provide
preference feedback of VLM outputs. We then op-
timize the VLM output using DPO (Rafailov et al.,
2023). We design several high-level prompts to
enable this process. We evaluate our method on the
multimodal social reasoning dataset MUStARD
(MUltimodal SARcasm Detection) dataset (Cas-
tro et al., 2019) which contains properties that
can benchmark contextual multimodal understand-
ing (Liang et al., 2023).

With our proposed method, we are able to
demonstrate more than 13% in absolute perfor-
mance over are baseline multimodal approach. We
demonstrate that it is possible for agents to give
preference feedback and that it can be used to im-
prove the training of a multimodal vision-to-text
model. We conduct extensive experiments and find
that naively incorporating text descriptions can hurt
agent performance. We additionally find that the



agent’s behavior can be quite sensitive to modality
descriptions.

2 Related Work

2.1 Reinforcement Learning from Al
Feedback (RLAIF)

Reinforcement Learning from Human Feedback
(RLHF) has become a standard technique for align-
ing large language models (LLMs) with human
preferences by training a reward model on human-
annotated preference pairs (Christiano et al., 2017;
Stiennon et al., 2020; Ouyang et al., 2022). More
recently, Bai et al. (2022) and Lee et al. (2023)
introduced Reinforcement Learning from Al Feed-
back (RLAIF), in which off-the-shelf LLMs re-
place costly human labelers to generate soft prefer-
ence labels. In RLAIF, a strong LLM is prompted
to rank pairs of candidate outputs. Empirical re-
sults show that RLAIF matches or exceeds RLHF
on summarization, helpfulness and harmlessness
benchmarks while dramatically reducing annota-
tion cost and improving scalability (Lee et al., 2023;
Gilardi et al., 2023). Unlike RLAIF, which lever-
ages Al feedback to optimize model outputs for
purely language-generation tasks, our work uses
LLM-driven preferences to shape the inputs to
an LLM-based classifier in a multimodal setting.
We use the resulting preference pairs, not to fine-
tune the LLM’s generation policy, but to refine the
vision-language model itself so that it produces
better descriptions.

2.2 LLM-Based Multimodal Reasoning

LLMs have shown remarkable capabilities in under-
standing and generating text, prompting research
into their potential for multimodal reasoning. Yang
et al. (2022) explored LLMs for multimodal tasks
by converting images into textual captions using
models like CLIP Radford et al. (2021), then feed-
ing these captions into LLMs for tasks such as
visual question answering. Similarly, Zhang et al.
(2024b) used VLMs to generate textual descrip-
tions of images, which were then processed by
LLMs for reasoning tasks. Kamrul Hasan et al.
(2023) propose TextMI, an innovative framework
designed to convert acoustic and visual informa-
tion into textual descriptions, allowing these cues to
be effectively processed by text-based models like
BERT. These studies focus on static image-based
tasks and do not address dynamic video contexts
or complex social cues like sarcasm. Our approach

extends this line of work by applying LLM-based
reasoning to video sarcasm detection, a task requir-
ing temporal and contextual understanding. By us-
ing VLM-generated descriptions of video clips, we
test whether LLMs can approximate multimodal
reasoning from text alone.

2.3 Preference Optimization in Model
Alignment

Direct Preference Optimization (DPO) has
emerged as a powerful technique for aligning
models with human or Al-generated preferences,
bypassing the need for complex reward modeling
(Rafailov et al., 2023). In the context of VLMs,
Zhou et al. (2024) employed DPO to fine-tune
vision-language models by generating preference
data using GPT-4V, targeting hallucination
reduction. Zhang et al. (2024a) applied DPO
to video multimodal models, using language
model rewards to optimize instruction-following
capabilities. While these works leverage DPO for
VLM alignment, they focus on direct multimodal
input processing rather than text-based abstractions.
Our study innovates by integrating DPO into
an LLM feedback loop to enhance the structure
of VLM-generated textual descriptions for a
specific task. Unlike prior work, which uses
DPO to optimize model outputs directly, we
employ DPO to refine the input descriptions,
enabling the LLM to better interpret multimodal
contexts and improve classification accuracy. This
feedback-driven approach to structuring textual
inputs is a novel contribution to the application of
preference optimization.

3 Methodology

Our methodology for preference tuning follows a
similar pipeline as RLHF (Ouyang et al., 2022) and
other preference tuning methods (Rafailov et al.,
2023). There are two important differences: first,
we do not use any demonstration (i.e. agent does
not generate text of what is preferred since we
assume it does not have access to the visual modal-
ity); and second, we only use a unimodal language
agent for preference feedback.

To answer whether a unimodal language agent
can provide feedback to a multimodal vision lan-
guage model (VLM) we setup an experiment with
the following methodology (visualized in Fig. 1):

1. Generating Captions with a VLM: We first
ask the VLM (e.g. Llava) to generate multiple
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Figure 1: An overview of the training pipeline. (a) First, a VLM generates diverse descriptions with a set of prompts;
Second, (b) descriptions are ranked using an LLM Agent to generate preference dataset; Lastly, (c) generated
preference dataset is used for DPO-based optimization to fine tune the VLM. The agent model stays fixed, and we

fine tune the VLM using LoRA.

language descriptions of a video.

2. Generating Agent Preferences: We then ask
a language agent (e.g. DeepSeek R1) to rank
generated text descriptions using a few prompt
variations.

3. Preference Optimization: Using the prefer-
ences provided by the language agent, we op-
timize the VLM using preference optimization
(e.g. DPO). The agent model stays fixed for
all experiments.

3.1 Generating Captions with a VLM

The vision language model (VLM) is a model
which maps a short video segment into a caption —
ie.:
T Ty € RUWXURXVE _y g ¢ RIXP

where the input video segment is a sequence of v
images with width and height of v,, and v;. The
output caption (x;) is of length [ with embedding
dimension h. The images are sampled uniformly
(8 frames per video segment frames).

To increase the diversity of the generated
prompts for the video content, we design five
distinct prompts. We target different aspects of
the video including general content, emotional
cues, sarcasm indicators, and facial expressions.
For each video, we apply a conversational tem-
plate combining both the video content and a set
of crafted prompts. We run the model across
these multiple prompts to obtain a set of five
unique description outputs, which are then stored
for downstream tasks. For example, we ask the

VLM to "Describe what 1is happening in
this video in detail.” or "Describe the
facial expressions in the video that might
indicate contrasting emotions. Keep the
description brief”. See Appendix A in the
appendix for additional prompts that were used.
We do not use any sampling strategies (such as
varying temperature or top-k) as we noticed that
these contributed minimally to differences in gener-
ated captions. Instead we only rely on the distinct
prompt formulations.

3.2 Generating Agent Preferences

We are interested in assessing in 1) whether agents
are capable of providing preferences to tune an-
other model, and 2) how capable they are. To do so,
we propose three conditions for evaluating the pref-
erences provided by agents. First, agents provide
preferences with knowledge of what is the ground-
truth class of the dataset. Second, agents provide
preferences on VLM outputs without knowing what
is the true class of the dataset. And lastly, we pro-
vide in-context examples of preferences without
knowledge of ground truth.

3.2.1 Agent preferences with ground truth
knowledge (With GT)

In the second approach, we incorporate the known
ground-truth sarcasm label to guide the LLM’s eval-
uation. For each video, we ask the agent to provide
its rating of 5 captions:
You are tasked with evaluating five
descriptions of one video to determine how
helpful each is in predicting whether the

given utterance is {sarcasm}. Below are the
previous conversation (if any), the



original utterance, and the five
descriptions.

Context: {context}
Utterance: {utterance}
Video Descriptions:
1. {description_1}
. {description_2}
. {description_3}
. {description_4}
. {description_5}

g~ w N

Please rank each description based on how
helpful it is for predicting that the
utterance is {sarcasm}. Assign a score
between 1 and 10, where:

- 1: Not helpful at all

- 10: Very helpful

Always reply **exactlyx* in this JSON format:

{

"score_1":<your integer score here>
"score_2":<your integer score here>
"score_3":<your integer score here>
"score_4":<your integer score here>
"score_5":<your integer score here>

3.2.2 Agent preferences without ground truth
knowledge (Without GT)

We first aim to evaluate whether an LLLM can in-
dependently assess the likelihood of sarcasm in a
scene using only visual text description and con-
versational context, without providing any ground-
truth labels. For each video, we supply the LLM
with the generated video description paired with
previous context and original utterance from the
scene.
We use the following template to rank captions
without ground truth:
prompt = f"""You are given a video scene
description, previous conversation
context, and an utterance from that scene.
Your job is to rate how likely the scene

contains SARCASM, on a scale of 1-10,
using this rubric:

-5: NOT sarcastic
1: Strongly believe this is NOT sarcastic
5: Not sure, but leaning towards NOT sarcastic

1

6-10: Sarcastic
- 6: Not sure, but leaning towards sarcastic
- 10: Strongly believe this IS sarcastic

Video description: {video_description}

Context: {context}

Target Utterance: {utterance}

Please provide your response in this exact
format:

FINAL SCORE: [number between 1-10]1"""

In this method, the LLM is asked to predict the
likelihood of sarcasm on a scale from 1 to 10. For-
mally, given input ¢ = (d,u,c), where d is the

Algorithm 1 Select Preferred Description

1: Sort scores list in ascending order by score

2: if ground_truth_sarcasm is True then

3 preferred < description with highest score (last in
scores list)

4: dispreferred <— description with lowest score (first in
scores list)
5: else

6:  preferred <— description with lowest score (first in
scores list)

7: dispreferred <— description with highest score (last in
scores list)
8: end if

description, w is the utterance, and c is the previ-
ous context of the given video. The LLM outputs
a scalar score s € [1, 10] estimating the sarcastic
nature of the scene, where 1 means that the LLM
strongly believes u is not sarcastic and 10 means
strongly believes v is sarcastic.

3.2.3 Agent preferences with in-context
examples (With ICL)

In this approach, we adopt an in-context learning
(ICL) approach by providing the language model
with two illustrative examples to demonstrate the
ranking process for video descriptions. The first ex-
ample describes a scene containing sarcasm, which
contains a score of 10 to indicate strong sarcastic
content. The second example describes a scene
without any sarcasm, with a score of 1 to represent
no sarcasm. Then, we prompt the LLM to predict
the likelihood of sarcasm as described in Section
3.2.2.

For our in-context examples, we selected two of
the model’s raw outputs from Section 3.2.2. One
is of score 10 for a sarcastic scene and another is
scored 1 for a non-sarcastic scene. The full prompt
can be found in Appendix B.4

3.2.4 Sorting preferences

We provide a simple rule to determine the order of
the preferences (found in Algorithm 1). These rules
are applied to the Without GT and With ICL con-
ditions. The reason we do this is to evaluate how ef-
fective agents are at incorporating the ground truth.
The ranking provides a (weak) set of rules that re-
stricts the preferences to align with the ground truth
of the dataset manually.

3.3 Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2023) is used to align VLM outputs to the
preferences of the language agent. To summarize,
DPO leverages a reparameterization of the reward
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Figure 2: Overview of the evaluation process. In the unimodal evaluation pipeline shown in (a), only the conversation
context and the final statement is given to the Agent to determine whether the final statement is sarcastic or not.
(b) demonstrates how multimodal information is incorporated during the evaluation process. The VLM acts like
a feature extractor by converting visual features to text descriptions. This is fed to the LLM. (c) shows how the
preference tuned VLM (Optimized Vision Language Model) is incorporated into the pipeline.

function under the Bradley-Terry model, showing
that the optimal policy satisfying human prefer-
ences can be obtained by maximizing a simple
binary cross-entropy objective:

Lopro(Te; Tref) =

7o (Yuw |7) 'Wref(yl|$))}’

—E,, N [lo U( lo
(@,yw.u)~D | logo (B gﬂ-mf(yw\m)-ﬂ’e(yﬂx)
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where ¥, and y; denote the preferred and dispre-
ferred responses, respectively, m.¢ is the refer-
ence policy (often the supervised fine-tuned model),
and 3 controls the KL-divergence regularization
strength. This formulation allows DPO to directly
adjust the model’s log-probabilities to satisfy hu-
man preferences without maintaining a learned re-
ward critic.

In our case, 7y is the VLM we want to fine-tune
and m.ef 1s a reference model, or an unmodified
version of my. D is the dataset of preferences gen-
erated in the section 3.2. x is a sample prompt
which is "Describe the video is details". y,, and y;
are the LLM’s preferred and disprefered response
to the prompt x. Using 5 we control the amount of
divergence from the reference model 7 ef.

3.4 Agent Evaluation Process

We wish to see if the agent is properly account-
ing for the visual context to make a decision about
a multimodal property. Therefore, both the tex-
tual description of the visual context as well as the
original text-based caption should be available to

the agent for it to make its decision. We design
a prompt to do so and to provide a decision as
following-

prompt = f"""

Based on the following previous conversation in
the video, decide whether the final
utterance is sarcastic or not.

Context: {context}
Utterance:
{speaker}: "{utterance}"

Your job is to rate how likely the scene
contains SARCASM, on a scale of 1-10, using
this rubric:

-5: NOT sarcastic
1: Strongly believe this is NOT sarcastic
5: Not sure, but leaning towards NOT sarcastic

[

6-10: Sarcastic

- 6: Not sure, but leaning towards sarcastic
- 10: Strongly believe this IS sarcastic
Always reply **exactlyxx in this JSON format:
{

"score”:<your integer score here>

3

nnn

Depending on the evaluation condition, the
video_description comes from the output of the
VLM. The utterance is provided using the text
modality. Additionally, any conversation context
is also provided. In this way, we can evaluate how
well the agent can integrate the visual descriptive
context with the utterance. We present the con-
ditions of evaluation in Fig. 2. Once the LLM
provides its output, we assess our model’s perfor-
mance using standard classification metrics (pre-



cision, recall, accuracy) following the tasks of the
dataset.

4 Experimental Setup
4.1 Dataset

For our experiments, we use the MUItimodal SAR-
casm Detection (MUStARD) dataset, a multimodal
sarcasm detection (binary classification) corpus in-
troduced by Castro et al. (2019). MUStARD con-
tains 690 short video clips drawn from popular
TV shows such as Friends, The Big Bang The-
ory, The Golden Girls, and Sarcasmaholics Anony-
mous. The dataset is carefully balanced, with an
equal number of sarcastic and non-sarcastic sam-
ples. Each video is annotated with high-quality
sarcasm labels derived through a two-step man-
ual annotation process, achieving improved inter-
annotator agreement. Each utterance includes three
aligned modalities: text, which is manually or semi-
automatically transcribed dialogue; audio which is
the raw speech signals containing prosodic cues;
and video which contains frame-level visual fea-
tures representing facial expressions and gestures.
For our experiments, we split the data into a train-
ing dataset of 551 videos and a testing dataset of
139 videos.

4.2 VLM model

In our experiment, we fine tune the LLaVA-Video
model, a large-scale video-language model devel-
oped to advance instruction-following tasks in mul-
timodal settings (Zhang et al., 2024c). The model
architecture uses a specialized video representation
technique called SlowFast, allowing the system to
process up to three times more frames than stan-
dard methods within GPU memory constraints. To
generate video descriptions during evaluation we
use the following prompt for all methods:

Describe the speaker’s nonverbal cues, the
context, and any mismatches between them.

4.3 Agent Model

We used the 7B parameter Deepseek-R1 model as
the language agent. The agent model stays fixed
through all parts of the training and evaluation.

4.4 Training Details:

We conducted our experiments on a system
equipped with six NVIDIA GeForce RTX 4090
GPUs (24GB VRAM each) using CUDA 12.6. We
used CUDA for GPU acceleration with fallback to

CPU. To fine-tune our model, hyperparameters that
impacted computational constraints were chosen
to balance algorithmic performance and computa-
tional feasibility.

The learning rate was set to 1 x 107> to ensure
stable convergence. Due to memory constraints, a
batch size of 1 was used during training. The model
was trained for a total of 5 epochs to achieve suffi-
cient adaptation to the dataset while avoiding over-
fitting. We utilized Direct Preference Optimization
(DPO) with a temperature parameter, (3) of 0.1 to
control the divergence from the reference model.
For training the VLM, we used the generic prompt
"Describe the video in detail”". We fine-tuned the
VLM using Low-Rank Adaptation (LoRA) with a
rank of r = 4, a scaling factor of @ = 16, and a
dropout probability of 0.1. LoRA was applied to
the query, key, and value projection layers (q_proj,
k_proj, and v_proj).

To ensure consistency and mitigate randomness
in the evaluation process, we carefully tuned the
inference parameters. The temperature was set to
0.00, ensuring more deterministic outputs. This
configuration was chosen to maintain reliability
in evaluation and ensure meaningful comparisons
across different captions.

5 Result Analysis
5.1 Main Results

We evaluated our approach using three distinct
methods. First, we feed the utterance to the LLM
without any multimodal information. Then we com-
bined the description generated by the base LLaVA-
NeXT-Video model with the utterance from the
dataset, and then sent the combined description-
utterance pair to the DeepSeek evaluator for sar-
casm analysis. Finally, we performed the evalua-
tion procedure using descriptions generated by our
DPO fine-tuned LLaVA-NeXT-Video model (Fig-
ure 2). Tab. 1 presents the sarcasm detection ac-
curacy results for our DPO-fine-tuned model com-
pared to the base LLaVA-NeXT-Video model on
the MUStARD dataset.

5.2 Impact of the Temperature Parameter (3)
on DPO Fine-Tuning

Here we highlight the effect of different 3 values
for our DPO fine tuning approach. Higher values
of B heavily penalize any deviation from the refer-
ence policy, whereas lower values encourage the
model to diverge more to satisfy the reward signal.



Model | Accuracy Precision Recall
Baseline
Utterance Only 61.2 62.0 64.0
Visual Only 48.9 52.0 19.0
Multimodal 52.9 58.0 40.0
Preference Tuned |
Visual Only
With GT 47.48 49.0 40.0
Without GT 50.36 71.0 7.0
With ICL 51.80 65.0 15.0
Multimodal
With GT 58.7 58.0 75.0
Without GT 66.9 70.0 65.0
With ICL 65.1 76.0 50.0

Table 1: Performance comparison of baseline (pre-
trained VLM) compared to a few preference tuned con-
ditions. While the visual-only modality did not out-
perform an utterance-only prediction, it improves over
the descriptions obtained from an unoptimized VLM.
Additionally, we see that there is better contextual infor-
mation that the agent can make use of which led to the
improvements in multimodal performance. Note: The
preference-tuned models have to do with how the train-
ing dataset was obtained (see methods). GT information
was not available at test time, nor during prompting or
training of the VLM.

(B) Value \ Accuracy % Precision Recall
0.1 60.45 63.0 55.0
0.5 57.14 59.0 55.0
0.8 53.33 54.0 47.0

Table 2: Effect of (3) on DPO Fine-Tuning. At 5 = 0.1,
we achieve best results. As we increase the value of §
we observe that accuracy precision, and recall becomes
lower.

To measure the impact of the DPO fine-tuning pa-
rameter, () with the preference dataset- "Without
GT", we fixed the training prompt and inference
prompt to "Describe the video in detail.". Then we
ran the three experiments with (3 set to 0.2, 0.5 and
0.8. As ( increased, the model’s accuracy steadily
declined from 60.45% to 53.33% (Tab. 2). This in-
dicates that stronger regularization toward the base
policy yields more conservative but less adaptive
behavior.

5.3 Impact of Prompt Variations on
performance

To assess how different prompting strategies impact
DPO fine-tuning for a specific task, we experiment
with three of training prompt variants: 1) Generic
prompt; 2)Task-specific prompt; 3) No prompt. We
use (5 of 0.1 for these experiments.

5.3.1 Effect of Prompt in DPO Fine-tuning:

First, we assess how different training prompts af-
fect a “Without GT” preference-tuned model by
comparing three configurations: 1) Training with
a generic prompt ("Describe the video in detail."”).
2) Training with a task-specific prompt ("Describe
the speaker’s nonverbal cues, the context, and any
mismatches between them."). Lastly, 3) Training
with no prompt.

We used the same prompt for inference as used
in the training process. We observe that training
with the generic prompt yields the highest accuracy
(60.45%) (Tab. 4).

5.3.2 Effect of Prompt During Inference:

Here we evaluate inference-time prompt effects on
different preference tuned models while keeping
the training prompt the same ("Describe the video
in detail”). Notably, when the model is trained
with the generic prompt, switching to the task-
specific inference prompt significantly boosts per-
formance(66.9%) significantly. This demonstrate
that a general training instruction combined with a
focused, task-specific inference prompt can yield
superior results (Tab. 5).

5.4 TImpact of Different Modalities

In this section we highlight how different modal-
ities affect task performance. We compare the
agent’s performance across utterance-only, visual-
only and multimodal inputs. In multimodal input
we include both the utterance and description of
the scene. The utterance-only model reaches 61.2%
accuracy, while we see performance degradation
with visual-only information (Tab. 1). Then we
investigate how descriptions generated by three
different preference-tuned models (“Without GT,”
“With GT,” and “With ICL”) help to alter the per-
formance of the agent. With our training process
using “Without GT” preference tuned model we
get the highest accuracy (66.9%)in the multimodal
setting.

5.5 What changed in the VLM outputs?

In this section, we explore how the VLM outputs
changed as a result of the preference optimization
which led to the improvements in agent prediction
performance. Since the dataset being examined is
a multimodal social reasoning dataset, we examine
psychometric properties (i.e. emotional properties)
extracted by the VLM. We present some summary
statistics in Tab. 3. We found that for the without



Overall Agent pos pred Agent neg pred
VLM Model Acc % Length Tone | Acc% Length Tone | Acc% Length Tone
Baseline | 529 1621 471 | 380 1480 414 | 500 170.3  50.3
Preference Tuned
With GT 57.7 147.8 445 57.8 148.7 41.6 57.5 1457 509
Without GT 66.9 170.8 544 70.1 1712 528 63.8 1704  56.0
With ICL 65.1 120.2  38.0 75.6 1322 430 59.5 113.8 352

Table 3: Summary statistics comparing text output from the VLM model for the MUStARD. Three conditions are
compared: 1) overall statistics, 2) statistics of VLM outputs which led the agents to predict a positive label, and 3)
summary of what caused the agent to predict a negative label. Tone scores are obtained from LIWC-22. After the
VLM was preference tuned, the tone of the VLM also changed significantly.

Training Prompt \ Acc % Prec. Recall Model \ Accuracy Precision Recall
"Describe the speaker’s Inference Prompt: P1
nonverbal cues, the context, Base 52.9 53.0 53.0
and any mismatches 833 600 630 With GT 577 59.0 65.0
between them." Without GT 60.5 63.0 55.0
"Describe the video in detail | 60.45 63.0 55.0 With ICL 60.0 64.0 S10
Inference Prompt:P2
No Prompt | 4779 500 49.0 Base 519 58.0 400
With GT 57.7 58.0 75.0
Table 4: Effect of Different Prompts on DPO Fine- Without GT 66.9 70.0 65.0
Tuning. We choose the "With GT" preference tuned With ICL 65.1 76.0 50.0

model to test the effect of different prompts in the DPO
fine-tuning process. We notice that, with a generic
prompt in the training process we can acheive higher
accuracy.

GT and with ICL conditions, there was a large dif-
ference in tone for the tuned VLM outputs. We
also found significant variability in the lengths of
the generated text with ICL being the shortest. The
VLM trained on preferences of the LLM when
given the ground truth tended to have a shorter to-
ken length. In general the agent was more accurate
with positive instances of sarcasm than negative
ones.

We also saw that sometimes the VLM would
hallucinate. It is not surprising since the language
agent has no way to judge whether the explanation
is faithful to the original video or not — which also
aligns with data collection processes of RLHF. For
example, in Tab. 6 found in the Appendix, we see
that the VLM is describing a voiceover that does
not exist. As a rough measure of hallucination, we
count the occurrence of the word "voice" and found
that the baseline model generates captions with 0
occurrence of "voice". However, the without GT,
with GT, and with ICL models generate 5, 34, and
1 occurrences of this word. Despite the hallucina-
tions, it is interesting that this resulted in a large
performance improvement even when the visual
descriptions were factually inaccurate. We will ex-

Table 5: Effect of different inference prompts in
VLM. Here, prompt, P1="Describe the video in detail";
P2="Describe the speaker’s nonverbal cues, the context,
and any mismatches between them." We observe that
training with a generic prompt, we can achieve better
performance with a task specific prompt during the in-
ference time

plore how to mitigate these sorts of hallucinations
in the future.

6 Conclusion

This work investigated the potential of off-the-shelf
unimodal LL.Ms for multimodal inference by trans-
forming non-textual inputs into rich, descriptive
text. Using sarcasm detection as a case study, we
found that directly combining these textual descrip-
tions with utterances initially caused ~ 8% drop
in accuracy compared to the utterance-only base-
line—highlighting the challenge of approximating
multimodal reasoning through text alone.

However, optimizing the description generator to
align with the LLM’s preference, we not only fully
recovered the initial loss but also surpassed the
original utterance-only baseline by an additional
~ 5% accuracy. This demonstrates that LLMs can
effectively generate the preference signals needed
to produce better textual descriptions for realizing
multimodal inference tasks.



7 Limitation

This study demonstrates the potential of Large Lan-
guage Models (LLMs) to interpret multimodal con-
texts using text-only descriptions for sarcasm detec-
tion, achieving promising results in sarcasm detec-
tion. Although our experiments demonstrate that
offline reinforcement-learning (RL) fine-tuning can
significantly improve policy performance on static
datasets, this design lacks of real-time adaptation.
In the current framework, DPO processes prefer-
ence data in batch mode, optimizing the model
based on a static dataset. This offline approach
restricts the model’s ability to adapt dynamically
to new or evolving data patterns, which is critical
for real-world applications. To address this limita-
tion, a primary focus can be on transitioning from
offline to online RL fine-tuning. Online RL would
enable the model to learn and adapt in real-time
as new data becomes available, enhancing its re-
sponsiveness and accuracy in dynamic contexts.
Another aspect is the hallucinations we noticed in
the VLM outputs. We will also explore why this is
and develop ways to mitigate this.

8 Ethics Statement

This study uses publicly available datasets (MUS-
tARD) and pre-trained models, without collecting
or processing personal or sensitive data. The prox-
ies for video data are generated from dataset con-
tent following appropriate academic use guidelines.
No human subjects were involved, and all mod-
els comply with their respective licenses. This
research is intended for academic exploration and
is not suitable for direct deployment in sensitive or
decision-critical applications without further evalu-
ation.
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A Prompts to VLM for generating video
descriptions

To ensure diverse description generation using the
LLaVA-NeXT-Video model, we define five distinct
prompts, each crafted to elicit different aspects of
the video content. These prompts are:

# Define 5 diverse prompts
diverse_prompts = [

"Describe what is happening in this video in
detail.”,

"Describe the video in such a way that it
will be helpful for sarcasm detection.
Try to keep the description brief.”,

"Describe the facial expressions and the
speech tone of the speakers that is
useful to understand the subtle meaning
of the conversation. Try to keep the
description brief.",

"Describe the facial expressions in the
video that might indicate contrasting
emotions. Keep the description brief”,

"Provide a brief description of this video."”

For each video, the model is run once per prompt,
generating five separate outputs. No sampling
strategies (such as varying temperature or top-k)
are used; instead, diversity arises entirely from the
distinct prompt formulations.



B Prompts for the Language Agent
(Deepseek-R1)

B.1 Prompt to Rank the Captions without
Ground Truth

prompt = f"""Consider that the visual
description of a video scene
is: {video_description}.{raw_utterance_text}

Please rate the likelihood that the scene
contains SARCASM on a scale
of 1-10.

1-5: NOT sarcastic
- 1: Strongly believe this is NOT sarcastic
- 5: Not sure, but leaning towards NOT sarcastic

6-10: Sarcastic
- 6: Not sure, but leaning towards sarcastic
- 10: Strongly believe this IS sarcastic

Please provide your response in this exact
format:

FINAL SCORE: [number between 1-10]"""

B.2 Prompt to Rank the Captions With
Ground Truth

prompt = f"""You are tasked with evaluating
five video descriptions to determine how
helpful each is in predicting whether an
utterance is {sarcasm_status}. Below are
the five video descriptions and the
original utterance.

{raw_utterance_text}Video Descriptions:

1. {descriptions[0]}
2. {descriptions[1]}
3. {descriptions[2]}
4. {descriptions[3]}
5. {descriptions[4]}

Please rank each description based on how
helpful it is for predicting that the
utterance is {sarcasm_status}. Assign a
score between 1 and 10, where:

- 1: Not helpful at all

- 10: Very helpful

Provide your response in this exact format:

Description 1: [scorel]
Description 2: [score]
Description 3: [score]
Description 4: [score]
Description 5: [scorel]

nnn

B.3 Prompt for Ranking Captions with
Few-Shot Examples

prompt = f"""You are given a video scene
description, previous conversation
context, and an utterance from that
scene. Your job is to rate how likely the
scene contains SARCASM, on a scale of 1
to 10, using this rubric:
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1 to 5: NOT sarcastic
- 1: Strongly believe this is NOT sarcastic
- 5: Not sure, but leaning towards NOT sarcastic

6 to 10: Sarcastic
- 6: Not sure, but leaning towards sarcastic
10: Strongly believe this IS sarcastic

Always reply *xexactlyx*x in this format:

FINAL SCORE: [number between 1 to 10]

**Example 1x*

Video description: In the video, we see a man
and a woman in a hospital setting. The man,
dressed in a white coat and tie, is holding
a clipboard and appears to be a doctor. He
is speaking to the woman, who is wearing a
pink shirt, and seems to be explaining
something to her. The woman is smiling and
nodding along, indicating that she is
engaged in the conversation. However, the
man’s tone is sarcastic and dismissive, as
he talks about the woman’s medical
condition with a lack of concern and even
makes a joke about it. The woman seems to
be taking the situation lightly, laughing
along with the man’s jokes, which suggests
that she is either in on the joke or is not
bothered by his tone. The setting is a
typical hospital environment, with medical
equipment visible in the background, and
the overall atmosphere is light-hearted and
humorous.

Previous conversation:

RACHEL: "All right, I’'m outta here!”

MONICA: "I’m kidding! I’m kidding!"

RACHEL: "So were done then!”

Utterance: PERSON: "Almost! But first, we gotta
start.”

FINAL SCORE: 10

**Example 2*xx*

The video features two men sitting in a room,
one of whom is holding a coffee cup and
speaking to the other. The man holding the
coffee cup is wearing a red and blue
striped shirt, while the other man is
wearing a white shirt. They are engaged in
a conversation, and the man in the red and
blue shirt is holding the coffee cup in his
right hand. The room appears to be an
office setting, with a desk and a chair
visible in the background.

Previous conversation:

HOWARD: "Do you really think you should be
drinking right now?"”

RAJ: "How else am I supposed to talk to the
Human Resources lady?”

HOWARD: "I don’t know. Seek professional help?”
Utterance: RAJ: "I did. The guy at the liquor
store said this stuff tastes great in

coffee.”
FINAL SCORE: 1
**Now you try**
Video description: {desc}
{context_text}{raw_utterance_text}



FINAL SCORE: [number between 1-10]

nnn

B.4 Prompt to Calculate Accuracy

prompt = f""" You are given a video scene
description, previous conversation context,
and an utterance from that scene. Your job
is to rate how likely the scene contains
SARCASM, on a scale of 1-10, using this
rubric:

1-5: NOT sarcastic
- 1: Strongly believe this is NOT sarcastic
- 5: Not sure, but leaning towards NOT sarcastic

6-10: Sarcastic
- 6: Not sure, but leaning towards sarcastic
- 10: Strongly believe this IS sarcastic

Video description: {description}
Context: {context}
Target Utterance: {utterance}

nnn

B.5 Generated Output Examples
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Agent provided preferences with knowledge of GT. After training, sometimes the VLM will hallucinate. For example,
we see that the VLM is talking about a voiceover that doesn’t exist.

In the video, a man and a woman are seen lying on the ground, surrounded by fallen leaves, which suggests it’s autumn. The
man is wearing a blue sweater and the woman is in a blue top, both with their arms around each other. The man is speaking
directly to the camera, and the woman is looking at it with a smile on her face. The man’s tone is serious, while the woman’s
is more lighthearted. The man’s voiceover explains that they’re happy and in love, and the woman’s voiceover is more playful,
contrasting with his. The man’s voiceover is in a serious tone, while the woman’s is more lighthearted. The scene is set in a
park with autumn leaves, and the man and woman are the only two people in it. The man’s voiceover explains that they’re
happy and in love, while the woman’s voiceover contrasts with his, adding a sense of humor to the scene.

In the following three examples, we see a different sentiment being expressed.

Example 1, baseline model: In the video, we see a man sitting on a couch, holding a phone to his ear. He appears to be
engaged in a conversation, possibly a phone call or a video call, as he is looking at the camera with a focused expression. The
room around him is casually furnished, with a couch, a chair, and some posters on the wall. The man’s attire is a sweater with
a pattern, and he seems to be in a relaxed setting, possibly at home. The lighting is warm, and the overall atmosphere is calm.
The video captures a moment of everyday life, with the man’s interaction with the phone being the main focus.

Example 2, preference given with knowledge of GT: In the video, we see a man sitting on a couch and talking on a phone.
He’s wearing a sweater with a distinctive checkered pattern and appears to be in a casual setting, possibly his living room.
His expression is serious, and he’s engaged in a heated conversation. The camera zooms in on his face, emphasizing his
intensity. The contrast between his calm exterior and the inner turmoil is evident.

Example 3, preference given with in-context examples: In the video, we see a young man sitting comfortably on a couch
in a living room. He is dressed in a cozy sweater and is engaged in a phone conversation. His face is lit up with a smile,
suggesting a pleasant conversation. The room around him is warmly decorated, with a poster of a man on the wall and a
bookshelf filled with various items. The man on the phone is holding a phone to his ear, indicating an ongoing call. The
living room is well-lit, with a lamp casting a soft glow on the scene. The man’s relaxed posture and the casual setting suggest
a comfortable and familiar environment. The video captures a moment of everyday life, showcasing the man’s engagement in
a phone call while enjoying his surroundings.

Table 6: Examples of VLM generated sequences.
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