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Abstract001

This paper proposes a method that enables a002
language agent to give feedback to a vision-003
language model (VLM) to adapt text gener-004
ation to the agent’s preferences. Using our005
proposed method, we find that the VLM can006
supply multimodal scene descriptions to help007
the LLM better understand multimodal context.008
Our method leads to improvements of more009
than 13% in absolute accuracy compared to the010
baseline multimodal approach. Extensive ex-011
periments provide insights on how and why the012
method works and its limitations.013

1 Introduction014

Large Language Models (LLMs) or Language015

Agents have emerged as powerful tools for pro-016

cessing and generating textual data. They have017

significantly advanced natural language process-018

ing by achieving near-human-level performance019

across a wide range of text-centric tasks, includ-020

ing text classification, reasoning, and open-domain021

question answering, content generation, and oth-022

ers (Guo et al., 2025; Brown et al., 2020; Radford023

et al., 2018; Dam et al., 2024; Qian et al., 2025;024

Wang et al., 2025; Jansen et al., 2025; Huang et al.,025

2025). An active area of research is to make these026

agents multimodal (Li et al., 2023; Achiam et al.,027

2023; Liu et al., 2024) to support a wider range028

of human-AI interactive tasks. However, a key029

drawback persists: these models typically require030

training from scratch, or extensive retraining of pre-031

existing LLMs, which is costly and prohibitive to032

train for many.033

To address this issue, we propose a slightly dif-034

ferent approach: to describe the multimodal world035

in text for a language agent to process. By enabling036

this, we would only need to train lightweight adap-037

tors that describe multimodal features with text.038

Additionally, this would give us an interpretable039

‘latent’ text modality to help us understand what the040

language agent’s decision was based on – which 041

is broadly impactful for safe AI systems. Once 042

the multimodal information has been described in 043

text, we can take advantage of an agent’s reasoning 044

capabilities to incorporate it into decision making. 045

However, there are challenges to making this 046

work properly. First it is unclear what the agent 047

needs from different modalities to make the right 048

decision, such as for classification. For example 049

we found that when converting visual modalities 050

to text using a captioning model, and using this 051

as the visual context for an agent to process can 052

lead to an overall decrease in performance (See 053

Tab. 1). It is crucial that multimodal context is 054

incorporated because it can modify the meaning of 055

inputs from a single modality (Baltrušaitis et al., 056

2018). Another challenge is that it is unclear how 057

we can describe the multimodal in the way the 058

agent expects. Because, such a method would need 059

to be adaptable to many modalities at scale and 060

account for agent preferences. 061

To address these issues, we propose a novel 062

framework in which we ask the agent to provide 063

preference feedback of VLM outputs. We then op- 064

timize the VLM output using DPO (Rafailov et al., 065

2023). We design several high-level prompts to 066

enable this process. We evaluate our method on the 067

multimodal social reasoning dataset MUStARD 068

(MUltimodal SARcasm Detection) dataset (Cas- 069

tro et al., 2019) which contains properties that 070

can benchmark contextual multimodal understand- 071

ing (Liang et al., 2023). 072

With our proposed method, we are able to 073

demonstrate more than 13% in absolute perfor- 074

mance over are baseline multimodal approach. We 075

demonstrate that it is possible for agents to give 076

preference feedback and that it can be used to im- 077

prove the training of a multimodal vision-to-text 078

model. We conduct extensive experiments and find 079

that naively incorporating text descriptions can hurt 080

agent performance. We additionally find that the 081
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agent’s behavior can be quite sensitive to modality082

descriptions.083

2 Related Work084

2.1 Reinforcement Learning from AI085

Feedback (RLAIF)086

Reinforcement Learning from Human Feedback087

(RLHF) has become a standard technique for align-088

ing large language models (LLMs) with human089

preferences by training a reward model on human-090

annotated preference pairs (Christiano et al., 2017;091

Stiennon et al., 2020; Ouyang et al., 2022). More092

recently, Bai et al. (2022) and Lee et al. (2023)093

introduced Reinforcement Learning from AI Feed-094

back (RLAIF), in which off-the-shelf LLMs re-095

place costly human labelers to generate soft prefer-096

ence labels. In RLAIF, a strong LLM is prompted097

to rank pairs of candidate outputs. Empirical re-098

sults show that RLAIF matches or exceeds RLHF099

on summarization, helpfulness and harmlessness100

benchmarks while dramatically reducing annota-101

tion cost and improving scalability (Lee et al., 2023;102

Gilardi et al., 2023). Unlike RLAIF, which lever-103

ages AI feedback to optimize model outputs for104

purely language-generation tasks, our work uses105

LLM-driven preferences to shape the inputs to106

an LLM-based classifier in a multimodal setting.107

We use the resulting preference pairs, not to fine-108

tune the LLM’s generation policy, but to refine the109

vision-language model itself so that it produces110

better descriptions.111

2.2 LLM-Based Multimodal Reasoning112

LLMs have shown remarkable capabilities in under-113

standing and generating text, prompting research114

into their potential for multimodal reasoning. Yang115

et al. (2022) explored LLMs for multimodal tasks116

by converting images into textual captions using117

models like CLIP Radford et al. (2021), then feed-118

ing these captions into LLMs for tasks such as119

visual question answering. Similarly, Zhang et al.120

(2024b) used VLMs to generate textual descrip-121

tions of images, which were then processed by122

LLMs for reasoning tasks. Kamrul Hasan et al.123

(2023) propose TextMI, an innovative framework124

designed to convert acoustic and visual informa-125

tion into textual descriptions, allowing these cues to126

be effectively processed by text-based models like127

BERT. These studies focus on static image-based128

tasks and do not address dynamic video contexts129

or complex social cues like sarcasm. Our approach130

extends this line of work by applying LLM-based 131

reasoning to video sarcasm detection, a task requir- 132

ing temporal and contextual understanding. By us- 133

ing VLM-generated descriptions of video clips, we 134

test whether LLMs can approximate multimodal 135

reasoning from text alone. 136

2.3 Preference Optimization in Model 137

Alignment 138

Direct Preference Optimization (DPO) has 139

emerged as a powerful technique for aligning 140

models with human or AI-generated preferences, 141

bypassing the need for complex reward modeling 142

(Rafailov et al., 2023). In the context of VLMs, 143

Zhou et al. (2024) employed DPO to fine-tune 144

vision-language models by generating preference 145

data using GPT-4V, targeting hallucination 146

reduction. Zhang et al. (2024a) applied DPO 147

to video multimodal models, using language 148

model rewards to optimize instruction-following 149

capabilities. While these works leverage DPO for 150

VLM alignment, they focus on direct multimodal 151

input processing rather than text-based abstractions. 152

Our study innovates by integrating DPO into 153

an LLM feedback loop to enhance the structure 154

of VLM-generated textual descriptions for a 155

specific task. Unlike prior work, which uses 156

DPO to optimize model outputs directly, we 157

employ DPO to refine the input descriptions, 158

enabling the LLM to better interpret multimodal 159

contexts and improve classification accuracy. This 160

feedback-driven approach to structuring textual 161

inputs is a novel contribution to the application of 162

preference optimization. 163

3 Methodology 164

Our methodology for preference tuning follows a 165

similar pipeline as RLHF (Ouyang et al., 2022) and 166

other preference tuning methods (Rafailov et al., 167

2023). There are two important differences: first, 168

we do not use any demonstration (i.e. agent does 169

not generate text of what is preferred since we 170

assume it does not have access to the visual modal- 171

ity); and second, we only use a unimodal language 172

agent for preference feedback. 173

To answer whether a unimodal language agent 174

can provide feedback to a multimodal vision lan- 175

guage model (VLM) we setup an experiment with 176

the following methodology (visualized in Fig. 1): 177

1. Generating Captions with a VLM: We first 178

ask the VLM (e.g. Llava) to generate multiple 179
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Figure 1: An overview of the training pipeline. (a) First, a VLM generates diverse descriptions with a set of prompts;
Second, (b) descriptions are ranked using an LLM Agent to generate preference dataset; Lastly, (c) generated
preference dataset is used for DPO-based optimization to fine tune the VLM. The agent model stays fixed, and we
fine tune the VLM using LoRA.

language descriptions of a video.180

2. Generating Agent Preferences: We then ask181

a language agent (e.g. DeepSeek R1) to rank182

generated text descriptions using a few prompt183

variations.184

3. Preference Optimization: Using the prefer-185

ences provided by the language agent, we op-186

timize the VLM using preference optimization187

(e.g. DPO). The agent model stays fixed for188

all experiments.189

3.1 Generating Captions with a VLM190

The vision language model (VLM) is a model191

which maps a short video segment into a caption –192

i.e.:193

πθ : xv ∈ Rvw×vh×vt → xt ∈ Rl×h,194

where the input video segment is a sequence of vt195

images with width and height of vw and vh. The196

output caption (xt) is of length l with embedding197

dimension h. The images are sampled uniformly198

(8 frames per video segment frames).199

To increase the diversity of the generated200

prompts for the video content, we design five201

distinct prompts. We target different aspects of202

the video including general content, emotional203

cues, sarcasm indicators, and facial expressions.204

For each video, we apply a conversational tem-205

plate combining both the video content and a set206

of crafted prompts. We run the model across207

these multiple prompts to obtain a set of five208

unique description outputs, which are then stored209

for downstream tasks. For example, we ask the210

VLM to "Describe what is happening in 211

this video in detail." or "Describe the 212

facial expressions in the video that might 213

indicate contrasting emotions. Keep the 214

description brief". See Appendix A in the 215

appendix for additional prompts that were used. 216

We do not use any sampling strategies (such as 217

varying temperature or top-k) as we noticed that 218

these contributed minimally to differences in gener- 219

ated captions. Instead we only rely on the distinct 220

prompt formulations. 221

3.2 Generating Agent Preferences 222

We are interested in assessing in 1) whether agents 223

are capable of providing preferences to tune an- 224

other model, and 2) how capable they are. To do so, 225

we propose three conditions for evaluating the pref- 226

erences provided by agents. First, agents provide 227

preferences with knowledge of what is the ground- 228

truth class of the dataset. Second, agents provide 229

preferences on VLM outputs without knowing what 230

is the true class of the dataset. And lastly, we pro- 231

vide in-context examples of preferences without 232

knowledge of ground truth. 233

3.2.1 Agent preferences with ground truth 234

knowledge (With GT) 235

In the second approach, we incorporate the known 236

ground-truth sarcasm label to guide the LLM’s eval- 237

uation. For each video, we ask the agent to provide 238

its rating of 5 captions: 239

You are tasked with evaluating five 240
descriptions of one video to determine how 241
helpful each is in predicting whether the 242
given utterance is {sarcasm}. Below are the 243
previous conversation (if any), the 244
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original utterance, and the five245
descriptions.246

247
Context: {context}248
Utterance: {utterance}249
Video Descriptions:250
1. {description_1}251
2. {description_2}252
3. {description_3}253
4. {description_4}254
5. {description_5}255

256
Please rank each description based on how257

helpful it is for predicting that the258
utterance is {sarcasm}. Assign a score259
between 1 and 10, where:260

- 1: Not helpful at all261
- 10: Very helpful262
Always reply **exactly** in this JSON format:263
{264

"score_1":<your integer score here>265
"score_2":<your integer score here>266
"score_3":<your integer score here>267
"score_4":<your integer score here>268
"score_5":<your integer score here>269

}270

3.2.2 Agent preferences without ground truth271

knowledge (Without GT)272

We first aim to evaluate whether an LLM can in-273

dependently assess the likelihood of sarcasm in a274

scene using only visual text description and con-275

versational context, without providing any ground-276

truth labels. For each video, we supply the LLM277

with the generated video description paired with278

previous context and original utterance from the279

scene.280

We use the following template to rank captions281

without ground truth:282

prompt = f"""You are given a video scene283
description, previous conversation284
context, and an utterance from that scene.285
Your job is to rate how likely the scene286
contains SARCASM, on a scale of 1-10,287
using this rubric:288

289
1-5: NOT sarcastic290
- 1: Strongly believe this is NOT sarcastic291
- 5: Not sure, but leaning towards NOT sarcastic292

293
6-10: Sarcastic294
- 6: Not sure, but leaning towards sarcastic295
- 10: Strongly believe this IS sarcastic296

297
Video description: {video_description}298
Context: {context}299
Target Utterance: {utterance}300
Please provide your response in this exact301

format:302
FINAL SCORE: [number between 1-10]"""303

In this method, the LLM is asked to predict the304

likelihood of sarcasm on a scale from 1 to 10. For-305

mally, given input q = (d, u, c), where d is the306

Algorithm 1 Select Preferred Description
1: Sort scores list in ascending order by score
2: if ground_truth_sarcasm is True then
3: preferred ← description with highest score (last in

scores list)
4: dispreferred← description with lowest score (first in

scores list)
5: else
6: preferred ← description with lowest score (first in

scores list)
7: dispreferred← description with highest score (last in

scores list)
8: end if

description, u is the utterance, and c is the previ- 307

ous context of the given video. The LLM outputs 308

a scalar score s ∈ [1, 10] estimating the sarcastic 309

nature of the scene, where 1 means that the LLM 310

strongly believes u is not sarcastic and 10 means 311

strongly believes u is sarcastic. 312

3.2.3 Agent preferences with in-context 313

examples (With ICL) 314

In this approach, we adopt an in-context learning 315

(ICL) approach by providing the language model 316

with two illustrative examples to demonstrate the 317

ranking process for video descriptions. The first ex- 318

ample describes a scene containing sarcasm, which 319

contains a score of 10 to indicate strong sarcastic 320

content. The second example describes a scene 321

without any sarcasm, with a score of 1 to represent 322

no sarcasm. Then, we prompt the LLM to predict 323

the likelihood of sarcasm as described in Section 324

3.2.2. 325

For our in-context examples, we selected two of 326

the model’s raw outputs from Section 3.2.2. One 327

is of score 10 for a sarcastic scene and another is 328

scored 1 for a non-sarcastic scene. The full prompt 329

can be found in Appendix B.4 330

3.2.4 Sorting preferences 331

We provide a simple rule to determine the order of 332

the preferences (found in Algorithm 1). These rules 333

are applied to the Without GT and With ICL con- 334

ditions. The reason we do this is to evaluate how ef- 335

fective agents are at incorporating the ground truth. 336

The ranking provides a (weak) set of rules that re- 337

stricts the preferences to align with the ground truth 338

of the dataset manually. 339

3.3 Preference Optimization 340

Direct Preference Optimization (DPO) (Rafailov 341

et al., 2023) is used to align VLM outputs to the 342

preferences of the language agent. To summarize, 343

DPO leverages a reparameterization of the reward 344
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Figure 2: Overview of the evaluation process. In the unimodal evaluation pipeline shown in (a), only the conversation
context and the final statement is given to the Agent to determine whether the final statement is sarcastic or not.
(b) demonstrates how multimodal information is incorporated during the evaluation process. The VLM acts like
a feature extractor by converting visual features to text descriptions. This is fed to the LLM. (c) shows how the
preference tuned VLM (Optimized Vision Language Model) is incorporated into the pipeline.

function under the Bradley-Terry model, showing345

that the optimal policy satisfying human prefer-346

ences can be obtained by maximizing a simple347

binary cross-entropy objective:348

LDPO(πθ;πref) =349

−E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x) · πref(yl|x)
πref(yw|x) · πθ(yl|x)

)]
,

(1)

350

where yw and yl denote the preferred and dispre-351

ferred responses, respectively, πref is the refer-352

ence policy (often the supervised fine-tuned model),353

and β controls the KL-divergence regularization354

strength. This formulation allows DPO to directly355

adjust the model’s log-probabilities to satisfy hu-356

man preferences without maintaining a learned re-357

ward critic.358

In our case, πθ is the VLM we want to fine-tune359

and πref is a reference model, or an unmodified360

version of πθ. D is the dataset of preferences gen-361

erated in the section 3.2. x is a sample prompt362

which is "Describe the video is details". yw and yl363

are the LLM’s preferred and disprefered response364

to the prompt x. Using β we control the amount of365

divergence from the reference model πref .366

3.4 Agent Evaluation Process367

We wish to see if the agent is properly account-368

ing for the visual context to make a decision about369

a multimodal property. Therefore, both the tex-370

tual description of the visual context as well as the371

original text-based caption should be available to372

the agent for it to make its decision. We design 373

a prompt to do so and to provide a decision as 374

following- 375

prompt = f""" 376
Based on the following previous conversation in 377

the video, decide whether the final 378
utterance is sarcastic or not. 379

380
Context: {context} 381
Utterance: 382

{speaker}: "{utterance}" 383
384

Your job is to rate how likely the scene 385
contains SARCASM, on a scale of 1-10, using 386
this rubric: 387

388
1-5: NOT sarcastic 389
- 1: Strongly believe this is NOT sarcastic 390
- 5: Not sure, but leaning towards NOT sarcastic 391

392
6-10: Sarcastic 393
- 6: Not sure, but leaning towards sarcastic 394
- 10: Strongly believe this IS sarcastic 395
Always reply **exactly** in this JSON format: 396
{ 397

"score":<your integer score here> 398
} 399
""" 400

Depending on the evaluation condition, the 401

video_description comes from the output of the 402

VLM. The utterance is provided using the text 403

modality. Additionally, any conversation context 404

is also provided. In this way, we can evaluate how 405

well the agent can integrate the visual descriptive 406

context with the utterance. We present the con- 407

ditions of evaluation in Fig. 2. Once the LLM 408

provides its output, we assess our model’s perfor- 409

mance using standard classification metrics (pre- 410
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cision, recall, accuracy) following the tasks of the411

dataset.412

4 Experimental Setup413

4.1 Dataset414

For our experiments, we use the MUltimodal SAR-415

casm Detection (MUStARD) dataset, a multimodal416

sarcasm detection (binary classification) corpus in-417

troduced by Castro et al. (2019). MUStARD con-418

tains 690 short video clips drawn from popular419

TV shows such as Friends, The Big Bang The-420

ory, The Golden Girls, and Sarcasmaholics Anony-421

mous. The dataset is carefully balanced, with an422

equal number of sarcastic and non-sarcastic sam-423

ples. Each video is annotated with high-quality424

sarcasm labels derived through a two-step man-425

ual annotation process, achieving improved inter-426

annotator agreement. Each utterance includes three427

aligned modalities: text, which is manually or semi-428

automatically transcribed dialogue; audio which is429

the raw speech signals containing prosodic cues;430

and video which contains frame-level visual fea-431

tures representing facial expressions and gestures.432

For our experiments, we split the data into a train-433

ing dataset of 551 videos and a testing dataset of434

139 videos.435

4.2 VLM model436

In our experiment, we fine tune the LLaVA-Video437

model, a large-scale video-language model devel-438

oped to advance instruction-following tasks in mul-439

timodal settings (Zhang et al., 2024c). The model440

architecture uses a specialized video representation441

technique called SlowFast, allowing the system to442

process up to three times more frames than stan-443

dard methods within GPU memory constraints. To444

generate video descriptions during evaluation we445

use the following prompt for all methods:446

Describe the speaker’s nonverbal cues, the447
context, and any mismatches between them.448

4.3 Agent Model449

We used the 7B parameter Deepseek-R1 model as450

the language agent. The agent model stays fixed451

through all parts of the training and evaluation.452

4.4 Training Details:453

We conducted our experiments on a system454

equipped with six NVIDIA GeForce RTX 4090455

GPUs (24GB VRAM each) using CUDA 12.6. We456

used CUDA for GPU acceleration with fallback to457

CPU. To fine-tune our model, hyperparameters that 458

impacted computational constraints were chosen 459

to balance algorithmic performance and computa- 460

tional feasibility. 461

The learning rate was set to 1× 10−5 to ensure 462

stable convergence. Due to memory constraints, a 463

batch size of 1 was used during training. The model 464

was trained for a total of 5 epochs to achieve suffi- 465

cient adaptation to the dataset while avoiding over- 466

fitting. We utilized Direct Preference Optimization 467

(DPO) with a temperature parameter, (β) of 0.1 to 468

control the divergence from the reference model. 469

For training the VLM, we used the generic prompt 470

"Describe the video in detail". We fine-tuned the 471

VLM using Low-Rank Adaptation (LoRA) with a 472

rank of r = 4, a scaling factor of α = 16, and a 473

dropout probability of 0.1. LoRA was applied to 474

the query, key, and value projection layers (q_proj, 475

k_proj, and v_proj). 476

To ensure consistency and mitigate randomness 477

in the evaluation process, we carefully tuned the 478

inference parameters. The temperature was set to 479

0.00, ensuring more deterministic outputs. This 480

configuration was chosen to maintain reliability 481

in evaluation and ensure meaningful comparisons 482

across different captions. 483

5 Result Analysis 484

5.1 Main Results 485

We evaluated our approach using three distinct 486

methods. First, we feed the utterance to the LLM 487

without any multimodal information. Then we com- 488

bined the description generated by the base LLaVA- 489

NeXT-Video model with the utterance from the 490

dataset, and then sent the combined description- 491

utterance pair to the DeepSeek evaluator for sar- 492

casm analysis. Finally, we performed the evalua- 493

tion procedure using descriptions generated by our 494

DPO fine-tuned LLaVA-NeXT-Video model (Fig- 495

ure 2). Tab. 1 presents the sarcasm detection ac- 496

curacy results for our DPO-fine-tuned model com- 497

pared to the base LLaVA-NeXT-Video model on 498

the MUStARD dataset. 499

5.2 Impact of the Temperature Parameter (β) 500

on DPO Fine-Tuning 501

Here we highlight the effect of different β values 502

for our DPO fine tuning approach. Higher values 503

of β heavily penalize any deviation from the refer- 504

ence policy, whereas lower values encourage the 505

model to diverge more to satisfy the reward signal. 506
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Model Accuracy Precision Recall

Baseline
Utterance Only 61.2 62.0 64.0
Visual Only 48.9 52.0 19.0
Multimodal 52.9 58.0 40.0

Preference Tuned

Visual Only
With GT 47.48 49.0 40.0
Without GT 50.36 71.0 7.0
With ICL 51.80 65.0 15.0

Multimodal
With GT 58.7 58.0 75.0
Without GT 66.9 70.0 65.0
With ICL 65.1 76.0 50.0

Table 1: Performance comparison of baseline (pre-
trained VLM) compared to a few preference tuned con-
ditions. While the visual-only modality did not out-
perform an utterance-only prediction, it improves over
the descriptions obtained from an unoptimized VLM.
Additionally, we see that there is better contextual infor-
mation that the agent can make use of which led to the
improvements in multimodal performance. Note: The
preference-tuned models have to do with how the train-
ing dataset was obtained (see methods). GT information
was not available at test time, nor during prompting or
training of the VLM.

(β) Value Accuracy % Precision Recall

0.1 60.45 63.0 55.0
0.5 57.14 59.0 55.0
0.8 53.33 54.0 47.0

Table 2: Effect of (β) on DPO Fine-Tuning. At β = 0.1,
we achieve best results. As we increase the value of β
we observe that accuracy precision, and recall becomes
lower.

To measure the impact of the DPO fine-tuning pa-507

rameter, (β) with the preference dataset- "Without508

GT", we fixed the training prompt and inference509

prompt to "Describe the video in detail.". Then we510

ran the three experiments with β set to 0.2, 0.5 and511

0.8. As β increased, the model’s accuracy steadily512

declined from 60.45% to 53.33% (Tab. 2). This in-513

dicates that stronger regularization toward the base514

policy yields more conservative but less adaptive515

behavior.516

5.3 Impact of Prompt Variations on517

performance518

To assess how different prompting strategies impact519

DPO fine-tuning for a specific task, we experiment520

with three of training prompt variants: 1) Generic521

prompt; 2)Task-specific prompt; 3) No prompt. We522

use β of 0.1 for these experiments.523

5.3.1 Effect of Prompt in DPO Fine-tuning: 524

First, we assess how different training prompts af- 525

fect a “Without GT” preference-tuned model by 526

comparing three configurations: 1) Training with 527

a generic prompt ("Describe the video in detail."). 528

2) Training with a task-specific prompt ("Describe 529

the speaker’s nonverbal cues, the context, and any 530

mismatches between them."). Lastly, 3) Training 531

with no prompt. 532

We used the same prompt for inference as used 533

in the training process. We observe that training 534

with the generic prompt yields the highest accuracy 535

(60.45%) (Tab. 4). 536

5.3.2 Effect of Prompt During Inference: 537

Here we evaluate inference-time prompt effects on 538

different preference tuned models while keeping 539

the training prompt the same ("Describe the video 540

in detail"). Notably, when the model is trained 541

with the generic prompt, switching to the task- 542

specific inference prompt significantly boosts per- 543

formance(66.9%) significantly. This demonstrate 544

that a general training instruction combined with a 545

focused, task-specific inference prompt can yield 546

superior results (Tab. 5). 547

5.4 Impact of Different Modalities 548

In this section we highlight how different modal- 549

ities affect task performance. We compare the 550

agent’s performance across utterance-only, visual- 551

only and multimodal inputs. In multimodal input 552

we include both the utterance and description of 553

the scene. The utterance-only model reaches 61.2% 554

accuracy, while we see performance degradation 555

with visual-only information (Tab. 1). Then we 556

investigate how descriptions generated by three 557

different preference-tuned models (“Without GT,” 558

“With GT,” and “With ICL”) help to alter the per- 559

formance of the agent. With our training process 560

using “Without GT” preference tuned model we 561

get the highest accuracy (66.9%)in the multimodal 562

setting. 563

5.5 What changed in the VLM outputs? 564

In this section, we explore how the VLM outputs 565

changed as a result of the preference optimization 566

which led to the improvements in agent prediction 567

performance. Since the dataset being examined is 568

a multimodal social reasoning dataset, we examine 569

psychometric properties (i.e. emotional properties) 570

extracted by the VLM. We present some summary 571

statistics in Tab. 3. We found that for the without 572
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Overall Agent pos pred Agent neg pred
VLM Model Acc % Length Tone Acc % Length Tone Acc % Length Tone

Baseline 52.9 162.1 47.1 58.0 148.0 41.4 50.0 170.3 50.3

Preference Tuned
With GT 57.7 147.8 44.5 57.8 148.7 41.6 57.5 145.7 50.9
Without GT 66.9 170.8 54.4 70.1 171.2 52.8 63.8 170.4 56.0
With ICL 65.1 120.2 38.0 75.6 132.2 43.0 59.5 113.8 35.2

Table 3: Summary statistics comparing text output from the VLM model for the MUStARD. Three conditions are
compared: 1) overall statistics, 2) statistics of VLM outputs which led the agents to predict a positive label, and 3)
summary of what caused the agent to predict a negative label. Tone scores are obtained from LIWC-22. After the
VLM was preference tuned, the tone of the VLM also changed significantly.

Training Prompt Acc % Prec. Recall

"Describe the speaker’s
nonverbal cues, the context,
and any mismatches
between them."

58.33 60.0 63.0

"Describe the video in detail 60.45 63.0 55.0

No Prompt 47.79 50.0 49.0

Table 4: Effect of Different Prompts on DPO Fine-
Tuning. We choose the "With GT" preference tuned
model to test the effect of different prompts in the DPO
fine-tuning process. We notice that, with a generic
prompt in the training process we can acheive higher
accuracy.

GT and with ICL conditions, there was a large dif-573

ference in tone for the tuned VLM outputs. We574

also found significant variability in the lengths of575

the generated text with ICL being the shortest. The576

VLM trained on preferences of the LLM when577

given the ground truth tended to have a shorter to-578

ken length. In general the agent was more accurate579

with positive instances of sarcasm than negative580

ones.581

We also saw that sometimes the VLM would582

hallucinate. It is not surprising since the language583

agent has no way to judge whether the explanation584

is faithful to the original video or not – which also585

aligns with data collection processes of RLHF. For586

example, in Tab. 6 found in the Appendix, we see587

that the VLM is describing a voiceover that does588

not exist. As a rough measure of hallucination, we589

count the occurrence of the word "voice" and found590

that the baseline model generates captions with 0591

occurrence of "voice". However, the without GT,592

with GT, and with ICL models generate 5, 34, and593

1 occurrences of this word. Despite the hallucina-594

tions, it is interesting that this resulted in a large595

performance improvement even when the visual596

descriptions were factually inaccurate. We will ex-597

Model Accuracy Precision Recall

Inference Prompt: P1
Base 52.9 53.0 53.0
With GT 57.7 59.0 65.0
Without GT 60.5 63.0 55.0
With ICL 60.0 64.0 51.0

Inference Prompt:P2
Base 51.9 58.0 40.0
With GT 57.7 58.0 75.0
Without GT 66.9 70.0 65.0
With ICL 65.1 76.0 50.0

Table 5: Effect of different inference prompts in
VLM. Here, prompt, P1="Describe the video in detail";
P2="Describe the speaker’s nonverbal cues, the context,
and any mismatches between them." We observe that
training with a generic prompt, we can achieve better
performance with a task specific prompt during the in-
ference time

plore how to mitigate these sorts of hallucinations 598

in the future. 599

6 Conclusion 600

This work investigated the potential of off-the-shelf 601

unimodal LLMs for multimodal inference by trans- 602

forming non-textual inputs into rich, descriptive 603

text. Using sarcasm detection as a case study, we 604

found that directly combining these textual descrip- 605

tions with utterances initially caused ∼ 8% drop 606

in accuracy compared to the utterance-only base- 607

line—highlighting the challenge of approximating 608

multimodal reasoning through text alone. 609

However, optimizing the description generator to 610

align with the LLM’s preference, we not only fully 611

recovered the initial loss but also surpassed the 612

original utterance-only baseline by an additional 613

∼ 5% accuracy. This demonstrates that LLMs can 614

effectively generate the preference signals needed 615

to produce better textual descriptions for realizing 616

multimodal inference tasks. 617
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7 Limitation618

This study demonstrates the potential of Large Lan-619

guage Models (LLMs) to interpret multimodal con-620

texts using text-only descriptions for sarcasm detec-621

tion, achieving promising results in sarcasm detec-622

tion. Although our experiments demonstrate that623

offline reinforcement-learning (RL) fine-tuning can624

significantly improve policy performance on static625

datasets, this design lacks of real-time adaptation.626

In the current framework, DPO processes prefer-627

ence data in batch mode, optimizing the model628

based on a static dataset. This offline approach629

restricts the model’s ability to adapt dynamically630

to new or evolving data patterns, which is critical631

for real-world applications. To address this limita-632

tion, a primary focus can be on transitioning from633

offline to online RL fine-tuning. Online RL would634

enable the model to learn and adapt in real-time635

as new data becomes available, enhancing its re-636

sponsiveness and accuracy in dynamic contexts.637

Another aspect is the hallucinations we noticed in638

the VLM outputs. We will also explore why this is639

and develop ways to mitigate this.640

8 Ethics Statement641

This study uses publicly available datasets (MUS-642

tARD) and pre-trained models, without collecting643

or processing personal or sensitive data. The prox-644

ies for video data are generated from dataset con-645

tent following appropriate academic use guidelines.646

No human subjects were involved, and all mod-647

els comply with their respective licenses. This648

research is intended for academic exploration and649

is not suitable for direct deployment in sensitive or650

decision-critical applications without further evalu-651

ation.652
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A Prompts to VLM for generating video 801

descriptions 802

To ensure diverse description generation using the 803

LLaVA-NeXT-Video model, we define five distinct 804

prompts, each crafted to elicit different aspects of 805

the video content. These prompts are: 806

# Define 5 diverse prompts 807
diverse_prompts = [ 808

"Describe what is happening in this video in 809
detail.", 810

"Describe the video in such a way that it 811
will be helpful for sarcasm detection. 812
Try to keep the description brief.", 813

"Describe the facial expressions and the 814
speech tone of the speakers that is 815
useful to understand the subtle meaning 816
of the conversation. Try to keep the 817
description brief.", 818

"Describe the facial expressions in the 819
video that might indicate contrasting 820
emotions. Keep the description brief", 821

"Provide a brief description of this video." 822
] 823

For each video, the model is run once per prompt, 824

generating five separate outputs. No sampling 825

strategies (such as varying temperature or top-k) 826

are used; instead, diversity arises entirely from the 827

distinct prompt formulations. 828

10



B Prompts for the Language Agent829

(Deepseek-R1)830

B.1 Prompt to Rank the Captions without831

Ground Truth832

prompt = f"""Consider that the visual833
description of a video scene834

is: {video_description}.{raw_utterance_text}835
836

Please rate the likelihood that the scene837
contains SARCASM on a scale838

of 1-10.839
840

1-5: NOT sarcastic841
- 1: Strongly believe this is NOT sarcastic842
- 5: Not sure, but leaning towards NOT sarcastic843

844
6-10: Sarcastic845
- 6: Not sure, but leaning towards sarcastic846
- 10: Strongly believe this IS sarcastic847

848
Please provide your response in this exact849

format:850
FINAL SCORE: [number between 1-10]"""851

B.2 Prompt to Rank the Captions With852

Ground Truth853

prompt = f"""You are tasked with evaluating854
five video descriptions to determine how855
helpful each is in predicting whether an856
utterance is {sarcasm_status}. Below are857
the five video descriptions and the858
original utterance.859

860
{raw_utterance_text}Video Descriptions:861
1. {descriptions[0]}862
2. {descriptions[1]}863
3. {descriptions[2]}864
4. {descriptions[3]}865
5. {descriptions[4]}866

867
Please rank each description based on how868

helpful it is for predicting that the869
utterance is {sarcasm_status}. Assign a870
score between 1 and 10, where:871

- 1: Not helpful at all872
- 10: Very helpful873

874
Provide your response in this exact format:875
Description 1: [score]876
Description 2: [score]877
Description 3: [score]878
Description 4: [score]879
Description 5: [score]880
"""881

B.3 Prompt for Ranking Captions with882

Few-Shot Examples883

prompt = f"""You are given a video scene884
description, previous conversation885
context, and an utterance from that886
scene. Your job is to rate how likely the887
scene contains SARCASM, on a scale of 1888
to 10, using this rubric:889

890
1 to 5: NOT sarcastic 891
- 1: Strongly believe this is NOT sarcastic 892
- 5: Not sure, but leaning towards NOT sarcastic 893

894
6 to 10: Sarcastic 895
- 6: Not sure, but leaning towards sarcastic 896
- 10: Strongly believe this IS sarcastic 897

898
Always reply **exactly** in this format: 899
FINAL SCORE: [number between 1 to 10] 900
--- 901
**Example 1** 902
Video description: In the video, we see a man 903

and a woman in a hospital setting. The man, 904
dressed in a white coat and tie, is holding 905
a clipboard and appears to be a doctor. He 906
is speaking to the woman, who is wearing a 907
pink shirt, and seems to be explaining 908
something to her. The woman is smiling and 909
nodding along, indicating that she is 910
engaged in the conversation. However, the 911
man’s tone is sarcastic and dismissive, as 912
he talks about the woman’s medical 913
condition with a lack of concern and even 914
makes a joke about it. The woman seems to 915
be taking the situation lightly, laughing 916
along with the man’s jokes, which suggests 917
that she is either in on the joke or is not 918
bothered by his tone. The setting is a 919
typical hospital environment, with medical 920
equipment visible in the background, and 921
the overall atmosphere is light-hearted and 922
humorous. 923

924
Previous conversation: 925
RACHEL: "All right, I’m outta here!" 926
MONICA: "I’m kidding! I’m kidding!" 927
RACHEL: "So were done then!" 928
Utterance: PERSON: "Almost! But first, we gotta 929

start." 930
FINAL SCORE: 10 931

932
**Example 2** 933
The video features two men sitting in a room, 934

one of whom is holding a coffee cup and 935
speaking to the other. The man holding the 936
coffee cup is wearing a red and blue 937
striped shirt, while the other man is 938
wearing a white shirt. They are engaged in 939
a conversation, and the man in the red and 940
blue shirt is holding the coffee cup in his 941
right hand. The room appears to be an 942
office setting, with a desk and a chair 943
visible in the background. 944

945
Previous conversation: 946
HOWARD: "Do you really think you should be 947

drinking right now?" 948
RAJ: "How else am I supposed to talk to the 949

Human Resources lady?" 950
HOWARD: "I don’t know. Seek professional help?" 951
Utterance: RAJ: "I did. The guy at the liquor 952

store said this stuff tastes great in 953
coffee." 954

FINAL SCORE: 1 955
--- 956
**Now you try** 957
Video description: {desc} 958
{context_text}{raw_utterance_text} 959
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FINAL SCORE: [number between 1-10]960
"""961

B.4 Prompt to Calculate Accuracy962

prompt = f""" You are given a video scene963
description, previous conversation context,964
and an utterance from that scene. Your job965
is to rate how likely the scene contains966
SARCASM, on a scale of 1-10, using this967
rubric:968

969
1-5: NOT sarcastic970
- 1: Strongly believe this is NOT sarcastic971
- 5: Not sure, but leaning towards NOT sarcastic972

973
6-10: Sarcastic974
- 6: Not sure, but leaning towards sarcastic975
- 10: Strongly believe this IS sarcastic976

977
Video description: {description}978
Context: {context}979
Target Utterance: {utterance}980
"""981

B.5 Generated Output Examples982
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Agent provided preferences with knowledge of GT. After training, sometimes the VLM will hallucinate. For example,
we see that the VLM is talking about a voiceover that doesn’t exist.
In the video, a man and a woman are seen lying on the ground, surrounded by fallen leaves, which suggests it’s autumn. The
man is wearing a blue sweater and the woman is in a blue top, both with their arms around each other. The man is speaking
directly to the camera, and the woman is looking at it with a smile on her face. The man’s tone is serious, while the woman’s
is more lighthearted. The man’s voiceover explains that they’re happy and in love, and the woman’s voiceover is more playful,
contrasting with his. The man’s voiceover is in a serious tone, while the woman’s is more lighthearted. The scene is set in a
park with autumn leaves, and the man and woman are the only two people in it. The man’s voiceover explains that they’re
happy and in love, while the woman’s voiceover contrasts with his, adding a sense of humor to the scene.

In the following three examples, we see a different sentiment being expressed.
Example 1, baseline model: In the video, we see a man sitting on a couch, holding a phone to his ear. He appears to be
engaged in a conversation, possibly a phone call or a video call, as he is looking at the camera with a focused expression. The
room around him is casually furnished, with a couch, a chair, and some posters on the wall. The man’s attire is a sweater with
a pattern, and he seems to be in a relaxed setting, possibly at home. The lighting is warm, and the overall atmosphere is calm.
The video captures a moment of everyday life, with the man’s interaction with the phone being the main focus.
Example 2, preference given with knowledge of GT: In the video, we see a man sitting on a couch and talking on a phone.
He’s wearing a sweater with a distinctive checkered pattern and appears to be in a casual setting, possibly his living room.
His expression is serious, and he’s engaged in a heated conversation. The camera zooms in on his face, emphasizing his
intensity. The contrast between his calm exterior and the inner turmoil is evident.
Example 3, preference given with in-context examples: In the video, we see a young man sitting comfortably on a couch
in a living room. He is dressed in a cozy sweater and is engaged in a phone conversation. His face is lit up with a smile,
suggesting a pleasant conversation. The room around him is warmly decorated, with a poster of a man on the wall and a
bookshelf filled with various items. The man on the phone is holding a phone to his ear, indicating an ongoing call. The
living room is well-lit, with a lamp casting a soft glow on the scene. The man’s relaxed posture and the casual setting suggest
a comfortable and familiar environment. The video captures a moment of everyday life, showcasing the man’s engagement in
a phone call while enjoying his surroundings.

Table 6: Examples of VLM generated sequences.
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