
FovOptix: Human Vision-Compatible Video Encoding and
Adaptive Streaming in VR Cloud Gaming
Ahmad Alhilal∗

aalhilal@connect.ust.hk
Hong Kong University of Science and Technology

Hong Kong

Ze Wu∗
zwubn@connect.ust.hk

Hong Kong University of Science and Technology
Hong Kong

Yuk Hang Tsui∗
yhtsui@connect.ust.hk

Hong Kong University of Science and Technology
Hong Kong

Pan Hui†
panhui@ust.hk

Hong Kong University of Science and Technology
(Guangzhou)

China

Abstract
VR cloud gaming enables users to play high-end VR games on

lightweight devices by offloading rendering tasks to cloud servers.
Despite video compression, high-definition video streaming re-
quires substantial data transfer rates. Foveated rendering (FR) and
video encoding (FVE) leverage the non-uniform perception of the
human visual system to reduce computing and bandwidth demand.
They enhance visual quality in central gaze regions and reduce it in
the periphery. However, bandwidth variation may hinder the provi-
sion of smooth VR gaming experiences. We present FovOptix, a sys-
tem that combines FR with adaptive FVE to deliver video stream at
a lower yet adaptive bitrate while not compromising the perceived
video quality. FovOptix is based on a game-agnostic open-source to
ensure reproducibility and compatibility with various games. We
evaluate FovOptix against benchmarks using 5G mobile network
traces. FovOptix achieves a latency reduction of 3% compared to
the Google standard and a significant +100% reduction compared to
other solutions. Additionally, it enhances the visual quality within
the player’s region of interest. Consequently, FovOptix attains the
highest playability and gaming scores while minimizing the sever-
ity of motion sickness. FovOptix thus offers smooth and accessible
VR cloud gaming for a wider range of players.
CCS Concepts
• Computing methodologies→ Virtual reality; Perception; •
Human-centered computing→ User centered design; Activ-
ity centered design; Ubiquitous and mobile computing design and
evaluation methods; • Networks→ Network performance analysis;
• Computer systems organization→ Real-time system architec-
ture.
∗A. Alhilal, Z. Wu and Y.H. Tsui contributed equally to this work
†Pan Hui is also affiliated with the Hong Kong University of Science and Technology,
Hong Kong SAR, and the University of Helsinki, Finland.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0412-3/24/04. . . $15.00
https://doi.org/10.1145/3625468.3647612

Keywords
VRCloudGaming, HumanVision System, Foveated Video Encoding,
Adaptive Video Streaming.

ACM Reference Format:
Ahmad Alhilal, ZeWu, Yuk Hang Tsui, and Pan Hui. 2024. FovOptix: Human
Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud
Gaming. In ACM Multimedia Systems Conference 2024 (MMSys ’24), April
15–18, 2024, Bari, Italy. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3625468.3647612

1 Introduction
Virtual reality (VR) cloud gaming enables users to play VR

games on lightweight devices by offloading rendering tasks to
the cloud [19]. VR cloud gaming enhances the accessibility and
affordability of VR gaming by eliminating the need for players to
buy expensive hardware or upgrade their devices. The processing
and rendering of the VR game are handled by powerful servers in
the cloud, which stream the game to the user’s device. The play-
ers access the VR cloud gaming service via lightweight devices
(VR headsets) that have limited resources (computing and mem-
ory). However, streaming video frames from the cloud to end users
necessitates stable and high network bandwidth for optimal playa-
bility. While video compression reduces the bitrate in streaming the
rendered graphics to the user’s device, it is insufficient to maintain
acceptable latency under unstable and low-capacity networks.

Commercial cloud gaming platforms like Google Stadia and Ama-
zon Luna rely on WebRTC [4] for media streaming. WebRTC uses
Google Congestion Control (GCC) [9] for bitrate selection which
favors real-time transmission to video quality. Nebula [7] adapts
the video rate to cope with bandwidth variations and applies frame-
level redundancy to avoid visual distortions. While WebRTC and
Nebula account for the underlying network conditions, they are
designed for video streaming and mobile cloud gaming.

The visual acuity of the human eye is not uniform across the
visual field. The fovea, which is a few degrees in diameter, has the
highest acuity, while the peripheral retina has lower acuity [27].
This non-uniformity results from the distribution of photoreceptor
cells in the retina and the way visual information is processed by the
brain [8]. Prior works take advantage of the visual non-uniformity
through foveated rendering (FR) and foveated video encoding (FVE).
FR reduces the computational workload of rendering by producing

https://doi.org/10.1145/3625468.3647612
https://doi.org/10.1145/3625468.3647612
https://doi.org/10.1145/3625468.3647612

MMSys ’24, April 15–18, 2024, Bari, Italy Alhilal et al.

lower visual quality for peripheral regions, while FVE reduces the
bitrate of streamed video through heavier compression of periph-
eral areas. Illahi et al. [17], Ryoo et al. [28], and Frieß et al. [11]
apply FVE through multi-resolution foveated video coding which
improves the image quality in the point of fixation and lowers the
encoding quality in the periphery. Illahi et al. [18], abbreviated FR-
FVE, combine FR with FVE and report preliminary findings of the
combination. FR-FVE mitigates the bitrate overhead as compared
to uniform video encoding over a simulation of a remote rendering
scenario. However, these are designed to meet the user’s perception
of mobile cloud gaming, traditional video-on-demand streaming,
or conferencing. They do not consider the unique characteristics of
VR gaming, the variation, and instability in network conditions, or
the impact of frame complexity on transmission bitrate.

Based on the aforementioned research studies and associated
constraints, the following challenges need to be addressed: (i) What
video streaming strategy can be employed to ensure a smooth expe-
rience in VR cloud gaming under unstable network conditions? (ii)
How the video compression be achieved without compromising the
quality of the visual experience? (iii) What approaches can be imple-
mented to ensure fair evaluation and comparison with benchmarks
in VR cloud gaming environments?. To tackle these challenges, we
present FovOptix that jointly accounts for the non-uniform acuity
of human vision and adapts to the variations in network conditions.
We integrate FR with FVE to reduce the computation and the band-
width demand, respectively, while providing a relatively higher
video quality in the central field of view (FoV) region. In particular,
FovOptix renders the foveal regions with higher resolution and
encodes them with higher bitrate, while it renders the peripheral
regions with lower resolution (downsampling) and encodes them
with lower bitrate. To ensure game independence, we utilize ALVR
base code [2] to integrate a virtual head-mounted display that in-
teroperates with SteamVR [1]. This allows players to install any
VR game. We also integrate state-of-the-art solutions into VR cloud
gaming by implementing them over ALVR. Our contribution is
summarized as follows:

• Develop FovOptix, the pioneering VR game streaming system
that combines foveated video encoding (FVE) with adaptive bitrate
based on underlying network conditions.
• Design FovOptix as game-agnostic to enable playing any VR game.
• Implement an algorithm that associates adaptive bitrate with FVE
by transforming desired bitrates into controllable quality maps
corresponding to human visual perception.
• Integrate benchmarks into VR cloud gaming platform by imple-
menting them within an open source VR gaming platform.
• Evaluate FovOptix performance against the benchmarks using
objective and subjective evaluation. FovOptix presents the lowest
latency and enhanced visual quality in the user’s region of interest,
improving the playability and game scoring.

The remainder of the paper is structured as follows. In section
2, we summarize the related work. We discuss the methodology of
FovOptix in section 3, and its detailed implementation in section 4.
After presenting the experiment setup in 5, we present the results
in section 6. We discuss the limitations and future improvements
in section 7. Finally, we conclude our work in section 8.

2 Background and Related Work
2.1 Cloud Gaming.

Cloud gaming encounters challenges related to the variation in
network performance and meeting high-quality experiences (inter-
action and immersion). GamingAnywhere [15] is an open source
for a cloud gaming system that allows game players to enjoy cloud
gaming on mobile phones. However, it relies on constant bitrate
for streaming. Commercial cloud gaming platforms such as Google
Stadia and Amazon Luna rely on WebRTC [4] for media streaming.
WebRTC uses Google Congestion Control for bitrate selection and
favors real-time transmission to video quality. Nebula [7] adapts
the video rate to cope with bandwidth variations and applies frame-
level redundancy to avoid visual distortions. Owing to the unique
characteristics of VR gaming (display for each eye and proximity
to the eyes), although the existing solutions such as GamingAny-
where, Nebula, and WebRTC adapt the streaming to the underlying
network conditions, they fail to meet human visual perception.
Xing Liu et al. [23] illustrate a significant correlation between video
quality and motion sickness severity in VR. Because of this corre-
lation, we render and encode the central FoV region, where users
focus the most, with higher quality.
2.2 Foveation-based Cloud Gaming.

Illahi et al. [17] modify GamingAnyWhere to enable gaze track-
ing at the client, and encode video in a foveated fashion (FVE) at
the server. They control the Quantization Parameters (QPs) at the
encoder API level. FVE optimizes video quality by minimizing the
total QP at the gaze location and increasing it gradually away from
the gaze, resulting in higher quality in the foveal FoV and lower
quality in the periphery. Ryoo et al. [28] design a similar video
streaming service that exploits the non-uniformity of human visual
acuity. They apply multi-resolution foveated video coding and use
webcam-based gaze trackers for precise gaze feedback. Frieß et
al. [11] track the viewing direction of multiple users using devices
equipped with reflective markers, referred to as rigid bodies. The po-
sition and orientation of each rigid body are streamed. Accordingly,
the server encodes the screen-captured frames by changing the
quality of the macroblocks based on their distance to the foveated
regions. Although Illahi et al., Ryoo et al., and Frieß et al. utilize the
non-uniformity of human vision, they are designed to operate in
mobile cloud gaming, traditional video-on-demand streaming, and
conferencing, respectively. Additionally, they overlook network
conditions and focus solely on bandwidth preservation.
2.3 Human vision system

The human visual system (HVS) partitions the FoV into multiple
regions with varying degrees of proficiency in the perception of vi-
sual information. As shown in Figure 1, it is categorized into central,
paracentral, near-peripheral, mid-peripheral, and far-peripheral re-
gions. Additionally, there is a region known as the macular, which is
situated between the paracentral and near-peripheral regions. Dis-
tinguishing details is weaker in the peripheral region[21], and dis-
tinguishing shapes is weaker outside the near-peripheral region[20].
The existing literature [30] has not reached a definitive conclusion
regarding the eccentricity of each region. However, some studies
indicate that the macular region is located at an eccentricity of
9° [29], while the near-peripheral region spans from 9°to 30° [30].
The Oculus Quest 2 provides a FoV with an average of 94° [13],

FovOptix: Human Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud Gaming MMSys ’24, April 15–18, 2024, Bari, Italy

Figure 1: Angular Field of View (FoV) of the Human Eye [21]

which varies due to the user’s interpupillary distance. FR assigns
multiple resolutions across the video frame to leverage perceived
quality variations in the FoV. FVE applies heavier compression in
less important areas, such as the peripheral regions. Illahi et al. [18],
abbreviated FR-FVE, report preliminary findings of the combination
of FR and FVE. FR-FVE mitigates the bitrate overhead as compared
to normal video encoding over a remote rendering simulation.

Our work focuses on improving the VR gaming experience by
dynamically adjusting the video compression of virtual game scenes,
taking into account both human visual perception and the quality
of network connectivity, with a specific emphasis on addressing
challenges posed by unstable network conditions. Moreover, we
integrate representative state-of-the-art solutions to operate in
VR Cloud gaming settings for evaluating them against FovOptix.
In particular, the benchmarks include WebRTC [4], FVE [11, 17],
integrated foveated rendering and FVE (FR-FVE) [18], bandwidth
estimated-based video streaming (BW Probing), and ALVR [2].
3 Methodology
3.1 System Architecture

Figure 2 outlines the system architecture. The system includes
the server to be installed on the cloud and the client application
to be installed on the VR device. The server encompasses four pri-
mary components, virtual head-mounted device (VHMD), foveated
rendering (FR), foveated video encoding (FVE), and QP Manager.
The server creates a VHMD to replicate the physical HMD. The
VHMD device receives and manages the physical pose and mo-
tion data from the client. The SteamVR, a game-agnostic platform,
then retrieves this data from VHMD to render the game frame. The
VHMD retrieves the game frame from the game engine, renders
it, and then composites the left eye with the right eye frame into
one frame (referred to as the game frame). The FR component re-
renders the game frame to produce a multi-resolution frame (FFR
frame), while the FVE component encodes the FFR frame based on
the user’s regions of interest (ROI) in the FoV. The encoded frame is
transmitted to the client which receives the video packets, decodes
them to recover the FR frame, applies reverse foveated rendering,
and finally plays back the recovered frame. Simultaneously, the
client monitors the player’s physical pose and motion (i.e., hand
controller input, head rotation, and viewing angle). The clients
constantly transmit this data to the server to render and encode
the next game frame.

Server

Virtual Head-Mounted Display

Game frame

Motion & Pose Data

Game-agnostic
Platform

Motion&Pose Data Head-Mounted Display

Client

Foveated
Rendering (FR)

Game frame

Foveated Video Encoder
(FVE)

FFR frame

Foveated Video Decoder

Reverse
Foveated
Rendering

Video Stream

FFR frame

Display

QP Manager

Network Perf Data

encoding params

Network
Monitor

target bitrate

Data
collection

Figure 2: FovOptix’s system overview.

3.2 Network Monitoring
The Network Monitor, shown in Figure 2, is responsible for

maintaining the target bitrate to advise the QP manager, thus the
encoding parameters.

3.2.1 Video Streaming Bitrate.The end-to-end bitrate of a
server-client system is determined by the server-side bitrate and
client-side bitrate. Thus, both the server and the client monitor the
video streaming bitrate, denoted as 𝐵𝑠 (𝑡) and 𝐵𝑐 (𝑡), respectively.
𝐵𝑠 (𝑡) is the sending bitrate, while 𝐵𝑐 (𝑡) is the receiving bitrate.
Later, we base the computation of the target bitrate on 𝐵𝑐 (𝑡) when
network congestion is detected (see Figure 3).

3.2.2 Frame Latency.This latency, also known as motion-
to-photon (MTP) latency, is the total input-to-display latency
for each frame. It reflects the user-perceived latency that spans
between the physical motion on the VR device and playing back
the corresponding frame on the VR display [5]. This latency is
used in our adaptive rate control model (QP Manager) to adjust the
quantization parameters (QPs) according to the latency change.

3.2.3 Target Bitrate.This represents the ideal bitrate at which
video frames should be encoded and sent to the client to maintain
a certain level of video quality. This bitrate is dynamically adjusted
during the video transmission based on the collected network pa-
rameters in response to the changing network conditions. As in
WebRTC’s delay-based congestion control, we compute the target
bitrate based on the Arrival-time Filter, Over-use Detector, Remote
Rate Controller, and Adaptive Threshold [9]. In contrast to We-
bRTC GCC which is based on RTP packets and RTCP feedback, we
implement the delay-based controller on the server which utilizes
the client’s constant feedback. The feedback is transmitted as a
payload on UDP packets, reporting the arrival time of frames and
their motion-to-photon latency. The UDP packets offer frame-level
feedback, distinguishing them from RTCP packets that provide
packet-level feedback. Additionally, in contrast to the WebRTC
GCC specification, which defines a group of packets as those cre-
ated during a time interval of less than 5𝑚𝑠 , we define a group of
packets as including all packets associated with a single frame. As
a result, we re-define the equations in the Arrival Time Filter to
estimate the queuing delay gradient𝑚(𝑡𝑖).
Arrival Time Filter: This component is designed to estimate the
delay gradient𝑚(𝑡𝑖), the gradient of a line formed by the sequence
of data points (𝑡𝑖 , Δ𝑇𝑑𝑒𝑙𝑎𝑦 (𝑓𝑖)), where 𝑡𝑖 is the arrival time of frame

MMSys ’24, April 15–18, 2024, Bari, Italy Alhilal et al.

Figure 3: Modified rate controller finite state machine [9].

𝑖 and Δ𝑇𝑑𝑒𝑙𝑎𝑦 (𝑓𝑖) is the inter-delay time. Δ𝑇𝑑𝑒𝑙𝑎𝑦 (𝑓𝑖) is computed
as the difference between the inter-arrival time𝑇𝑎 (𝑓𝑖) and the inter-
departure time 𝑇𝑑 (𝑓𝑖) of frame 𝑖 as follows:

Δ𝑇𝑎 (𝑓𝑖) = 𝑡𝑎 (𝑓𝑖) − 𝑡𝑎 (𝑓𝑖−1),
Δ𝑇𝑑 (𝑓𝑖) = 𝑡𝑑 (𝑓𝑖) − 𝑡𝑑 (𝑓𝑖−1),

Δ𝑇𝑑𝑒𝑙𝑎𝑦 (𝑓𝑖) = Δ𝑇𝑎 (𝑓𝑖) − Δ𝑇𝑑 (𝑓𝑖).
(1)

Where the inter-arrival time Δ𝑇𝑎 (𝑓𝑖) is computed as the difference
between the arrival time of the last packet of frame 𝑖 , 𝑡𝑎 (𝑓𝑖), and
the arrival time of the last packet frame 𝑖 − 1, 𝑡𝑎 (𝑓𝑖−1). Likewise,
the inter-departure time, Δ𝑇𝑑 (𝑓𝑖), is computed as the difference
between the sending time of the last packet of frame 𝑖 − 1, 𝑡𝑑 (𝑓𝑖),
and the sending time of the last packet of frame 𝑖 , 𝑡𝑑 (𝑓𝑖−1). Note
that we consider the frame a group of packets. This is because the
game frame (composite of left and right eye frames) in VR cloud
gaming is usually huge, even after being encoded, and thus, it is
transmitted using several packets.
Like the GCC algorithm, we compute the adaptive threshold 𝛾 (𝑡𝑖)
to account for the delay variations based on the network conditions.
Over-use Detector: This compares the delay gradient𝑚(𝑡𝑖) with
the adaptive threshold 𝛾 (𝑡𝑖) :

𝑆𝑡𝑎𝑡𝑒 =


𝑂𝑣𝑒𝑟𝑢𝑠𝑒 𝑖 𝑓 𝑚(𝑡𝑖) > 𝛾 (𝑡𝑖)
𝑁𝑜𝑟𝑚𝑎𝑙 𝑖 𝑓 −𝛾 (𝑡𝑖) <=𝑚(𝑡𝑖) <= 𝛾 (𝑡𝑖)
𝑈𝑛𝑑𝑒𝑟𝑢𝑠𝑒 𝑖 𝑓 𝑚(𝑡𝑖) < −𝛾 (𝑡𝑖)

(2)

Remote rate controller: Owing to the modification in comput-
ing delay gradient𝑚(𝑡𝑖) in Arrival Time Filter, this controller is a
modified version of GCC finite state machine (Figure 3). It adjusts
a target frame-level bitrate, 𝑇𝑏 (𝑓𝑖) based on the state produced by
the Over-use Detector where 𝛼 is 0.85 and 𝜂 is 1.05. When the state
is "Decr" (decrease 𝑇𝑏 (𝑓𝑖)), 𝑇𝑏 (𝑓𝑖) is computed based on the client
receive bitrate 𝐵𝑐 (𝑓𝑖−1), otherwise it is computed based on the pre-
vious frame target bitrate, 𝑇𝑏 (𝑓𝑖−1).

3.3 QP Management Algorithm
To achieve the desired quality, we manipulate the QP of video

frames’ macroblocks in compatibility with human visual perception.
The QP Manager, shown in Figure 2, is responsible for generating
encoding parameters based on the target bitrate, actual frame size,
and total latency. The encoding parameter includes the QP action
to increase or decrease the QP values and the Size factor to guide
the Encoder in updating the QP map for the next frame. In the QP
Manager, there are two modules: the Adaptive Control Module to
strike a balance between the visual quality and encoded frame size,
and the Latency Control Module to prioritize low latency.

3.3.1 Adaptive Control Module.This module is responsible
for generating the encoding parameter when the latency is imper-
ceptible (<100 ms) [25]. It derives the QP action based on the target

Frame i-1
(Original)

Frame i-1
(Encoded)

Encoding

Encoding

- -Bandwidth
change

Complexity
sign

Smooth
FunctionNormaliztion

+

NVCI(fi) NVCI(fi-1)

NVCIs(fi)

Frame i
(Original)

Frame i
(Encoded)

Ts(fi-1)

Ts(fi)

Rs(fi-1)

PC(fi)Ts(fi)

Figure 4: Computation of Network-aware Visual Complexity
Index (NVCI) in Adaptive Control Model

and actual frame size of the current and previous frames and then
computes a network-aware visual complexity index (NVCI) to drive
the QP actions (see Figure 4).

Target encoded frame size 𝑇𝑠 : The target encoded frame size
of frame 𝑖 , 𝑇𝑠 (𝑓𝑖), is computed by dividing the target bitrate by the
frame per second (FPS).

Delta Target frame size Δ𝑇𝑠 : The delta target frame size of
frame 𝑖 , Δ𝑇𝑠 (𝑓𝑖), is computed as the difference between the target
frame size of current frame 𝑖 and previous frame 𝑖 − 1 as follows:

𝑇𝑠 (𝑓𝑖) = 𝑇𝑏 (𝑓𝑖)/𝐹𝑃𝑆
Δ𝑇𝑠 (𝑓𝑖) = 𝑇𝑠 (𝑓𝑖) −𝑇𝑠 (𝑓𝑖−1)

(3)

Δ𝑇𝑠 (𝑓𝑖) accounts for the change in network throughput since𝑇𝑠 (𝑓𝑖)
and 𝑇𝑠 (𝑓𝑖−1) represents the up-to-date available bandwidth. There-
fore, Δ𝑇𝑠 (𝑓𝑖) provides signs for adjusting the QP map. Positive
Δ𝑇𝑠 (𝑓𝑖) indicates an increase in the available bandwidth, while
negative Δ𝑇𝑠 (𝑓𝑖) indicates a decrease.

Real encoded frame size 𝑅𝑠 : The real encoded frame size of
𝑓𝑖 , 𝑅𝑠 (𝑓𝑖), is collected after the actual encoding of frame i. This
size is influenced by factors other than QP, as the complexity of
the frame also exerts an impact [31]. Managing the QP map solely
based on the network state might lead to under or overutilizing
the bandwidth due to variations in frame complexity. Thus, we
introduce a complexity penalty to reduce the severity.

Complexity Penalty 𝑃𝐶 : The Complexity Penalty of frame 𝑖 ,
𝑃𝐶 (𝑓𝑖), is computed as the difference between the target encoded
frame size (𝑇𝑠 (𝑓𝑖−1)) and the real encoded frame size (𝑅𝑠 (𝑓𝑖−1)) of
the previous frame as follows:

𝑃𝐶 (𝑓𝑖) = 𝑇𝑠 (𝑓𝑖−1) − 𝑅𝑠 (𝑓𝑖−1) (4)
While measuring the frame complexity is inherently intricate, we
estimate the frame complexity of frame 𝑖 − 1 by calculating the
difference between the target and real encoded frame sizes. This
estimation helps to adjust the QP map in order to accommodate
the complexity of frame 𝑖 − 1. Given that the complexity of two
consecutive frames tends to be highly similar [14], we utilize the
estimated complexity of frame 𝑖 − 1 to guide the modification of the
QP map for frame 𝑖 . Positive 𝑃𝐶 (𝑓𝑖) indicates a lower complexity,
while negative values indicate a higher complexity than anticipated.

The Network-aware Visual Complexity Index (NVCI) is proposed
as a means to manage the QPs more considerably, taking into ac-
count the index of throughput variations (Delta Target frame size
Δ𝑇𝑠) and the visual complexity of the frame (Complexity Penalty
𝑃𝐶). Δ𝑇𝑠 represents the frame-level available bandwidth difference
between recent consecutive frames (𝑖 − 1, 𝑖). Therefore, a positive

FovOptix: Human Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud Gaming MMSys ’24, April 15–18, 2024, Bari, Italy

Table 1: Bitrate states and corresponding QP actions accord-
ing to bandwidth utilization Index

𝑁𝑉𝐶𝐼𝑠 𝑁𝑉𝐶𝐼 ′𝑠 State Action

≥ 0 ≥ 0 Bandwidth is underutilized
with no tendency to utilize

Decrease QP with con-
stant rate

≥ 0 < 0 Bandwidth is underutilized
with tendency to utilize

no change

< 0 ≥ 0 Bandwidth is overutilized but
with no tendency to worsen

Increase QP with Size
factor

< 0 < 0 Bandwidth is overutilized
with tendency to worsen

Increase QP with Size
factor

Δ𝑇𝑠 value indicates an increase in bandwidth, thus the need to de-
crease the QP value for enhancing the visual quality. Conversely,
negative values indicate a decrease in the available bandwidth
which demands increasing the QP value. Similarly, 𝑃𝐶 (𝑓𝑖) indicates
changes in the frame’s complexity, necessitating a compensatory
adjustment in QP value in the opposite direction. Since the change
in𝑇𝑠 and 𝑃𝐶 , and their corresponding QP actions exhibit consistent
directional trends, we construct the NVCI by summing up 𝑇𝑠 (𝑓𝑖)
and 𝑃𝐶 (𝑓𝑖) with appropriate weights as follows:

𝑁𝑉𝐶𝐼 (𝑓𝑖) = 𝛼Δ𝑇𝑠 (𝑓𝑖) + 𝛽𝑃𝐶 (𝑓𝑖) (5)
𝑁𝑉𝐶𝐼 (𝑓𝑖) serves as a sole guiding index for controlling the change
of QP for frame 𝑖 . Positive 𝑁𝑉𝐶𝐼 values suggest a decrease in
the QP map to enhance the visual quality while negative 𝑁𝑉𝐶𝐼

values require higher QP to avoid large encoded frame size and
thus network congestion. Taking into consideration the correlation
between consecutive frames, we smooth the 𝑁𝑉𝐶𝐼 (𝑓𝑖) value using
𝑁𝑉𝐶𝐼 (𝑓𝑖−1) of the previous frame, resulting in the smoothed value
𝑁𝑉𝐶𝐼𝑠 (𝑓𝑖). 𝑁𝑉𝐶𝐼𝑠 plays a role in determining an initial coarse-
grained tuning of the QP map. However, to effectively drive the
fine-grained tuning phase, it is crucial to consider the tendency,
or the direction in which the available bandwidth is moving. We
introduce the 𝑁𝑉𝐶𝐼𝑠 gradient (𝑁𝑉𝐶𝐼 ′𝑠) and the Size factor 𝑆 (𝑓𝑖) for
fine-tuning the QP map. We compute 𝑁𝑉𝐶𝐼 ′𝑠 by finding the best-
fitting line using least squares regression. This is achieved by using a
moving window of the latest 𝑛 frames. 𝑆 (𝑓𝑖) is a penalty mechanism
that is used in cases when the encoded frame size significantly
exceeds the target frame size. It is applied when increasing the
QP value to enable adaptive adjustment. 𝑆 (𝑓𝑖) is computed based
on 𝑁𝑉𝐶𝐼 (𝑓𝑖) and target encoded frame size 𝑇𝑠 (𝑓𝑖) as reference to
normalize it, and expressed as Equation 6:

𝑆 (𝑓𝑖) = 𝑁𝑉𝐶𝐼 (𝑓𝑖)/𝑇𝑠 (𝑓𝑖) (6)
Table 1 illustrates the states and actions corresponding to four

combinations of different signs of 𝑁𝑉𝐶𝐼𝑠 value and the gradient
𝑁𝑉𝐶𝐼 ′𝑠 . In short, this module aims to achieve the highest visual
quality while not exceeding the available bandwidth.

3.3.2 Latency Control Module.This module is designed to
monitor the user-perceived gaming latency and adjust the QP value
based on this latency. Motion-to-photon (MTP) latency below 100
ms is imperceptible to humans [25] and acceptance of MTP latency
differs across various game genres [10]. Therefore, the latency con-
trol module has the highest priority to be applied in the QP man-
agement algorithm. When the latency is larger than 100 ms, this
module overwrites the action signal, forcing the encoder to increase

QP with the Size factor. As such, this module ensures a playable
and responsive gaming experience.
3.4 Foveated Video Encoding (FVE)

3.4.1 Encoder Setting.The system uses NVIDIA Encoder (NVENC),
a hardware-basedH.264/HEVC/AV1 video encoder for Nvidia GPU [3].
The selection of NVENC over other encoding APIs is primarily at-
tributed to Nvidia’s substantial market share in the GPU market.
GPUs are critical in achieving video encoding with excellent com-
pression ratios and minimal latency. In contrast to WebRTC and
ALVR, which perform encoding based on the target bitrate as a
primary parameter, we use the delta QP map function and ConstQP
mode to enable the Foveated Video Encoding feature. In WebRTC
and ALVR, the encoder allocates QP to each macroblock based on
the complexity and target bitrate, which is favorable in controlling
the encoded frame size. However, this approach fails to assign pro-
portionate quality across FoV’s regions of interest (ROI) which may
negatively impact the overall visual user experience. The delta QP
map function offers manipulative capabilities for managing the QP
distribution via the NVENC API. To ensure proportionate quality
and QP assignment, we classify the frame’s macroblocks into three
regions compatible with HVS (section 2.3).

3.4.2 Frame Division into Regions.The frame is divided into
three distinct sections, including the center, middle, and outer re-
gions, which correspond to the macular, near-peripheral, and other
peripheral regions. To convert the FoV regions to areas on the
frame, we transform the eccentricity to the number of pixels by
the ratio of the eccentricity to the FOV of the VR device (94°). The
boundary eccentricity values of the macular and near-peripheral
regions, corresponding to the FoV angles 9°and 30°, respectively,
are transformed into two circular boundaries. These boundaries
have radii of 9

94𝑤 and 30
94𝑤 , where 𝑤 is the frame width. These

boundaries are utilized to divide the overall area into three distinct
regions. 𝑄𝑃𝑐𝑒𝑛 , 𝑄𝑃𝑚𝑖𝑑 , and 𝑄𝑃𝑜𝑢𝑡 are assigned to the macroblocks
in central, middle, and outer regions, respectively. For every update,
only one of the QPs or none is changed.

3.4.3 Policy of QP Value Distribution.We introduce a pol-
icy for updating and distributing the QP values across the three
frame regions. We set a different priority for each region and the
maximum level gap allowed between two adjacent regions. This is
intended to enhance the quality of the central region while main-
taining a smooth visual transition between neighboring regions.
The comprehensive execution is presented in section 4.2.4.

3.4.4 Re-Encoding Module.Since QP maps can only control
the visual quality, the encoded frame size may rapidly increase
due to the complexity of the game frame [24]. The initial imple-
mentation of NVENC applies a multipass approach, whereby the
first pass is dedicated to complexity estimation and bit distribution,
while the second is to perform the encoding process based on the
adjusted parameters. Since the constQP mode does not support
the multipass approach, we introduce a simple ReEncode proce-
dure. This not only avoids transmitting large encoded frames, thus
causing network congestion but also reduces the size of the suc-
cessive frame, thus ensuring a low latency transmission. Although
the ReEncode process may decrease visual quality across multiple
frames. Nevertheless, it is important to note that the visual quality
can rapidly improve under favorable network conditions.

MMSys ’24, April 15–18, 2024, Bari, Italy Alhilal et al.

4 Implementation
The system encompasses server and client modules (see Figure 2).

Most of the components operate on the server for lower computa-
tional load on the client. To achieve a game-agnostic rendering and
streaming, we implement the system on the ALVR base code[2].
4.1 Client

The client is an Android application that can be installed on the
head-mounted device (HMD). The client is responsible for data col-
lection, video decoding, and frame reverse rendering and playback.

4.1.1 Data Collection Module.Besides the motion data, we
implement this module to monitor and compute network condition
parameters. These parameters are transmitted to the server using a
UDP socket to be used in the adaptive control module.

Video Receiving Bitrate 𝐵𝑐 (𝑡) is estimated by accumulating
the size of the packets that are received during the time unit (500
ms), 𝐵𝑐 (𝑡) =

∑𝑛
𝑖=0 𝑃𝑠 (𝑝𝑖)

0.5 , where 𝑝0 to 𝑝𝑛 denote the video packets
received by the client over a one-time unit. Frame Latency reflects
the user-perceived latency that spans between the time of collecting
the physical motion information, 𝑡𝑡 (𝑓𝑖), on the VR device and the
time of playing back the corresponding frame on the VR display,
𝑡𝑝 (𝑓𝑖). The corresponding times are recorded for each frame. Thus,
the frame latency 𝑇𝑡 (𝑓𝑖) is equal to 𝑡𝑝 (𝑓𝑖) − 𝑡𝑡 (𝑓𝑖). Inter-Arrival
Time Δ𝑇𝑎 (𝑓𝑖) is computed as the time difference between two con-
secutive frames’ times 𝑡𝑎 (𝑓𝑖) − 𝑡𝑎 (𝑓𝑖−1). The frame time is recorded
as the time at which the last packet of the frame is received.

4.1.2 Video Decoder & Reverse Foveated Rendering.We
use the ALVR code basewithoutmodification to decode the received
encoded frames and execute reverse rendering. For the foveated
video decoder, the ALVR client utilizes the Android internal decoder
with the corresponding encoding configuration received from the
server. The reverse-foveated rendering is implemented using the
OpenGL shader library that optimizes the computation.
4.2 Server

The server is a Windows application that is installed on the gam-
ing PC. The server includes network monitoring, adaptive control,
foveated rendering, and foveated video encoding modules.

4.2.1 NetworkMonitoringUnit.This is implemented bymain-
taining a frame-level statistics manager on the server side. For each
frame, the data collected on the server and the feedback received
from the client are maintained by this module.

Video Streaming Bitrate 𝐵𝑠 (𝑡) is the sending bitrate that is
estimated by accumulating the size of the encoded frames, 𝑅𝑠 (𝑓𝑖),
over a pre-defined time unit (500 ms). 𝐵𝑠 (𝑡) =

∑𝑛
𝑖=0 𝑅𝑠 (𝑓𝑖)

0.5 , where 𝑓0
to 𝑓𝑛 denote the frames sent over a one-time unit (500 ms). Inter-
Departure Time Δ𝑇𝑑 (𝑓𝑖) is computed as the time difference be-
tween two consecutive frames’ times 𝑡𝑑 (𝑓𝑖) − 𝑡𝑑 (𝑓𝑖−1). The frame
time is recorded as the time at which its last packet is transmitted.

The Inter-Departure Time and Inter-Arrival Time (on the client)
help to implement the modified version of the Arrival Time Filer
(see Section 3.2.3). We implement other components of frame-level
delay-based congestion control based on GCC standard [4] and the
modification presented in Figure 3. Accordingly, the network moni-
toring module produces the information: Δ𝑇𝑎 (𝑓𝑖), Δ𝑇𝑑 (𝑓𝑖), 𝐵𝑐 (𝑓𝑖),
𝑇𝑏 (𝑓𝑖−1). Any feedback received triggers updating this information.
The target bitrate 𝑇𝑏 (𝑓𝑖) is then passed to the QP Manager.

4.2.2 QP Managercalculates the QP Action and 𝑆𝑓 based on
the above-computed information, following Algorithm 1. It com-
putes the target frame size 𝑇𝑠 (𝑓𝑖−1) based on 𝑇𝑏 (𝑓𝑖−1). The real
encoded frame size 𝑅𝑠 (𝑓𝑖−1) is recorded after encoding. Then, the
NVCI of the next frame (frame 𝑖) is computed. However, the coef-
ficients (𝛼, 𝛽) of Equation 5 have to be computed and tuned. Our
experimental investigation reveals that the change in visual com-
plexity demands a larger adjustment in QP change, compared to
the change in available bandwidth. Therefore, higher weight must
be assigned to 𝑃𝐶 (𝑓𝑖−1) as the value of 𝛽 . Accordingly, 𝛼 is set to
1 while 𝛽 is set to 2. This results in 𝑁𝑉𝐶𝐼 (𝑓𝑖) value that is then
smoothed using 𝑁𝑉𝐶𝐼 (𝑓𝑖−1) of the previous frame, resulting in
𝑁𝑉𝐶𝐼𝑠 (𝑓𝑖) expressed as follows:

𝑁𝑉𝐶𝐼 (𝑓𝑖) = Δ𝑇𝑠 (𝑓𝑖) + 2𝑃𝐶 (𝑓𝑖−1)
= (𝑇𝑠 (𝑓𝑖) −𝑇𝑠 (𝑓𝑖−1)) + 2(𝑇𝑠 (𝑓𝑖−1) − 𝑅𝑠 (𝑓𝑖−1))
= 𝑇𝑠 (𝑓𝑖) +𝑇𝑠 (𝑓𝑖−1) − 2𝑅𝑠 (𝑓𝑖−1)

𝑁𝑉𝐶𝐼𝑠 (𝑓𝑖) = 0.9𝑁𝑉𝐶𝐼 (𝑓𝑖) + 0.1𝑁𝑉𝐶𝐼 (𝑓𝑖−1)

(7)

The NVCI gradient, 𝑁𝑉𝐶𝐼 ′𝑠 , is computed using least squares re-
gression latest 20 data points (times 𝑡𝑠 and 𝑁𝑉𝐶𝐼𝑠) of the latest 20
frames. The signs of the gradient and the value of 𝑁𝑉𝐶𝐼𝑠 determine
the QP actions (see Table 1). Notably, when 𝑁𝑉𝐶𝐼𝑠 is negative, "In-
crease QP with size factor" is applied regardless of whether 𝑁𝑉𝐶𝐼 ′𝑠
is negative or positive. Afterward, QP action, Size factor 𝑆 (𝑓𝑖), and
target encoded frame size 𝑇𝑠 (𝑓𝑖) are passed to the encoder as the
encoding parameters. However, when the latency is larger than
100 ms, the Latency Control module overwrites the action signal,
forcing the encoder to increase QP according to the Size factor.

Algorithm 1 QP Management Pseudocode
1: Input:𝑇𝑏 (𝑓𝑖−1) , 𝑅𝑠 (𝑓𝑖−1) ,𝑇𝑏 (𝑓𝑖) , FPS
2: Output: QPAction, 𝑆𝑓
3: 𝑇𝑠 (𝑓𝑖−1) = 𝑇𝑏 (𝑓𝑖−1)/FPS ⊲ Eq: 3
4: 𝑇𝑠 (𝑓𝑖) = 𝑇𝑏 (𝑓𝑖)/FPS
5: Δ𝑇𝑠 (𝑓𝑖) = 𝑇𝑠 (𝑓𝑖) − 𝑇𝑠 (𝑓𝑖−1)
6: 𝑃𝐶 (𝑓𝑖) = 𝑇𝑠 (𝑓𝑖−1) − 𝑅𝑠 (𝑓𝑖−1) ⊲ Eq: 4
7: 𝑁𝑉𝐶𝐼 (𝑓𝑖) = 𝑇𝑠 (𝑓𝑖) +𝑇𝑠 (𝑓𝑖−1) − 2𝑅𝑠 (𝑓𝑖−1) ⊲ Eq: 7
8: 𝑁𝑉𝐶𝐼𝑠 (𝑓𝑖) = 0.9𝑁𝑉𝐶𝐼 (𝑓𝑖) + 0.1𝑁𝑉𝐶𝐼 (𝑓𝑖−1)
9: 𝑁𝑉𝐶𝐼 ′𝑠 (𝑓𝑖) ← least-square regression with 20 data points
10: QPAction← 𝑁𝑉𝐶𝐼 (𝑓𝑖) , 𝑁𝑉𝐶𝐼 ′𝑠 (𝑓𝑖) ⊲ Table 1
11: 𝑆𝑓 = 𝑁𝑉𝐶𝐼 (𝑓𝑖)/𝑇𝑠 (𝑓𝑖) ⊲ Eq: 6

4.2.3 Foveated Rendering.As Figure 2 illustrates, the server
obtains the frame from the gaming engine through VHMD to apply
fixed-foveated rendering (FFR). FFR uses a gradient-based mask to
reduce the level of detail or resolution towards the periphery of the
frame while maintaining higher resolution in the central region.
This resource redistribution prioritizes the central region, reducing
the frame resolution and transmission data. The FFR uses OpenGL
Shading Language and leverages the computational capabilities
of the GPU to reduce processing time. The FFR process is crucial
to accelerate frame processing as the game frame contains both
the left-eye and right-eye images. This might cause an increase in
frame width, which may eventually exceed the maximum limit of
the encoding dimension and thus lead to a much higher frame size.

4.2.4 Foveated video Encoding.The different FoV regions de-
fined in section 3.4.2 filling with the updated 𝑄𝑃𝑐𝑒𝑛, 𝑄𝑃𝑚𝑖𝑑 , 𝑄𝑃𝑜𝑢𝑡
to form the QPmap for encoding.We implement the QPmap update
policy and re-encoding module to adjust the encoding parameters
based on the network situation and frame complexity.

FovOptix: Human Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud Gaming MMSys ’24, April 15–18, 2024, Bari, Italy

Algorithm 2 QP Map Update
1: Input: QPAction, Size factor (𝑆𝑓) ,𝑄𝑃𝑐𝑒𝑛 ,𝑄𝑃𝑚𝑖𝑑 ,𝑄𝑃𝑜𝑢𝑡

2: Output: QPMap
3: 𝐿𝑣𝑐𝑒𝑛 , 𝐿𝑣𝑚𝑖𝑑 , 𝐿𝑣𝑜𝑢𝑡 ← level of𝑄𝑃𝑐𝑒𝑛 ,𝑄𝑃𝑚𝑖𝑑 ,𝑄𝑃𝑜𝑢𝑡
4: if QPAction = decrease then
5: if 𝐿𝑣𝑚𝑖𝑑 > 𝐿𝑣𝑐𝑒𝑛 + 1 then
6: 𝑄𝑃𝑚𝑖𝑑 ← 𝑄𝑃𝑚𝑖𝑑 − 0.1
7: else if 𝐿𝑣𝑜𝑢𝑡 > 𝐿𝑣𝑚𝑖𝑑 + 1 then
8: 𝑄𝑃𝑜𝑢𝑡 ← 𝑄𝑃𝑜𝑢𝑡 − 0.1
9: else if 𝑄𝑃𝑐𝑒𝑛 ≥ 1 then
10: 𝑄𝑃𝑐𝑒𝑛 ← 𝑄𝑃𝑐𝑒𝑛 − 0.1
11: else if 𝑄𝑃𝑚𝑖𝑑 ≥ 1 then
12: 𝑄𝑃𝑚𝑖𝑑 ← 𝑄𝑃𝑚𝑖𝑑 − 0.1
13: else if 𝑄𝑃𝑜𝑢𝑡 ≥ 1 then
14: 𝑄𝑃𝑜𝑢𝑡 ← 𝑄𝑃𝑜𝑢𝑡 − 0.1
15: end if
16: else if QPAction = increase then
17: if 𝐿𝑣𝑚𝑖𝑑 < 𝐿𝑣𝑜𝑢𝑡 − 1 then
18: 𝑄𝑃𝐵 ← 𝑄𝑃𝐵 + 0.1 + 1

5 𝑆𝑓
19: else if 𝐿𝑣𝑐𝑒𝑛 < 𝐿𝑣𝑚𝑖𝑑 − 1 then
20: 𝑄𝑃𝐴 ← 𝑄𝑃𝐴 + 0.1 + 1

5 𝑆𝑓
21: else if 𝑄𝑃𝐶 ≤ 51 then
22: 𝑄𝑃𝐶 ← 𝑄𝑃𝐶 + 0.1 + 1

5 𝑆𝑓
23: else if 𝑄𝑃𝐵 ≤ 51 then
24: 𝑄𝑃𝐵 ← 𝑄𝑃𝐵 + 0.1 + 1

5 𝑆𝑓
25: else if 𝑄𝑃𝐴 ≤ 51 then
26: 𝑄𝑃𝐴 ← 𝑄𝑃𝐴 + 0.1 + 1

5 𝑆𝑓
27: end if
28: end if
29: QPMap←𝑄𝑃𝑐𝑒𝑛 ,𝑄𝑃𝑚𝑖𝑑 ,𝑄𝑃𝑜𝑢𝑡 : pre-divided regions
30: return QPMap

QP Map update. To implement the policy in section 3.4.3, we
categorize the QP values, ranging from 1 to 51, into six levels: 1-
6, 7-13, 14-20, 21-28, 29-38, and 39-51 levels, with the increasing
priority as outer, middle, and center and the decreasing priority in
reverse order. The QP adjustment follows the priority policy when
the outer region is one level higher or equal to the inner region.
When the level difference between neighboring areas exceeds 1,
the QP update is applied to the region with the lowest level gap to
maintain a balanced progression. The QP update process is detailed
as a pseudo-code in Algorithm 2.

Re-Encoding Module. Frame re-encoding during streaming
presents a challenge due to the reliance on predicted frames (P-
frames) that depend on the successful encoding or decoding of
previous frames. To mitigate computational load and reduce depen-
dencies on previous frame content, this module opts to re-encode
the frame as an I-frame instead. If the size of the encoded frame is
double or more than the size of the target frame, we re-encode the
frame by increasing the 𝑄𝑃𝑐𝑒𝑛 by 1, 𝑄𝑃𝑚𝑖𝑑 , 𝑄𝑃𝑜𝑢𝑡 by 2. Following
the update of the QP value, the QP map is regenerated accordingly.
The next frame is then formed by transmitting the identical frame
to the encoder along with the new QP map and an I-frame request.
5 Experiment Setup

In this section, we introduce the cloud gaming emulator and
the network traces utilized, outline the data collection process for
assessing visual quality, and provide an overview of the baselines.
5.1 Measurement Setup

We first design a physical testbed to create a realistic emulation
of the gaming over 5G mobile networks. We configure a Linux PC
with WiFi and Ethernet interfaces (Ubuntu 22.04.3 LTS, Intel(R)
Core(TM) i9-13900K @ 5.80 GHZ) to function as a router between
wired and wireless networks. This router relays traffic data received
from an Oculus Quest 2 (Android 12, Octa-core Kryo 585, Adreno
650) over a wireless network to a Windows PC on an Ethernet
network. Likewise, the PC router relays the video stream (received

Table 2: Baselines considered in the system evaluation

Protocol Rate Control Description

ALVR [2] Latency-based Adapt bitrate according to latency

WebRTC [4] Google Congestion
Control (GCC)

Adapt bitrate according to bandwidth
utilization, loss and latency

BW Probing Throughput-based Adapt bitrate using packet probing-
based bandwidth estimation

FVE [11, 17] HVS-based Uneven resolution across FoV regions

FR-FVE [18] HVS-based Uneven resolution and quality across
FoV regions for rendering and encoding

FovOptix HVS and Enhanced
GCC-based

HVS-compatibility and bitrate adapt-
ability to bandwidth usage and latency

from the Windows PC over Ethernet) to the Oculus Quest 2 over
the WiFi network. The Windows PC (Windows 11 22H2, Intel(R)
Core(TM) i9-12900H @ 2.50 GHZ, RTX 3080 Ti Laptop GPU) acts
as a cloud server in the emulated environment. We develop a bash
script that operates on the PC router to emulate mobile network
connectivity for the Oculus. The script utilizes Linux tc [16], and
incorporates real-world 5G network traces (section 5.2) to regulate
the bandwidth on the outgoing WiFi interface.

We retrieve the game frame and rendered frame and store them
in byte format, while we obtain and store the encoded frame in H264
format. The resolution of the game frame is 3712×2016, whereas
the resolution of the rendered frame is 2048×960. The capturing fre-
quency is 1000 frames to avoid affecting performance since saving
the frames uses up huge hardware resources. The encoded frame is
decoded and reverse-foveated rendered with the rendered frame
to reach the same resolution as the game frame. The three frames
are compared by cropping them in three different ways: under the
entire frame, the central fovea (30°), and the central fovea (9°).
5.2 Mobile Network Traces

To emulate the real-world network between the player’s VR
headset and the cloud (section 5.1), we leverage a corpus of 5G
mobile network traces collected from a major Irish mobile opera-
tor. The traces are generated across two application patterns (video
streaming and file download). Specifically, they are generated dur-
ing continuous large file downloads, streaming of video content
from Netflix service provider, and streaming of video content from
Amazon Prime service provider [26]. VR gamers typically play VR
games at home or in stationary conditions. Therefore, we choose
the traces of static patterns (out of driving and static) to reflect the
typical game-playing conditions. Because some baselines collapse
when the available bandwidth is less than 10 Mb/s, we filter the
traces to keep only the records with a throughput of greater than
10 Mb/s and eliminate those falling below this threshold.
5.3 Baselines

As illustrated in Table 2, our baselines include Real-time commu-
nication for the web (WebRTC) [4], Air Light VR (ALVR) [2], Band-
width (BW) Probing method, Foveated Video Encoding (FVE) [11,
17], Integrated Foveated Rendering andVideo Encoding (FR-FVE) [18].
We use ALVR open source as our first baseline. We utilize the code
base of ALVR to implement and integrate the rest of the baselines.
We integrate the Google Congestion Control (GCC) mechanism

MMSys ’24, April 15–18, 2024, Bari, Italy Alhilal et al.

0 100 200 300 400 500 600 7000

100

200

300

400

Bi
tra

te
 (M

b/
s) ALVR BW Probing FVE FR+FVE

0 100 200 300 400 500 600 700
Second

0

200

400

600

800

To
ta

l L
at

en
cy

 (m
s)

(a) non-bandwidth adaptive protocols

0 100 200 300 400 500 600 7000

20

40

60

Bi
tra

te
 (M

b/
s) WebRTC FovOptix

0 100 200 300 400 500 600 700
Second

0

200

400

600

800

To
ta

l L
at

en
cy

 (m
s)

(b) bandwidth adaptive protocols

Figure 5: Adaptability to controlled network bandwidth using real-world 5G network traces.

ALVR
BW Probing FVE FR-FVE

WebRTC
FovOptix

0

20

40

60

80

100

120

La
te

nc
y(

m
s)

123.5
116.2 115.7 114.5

59.3 57.4

composite
decode

decoder queue
encode

game
network

rendering
vsync queue

Figure 6: Motion-to-photon latency components when gam-
ing over 5G network traces. FovOptix exhibits the lowest
end-to-end latency, followed by WebRTC.

into ALVR open source to implement real-time communication for
VR cloud gaming (WebRTC). We also implement a packet probing-
based mechanism to estimate the network throughput (BW Prob-
ing). This method is used in HTTP-based video streaming such as
FESTIVE [22]. Since FVE and FR-FVE are implemented for human
vision-based rendering and streaming in mobile cloud gaming, we
implement them over ALVR to operate in VR cloud gaming.
6 Evaluation

In this section, we employ a comprehensive evaluation approach
for FovOptix. We assess its adaptability, latency, and visual qual-
ity objectively. Additionally, we conduct user experiments where
participants play a VR game and rate their experience subjectively.
6.1 Adaptability to available bandwidth.

To assess adaptability, we utilize our testbed (section 5.1), which
dynamically adjusts bandwidth to mimic 5G mobile network traces

with a static mobility pattern (section 5.2). We visualize the network
throughput of each solution in Figure 5. The network traces show
lower throughput, mainly ranging from 10 Mb/s to 20 Mb/s, which
is below the bandwidth requirements of certain protocols. As a
result, non-adaptive protocols (ALVR, BW Probing, FVE, and FR-
FVE) fail to function properly under these conditions (Figure 5a).
They frequently exceed the bandwidth capacity, causing network
congestion, frame drops, and high and variable motion-to-photon
latency. In contrast, WebRTC and FovOptix adapt to the available
bandwidth, resulting in low latency (Figure 5b). Notably, FovOptix
demonstrates superior adaptability, leading to more stable latency.
6.2 Motion-to-photon latency.

Figure 6 illustrates the latency components: vsync queuing, game,
rendering, encoding, networking, decode queuing, decode, and com-
posite latency. FovOptix outperforms all the baselines including
WebRTC (mean 59.3 ms), exhibiting the lowest end-to-end latency
(mean 57.4 ms). Notably, FovOptix’s adaptive QP manager acceler-
ates the encoding (mean 7.2 ms), compared to WebRTC (mean 8.2
ms), reducing its average total latency by 1.9 ms. We attribute this
reduction in FovOptix encoding latency to the usage of QP as input
instead of a bitrate. WebRTC’s encoder computes the QP for every
macro-block and performs a multi-pass function of NvEncoder to
calculate the complexity of each frame. Accordingly, it reassigns the
QP for every macro-block to ensure better control of the sending
bitrate. Unsurprisingly, the protocols classified as non-bandwidth
adaptive encounter high network latency (brown bars). These base-
lines send at bitrates higher than the available bandwidth, causing
frequent congestion and thus high networking latency.
6.3 Visual Quality.

Figure 7 illustrates the visual quality (VQ) of the rendered and
encoded frames. We measure the VQ objectively using SSIM and
PSNR by using the game frame as the reference image, against
which the rendered and encoded frames are compared to assess their
similarity and quality. The three sub-figures present the VQ of the
rendered frames (gray markers) and compressed frames (colorful
markers) for five baselines (WebRTC, ALVR, BW Probing, FR-FVE,
and FovOptix). The left-hand side presents the SSIM (y-axis) and

FovOptix: Human Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud Gaming MMSys ’24, April 15–18, 2024, Bari, Italy

33.0 34.5 36.0 37.50.780

0.795

0.810

0.825

0.840

0.855

0.870

0.885

0.900

0.915
Entire Frame

33.0 34.5 36.0 37.5

Central Fovea (30 ∘)

33.0 34.5 36.0 37.5

Central Fovea (9 ∘)

SS
IM

PSNR (dB)

WebRTC
ALVR

BW Probing
FR-FVE

FovOptix
rWebRTC

rALVR
rBW Probing

rFR-FVE
rFovOptix

Figure 7: Average SSIM and PSNR of rendered and encoded
frames and central FoV regions over emulated 5G mobile
network. 𝑟 prefix and gray markers reflect the visual quality
(VQ) of the protocols after rendering, whereas colorful mark-
ers indicate their VQ after encoding. FVE doesn’t involve FR
and exhibits low PSNR≈30.1 and SSIM≈0.7, thus not depicted.

PSNR (x-axis) of FovOptix over the entire frame, compared to the
other four baselines. The middle and right-hand sides present the
SSIM and PSNR across frame areas that match the central fovea of
30°and 9°, respectively. Over the entire frame, FovOptix achieves a
higher SSIM of an average of 0.83 and a similar PSNR of an average
of 0.325 dB, compared to WebRTC, which has an SSIM of 0.788
and a PSNR of 0.325 dB, respectively. FVE exhibits the lowest SSIM
and PSNR of an average of 0.7 and 32.1, respectively. The other
baselines achieve higher visual quality compared to FovOptix and
WebRTC. Notably, FovOptix demonstrates improved SSIM of an
average of 0.877 and PSNR of an average of 34.5 dB in central frame
tiles that correspond to the central foveal region, for a 30°central
fovea. When the central fovea is 9°, FovOptix outperforms all the
baselines with an average SSIM of 0.877 and PSNR of 34.5 dB.
6.4 User Study

Participants and Apparatus: We recruited 33 participants,
aged 22 to 42. The majority are university students and staff. They
play VR games a few times a week (4), a few times a month (7), a
few times a year (14), while 8 never played. Most of them have some
familiaritywith virtual reality. The participants played the Lab game
in a VR gaming setting using the system prototype (section 3.1) in
two groups. The first group (18 participants) played a first-person
shooting (FPS) game called Longbow, while the second group (15
participants) played a third-person shooting (TPS) game called
Xortex. Each participant played the game over the transmission
techniques defined in section 5.3 over our cloud gaming emulation.

Protocol: Each participant started with 5 minutes of free play of the
Lab game executed on-device. This phase allows the participants to
get familiar with the game and establish a reference of playability
and visual quality. The participants then played a VR game for

ALVR

BW
 Pr

ob
ing FV

E
FR

-FV
E

Web
RTC

Fov
Opti

x
0
1
2
3
4
5 VQ Gaze Compatibility Playability

ALVR

BW
 Pr

ob
ing FV

E
FR

-FV
E

Web
RTC

Fov
Opti

x
0

20

40

60

80
Mental Demand Frustration Success

(a) Perception of FPS game (Longbow). FovOptix presents highest playa-
bility, VQ, and gaze compatibility, lowest frustration and comparable
perceived success, and mental demand to WebRTC.

ALVR

BW
 Pr

ob
ing FV

E
FR

-FV
E

Web
RTC

Fov
Opti

x
0

1

2

3

4

5

ALVR

BW
 Pr

ob
ing FV

E
FR

-FV
E

Web
RTC

Fov
Opti

x
0

25

50

75

100

(b) Perception of TPS game (Xortex). FovOptix presents the highest
playability and comparable gaze compatibility, and slightly lower VQ
to WebRTC, with lowest frustration, second lowest mental demand,
and second highest perceived success.

Figure 8: Users’ perception of the gaming experience under
typical measures (left) and task load (right) over emulated
5G network.

Table 3: Average motion sickness (MSS) and game score

FPS Game (Longbow)
Sol ALVR BW Prob FVE FR-FVE WebRTC FovOptix
score 174 172 85 295 781 873
MSS 1.8 1.65 2.3 1.77 1.3 1.05

TPS Game (Xortex)
score 433 580 84 276 1664 1742
MSS 2.18 2.18 3 2 1.27 1.18

five minutes for each protocol. The participants were given a brief
intermediary break to avoid cumulative effects. We restarted the
network emulation script (section 5.1) for each protocol to maintain
consistent network conditions across the protocols. Besides, we
used the lucky draw method to randomize the protocol sequence
and prevent learning and order effects. Each protocol was assigned
a unique number, written on a piece of paper, and placed in a pot.
Participants randomly draw a paper from the pot, determining the
running order. After each run, the participants filled out a short
questionnaire on a 5-point Likert scale on the perceived visual qual-
ity (1:bad to 5:excellent), suitability to visual experience (1:not well
to 5:Extremely well), playability (1:laggy to 5:extremely responsive).
They also fill out a NASA TLX [12] survey on the perceived men-
tal demand, frustration, and success on a [0-100] scale, and report
game score. Besides, they reported their susceptibility to motion
sickness by rating the severity on a [1-7] scale (1:no symptoms to
7:experiencing vomiting). We did not disclose the streaming methods
used to avoid affecting the participants’ ratings.
Results: Figure 8 presents the results with error bars as 95% confi-
dence intervals. Figure 8a depicts the users’ perception of the FPS
game. FovOptix exhibits superior performance in terms of playabil-
ity (mean 3.9), gaze compatibility (mean 4.1), and VQ (mean 3.9).

MMSys ’24, April 15–18, 2024, Bari, Italy Alhilal et al.

This is followed by WebRTC, which achieves average scores of 3.6,
3.9, and 3.6 for the same measures. Additionally, FovOptix exhibits
the lowest frustration level with an average score of 19, while We-
bRTC has an average score of 22. In terms of mental demand and
perceived success, FovOptix performs comparably to WebRTC.

Figure 8b depicts the users’ perception of the TPS game. FovOptix
presents the highest playability (mean 4), while it exhibits similar
gaze compatibility (mean 3.6) and slightly lower VQ (mean 3.5),
compared to WebRTC of an average of 3.5, 3.6, and 3.6, respectively.
In terms of task load, In comparison to WebRTC with mean scores
of 41, 34, and 69, FovOptix demonstrates lower frustration (mean
28), slightly higher mental effort (mean 35), and lower perceived
success (mean 63). Other baselines (BW Probing, FVE, FR-FVE,
ALVR) perform poorly across all the performance metrics in both
game genres. Table 3 presents the average rating of game score
and motion sickness severity of both game genres. The participants
obtained the highest score using FovOptix, followed by WebRTC.
This conforms to the perceived playability, where FovOptix achieves
the highest rating. Besides, FovOptix exhibits the lowest motion
sickness severity, implying minimal or no symptoms. Except for
WebRTC, the remaining baselines elicit the feeling of discomfort or
dizziness. One-way ANOVA tests show a statistically significant
difference (𝑝 < 0.002 for all measures) between the transmission
protocols.
6.5 Findings and Discussion

We conducted our experiments over an emulation framework
that incorporates network variability via the use of 5G mobile
network traces. This helps to understand the accessibility and per-
formance of the state-of-the-art solutions.

FovOptix excels in achieving the lowest motion-to-photon la-
tency and the highest quality in regions of interest (ROI) while
not compromising the overall visual quality. This is attributed
to its high adaptability to network throughput and compatibility
with the human vision system. The user study confirms that only
FovOptix and WebRTC can provide a smooth experience without
mental effort or annoyance. Objectively, FovOptix demonstrates
significant improvement in visual quality, especially in regions of
interest, along with a slight reduction in latency compared to We-
bRTC. Additionally, the participants felt the least motion sickness
with FovOptix and somewhat greater with WebRTC. Nevertheless,
FovOptix presents a substantial collective improvement in all per-
formance metrics, as evidenced by increased perceived playability
and game scores compared to WebRTC. The outstanding perfor-
mance of FovOptix under variable network conditions, coupled
with its capability to install and run any VR game, demonstrates its
potential to provide accessible VR gaming service across diverse
network conditions. With high quality in ROI, low latency, and
the likelihood of having little or no motion sickness symptoms,
FovOptix also enhances the immersion and interaction and ensures
seamless VR gaming experiences.

In the TPS game, the participants rated FovOptix’s VQ and gaze
compatibility to be comparable to or slightly inferior to that of
WebRTC. We attribute this to the frequent diversion of players’
attention from the central FoV to find new targets and evade incom-
ing shots, which leads to a perception of lower VQ in the peripheral
regions where their gaze is focused. This is evident by FovOptix’s

enhanced performance in the FPS game, where the dominant gaze
focus is on the central FoV. The participants thus rated FovOptix’s
VQ and gaze compatibility superior to WebRTC.
7 Limitation and Future Improvement

FovOptix exhibits low latency and high visual quality due to its
adaptability to network throughput. However, it is important to
acknowledge the existence of several limitations. In this section,
we elucidate these limitations and future directions to tackle them.

FovOptix employs fixed FR and fixed FVE to enhance the quality
in the central FoV regions, preventing dynamic allocation of higher
quality to the precise gaze position. While players may shift their
focus to near-peripheral or peripheral areas, we will expand the
data collection module to include the acquisition of gaze position in
real time. We will use built-in gaze trackers like that in Quest Pro.
The gaze data will be transmitted constantly to the server to render
and compress the game frames accordingly. In FovOptix, the gaze
position is fixed in the center of FoV, corresponding to coordinates
(𝑤2 ,

ℎ
2) in the game frame. Therefore, the integration of real-time

gaze position (x,y) will be instantaneous. The eye tracker latency
is reported to be in the range of 6 − 10 ms [6]. Consequently, the
average total latency is estimated to be approximately 64 − 68 ms,
which is deemed tolerable according to Albert et al. [6].

To offer game-agnostic support, we utilized the ALVR code base,
which has a limitation in detecting VR clients on a public network.
Consequently, FovOptix was tested and evaluated using an emula-
tion of a real-life mobile network, specifically based on 5G mobile
network traces. We plan to extend the VHMD component to rec-
ognize clients over public networks. We also plan to evaluate the
performance across various game genres like shooters, real-time
strategy, and role-playing. This assessment would help to assess
the system’s ability to sustain video quality and dynamically al-
locate bitrate based on the visual complexity and user attention
patterns unique to each gaming genre, providing insights into its
effectiveness and suitability in diverse gaming environments.
8 Conclusion

This paper presented FovOptix, a system that combines foveated
rendering with adaptive foveated video compression. FovOptix
adapts the visual quality in central and peripheral regions to hu-
man vision and network conditions. Using emulation of a 5Gmobile
network, we evaluate FovOptix against the state-of-the-art solu-
tions. Our findings revealed that FovOptix achieves the lowest
latency and enhanced visual quality in the user’s region of interest.
Our user study confirmed these findings, with FovOptix present-
ing the highest playability and gaming score, and lowest motion
sickness level. FovOptix thus facilitates smooth and accessible VR
cloud gaming that accommodates players with low-capacity and un-
stable networks. Our proposed improvements would significantly
enhance the immersion and accessibility of the VR gaming experi-
ence. This includes integrating real-time gaze tracking for dynamic
quality allocation, extending the server for accessibility over public
networks, and evaluation across various game genres.
9 Acknowledgements

This researchwas supported in part by a grant from theGuangzhou
Municipal Nansha District Science and Technology Bureau under
Contract No.2022ZD01 and the MetaHKUST project from the Hong
Kong University of Science and Technology (Guangzhou).

FovOptix: Human Vision-Compatible Video Encoding and Adaptive Streaming in VR Cloud Gaming MMSys ’24, April 15–18, 2024, Bari, Italy

References
[1] 2018. SteamVR. https://store.steampowered.com/app/250820/SteamVR/
[2] 2023. Air Light VR (ALVR). https://github.com/alvr-org/ALVR
[3] 2023. NVENC Video Encoder API Programming Guide. https:

//docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-
encoder-api-prog-guide/index.html

[4] 2023. Real-time Communication for the Web (WebRTC). https://webrtc.org/
[5] Mehmet N. Akcay. 2021. Improving Server and Client-Side Algorithms for

Adaptive Streaming of Non-Immersive and Immersive Media. In Proceedings of
the 12th ACM Multimedia Systems Conference (Istanbul, Turkey) (MMSys ’21).
Association for Computing Machinery, New York, NY, USA, 383–387. https:
//doi.org/10.1145/3458305.3478461

[6] Rachel Albert, Anjul Patney, David Luebke, and Joohwan Kim. 2017. Latency
Requirements for Foveated Rendering in Virtual Reality. ACM Trans. Appl. Percept.
14, 4, Article 25 (sep 2017), 13 pages. https://doi.org/10.1145/3127589

[7] Ahmad Alhilal, Tristan Braud, Bo Han, and Pan Hui. 2022. Nebula: Reliable
Low-Latency Video Transmission for Mobile Cloud Gaming. In Proceedings of the
ACMWeb Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). Association
for Computing Machinery, New York, NY, USA, 3407–3417. https://doi.org/10.
1145/3485447.3512276

[8] D.A. Atchison. 2023. Optics of the Human Eye. CRC Press. https://books.google.
com.hk/books?id=5-WtEAAAQBAJ

[9] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and SaverioMascolo. 2016. Anal-
ysis and Design of the Google Congestion Control for Web Real-Time Communi-
cation (WebRTC). In Proceedings of the 7th International Conference on Multimedia
Systems (Klagenfurt, Austria) (MMSys ’16). Association for Computing Machinery,
NewYork, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/2910017.2910605

[10] Matthias Dick, Oliver Wellnitz, and Lars Wolf. 2005. Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games. In Proceedings of 4th
ACM SIGCOMMWorkshop on Network and System Support for Games (Hawthorne,
NY) (NetGames ’05). Association for Computing Machinery, New York, NY, USA,
1–7. https://doi.org/10.1145/1103599.1103624

[11] Florian Frieß, Matthias Braun, Valentin Bruder, Steffen Frey, Guido Reina, and
Thomas Ertl. 2021. Foveated Encoding for Large High-Resolution Displays. IEEE
Transactions on Visualization and Computer Graphics 27, 2 (2021), 1850–1859.
https://doi.org/10.1109/TVCG.2020.3030445

[12] Sandra G Hart. 2006. NASA-task load index (NASA-TLX); 20 years later. In
Proceedings of the human factors and ergonomics society annual meeting, Vol. 50.
Sage publications Sage CA: Los Angeles, CA, 904–908.

[13] Jan Horský. 2022. Crowdsourcing VR headset data VR headset database. https://
www.infinite.cz/projects/HMD-tester-virtual-reality-headset-database-utility

[14] SudengHu, HanliWang, and SamKwong. 2012. Adaptive Quantization-Parameter
Clip Scheme for Smooth Quality in H.264/AVC. IEEE Transactions on Image
Processing 21 (04 2012), 1911–1919. https://doi.org/10.1109/TIP.2011.2176347

[15] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. 2013.
GamingAnywhere: An Open Cloud Gaming System. In Proceedings of the 4th
ACM Multimedia Systems Conference (Oslo, Norway) (MMSys ’13). Association
for Computing Machinery, New York, NY, USA, 36–47. https://doi.org/10.1145/
2483977.2483981

[16] Bert Hubert. [n.d.]. Linux TC Man Page. https://linux.die.net/man/8/tc
[17] Gazi Karam Illahi, Thomas Van Gemert, Matti Siekkinen, Enrico Masala, Antti

Oulasvirta, and Antti Ylä-Jääski. 2020. Cloud Gaming with Foveated Video
Encoding. ACM Trans. Multimedia Comput. Commun. Appl. 16, 1, Article 7 (feb
2020), 24 pages. https://doi.org/10.1145/3369110

[18] Gazi Karam Illahi, Matti Siekkinen, Teemu Kämäräinen, and Antti Ylä-Jääski.
2020. On the Interplay of Foveated Rendering and Video Encoding. In Proceedings
of the 26th ACM Symposium on Virtual Reality Software and Technology (Virtual
Event, Canada) (VRST ’20). Association for Computing Machinery, New York, NY,
USA, Article 66, 3 pages. https://doi.org/10.1145/3385956.3422126

[19] Gazi Karam Illahi, Matti Siekkinen, Teemu Kämäräinen, and Antti Ylä-Jääski.
2021. Foveated Streaming of Real-Time Graphics. In Proceedings of the 12th ACM
Multimedia Systems Conference (Istanbul, Turkey) (MMSys ’21). Association for
Computing Machinery, New York, NY, USA, 214–226. https://doi.org/10.1145/
3458305.3463383

[20] Yoshio Ishiguro and Jun Rekimoto. 2011. Peripheral vision annotation: nonin-
terference information presentation method for mobile augmented reality. In
Proceedings of the 2nd Augmented Human International Conference. 1–5.

[21] Nuwan Janaka, Chloe Haigh, Hyeongcheol Kim, Shan Zhang, and Shengdong
Zhao. 2022. Paracentral and Near-Peripheral Visualizations: Towards Attention-
Maintaining Secondary Information Presentation on OHMDs during in-Person
Social Interactions. In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing
Machinery, New York, NY, USA, Article 551, 14 pages. https://doi.org/10.1145/
3491102.3502127

[22] Junchen Jiang, Vyas Sekar, and Hui Zhang. 2012. Improving Fairness, Efficiency,
and Stability in HTTP-Based Adaptive Video Streamingwith FESTIVE. In Proceed-
ings of the 8th International Conference on Emerging Networking Experiments and

Technologies (Nice, France) (CoNEXT ’12). Association for Computing Machinery,
New York, NY, USA, 97–108. https://doi.org/10.1145/2413176.2413189

[23] Xing Liu, Bo Han, Feng Qian, and Matteo Varvello. 2019. LIME: Understand-
ing Commercial 360° Live Video Streaming Services. In Proceedings of the 10th
ACM Multimedia Systems Conference (Amherst, Massachusetts) (MMSys ’19).
Association for Computing Machinery, New York, NY, USA, 154–164. https:
//doi.org/10.1145/3304109.3306220

[24] Vignesh V Menon, Christian Feldmann, Hadi Amirpour, Mohammad Ghanbari,
and Christian Timmerer. 2022. VCA: Video Complexity Analyzer. In Proceedings
of the 13th ACM Multimedia Systems Conference (Athlone, Ireland) (MMSys ’22).
Association for Computing Machinery, New York, NY, USA, 259–264. https:
//doi.org/10.1145/3524273.3532896

[25] Lothar Pantel and Lars C. Wolf. 2002. On the Impact of Delay on Real-Time
Multiplayer Games. In Proceedings of the 12th International Workshop on Network
and Operating Systems Support for Digital Audio and Video (Miami, Florida, USA)
(NOSSDAV ’02). Association for Computing Machinery, New York, NY, USA,
23–29. https://doi.org/10.1145/507670.507674

[26] Darijo Raca, Dylan Leahy, Cormac J. Sreenan, and Jason J. Quinlan. 2020. Beyond
Throughput, the next Generation: A 5G Dataset with Channel and Context
Metrics. In Proceedings of the 11th ACM Multimedia Systems Conference (Istanbul,
Turkey) (MMSys ’20). Association for Computing Machinery, New York, NY, USA,
303–308. https://doi.org/10.1145/3339825.3394938

[27] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky.
2016. Design and Evaluation of a Foveated Video Streaming Service for Commod-
ity Client Devices. In Proceedings of the 7th International Conference onMultimedia
Systems (Klagenfurt, Austria) (MMSys ’16). Association for Computing Machinery,
New York, NY, USA, Article 6, 11 pages. https://doi.org/10.1145/2910017.2910592

[28] Jihoon Ryoo, Kiwon Yun, Dimitris Samaras, Samir R. Das, and Gregory Zelinsky.
2016. Design and Evaluation of a Foveated Video Streaming Service for Commod-
ity Client Devices. In Proceedings of the 7th International Conference onMultimedia
Systems (Klagenfurt, Austria) (MMSys ’16). Association for Computing Machinery,
New York, NY, USA, Article 6, 11 pages. https://doi.org/10.1145/2910017.2910592

[29] Andrea Scupola, Alessandra Mastrocola, Paola Sasso, Romina Fasciani, Lucrezia
Montrone, Benedetto Falsini, and Edoardo Abed. 2013. Assessment of Retinal
Function Before and After Idiopathic Macular Hole Surgery. American Journal of
Ophthalmology 156, 1 (2013), 132–139.e1. https://doi.org/10.1016/j.ajo.2013.02.
007

[30] Hans Strasburger, Ingo Rentschler, and Martin Jüttner. 2011. Pe-
ripheral vision and pattern recognition: A review. Journal of Vision
11, 5 (Dec. 2011), 13–13. https://doi.org/10.1167/11.5.13 _eprint:
https://arvojournals.org/arvo/content_public/journal/jov/933487/jov-11-5-
13.pdf.

[31] M. Tun, K.K. Loo, and J. Cosmas. 2008. Rate control algorithm based on quality fac-
tor optimization for Dirac video codec. Signal Processing: Image Communication
23, 9 (2008), 649–664. https://doi.org/10.1016/j.image.2008.07.003

https://store.steampowered.com/app/250820/SteamVR/
https://github.com/alvr-org/ALVR
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html
https://docs.nvidia.com/video-technologies/video-codec-sdk/12.1/nvenc-video-encoder-api-prog-guide/index.html
https://webrtc.org/
https://doi.org/10.1145/3458305.3478461
https://doi.org/10.1145/3458305.3478461
https://doi.org/10.1145/3127589
https://doi.org/10.1145/3485447.3512276
https://doi.org/10.1145/3485447.3512276
https://books.google.com.hk/books?id=5-WtEAAAQBAJ
https://books.google.com.hk/books?id=5-WtEAAAQBAJ
https://doi.org/10.1145/2910017.2910605
https://doi.org/10.1145/1103599.1103624
https://doi.org/10.1109/TVCG.2020.3030445
https://www.infinite.cz/projects/HMD-tester-virtual-reality-headset-database-utility
https://www.infinite.cz/projects/HMD-tester-virtual-reality-headset-database-utility
https://doi.org/10.1109/TIP.2011.2176347
https://doi.org/10.1145/2483977.2483981
https://doi.org/10.1145/2483977.2483981
https://linux.die.net/man/8/tc
https://doi.org/10.1145/3369110
https://doi.org/10.1145/3385956.3422126
https://doi.org/10.1145/3458305.3463383
https://doi.org/10.1145/3458305.3463383
https://doi.org/10.1145/3491102.3502127
https://doi.org/10.1145/3491102.3502127
https://doi.org/10.1145/2413176.2413189
https://doi.org/10.1145/3304109.3306220
https://doi.org/10.1145/3304109.3306220
https://doi.org/10.1145/3524273.3532896
https://doi.org/10.1145/3524273.3532896
https://doi.org/10.1145/507670.507674
https://doi.org/10.1145/3339825.3394938
https://doi.org/10.1145/2910017.2910592
https://doi.org/10.1145/2910017.2910592
https://doi.org/10.1016/j.ajo.2013.02.007
https://doi.org/10.1016/j.ajo.2013.02.007
https://doi.org/10.1167/11.5.13
https://doi.org/10.1016/j.image.2008.07.003

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Cloud Gaming.
	2.2 Foveation-based Cloud Gaming.
	2.3 Human vision system

	3 Methodology
	3.1 System Architecture
	3.2 Network Monitoring
	3.3 QP Management Algorithm
	3.4 Foveated Video Encoding (FVE)

	4 Implementation
	4.1 Client
	4.2 Server

	5 Experiment Setup
	5.1 Measurement Setup
	5.2 Mobile Network Traces
	5.3 Baselines

	6 Evaluation
	6.1 Adaptability to available bandwidth.
	6.2 Motion-to-photon latency.
	6.3 Visual Quality.
	6.4 User Study
	6.5 Findings and Discussion

	7 Limitation and Future Improvement
	8 Conclusion
	9 Acknowledgements
	References

