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ABSTRACT

Probabilistic hierarchical time-series forecasting is an important variant of time-
series forecasting, where the goal is to model and forecast multivariate time-series
that have hierarchical relations. Previous works all assume rigid consistency over
the given hierarchies and do not adapt to real-world data that show deviation
from this assumption. Moreover, recent state-of-art neural probabilistic methods
also impose hierarchical relations on point predictions and samples of predictive
distribution. This does not account for full forecast distributions being coherent
with the hierarchy and leads to poorly calibrated forecasts. We close both these gaps
and propose PROFHIT, a probabilistic hierarchical forecasting model that jointly
models forecast distributions over the entire hierarchy. PROFHIT (1) uses a flexible
probabilistic Bayesian approach and (2) introduces soft distributional coherency
regularization that enables end-to-end learning of the entire forecast distribution
leveraging information from the underlying hierarchy. This enables robust and
calibrated forecasts as well as adaptation to real-life data with varied hierarchical
consistency. PROFHIT provides 41-88% better performance in accuracy and
23-33% better calibration over a wide range of dataset consistency. Furthermore,
PROFHIT can robustly provide reliable forecasts even if up to 10% of input time-
series data is missing, whereas other methods’ performance severely degrade by
over 70%.

1 INTRODUCTION

Time-series forecasting is an important problem that impacts decision-making in a wide range of
applications. In many real-world situations, the time-series have inherent hierarchical relations and
structures. Examples include forecasting time-series of employment (Taieb et al., 2017) measured at
different geographical scales; epidemic forecasting (Reich et al., 2019) at county, state and country, etc.
Given time-series dataset with underlying hierarchical relations, the goal of Hierarchical Time-series
Forecasting (HTSF) is to generate accurate forecast for all time-series leveraging the hierarchical
relations between time-series (Hyndman et al., 2011).

Most previous methods do not provide well-calibrated forecasts for both so-called "strong" and
"weakly" consistent datasets. Previous HTSF methods assume that the time-series values of datasets
strictly satisfy the underlying hierarchical constraints and impose rigid coherency on generated
forecasts i.e., forecasts strictly satisfy the hierarchical relations of dataset. These methods can model
datasets generated (Taieb et al., 2017) by first collecting data for time-series of the leaf level nodes
and deriving time-series for higher-level nodes. We call such data as strongly consistent. For example,
classical HTSF methods (Hyndman & Athanasopoulos, 2018) use a bottom-up or top-down approach
where all time-series at a single level of hierarchy are modeled independently and the values of other
levels are derived using the aggregation function governing the hierarchy. In contrast, many real-world
datasets are weakly consistent, i.e., they do not follow the strict constraints of the hierarchy1. Such
data have an underlying data generation process that may follow a hierarchical set of constraints but
may contain some deviations. These deviations can be caused by factors such as measurement or
reporting error, asynchrony in data aggregation and revision pipeline, etc, as frequently observed in

1Note that we describe consistency over a dataset and coherency over model forecasts.
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epidemic forecasting (Adhikari et al., 2019). Most state-of-the-art HTSF methods are designed for
strongly consistent datasets and impose rigid coherency constraints — they thus may not adapt to
such deviations and can provide poor forecasts for weakly consistent datasets.

Raw forecast priors

Distributional Coherency Hierarchical Relations

Figure 1: Regularizing forecasts using Distri-
butional Coherency.

Moreover, previous methods do not focus on pro-
viding calibrated forecasts with precise uncertainty
measures. Traditional methods focus on point predic-
tions only. Recent methods like MINT (Wickrama-
suriya et al., 2019), ERM (Ben Taieb & Koo, 2019)
and PEMBU (Taieb et al., 2017) refine raw indepen-
dent forecast distribution as a post-processing step.
This does not enable the models generating the raw
forecasts to leverage underlying hierarchical relations
across time-series. End-to-end learning neural meth-
ods directly leverage hierarchical relations as part
of the model architecture or learning algorithm like
HIERE2E (Rangapuram et al., 2021) and SHARQ
(Han et al., 2021). They do this and usually outperform post-processing methods by imposing
hierarchical constraints on the mean or fixed quantiles of the forecast distributions. However, these
methods do not enforce hierarchical coherency on the full distributions. Therefore, the forecasts may
not be well-calibrated (Kuleshov et al., 2018) i.e., they produce unreliable prediction intervals that
may not match observed probabilities from ground truth (Fisch et al., 2022).

Table 1: Comparison of PROFHIT with state-of-the-art methods.
2-step
methods

MINT
erm PEMBU HIERE2E SHARQ PROFHIT

(This paper)
Probabilistic
Forecasts × ✓ ✓ ✓ ✓ ✓

Strong & Weak
Consistency × × × × ✓ ✓

Distributional
Coherency × × ✓ × × ✓

End-to-end
Learning × × × ✓ ✓ ✓

Robust to
missing data × × × × × ✓

In this work, we fill this gap
of learning well-calibrated
and accurate forecasts for
both strong and weakly
consistent datasets leverag-
ing underlying hierarchical
relations. We propose
PROFHIT (Probabilistic
Robust Forecasting for
Hierarchical Time-series),
a neural probabilistic HTSF
method that provides an end-to-end Bayesian approach to model the distributions of forecasts of
all time-series together (see Table 1 for a comparison). Specifically, we introduce a novel Soft
Distributional Coherency Regularization (SDCR) to tackle the challenge. First, SDCR enables
PROFHIT to leverage hierarchical relations over entire forecast distributions to generate calibrated
forecast distributions by encouraging forecast distribution of any parent node to be similar to
aggregation of children nodes’ forecast distribution (Figure 1). Second, since SDCR is a soft
constraint, our model is trained to adapt to datasets with varying hierarchical consistency that allows
the model to trade-off coherency for better accuracy and calibration on weakly consistent datasets.
Our main contributions are:
(1) Accurate and Calibrated Probabilistic Hierarchical Time-Series Forecasting: We propose
PROFHIT, a deep probabilistic framework for modeling the distributions of each time-series together
using a soft distributional coherency regularization (SDCR). PROFHIT leverages probabilistic
deep-learning models to learn priors of individual time-series and refines the priors of all time-series
leveraging the hierarchy to provide accurate and well-calibrated forecasts.
(2) Adaptation to Strong and Weak Consistency via Soft Distributional Coherency Regulariza-
tion: SDCR imposes soft hierarchical constraints on the full forecast distributions to help adapt the
model to varying levels of hierarchical consistency. We build a novel refinement module over raw
forecast priors and leverage multi-task learning over shared parameters that enable PROFHIT to
perform consistently well across the hierarchy.
(3) Evaluation Across Multiple Datasets and with Missing Data: We show that our method
PROFHIT outperforms a wide variety of state-of-the-art baselines on both accuracy and calibration,
at all levels of the hierarchy, for both strong and weakly consistent datasets. We also show training
using SDCR enables PROFHIT to leverage hierarchical relations to provide robust predictions that
can handle missing data values in the time-series.
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2 PROBLEM STATEMENT

Consider the dataset D of N time-series over the time horizon 1, 2, . . . , T . Let yi ∈ RT be time-
series i and y

(t)
i its value at time t. The time-series have a hierarchical relationship denoted as

T = (GT , HT ) where GT is a tree of N nodes rooted at time-series 1. For a non-leaf node (time-
series) i, we denote its children as Ci. The node values are related via set of relations HT of form
HT = {yi =

∑
j∈Ci

ϕijyj : ∀i ∈ {1, 2, . . . , N}, |Ci| > 0} where values of ϕij are known and
time-independent real-valued constants.
Definition 1 (Consistency Error - CE). Given a dataset D of N time-series over the time horizon
1, 2, . . . , T and aggregation relations HT as above, the dataset consistency error (CE) is defined as

ET (D) =
∑

i∈{1,2,...N},Ci ̸=∅

yi −
∑
j∈Ci

ϕijyj

2

. (1)

(Intuitively, datasets with lower CE have time-series values which more strictly follow relations HT ).

Definition 2 (Strong and weak consistency). A dataset D is strongly consistent if ET (D) = 0.
Otherwise, D is said to be weakly consistent.

Let current time-step be t. For any 1 ≤ t1 < t2 ≤ t, we denote y(t1:t2)
i = {y(t1)i , y

(t1+1)
i , . . . , y

(t2)
i }.

Given the data Dt = [y1:t
1 ,y1:t

2 , . . . ,y1:t
N ] and hierarchical relations HT , a model M is trained to

predict the marginal forecast distributions at time t+ τ for all time-series of hierarchy leveraging past
values of all time-series: {pM (y

(t+τ)
1 |Dt), . . . pM (y

(t+τ)
N |Dt)}. Along with accuracy of probabilistic

forecasts we also evaluate forecast distributions for calibration. We define calibration of model
forecasts based on previous works (Kamarthi et al., 2021; Kuleshov et al., 2018):

Definition 3. (Calibration Score of Model) Given a model M we define a calibration function
kM : [0, 1] → [0, 1] as follows: Given a confidence c, kM (c) is the fraction of the predictions for
which the ground truth lies within c-confidence interval. The calibration score CS(M) is the total
deviation between c and kM (c): CS(M) =

∫ 1

0
|kM (c)− c|dc. A perfectly calibrated model is such

that ∀c : kM (c) ≈ c.

Given a dataset D with underlying hierarchical relations HT , the goal of Calibrated Probabilistic
Hierarchical Forecasting is to design a model M that provides accurate and well-calibrated forecast
distributions {pM (y

(t+τ)
1 |Dt), . . . pM (y

(t+τ)
N |Dt)} across all levels of the hierarchy for both weakly

and strongly consistent datasets.

3 METHODOLOGY

Refinement
Module

Raw
Forecast

Distribution

TSFNP

Hierarchy of Input
Time-Series

Refined
Forecasts

Likelihood Loss

Soft Distributional
Coherency

RegularizationLevel 1

Level 2

Figure 2: Overview of pipeline of PROFHIT. The input time series is ingested by TSFNP, a Neural
Gaussian Process based probabilistic forecasting model to output the raw forecast distribution. The
parameters of raw forecasts are refined by the Refinement module using predictions from all time-
series. The training is driven by a likelihood loss that learns from ground truth and Soft Distributional
Coherency Regularization that regularizes the forecast distribution to follow the hierarchical relations.
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Overview PROFHIT models the forecast distributions {P (y
(t+τ)
i |Dt)}Ni=1 of all time-series nodes

of the hierarchy by leveraging the relations from the hierarchy to provide accurate and well-calibrated
forecasts that are adaptable to varying hierarchical consistency. Most existing methods do not attempt
to model entire probabilistic distribution but focus on coherency of point forecasts or samples or
fixed quantiles of the distribution (Rangapuram et al., 2021; Han et al., 2021). This approach does
not fully capture the uncertainty of the forecasts and in turn does not provide calibrated predictions.
Moreover, most methods operate on datasets that are strongly consistent over hierarchical relations.
However, many real-world datasets are weakly consistent with time-series values of all nodes of
hierarchy observed simultaneously and may not follow the hierarchical relations strictly due to noise
and discrepancies in collecting data at different levels. Therefore, most previous works may not adapt
well to such deviations from these constraints.

PROFHIT, on the other hand, reconciles the need to model coherency between entire forecast
distributions as well as induce a soft adaptable constraint to enforce coherency via a two-step
stochastic process that is trained in an end-to-end manner. PROFHIT first produces a raw forecast
distribution for each node parameterized by {(µ̂i, σ̂i)}Ni=1 by using past values of time-series via
a neural probabilistic forecasting model. Raw forecasts of all nodes are used as priors to derive a
refined set of forecast distributions parameterized by {(µi, σi)}Ni=1 via the refinement module. The
full probabilistic process of PROFHIT is depicted in Figure 2 and formally summarized as:

P ({y(t+τ)
i }Ni=1|Dt) =

∫
P (z|{y(1:t)

i }Ni=1)

(
N∏
i=1

P (zi,ui|{y(1:t)
i }Ni=1)P (µ̂i, σ̂i|zi, z,ui)

)
︸ ︷︷ ︸

TSFNP (Raw forecasts)

N∏
i=1

P (µi, σi|{µ̂j , σ̂j}Nj=1)P (y
(t+τ)
i |µi, σi)︸ ︷︷ ︸

Refinement Module

d{ui}Ni=1d{zi}Ni=1.

(2)

where zi,ui, z are intermediate latent variables of our probabilistic raw forecasting model TSFNP
(Section 3.1). PROFHIT’s SDCR regularizes the parameters {(µi, σi)}Ni=1 to leverage the hierarchi-
cal relations by minimizing the Distributional Coherency Error (DCE) defined as follows:
Definition 4. (Distributional Coherency Error - DCE) Given the forecasts at time t + τ as
{pM (y

(t+τ)
1 |Dt), . . . pM (y

(t+τ)
N |Dt)} distributional coherency error (DCE) is defined as∑

i∈{1,...,N},Ci ̸=∅

Dist

pM (y
(t+τ)
i |Dt), pM (

∑
j∈Ci

ϕi,jy
(t+τ)
j |Dt)

 (3)

where Dist is a distributional distance metric.

Leveraging distributional coherency error as a soft regularizer enforces forecast distributions to be
well-calibrated while adaptively adhering to hierarchical relations of the dataset.

3.1 RAW FORECAST DISTRIBUTIONS FROM NGPS

NGPs (Neural Gaussian Process) (Louizos et al., 2019) are novel class of probabilistic neural models
state-of-the-art accurate and calibrated predictions. We, therefore, use a modified form of a state-
of-the-art NGP model for time-series forecasting (Kamarthi et al., 2021) which we call TSFNP to
derive raw forecast distributions for each time-series.

We briefly describe TSFNP’s three components: 1) Probabilistic Neural Encoder: It encodes the
input univariate time-series into a latent stochastic embedding via a GRU (Cho et al., 2014) followed
by a self-attention layer (Vaswani et al., 2017):

[µ(u)i, log σ(u)i] = Self-Atten(GRU(y
(t′:t)
i )), ui ∼ N (µ(u)i, σ(u)i). (4)

2) Stochastic Data Correlation Graph: We further leverage similar patterns of past time-series data
and aggregate them as local latent variable. Unlike EPIFNP which uses past time-series information
from same node, in our multi-variate case TSFNP uses past information from all nodes. Formally,
for input sequence y

(t′:t)
i and each of the past sequence yj where j ∈ {1, . . . , N}, we sample yj

with probability exp(−γ||ui − uj ||22) into set Ni. Then, we derive the local latent variable as

zi ∼ N

∑
j∈Ni

Θ1(uj), exp(
∑
j∈Ni

Θ2(uj))

 (5)
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where Θ1 and Θ2 are feed-forward networks.

3) Predictive Distribution Decoder: Finally, we combine the latent embedding of input time-series,
local latent variable and combined information of all past sequences to derive the parameters of the
output distribution via a simple feed-forward network. We first derive a global latent variable that
combines the information from latent embeddings of all past sequences via self-attention:

{βi}Ni=1 = Self-Atten({ui}Ni=1), z =

N∑
i=1

βiui (6)

Finally, we combine the latent embedding of input time-series, local latent variable and global latent
variable to derive the raw forecast distribution modelled as a Gaussian N (µ̂i, σ̂i) as:

e = concat(ui, zi, z), [µ̂i, log σ̂i] = Θ3(e) (7)

where Θ3 is a feed forward network.

3.2 REFINEMENT MODULE

The refinement module leverages the raw distributions of all nodes of hierarchy to produce refined
forecast distributions using hierarchical relations. Given the parameters of raw forecast distributions
{µ̂i, σ̂i}Ni=1 derived from TSFNP for all time-series {y(t′:t)

i }Ni=1, the refinement module derives the
refined forecast distributions denoted by parameters {µi, σi}Ni=1 as functions of parameters of raw
forecasts of all time-series. The refined forecasts are optimized to be more coherent using SDCR.
Since we drive the full distributions of refined forecasts to be coherent, rather than just the samples or
mean statistics, the refined distributions’ calibration is also consistent with the hierarchical relations.

Let µ̂ = [µ̂1 . . . , µ̂N ] and σ̂ = [σ̂1 . . . , σ̂N ] be vectors of means and standard deviations of raw
distributions. We model the refined mean as a function of the raw means of all the nodes. Formally,
we derive the mean µi of refined distribution as a weighted sum of two terms: a) µ̂i, the mean of raw
time-series, and b) linear combination of all raw mean of all time-series:

γi = sigmoid(ŵi), µi = γiµ̂i + (1− γi)w
T
i µ̂. (8)

{ŵi}Ni=1 and {wi}i=1:N are both learnable set of parameters of the model. sigmoid(·) denotes the
sigmoid function. γi helps model the trade-off between the influence of the raw distribution of node i
and the influence of the other nodes of the hierarchy. This is useful for the model to automatically
adapt to datasets with varying hierarchical consistency.

Similarly, we assume the variance of the refined distribution depends on the raw mean and variance
of all the time-series. The variance parameter σi of the refined distribution is derived from the raw
distribution parameters µ̂ and σ̂ as

σi = cσ̂isigmoid(vT
1iµ̂+ vT

2iσ̂ + bi) (9)

where {v1i}Ni=1, {v2i}Ni=1 and {bi}Ni=1 are parameters and c is a positive constant hyperparameter.

3.3 LIKELIHOOD LOSS AND REGULARIZATION OVER HIERARCHY

We optimize the probabilistic process of Equation 2 for accuracy and calibration by leveraging
hierarchical relations by training on likelihood loss on ground truth training data as well as SDCR.

Likelihood Loss To maximise the likelihood of forecasts over ground truth P ({y(t+τ)
i }Ni=1|Dt)

we use variational inference by approximating the posterior
∏N

i=1 P (zi,u
(j)
i |Dt) with the varia-

tional distribution
∏N

i=1 P (ui|y(t′:t)
i )qi(ui|y(t′:t)

i ) where qi is a feed-forward network over GRU
hidden embeddings of Probabilistic Neural Encoder that parameterizes the Gaussian distribution of
qi(ui|y(t′:t)

i ). We derive the ELBO (detailed derivation in Appendix) as

L1 = −E∏
i qi(zi,ui|Dt)[logP ({y(t+τ)

i }Ni=1|{ui, zi}Ni=1, z) +

N∑
i=1

logP (zi|ui, {uj}Nj=1)− log qi(ui|y(t′:t)
i )].

(10)

Soft Distributional Coherency Regularization PROFHIT leverages the hierarchy relations in T
and regularizes the refined distributions to be coherent. Since PROFHIT aims to leverage hierarchical
coherency for improved robustness and calibration, we regularize over the full distributions by using
distributional coherency error as part of the loss function. We use the Jensen-Shannon Divergence
(Endres & Schindelin, 2003) (JSD) as the distance metric since it is a symmetric and bounded
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variant of the popularly used KL-Divergence distance and assumes closed form for many widely used
distributions. We derive the distributional coherency error on {(µi, σi)}Ni=1 as

L2 = 2

 N∑
i=1

JSD

P (y
(t+τ)
i |µi, σi), P

∑
j∈Ci

ϕijy
(t+τ)
j |{µj , σj}j∈Ci

+ 1

 . (11)

Computation of JSD is generally intractable. However, in our case, due to parameterization of each
time-series distribution as a Gaussian we get a closed-form differentiable expression:

L2 =

N∑
i=1

σ2
i +

(
µi −

∑
j∈Ci

ϕijµj

)2
2
∑

j∈Ci
ϕ2
ijσ

2
j

+

N∑
i=1

∑
j∈Ci

ϕ2
ijσ

2
j +

(
µi −

∑
j∈Ci

ϕijµj

)2
2σ2

i

. (12)

We provide the derivation of Equation 12 in the Appendix. We use the distributional coherency error
as a soft regularization term to enable PROFHIT to leverage constraints HT when generating forecast
distributions. Thus, the total loss for training is given as L = L1 + λL2 where the hyperparameter
λ controls the trade off between data likelihood and coherency. We also use the reparameterization
trick to make the sampling process differentiable and we learn the parameters of all training modules
via Stochastic Variational Bayes (Kingma & Welling, 2013). The full pipeline of PROFHIT is
summarized in Figure 2.

3.4 DETAILS ON TRAINING

Parameter sharing across nodes Since PROFHIT’s TSFNP module forecasts for multiple nodes,
we leverage the hard-parameter sharing paradigm of multi-task learning (Caruana, 1997) and use
different set of parameters for Predictive Distribution Decoder (i.e., weights of Θ3 for each time-
series i is different) whereas the parameters of other components of TSFNP are shared across all
nodes (Figure 2). Sharing parameters for Probabilistic Neural Encoder drastically lowers the number
of learnable parameters since datasets can have large number of nodes (up to 512 nodes in our
experiments).

Pre-training on individual time-series Before we start training for refined forecasts, we pre-train
the parameters of TSFNP on given training dataset to model raw forecast distribution accurately. We
train using only a log likelihood loss to learn parameters {µ̂i, σ̂i}Ni=1 similar to Equation 10.

4 EXPERIMENTS

We evaluate PROFHIT over multiple datasets and compare it with state-of-the-art baselines2.

4.1 SETUP

Baselines: We compare PROFHIT’s performance against state-of-the-art HTSF methods. We also
compare against state-of-the-art general probabilistic forecasting methods to study the importance of
modeling the hierarchy for both weak and strongly consistent datasets. (1) TSFNP (Kamarthi et al.,
2021) and (2) DEEPAR (Salinas et al., 2020) as state-of-the-art deep probabilistic forecasting models
which do not exploit hierarchy relations. (3) MINT (Wickramasuriya et al., 2019) and (4) ERM
(Ben Taieb & Koo, 2019) are methods that convert incoherent forecasts as post-processing step by
framing it as an optimization problem. Since TSFNP provided better evaluation scores compared to
DEEPAR, we performed ERM and MINT on Monte Carlo samples of TSFNP predictive distribution.
(5) HIERE2E (Rangapuram et al., 2021) is a recent state-of-the-art deep-learning based approach that
projects the raw predictions onto a space of coherent forecasts and trains the model in an end-to-end
manner. (6) SHARQ (Han et al., 2021) is another state-of-the-art deep learning based approach
that reconciles forecast distributions by using quantile regressions and making the quantile values
coherent. (7) PEMBU (Taieb et al., 2017) is a post-processing method that refines raw forecasts to
be distributionally coherent. We use the mean forecast from MINT and ERM as input forecasts for
PEMBU. Note that we fine-tune the hyperparameters of PROFHIT and each baseline specific to
each benchmark. More details on hyperparameters are in Appendix.

We also evaluate the efficacy and contribution of our various modeling choices by performing an
ablation study using the following variants of PROFHIT: (7) P-GLOBAL: We study the effect
of our multi-tasking hard-parameter sharing approach (Section 3.4) by training a variant where all
the parameters are shared across all the nodes. (8) P-FINETUNE: We also look at the efficacy of

2Code and datasets: https://anonymous.4open.science/r/PROFHiT-6F2F
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our soft regularization using both losses that adapts to optimize for both coherency and training
accuracy by comparing it with a variant where the predictive distribution decoder parameters are
further fine-tuned for individual nodes using only the likelihood loss. (9) P-DEEPAR: We evaluate
our choice of using TSFNP, a previous state-of-the-art univariate forecasting model for accurate and
calibrated forecasts with DeepAR, another popular probabilistic forecasting model that was used by
HIERE2E. (10) P-NOCOHERENT: This variant is trained by completely removing the SDCR from
the training. Note that unlike P-FINETUNE which was initially trained with SDCR before fine-tuning,
P-NOCOHERENT never uses the SDCR at any point of training routine. Therefore P-NOCOHERENT
measures the importance of explicitly regularizing over the information from the hierarchy.

Table 2: Dataset Characteristics and Consistency
Dataset No. of Nodes Levels of

Hierarchy τ
Obs.

per node
Consistency

(CE)
Tourism-L 555 4,5 12 228 Strong(0)
Labour 57 4 8 514 Strong(0)
Wiki 207 5 1 366 Strong(0)

Flu-Symptoms 61 3 4 544 Weak(3.37)
FB-Survey 61 3 4 257 Weak(2.44)

Datasets: We evaluate on a diverse set of
publicly available datasets (Table 2) from
different domains with varied hierarchical
relations and consistency. The bechmark-
ing dataset and evaluation setup including
forecast horizon is replicated from recent
and past literature related to general HTSF
as well as epidemic forecasting. (1) Labour dataset contains monthly employment data from Feb
1978 to Dec 2020 collected from Australian Bureau of Statistics. (2) Tourism-L (Wickramasuriya
et al., 2019) contains tourism flows in different regions in Australia grouped via region and demo-
graphic. It has two sets of hierarchy (with four and five levels), one for the mode of travel and
the other for geography with the top node being the only common node of both hierarchies. (3)
Wiki dataset collects the number of daily views of 145000 Wikipedia articles aggregated into 150
groups (Taieb et al., 2017). These 150 groups are leaf nodes of a four-level hierarchy with groups
of similar topics aggregated together. (4) Flu-Symptoms contains flu incidence values called
weighted influenza-like incidence (wILI) values (Reich et al., 2019) at multiple spatial scales for USA
for period of 2004-2020. The scales used are states, HHS and National level (US states are grouped
into 10 HHS regions by CDC). (5) FB-Survey provides aggregated anonymized daily indicator
for the prevalence of Covid-19 symptoms based on online surveys conducted on Facebook (Delphi
Research Group, 2021) from Dec 2020 to Aug 2021 for each state and national level. We use the
state-level values to find aggregates at HHS levels.

Tourism-L, Labour and Wiki are constructed by collecting values of leaf nodes and deriving the
values of time-series of other nodes of the hierarchy. Hence, they are strongly consistent with zero CE
(Definition 1). The values of each node of hierarchy in case of Flu-Symptoms and FB-Survey
are directly collected or measured. For example, the values of Flu-Symptoms dataset are collected
from public health agencies at the state, HHS and national levels and aggregated by CDC. Due to
factors like reporting discrepancies and noise they contain values in time-series that may deviate
from the given hierarchical relations (Chakraborty et al., 2018). Therefore, these datasets are weakly
consistent with significant CE (Table 2).

Evaluation metrics For a ground truth y(t), let the predicted probability distribution be p̂y(t)

with mean ŷ(t). Also let F̂y(t) be the CDF. We evaluate our model and baselines using carefully
chosen metrics that are widely used in literature to measure accuracy and calibration. 1. Mean
Absolute Percentage Error (MAPE) is a commonly used score for point-predictions calculated as
MAPE = 1

N

∑tN
t=t1

|y
(t)−ŷ(t)

y(t) | 3. Log Score (LS) is a standard score used to measure accuracy of
probabilistic forecasts in epidemiology (Reich et al., 2019). LS measures the negative log likelihood
of a fixed size interval around the ground truth under the predictive distribution: LS(p̂y, y) =

−
∫ y+L

y−L
log p̂y(ŷ)dŷ. Similar to (Reich et al., 2019), log likelihood of a forecast is capped at -10. 4.

Calibration Score (CS): To measure calibration of forecasts, we use the calibration score defined
in Section 2. 2. Cumulative Ranked Probability Score (CRPS) is a widely used standard metric
for evaluation of probabilistic forecasts that measures both accuracy and calibration. Given ground
truth y and the predicted probability distribution p̂y, let F̂y be the CDF. Then, CRPS is defined
as: CRPS(F̂y, y) =

∫∞
−∞(F̂y(ŷ)− 1{ŷ > y})2dŷ. We approximate F̂y as a Gaussian distribution

formed from samples of model to derive CRPS. 5. Distributional Coherency Error (DCE): We
calculate the Distributional Coherency Error (Equation 11) on output forecast distributions during
inference to study how PROFHIT and baselines leverage SDCR to learn from hierarchical relations
across datasets of varying consistency and trade-off coherency, calibration and accuracy, especially
for weakly consistent data (Section 4.2 Q3).
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4.2 RESULTS

We comprehensively evaluate PROFHIT through the following questions: Q1: Does PROFHIT
predict accurate calibrated forecasts? Q2: Does PROFHIT provide consistently better performance
across all levels of the hierarchy? Q3: Does SDCR help PROFHIT outperform baselines on both
strongly and weakly consistent datasets? Q4: How does improved calibration affect robustness of
PROFHIT’s forecasts?

Table 3: Average scores (across 5 runs) across all levels of hierarchy for all baselines, PROFHIT and
its variants. PROFHIT provides 54% better accuracy and 32% better calibration.

Tourism-L Labour Wiki
Models/Data MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE

DEEPAR 3.12 0.17 0.61 0.19 0.32 18.27 0.045 0.75 0.25 0.34 16.52 0.232 0.83 0.27 0.26
TSFNP 2.28 0.21 1.19 0.14 0.39 14.52 0.071 1.41 0.21 0.22 15.63 0.287 0.86 0.21 0.39

TSFNP-MinT 1.17 0.5 0.58 0.15 0.24 16.46 0.045 4.12 0.26 0.12 13.79 0.243 0.78 0.18 0.18
TSFNP-ERM 1.42 0.56 0.53 0.11 0.18 13.57 0.045 3.63 0.23 0.19 17.74 0.221 0.74 0.19 0.21

HIERE2E 1.67 0.15 0.38 0.17 0.21 12.53 0.034 0.51 0.25 0.15 17.05 0.211 0.46 0.23 0.12
SHARQ 1.63 0.17 0.41 0.12 0.13 14.21 0.054 0.47 0.18 0.09 16.13 0.241 0.52 0.16 0.16

PEMBU-MINT 1.77 0.15 0.46 0.24 0.03 13.55 0.039 0.56 0.22 0.11 14.66 0.279 0.58 0.21 0.05
PEMBU-ERM 1.63 0.16 0.43 0.21 0.02 13.19 0.042 0.61 0.25 0.03 15.79 0.268 0.54 0.18 0.02

PROFHIT 1.47 0.12 0.33 0.09 0.02 12.79 0.026 0.21 0.14 0.05 12.47 0.184 0.35 0.13 0.04
P-FINETUNE 1.52 0.16 0.39 0.14 0.25 14.36 0.031 0.36 0.21 0.13 13.22 0.216 0.39 0.21 0.08
P-GLOBAL 1.47 0.13 0.42 0.06 0.01 12.17 0.027 0.31 0.16 0.04 12.37 0.185 0.34 0.16 0.04
P-DEEPAR 1.45 0.13 0.52 0.12 0.04 13.44 0.029 0.58 0.17 0.08 12.89 0.201 0.48 0.24 0.07

P-NOCOHERENT 1.82 0.18 0.37 0.21 0.35 16.97 0.043 0.45 0.26 0.17 17.44 0.227 0.47 0.35 0.14
Flu-Symptoms FB-Survey

Models/Data MAPE% CRPS LS CS DCE MAPE% CRPS LS CS DCE
DEEPAR 31.27 0.610 3.25 0.065 0.31 17.39 7.32 5.32 0.17 0.29
TSFNP 12.8 0.460 0.93 0.034 0.42 15.35 5.53 7.84 0.11 0.37

TSFNP-MINT 10.56 0.630 3.18 0.082 0.18 12.24 5.39 6.35 0.14 0.24
TSFNP-ERM 11.85 0.620 2.75 0.075 0.12 13.16 6.14 4.23 0.12 0.19

HIERE2E 15.67 0.420 0.81 0.12 0.32 12.63 4.12 1.13 0.19 0.26
SHARQ 18.34 0.470 1.42 0.071 0.21 12.82 3.12 0.81 0.15 0.19

PEMBU-MinT 15.44 0.621 2.55 0.18 0.05 13.75 5.78 4.22 0.22 0.07
PEMBU-ERM 17.57 0.688 2.74 0.15 0.07 12.99 6.31 5.18 0.18 0.1

PROFHIT 8.85 0.250 0.28 0.042 0.14 9.67 1.43 0.45 0.08 0.16
P-FINETUNE 10.44 0.240 0.3 0.039 0.17 9.83 1.18 0.72 0.07 0.19
P-GLOBAL 14.27 0.350 0.47 0.086 0.09 12.11 2.64 1.39 0.14 0.11
P-DEEPAR 17.43 0.361 0.54 0.083 0.15 11.89 2.13 0.75 0.18 0.15

P-NOCOHERENT 9.17 0.248 0.36 0.16 0.22 13.99 1.17 0.84 0.24 0.22

Accuracy and calibration performance (Q1) We evaluate all baselines, PROFHIT and its variants
for all the datasets over 5 independent runs. The average scores across all levels hierarchy are shown
in Tables 3. PROFHIT significantly outperforms all baselines in MAPE score by 13% and LS
by 14%-550%. In terms of calibration, we observe an average of 32% lower CS scores. Finally,
PROFHIT shows 41-88% better CRPS scores. Thus, PROFHIT adapts well to varied kinds of
datasets and outperforms all baselines in both accuracy and calibration. Performing t-test with
significance α = 1% we find that all the CRPS, LS and CS scores are statistically significant
compared to baselines. On comparing the performance of PROFHIT with the variants, PROFHIT is
comparable to or better than the best-performing variant in most benchmarks. This shows that all the
important model design choices (multi-task parameter sharing, distributional coherency, and joint
training on both losses) of PROFHIT are important for its consistently superior performance.

Performance across the hierarchy (Q2) Next, we look at the performance of all models across
each level of hierarchy. We compared the performance of PROFHIT with best performing baselines
HIERE2E and SHARQ for all datasets. PROFHIT significantly outperforms the best baselines. At
the leaf nodes, which contain most data, PROFHIT outperforms best baselines by 7% in Wiki to
100% in FB-Survey. For the top node of time-series the performance improvement is largest at 35%
(Wiki) to 962% (FB-Survey). Similarly, for calibration score, we observe an average improvement
of 12% for top nodes and 18% for bottom nodes. We show detailed results in Appendix. PROFHIT
also performs better than the variants in most higher levels of hierarchy and its performance is
comparable to the best variant (P-FINETUNE and P-GLOBAL) at leaf nodes as well. P-NOCOHERENT
performs most poorly compared to all variant and PROFHIT, proving that SDCR is a very important
contributor for consistent performance across the hierarchy in all datasets.

SDCR leads to consistently better performance across varying data consistency (Q3) As
discussed in Section 4.2, we evaluated on both strong and weakly consistent datasets. Since most
previous state-of-the-art models assume datasets to be strongly consistent, deviations from this
assumptions can cause under-performance when used with weakly consistent datasets. This is
evidenced in Table 3 where most of the baselines explicitly optimize for hierarchical coherency
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as a hard constraint on the forecasts. For example, PEMBU’s forecasts have better distributional
coherency error (DCE) for weakly consistent datasets. However, they perform much worse in both
accuracy and calibration than even TSFNP, which does not even leverage hierarchical relations. Since
we use SDCR as soft learning constraint, PROFHIT can learn to trade-off coherency for accuracy and
calibration. Therefore, PROFHIT provides 93% better CRPS and 33% better calibration scores over
best HTSF baselines. These improvements are more pronounced at non-leaf nodes of hierarchy where
PROFHIT improves by 2.8 times for Flu-Symptoms and 9.2 times for FB-Survey. In case of
strongly consistent datasets, PROFHIT provides 54% better CRPS and 23% better calibration scores
while having comparable DCE to PEMBU. We observed that soft coherency regularization and
parameter sharing across nodes are vital for PROFHIT’s adaptability to varying levels of consistency.
We provide detailed analysis of these observations in the Appendix.
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Figure 3: % increase in CRPS for all models with increase in proportion of missing data.

Calibration enables robustness (Q4) Accurate and well-calibrated models that can effectively
leverage knowledge of the hierarchy can intuitively allow models to better adapt to noise/missing data.
Hence we introduce the task of Hierarchical Forecasting with Missing Values to study the robustness
of models when there are missing values in time-series. We model a situation that is encountered in
many real-world applications such as Epidemic Forecasting where the past few values of time-series
are missing due to various factors like data reporting delays (Chakraborty et al., 2018).

Formally, at time-period t, we are given full data up to time t− ρ. We set ρ = 5 since it is the average
forecast horizon of all datasets. For sequence values in time period between t− ρ and t, we randomly
remove k% of these values across all time-series. The models are trained on complete time-series
dataset till time t′ = t− ρ. Models’ predictions are then used to fill in missing values for time t′ to t.
Finally, we input the filled time-series to generate forecasts for the future time-steps.

We measure relative decrease in performance with increase in percentage of missing data k (Figures
3). We observe that PROFHIT’s performance decrease with a larger fraction of missing values is
much slower compared to other baselines. Even at k = 10%, PROFHIT’s performance decreases
by 10.45-26.8% compared to other baselines that typically decrease by over 70%. Thus, PROFHIT
effectively uses coherency to generate robust predictions on strong and weakly consistent datasets.

5 CONCLUSION AND DISCUSSION

We introduced PROFHIT, a probabilistic hierarchical forecasting model that produces accurate and
well-calibrated forecasts using soft distributional coherency regularization (SDCR) which enables
adaptablity to datasets with varying levels of hierarchical consistency. We evaluated PROFHIT
against previous state-of-the-art hierarchical forecasting baselines over wide variety of datasets and
observed 41-88% improvement average improvement in accuracy and 23-33% better calibration.
PROFHIT provided best performance across the entire hierarchy as well as significantly outperformed
other models in providing robust predictions when it encountered missing data where other baselines’
performance degraded by over 70%.

Our work opens new possibilities like extending to various domains where time-series values across
the hierarchy may not be continuous real numbers, can not be modelled as Gaussian distributions
or may have different sampling rates. We can also explore modeling more complex structures
between time-series with different aggregation relations. PROFHIT can also be used to study
anomaly detection in time-series, especially in time-periods where there are deviations from assumed
coherency relations. Similar to Kamarthi et al. (2022), we can extend our work to include multiple
sources of features and modalities of data both specific to each time-series and global to the entire
hierarchy.
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Appendix for PROFHIT: Probabilistic Robust Forecasting for
Hierarchical Time-series

A ADDITIONAL RELATED WORK

Probabilistic time-series forecasting Classical probabilistic time-series forecasting methods include
exponential smoothing and ARIMA (Hyndman & Athanasopoulos, 2018). They are simple but focus
on univariate time-series and model each time-series sequence independently. Recently, deep learning
based methods have been successfully applied in this area. DeepVAR (Salinas et al., 2020) trains an
auto-regressive recurrent network model on a large number of related time series to directly output
the mean and variance parameters of the forecast distribution. Other works are inspired from the
space-state models and explicitly model the transition and emission components with deep learning
modules such as deep Markov models (Krishnan et al., 2017) and deep state space models (Li et al.,
2021; Rangapuram et al., 2018) Recently, EpiFNP (Kamarthi et al., 2021) has achieved state-of-art
performance in epidemic forecasting. It learns the stochastic correlations between input data and
datapoints to model a flexible non-parametric distribution for univariate sequences.

Hierarchical time-series forecasting Classical works on hierarchical time-series forecasting used a
two-step approach (Hyndman et al., 2011; Hyndman & Athanasopoulos, 2018) and focus on point
predictions. They first forecast for time-series only at a single level of the hierarchy and then derive
the forecasts for other nodes using the hierarchical relations.

Recent methods like MINT and ERM are post-processing steps applied on the set of forecasts
at all levels of hierarchy. MINT (Wickramasuriya et al., 2019; Wickramasuriya, 2021) assumes
that the base level forecasts are uncorrelated and unbiased and solves an optimization problem to
minimize the variance of forecast errors of past predictions. The unbiased assumption is relaxed in
ERM (Ben Taieb & Koo, 2019). Corani et al. (2020) and Novak et al. (2017) uses a fully Bayesian
bottom-up post-processing approach using raw forecasts from full hierarchy. Another line of works
projects the raw forecasts of all time-series into a subspace of coherent forecasts. (Erven & Cugliari,
2015) use an iterative Game-theoretic approach of minimizing forecast error and projection error.
Taieb et al. (2017) uses copula method to refine raw forecasts to be distributionally coherent as a
post-processing step. Recent neural methods perform end-to-end learning that enables the model
to leverage hierarchical relations while forecasting. Rangapuram et al. (2021) use a deep-learning
based end-to-end approach to directly train on the projected forecasts. SHARQ (Han et al., 2021) is
another recent probabilistic deep-learning based method that uses quantile regression and regularizes
for coherency at different quantiles of forecast distribution. However, unlike our approach, these end-
to-end methods do not regularize for coherency over the entire distribution (Distributional Coherency)
but only over fixed quantiles. Most of these methods also are not designed for cases where the
hierarchical constraints are not always consistently followed.

B CODE AND DATASET

We evaluated all models on a system with Intel 64 core Xeon Processor with 128 GB memory
and Nvidia Tesla V100 GPU with 32 GB VRAM. We provide an anonymized repository of our
implementation of PROFHIT along with the datasets used at https://anonymous.4open.
science/r/PROFHiT-6F2F. We will release the code and data publicly after acceptance.

C HYPERPARAMETERS

C.1 DATA PREPROCESSING

Most datasets used in our work assume the aggregation function to be simple summation (i.e, ϕij = 1
for all weights). We first normalize the values of leaf time-series training data to have 0 mean and
variance of 1. Since the aggregation of values at higher levels of the hierarchy can lead to very large
values in time-series, we instead divide each non-leaf time-series by the number of children. Then
the weights of hierarchical relations become ϕij =

1
|Ci| where Ci is the set of all children nodes of

12

https://anonymous.4open.science/r/PROFHiT-6F2F
https://anonymous.4open.science/r/PROFHiT-6F2F


time-series i. For the remaining datasets (Flu-Symptoms, FB-Symptoms) the time-series values are
normalized by default and thus require no extra pre-processing.

C.2 MODEL ARCHITECTURE

The architecture of TSFNP used in PROFHIT is similar to that used in the original implementation
(Kamarthi et al., 2021). The GRU unit contains 60 hidden units and is bi-directional. Thus the local
latent variable is also of dimension 60. NN1 and NN2 are both 2-layered neural networks with the
first layer shared between both. Both layers have 60 hidden units. Finally, NN3 is a three-layer neural
network with the input layer having 180 units (for the concatenated input of three 60 dimensional
vectors) and the last two layers having 60 hidden units. We found that the value of c in Equation 9 is
not very sensitive and usually set it to 5.

Note that we do not explicitly model covariance between every pair of time series (like MINT, ERM)
and use a weighted combination of raw forecast parameters to derive refined forecasts. Therefore the
refinement module complexity (Section 3.2) is O(N2) which is on par with previous methods like
HIERE2E.

C.3 TRAINING AND EVALUATION

Given the training dataset Dt we extract training dataset for each node as the set of prefix sequences
{(y(t1:t2)

i , y
(t2+1)
i ) : 1 ≤ t1 ≤ t2 < t−τ} and train the full model (TSFNP and refinement module).

We tune the hyperparameter using backtesting by validating on window t− τ to t. Finally we train
for entire training set with best hyperparameters.

For each benchmark, we used the validation set to mainly find the optimal batch size and learning
rate. We searched over batch-size of {10, 50, 100, 200} and the optimal learning rate was usually
around 0.001. We also found the optimal λ to be around 0.01 for strongly consistent datasets and
0.001 for weakly consistent datasets. We used early stopping with the patience of 150 epochs to
prevent overfitting. For each independent run of a model, we initialized the random seeds from 0 to 5
for PyTorch and NumPy. We didn’t observe large variations due to randomness for PROFHIT and
all baselines.

During evaluation, we sampled 2000 Monte-Carlo samples of the forecast distribution and used it to
estimate the mean for MAPE. We also used the samples mean and variance to evaluate LS and CS
whereas used ensemble scoring to evaluate CRPS directly from the samples using properscoring
package 3.

D DERIVATION OF LIKELIHOOD ELBO LOSS

The full predictive distribution of PROFHIT from Equation 2 can be further expanded as:

P ({y(t+τ)
i }Ni=1|Dt) =

∫ ( N∏
i=1

P (ui|y(1:t)
i )

)
︸ ︷︷ ︸

Probabilistic Encoder

(
N∏
i=1

P (Ni|{ui}Ni=1)P (zi|Ni)

)
︸ ︷︷ ︸

SDCG

P (z|{ui}Ni=1)︸ ︷︷ ︸
Global Latent variable(

N∏
i=1

P (µ̂i, σ̂i|z, zi,ui)

)
︸ ︷︷ ︸

Raw forecasts

N∏
i=1

P (µi, σi|{µ̂j , σ̂j}Nj=1)P (y
(t+τ)
i |µi, σi)︸ ︷︷ ︸

Refinement Module

d{ui}Ni=1d{zi}Ni=1.

(13)

To minimize the data likelihood P ({y(t+τ)
i }Ni=1|Dt) requires intregration over latent variables

{ui}Ni=1 and zi}Ni=1. We instead perform amortized variational inference on the latent variables
similar to VAE (Kingma & Welling, 2013).

3https://github.com/properscoring/properscoring
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We approximate the posterior of latent variables P ({ui}Ni=1, {zi}Ni=1, {Ni}Ni=1, z|{y
(t+τ)
i }Ni=1) with

a variational distribution Q(ui}Ni=1, zi}Ni=1, {Ni}Ni=1, z|{y
(t+τ)
i }Ni=1) expressed as:

Q({ui}Ni=1, {zi}Ni=1, {Ni}Ni=1, z|{y
(t+τ)
i }Ni=1) =

(
N∏
i=1

P (ui|y(1:t)
i )

)(
N∏
i=1

P (Ni|{ui}Ni=1)P (zi|Ni)

)
(

N∏
i=1

qϕ(zi|y(1:t)
i )

)
P (z|{ui}Ni=1)

(14)

where qϕ is a feed-forward network over GRU embeddings of Probabilistic Neural Encoder that
parameterizes to a gaussain distribution of zi.

The ELBO loss

E
Q({ui,zi,Ni}N

i=1,z|{y
(t+τ)
i }N

i=1)
[logP ({y(t+τ)

i }Ni=1|{ui, zi, Ni}Ni=1, z)

+ logP ({ui}Ni=1, {zi}Ni=1, {Ni}Ni=1, z|{y
(t+τ)
i }Ni=1)− logQ({ui}Ni=1, {zi}Ni=1, {Ni}Ni=1, z|{y

(t+τ)
i }Ni=1)]
(15)

get simplified to Equation 10 by cancelling of similar terms between variational and true distribution
of latent variables.

E DERIVATION OF DISTRIBUTIONAL COHERENCY ERROR

The Distributional Coherency Error (Equation 11) can be exactly expressed as:

L2 =

N∑
i=1

σ2
i +

(
µi −

∑
j∈Ci

ϕijµj

)2
2
∑

j∈Ci
ϕ2
ijσ

2
j

+

N∑
i=1

∑
j∈Ci

ϕ2
ijσ

2
j +

(
µi −

∑
j∈Ci

ϕijµj

)2
2σ2

i

. (16)

To derive Equation 12, we use the following well-known result for JSD of two Gaussian Distributions
(Nielsen, 2019):

Lemma 1. Given two univariate Normal distributions P1 = N1(µ1, σ1) and P2 = N2(µ2, σ2), the
JSD is

JSD(P1, P2) =
1

2

[
σ2
1 + (µ1 − µ2)

2

2σ2
2

+
σ2
2 + (µ1 − µ2)

2

2σ2
1

− 1

]
(17)

Consider each JSD term

JSD

P (yt+τ
i |µ̂i, σ̂i), P

∑
j∈Ci

ϕijy
t+τ
j |{|µ̂j , σ̂j}j∈Ci

+ 1

of the summation in Equation 11. Note that

P (yt+τ
i |µ̂i, σ̂i) = N (µi, σi) (18)

and P (
∑

j∈Ci
ϕijy

t+τ
j |{|µ̂j , σ̂j}j∈Ci)) is weighted sum of Gaussian variables {N (µj , σj)}j∈Ci .

Therefore,

P

∑
j∈Ci

ϕijy
t+τ
j |{µ̂j , σ̂j}j∈Ci

 = N

∑
j∈Ci

ϕijµj ,

√∑
j∈Ci

ϕ2
ijσ

2
j

 . (19)

Using Lemma 1 along with Equations 18,19 we get the desired result in Equation 16.
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Table 4: Average deviation of observed values in time-series from hierarchical relations.

Data Flu FB-Survey Tourism-L Labour Wiki
Level 1 0.043 1.27 0 0 0
Level 2 3.41 2.83 0 0 0

Average across hierarchy 3.37 2.44 0 0 0

F CONSISTENCY OF DATASETS

We noted in Section 4.2 Q4 that Flu-Symptoms and FB-Survey are weakly consistent datasets
since they do not strictly follow the aggregation relations HT unlike strongly consistent datasets
Tourism-L, Labour, Wiki.

We empirically observe this by measuring Consistency errors of all datasets (Definition 1) for entire
hierarchy and at each level of the hierarchy. The results are in Table 4. As expected there is no
deviations for strongly consistent datasets where as there is significant deviation in weakly consistent
data.
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G PERFORMANCE ACROSS EACH LEVEL OF HIERARCHY

Table 5: Average CRPS scores at each level of hierarchy. PROFHIT significantly outperforms best
baselines across all benchmarks. Note that P-Finetune’s performance decreases at higher levels of
hierarchy compared to other variants whereas P-Global’s performance is worse at lower levels.

Models/Data Tourism-L Labour
Hierarchy Levels 1 2(Travel) 3(Travel) 4(Travel) 5(Travel) 2(Geo) 3(Geo) 4(Geo) 1 2 3 4

HIERE2E 0.081 0.103 0.141 0.205 0.272 0.103 0.136 0.175 0.031 0.034 0.034 0.038
SHARQ 0.093 0.131 0.163 0.218 0.295 0.131 0.138 0.152 0.097 0.124 0.133 0.149

PEMBU-MINT 0.112 0.121 0.139 0.203 0.185 0.116 0.128 0.167 0.063 0.033 0.042 0.085
PROFHIT (Ours) 0.051 0.095 0.12 0.17 0.264 0.083 0.106 0.142 0.023 0.019 0.023 0.029

P-FINETUNE 0.072 0.136 0.083 0.16 0.278 0.124 0.124 0.158 0.024 0.022 0.026 0.035
P-GLOBAL 0.093 0.113 0.122 0.13 0.261 0.093 0.113 0.147 0.021 0.027 0.028 0.027
P-DEEPAR 0.075 0.097 0.136 0.183 0.281 0.095 0.122 0.159 0.025 0.027 0.031 0.033

P-NOCOHERENT 0.086 0.142 0.107 0.18 0.265 0.132 0.138 0.147 0.027 0.031 0.029 0.026
Models/Data Wiki Flu-Symptoms FB-Survey

Hierarchy Levels 1 2 3 4 5 1 2 3 1 2 3
HIERE2E 0.042 0.105 0.229 0.272 0.372 0.272 0.421 0.458 4.14 4.04 4.13
SHARQ 0.039 0.136 0.235 0.291 0.378 0.258 0.376 0.381 3.08 3.21 3.13

PEMBU-MINT 0.031 0.171 0.241 0.385 0.433 0.337 0.567 0.773 4.82 5.53 6.15
PROFHIT (Ours) 0.031 0.074 0.133 0.216 0.252 0.216 0.133 0.338 0.32 0.43 1.89

P-FINETUNE 0.034 0.086 0.153 0.232 0.275 0.222 0.175 0.293 0.43 0.65 1.83
P-GLOBAL 0.048 0.103 0.187 0.265 0.186 0.269 0.213 0.376 0.37 0.37 2.11
P-DEEPAR 0.035 0.094 0.193 0.251 0.285 0.242 0.217 0.328 0.44 0.61 2.01

P-NOCOHERENT 0.49 0.117 0.93 0.258 0.167 0.227 0.193 0.381 0.42 0.36 2.18

Table 6: Average CS scores at each level of hierarchy. PROFHIT significantly outperforms best
baselines across all benchmarks.

Models/Data Tourism-L Labour
Hierarchy Levels 1 2 3 4 5 2(Geo) 3(Geo) 4(Geo) 1 2 3 4

HIERE2E 0.15 0.18 0.17 0.21 0.24 0.19 0.18 0.22 0.21 0.23 0.22 0.27
SHARQ 0.09 0.08 0.12 0.11 0.14 0.11 0.12 0.16 0.16 0.16 0.15 0.21

PEMBU-MINT 0.14 0.21 0.22 0.21 0.26 0.18 0.23 0.25 0.21 0.22 0.24 0.21
PROFHIT 0.05 0.06 0.04 0.06 0.11 0.06 0.06 0.1 0.17 0.11 0.15 0.16

P-FINETUNE 0.09 0.12 0.13 0.17 0.13 0.11 0.13 0.15 0.24 0.21 0.24 0.22
P-GLOBAL 0.06 0.04 0.03 0.08 0.05 0.05 0.03 0.04 0.14 0.18 0.19 0.15
P-DEEPAR 0.11 0.09 0.09 0.14 0.13 0.15 0.14 0.13 0.14 0.19 0.17 0.14

P-NOCOHERENT 0.18 0.19 0.17 0.19 0.22 0.18 0.19 0.24 0.24 0.22 0.25 0.31
Models/Data Wiki Flu-Symptoms FB-Survey

Hierarchy Levels 1 2 3 4 5 1 2 3 1 2 3
HIERE2E 0.15 0.21 0.26 0.22 0.24 0.11 0.13 0.11 0.21 0.19 0.18
SHARQ 0.13 0.14 0.14 0.17 0.15 0.58 0.052 0.085 0.16 0.14 0.15

PEMBU-MINT 0.12 0.11 0.12 0.13 0.14 0.17 0.22 0.17 0.2 0.19 0.16
PROFHIT 0.11 0.15 0.12 0.14 0.11 0.031 0.044 0.052 0.09 0.07 0.06

P-FINETUNE 0.19 0.18 0.23 0.22 0.24 0.033 0.031 0.042 0.05 0.06 0.09
P-GLOBAL 0.16 0.15 0.16 0.17 0.15 0.065 0.072 0.096 0.11 0.13 0.17
P-DEEPAR 0.21 0.24 0.26 0.22 0.23 0.064 0.077 0.083 0.15 0.19 0.17

P-NOCOHERENT 0.29 0.28 0.35 0.33 0.37 0.22 0.18 0.14 0.22 0.25 0.21
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H DETAILS ON DATA IMPUTATION EXPERIMENT

Motivation: During real-time forecasting in real-world applications such as Epidemic or Sales
forecasting, we encounter situations where the past few values of time-series are missing or unreliable
for some of the nodes. This is observed specifically at lower levels, due to discrepancies or delays
during reporting and other factors (Chakraborty et al., 2018). Therefore, one approach to performing
forecasting in such a situation is first by imputation of missing values based on past data and then
using the predicted missing values as part of the input for forecasting.

Task: To simulate such scenarios of missing data and evaluate the robustness of PROFHIT and all
baselines, we design a task called Hierarchical Forecasting with Missing Values (HFMV). Formally,
at time-period t, we are given full data for up to time t− ρ. We show results here for ρ = 5 which
is the average forecast horizon of all tasks. For sequence values in time period between t− ρ and
t, we randomly remove k% of these values across all time-series. The goal of HFMV task is to use
the given partial dataset from t− ρ to t as input along with complete dataset for time-period before
t− ρ to predict future values at t+ τ . Therefore, success in HFMV implies that models are robust to
missing data from recent past by effectively leveraging hierarchical relations.

Setup: We first train PROFHIT and baselines on complete dataset till time t′ and then fill in
the missing values of input sequence using the trained model. Using the predicted missing values,
we again forecast the output distribution. For each baseline and PROFHIT, we perform multiple
iterations of Monte-Carlo sampling for missing values followed by forecasting future values to
generate the forecast distribution. We estimate the evaluation scores using sample forecasts from all
sampling iterations.

We compared the performance of PROFHIT with best performing baselines HIERE2E and SHARQ
for each level of hierarchy of all datasets. PROFHIT significantly outperforms the best baselines
as well as the variants. At the leaf nodes, which contains most data, PROFHIT outperforms best
baselines by 7% in Wiki to 100% in FB-Survey. For the top node of time-series the performance
improvement is largest at 35% (Wiki) to 962% (FB-Survey). We show detailed results in Table 5

2% 5% 7% 10%
Data missing

0

10

20

30

40

50

60

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-Global
P-DeepVAR
P-NoCoherent
PROFHiT

(a) Tourism-L

2% 5% 7% 10%
Data missing

0

10

20

30

40

50

60

70

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-Global
P-DeepVAR
P-NoCoherent
PROFHiT

(b) Labour

2% 5% 7% 10%
Data missing

10

20

30

40

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-Global
P-DeepVAR
P-NoCoherent
PROFHiT

(c) Wiki

2% 5% 7% 10%
Data missing

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-Global
P-DeepVAR
P-NoCoherent
PROFHiT

(d) Flu-Symptoms

2% 5% 7% 10%
Data missing

5

10

15

20

25

30

35

%
 C

RP
S 

in
cr

ea
se

P-FineTune
P-Global
P-DeepVAR
P-NoCoherent
PROFHiT

(e) FB-Survey
Figure 4: % increase in CRPS for PROFHIT and variants with increase in proportion of missing
data.

Robustness of PROFHIT variants: We compare relative performance decrease with increase
in percentage of missing data for PROFHIT and its variants in Figure 4. We observe that P-
NOCOHERENT’s performance deteriorates very rapidly in most benchmarks, showing the importance
of SDCR for learning provides robust calibrated coherent forecasts. The second worse-performing
variant across all datasets is P-FINETUNE which also relies less on the hierarchical relations due to
fine-tuning of parameters for specific time-series. Finally, we observe that PROFHIT and P-GLOBAL
suffer the least degradation in performance since both these models prioritize integrating hierarchical
coherency information which enables them to provide better estimates for imputed data for missing
input and use them to generate more accurate and calibrated forecasts.

I ADAPTING TO VARYING DATASET CONSISTENCY

Observation 1. The average improvement in performance of PROFHIT over best HTSF baselines
is 72% higher for weakly consistent datasets over its improvement for strongly consistent datasets.

17



Since most previous state-of-art models assume datasets to be strongly consistent, deviations to
this assumptions can cause under-performance when used with weakly consistent datasets. This
is evidenced in Table 3 where some of the baselines like MINT and ERM that explicitly optimize
for hierarchical coherency perform worse than even TSFNP, which does not leverage hierarchical
relations, in Flu-Symptoms and FB-Survey. Overall, we found that for weakly consistent
datasets, PROFHIT provides a much larger 93% average improvement in CRPS scores over best
HTSF baselines compared to 54% average improvement for strongly consistent datasets. These
improvements are more pronounced at non-leaf nodes of hierarchy where PROFHIT improves by 2.8
times for Flu-Symptoms and 9.2 times for FB-Survey. This is because HTSF baselines which
assume strong consistency do not adapt to noise at leaf nodes that compound to errors at higher levels
of hierarchy.
Observation 2. PROFHIT’s approach to parameter sharing and soft coherency regularization helps
adapt to varying hierarchical consistency.

We observe that that best performing variant for strongly consistent datasets in P-GLOBAL which
is trained with both likelihood loss and SDCR (Table 3). But its performance severely degrades
for weakly consistent datasets since sharing all model parameters across all time-series makes it
inflexible to model patterns and deviations specific to individual nodes. In contrast, P-FINETUNE and
P-NOCOHERENT performs the best among variants for weakly consistent datasets since they train
separate sets of decoder parameters for each node. But they perform poorly for strongly consistent
datasets since they don’t leverage Distributional Coherency effectively. PROFHIT combines the
flexible parameter learning of P-FINETUNE and leverage Distributional Coherency to jointly optimize
the parameters like P-GLOBAL providing comparable performance to best variants over all datasets.
Observation 3. PROFHIT’s Refinement module automatically learns to adapt to varying hierarchi-
cal consistency.

Table 7: Average value of γi for all datasets. Note
that weakly coherent datasets have higher γi (de-
pends mode on past data of same time-series)
where as strongly-coherent data have lower γi
(leverages the hierarchical relations).

Consistency Dataset Average value of γi
Strong Tourism-L 0.420 ± 0.096

Labour 0.348 ± 0.091
Wiki 0.313 ± 0.057

Weak Symp 0.759 ± 0.152
Fbsymp 0.789 ± 0.180

The design choices of the refinement module
help PROFHIT to adapt to datasets of different
levels of hierarchical consistency. Specifically,
by optimizing for values of {γi}Ni=1 of Equation
8, PROFHIT aims to learn a good trade-off be-
tween leveraging prior forecasts for a time-series
and hierarchical relations of forecasts from the
entire hierarchy. We study the learned values
of {γi}Ni=1 of Equation 8 used to derive refined
mean. Note that higher values of γi indicate
larger dependence on raw forecasts of node and
smaller dependence of forecasts of the entire
hierarchy. We plot the average values of γi for each of the datasets in Table 7. We observe that
strongly consistent datasets have lower values of γi indicating that PROFHIT’s refinement module
automatically learns to strongly leverage the hierarchy for these datasets compared to weakly coherent
datasets.

Table 8: Std. dev of CRPS and LS (accros 5 runs) across all levels for all baselines, PROFHIT and
its variants. PROFHIT performs significantly better than all baselines as noted using t-test with
α = 1%.

Models/Data Tourism-L Labour Wiki Flu-Symptoms FB-Survey
CRPS LS CRPS LS CRPS LS CRPS LS CRPS LS

Baselines DEEPAR 0.011 0.040 0.004 0.038 0.002 0.044 0.018 0.098 0.482 0.434
TSFNP 0.006 0.021 0.003 0.018 0.015 0.069 0.019 0.004 0.251 0.217
MINT 0.005 0.019 0.002 0.121 0.018 0.006 0.014 0.111 0.468 0.213
ERM 0.044 0.005 0.002 0.110 0.016 0.069 0.018 0.133 0.148 0.209

HIERE2E 0.001 0.038 0.003 0.049 0.019 0.018 0.005 0.051 0.325 0.109
SHARQ 0.000 0.011 0.001 0.046 0.017 0.007 0.002 0.116 0.133 0.048

PROFHIT (Ours) 0.001 0.017 0.001 0.003 0.001 0.030 0.005 0.009 0.040 0.008
Ablation P-FINETUNE 0.016 0.031 0.003 0.003 0.016 0.014 0.001 0.006 0.090 0.004

P-GLOBAL 0.012 0.033 0.000 0.013 0.002 0.001 0.033 0.024 0.248 0.119
P-DEEPAR 0.006 0.026 0.001 0.028 0.005 0.043 0.035 0.030 0.103 0.065

P-NOCOHERENT 0.005 0.012 0.001 0.009 0.015 0.043 0.012 0.025 0.110 0.053
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