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ABSTRACT

Despite theoretical guarantees of existing dynamic pricing (DP) methods, their
strong model assumptions may not reflect real-world conditions and are often
unverifiable. This poses major challenges in practice since the performance of an
algorithm may significantly degrade if the assumptions are not satisfied. Moreover,
many DP algorithms show unfavorable empirical performance due to the lack of
data efficiency. To address these challenges, we design a practical contextual DP
algorithm that utilizes regression oracles. Our proposed algorithm assumes only
Lipschitz continuity on the true conditional probability of purchase. We prove
O(T 3 Regret r(T) 3) regret upper bound where 7 is the horizon and Regret r(T)
is the regret of the oracle. The bound is nearly minimax optimal in the canonical
case of finite function class, and our analysis generically applies to other function
approximators including neural networks. To the best of our knowledge, our
work is the first algorithm to utilize the powerful generalization capability of
neural networks with provable guarantees in dynamic pricing literature. Extensive
numerical experiments show that our algorithm outperforms existing state-of-
the-art dynamic pricing algorithms in various settings, which demonstrates both
provable efficiency and practicality.

1 INTRODUCTION

The contextual dynamic pricing (DP) is an online decision making and learning task where the seller
sets prices for products based on contexts containing customer characteristics or product information.
The seller tries to maximize the revenue by balancing between exploration and exploitation. In
the widely studied customer valuation model setting, the binary choice of customer purchase y; is
associated with market valuation v, to given context x,; if the price p; set by the seller is cheaper
than v, the seller receives y, = 1 (purchase), otherwise y; = 0 (non-purchase). The seller’s goal
is to maximize the revenue E[p.y: | ¢, p:] = p:P(v¢ > pt). For the customer valuation vy, the
existing literature have considered various structures including linear (Amin et al.,2014;[Javanmard &
Nazerzadeh, [2019; Fan et al., 2022} |Luo et al.| [2022), log-linear (Shah et al.,|2019)), and proportional
hazard model (Choi et al.,[2023). When the noise distribution of the valuation, denoted by Fp, is
assumed to be known (Javanmard & Nazerzadeh, |2019; |Cohen et al.| [2020; Xu & Wang, [2021)), the
algorithms proposed under such a setting are considered parametric. In contrast, semi-parametric
algorithms (Shah et al.; 2019; |[Fan et al., |2022; [Luo et al.| 2022} |Xu & Wang, |2022; |(Choi et al.| [2023)
operate with unknown nonparametric F{y. The regret analysis of both parametric and semi-parametric
methods often heavily rely on additional assumptions including log-concavity of Fj, smoothness of
the revenue function, and stochastic conditions on contexts.

For this rigorous sequential decision-making problem, which also has significant practical impact, we
pose the following fundamental question:

Question: Is there a practical contextual dynamic pricing method that works well across various
instances while providing provable guarantees?

To the best of our knowledge (and as many practitioners would agree), there has not been a single
method that can confidently be said to perform robustly across various domains. As evident in
the numerical experiments in Section [6] existing DP methods often fall short in terms of practical
performance despite having provable guarantees. This contrasts sharply with the field of contextual
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bandits. Although the two classes of problems appear similar, the practical effectiveness of contextual
DP is still far from that of contextual bandits, where both provably efficient and practically effective
methods are widely used (e.g., UCB (Li et al., | 2010; |Abbasi- Yadkori et al.,|2011), TS (Chapelle & Li,
2011;|Agrawal & Goyal, 2013)), and IGW (Foster & Rakhlin, [2020)). Where do these discrepancies
come from?

The reasons why the empirical performances of many of the DP methods with provable guarantees
lack practical effectiveness are as follows: (i) Existing DP algorithms with provable guarantees do not
utilize powerful function approximations such as neural networks, which may significantly improve
practical performance. They are frequently restricted to strong assumptions about model or context
distributions (Javanmard & Nazerzadeh| 2019;|Fan et al.,[2022)). However, these assumptions may
not be reflective of real-world conditions and, moreover, are often unverifiable in practical scenarios.
The discrepancy between theoretical assumptions and practice can lead to significant performance
degradation when these assumptions fail to hold true. This unreliable binary outcome—where
algorithms perform well under ideal conditions but falter otherwise—poses a substantial challenge
from a practitioner’s perspective. (ii) Even when assumptions are satisfied, many of the existing
DP methods still suffer from degradation in practical performance due to a lack of data efficiency.
This is in fact the aspect that makes many contextual DP algorithm not as robust as contextual
bandit algorithms. Many DP algorithms are based on epoch-wise estimation strategies (Javanmard &
Nazerzadeh| 2019; [Fan et al., 2022 [Luo et al., 2022} |Choi et al.,[2023)), where only at most half of the
accumulated data can be utilized in any given epoch, throwing away at least half of the data. Moreover,
they rely on exploration strategies such as epoch-wise explore-then-commit (Fan et al., 2022; Luo
et al., 2022)) or e-greedy (Choi et al.| [2023)) (or some methods even never explore (Javanmard &
Nazerzadeh) 2019)). This may lead to inefficient exploration since their epoch-wise exploration
strategies are not fully adaptive to past history.

In this work, we propose DP-IGW (Dynamic Pricing with Inverse Gap Weighting), a practical
dynamic pricing algorithm that leverages regression oracles including neural regression oracles, with
provable guarantees. Our method applies to more general problem settings than existing approaches
without sacrificing performance for theoretical rigor. We demonstrate that our algorithm significantly
outperforms existing methods across a range of environments, including both simulation and real-
world data, as demonstrated in Section[6] A key factor in its empirical success is the use of flexible
regression oracles, such as neural networks, enabling general function approximation in diverse
scenarios. Our analysis is based on the generic binary choice model instead of assuming customer
valuation. In this model, the probability of purchase is a Lipschitz function of context and price:
ye | @, pr ~ Ber(f*(x,pt)) for some f*(-,-). This minimal assumption of Lipschitz continuity
captures complex real-world demand structures, with the customer valuation model as a special case.
Our DP-IGW algorithm explores the price space using inverse gap weighting (IGW), a state-of-the-art
exploration technique in contextual bandits due to its flexibility and minimal assumptions. (Abe &
Long, 1999; Foster & Rakhlin, 2020; [Foster & Krishnamurthyl [2021; Zhu & Mineiro, 2022). To
the best of our knowledge, our work is the first adaptation of the IGW technique to dynamic pricing
problems. The key difference between our algorithm and the IGW-based contextual bandit algorithms
is that we separate the regression target (purchase) and exploration target (revenue), which facilitates
efficient learning and exploration simultaneously in the DP setting. This efficiency, combined with
the model flexibility, leads to remarkable empirical performance in diverse settings.

Our contributions are summarized as follows:

* We design DP-IGW, a contextual dynamic pricing algorithm operating under the generic bi-
nary choice model. Our algorithm outperforms the existing methods on almost all instances,
often by significant margins— even in the instances where the assumptions of the existing
methods are satisfied to their advantage. To our knowledge, our set of experiments in
Section [6] present the most extensive and comprehensive evaluations so far in the contextual
DP literature. Thus, our proposed algorithm achieves the best practicality among dynamic
pricing algorithms with provable guarantees.

* Given a regression oracle with bounded regret Regrety(7'), the algorithm guarantees
O(T'% Regret r(T) 3) regret (Theorem , with a minimal assumption of Lipschitz conti-
nuity and adversarial contexts. Our proposed algorithm and its regret analysis are generic
and applicable to any function approximator with guarantees. For example, we can utilize
a neural network oracle, which makes our work to be the first provably efficient DP algo-
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rithm utilizing neural networks, with O(T'3) regret. The O(T'3 ) rate is sharp compared to
existing regret bounds, even under our relaxed assumptions. Neural networks provide high
expressivity and generalization capability, as our numerical experiments demonstrate.

« For the canonical case of finite function classes, we prove a lower bound (7’3 logé (1FM)
(Theorem [5.5) that matches the upper bound up to logarithmic factors, establishing a nearly
minimax optimal rate.

2 RELATED WORKS

Contextual Dynamic Pricing with Binary Feedback. A popular model in the literature is the
linear valuation model where P(y = 1 | z,p) = 1 — Fy(p — BT x). Some works assume known
Fy (Javanmard & Nazerzadeh, [2019; | Xu & Wang| 2021} (Cohen et al., [2020), estimating only the
model parameter 5. Javanmard & Nazerzadeh| (2019) achieve O(slogT) regret where s is the
number of nonzero elements in 3, assuming that Fj is log-concave, second-order differentiable, and
stochastic contexts. Their algorithm design is epoch-based, which divides the entire time horizon into
multiple clusters of consecutive steps (“epochs”), where the size of epoch is doubled. Within each
epoch, the estimate of [ is fixed to a regularized maximum likelihood estimator using the data of the
preceding epoch. | Xu & Wang|(2021) propose an online Newton step-based algorithm that operates
with adversarial contexts, under strict log-concavity of Fj. |Cohen et al.|(2020) establish (’)(T%d %)
regret with a sub-Gaussian F{y and adversarial contexts. Their algorithm searches for the optimal
price by updating uncertainty sets of Lowner-John ellipsoids. On the other hand, some works assume
different noise models, including zero noise (Amin et al., 2014; Leme & Schneider, |2018}|Liu et al.,
2021) where y; = lgr,,~,,, and constrained adversarial noise in [Krishnamurthy et al.| (2021).

Several semi-parametric DP algorithms assume unknown nonparametric Fy on the linear valuation
model (Fan et al., [2022; |Luo et al., 2022; | Xu & Wangl 2022)). [Fan et al.| (2022) develop an epoch-
based algorithm that estimates $ and F{y each using the least-square and Nadaraya-Watson kernel

regression (Nadaraya, |1964; [Watson, [1964). It achieves @( (Td)m%) assuming that the optimal
price is unique and the Fy is m > 2 times differentiable. |Luo et al.|(2022) propose another epoch-
based algorithm by learning £y by a finite-arm bandit problem. They prove O(Té) regret under
2nd-order smoothness and Lipschitz continuity of Fj. | Xu & Wang|(2022) discretize the price and
parameter space then execute the EXP4 (Auer et al.| 2002} algorithm, which has O(T% +d %T%)
regret bound. Also, they prove (7’3 ) lower bound.

Other different valuation models have been proposed for the semi-parametric DP problem. |Shah
et al. (2019) assume the log-linear model where P(y = 1 | z,p) = 1 — Fy(pexp(—BTz)). They
propose an arm-elimination algorithm on the discretized grids of price-parameter space based on
the confidence bound. They assume that the expected revenue function is smooth, which implies
the uniqueness of the optimal price. |Choi et al.| (2023) assume a proportional hazard model where
Ply=1]=z,p)=(1-F (p))eXp(ﬁT”’) and an epoch-based pricing algorithm with e-greedy strategy
for exploration. They achieve O(T gd) regret assuming Fj is continuously differentiable and an
optimal price exists within the support of the price search domain.

There is a line of work that makes only a Lipschitz continuity assumption to the model. Mao et al.
(2018)) assume Lipschitz valuation and zero noise, where y; = I ¢(,,)>p, and f is Lipschitz. They

propose an algorithm based on confidence sets and prove a minimax optimal O(Tﬁ) regret. The
setting in|Chen & Gallego| (2021 is the closest to ours, as they assume y; | z¢, pr ~ Ber(f(x¢, pt))
where the functions p — pf(z,p) and x — pf(x,p) are Lipschitz. Unlike our setting, they
additionally assume second-order smoothness and unique maxima of expected revenue function.

They achieve O(T 4+ ) minimax regret bound by dynamically maintaining a partition of the context
space while estimating the optimal price for each partition.

Contextual Bandits. As several works have noted (Kleinberg & Leighton, 2003} |Luo et al., 2022;
2023), a DP problem can be naively framed by a bandit problem if we view p; as the action and p;y;
as the reward at step ¢. However, it is challenging to adapt the contextual bandit to the contextual DP
problem in a natural way: (i) Reward p,y,; is modeled indirectly through the conditional distribution
of feedback y; in DP problems, while the reward itself is modeled in bandit problems. (ii) Since the
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action space of p, is continuous, finite-armed bandit algorithms need a discretization of the price
space. Therefore, bandit algorithms may suffer from inefficient learning when merely applied to DP
problems, as we demonstrate in Section[6] In the following part, we review recent works related to
the contextual bandit problem. Lipschitz bandit algorithms (Kleinberg, | 2004} Slivkins}, 2011} |Li et al.|

2019) assume the Lipschitz continuity of the expected reward. Slivkins|(2011) report the Q(T%)
lower bound. In Section[5| we derive a lower bound achieving the same order. The neural bandit
family (Zhou et al., 2020; Zhang et al., 2020; |Ban et al.,2022) adopts neural networks in learning
and/or exploration. [Zhou et al.|(2020) and Zhang et al.|(2020) establish (’)(df ) regret where dis
the effective dimension of the neural tangent kernel (NTK) matrix. If an oblivious adversary can
select the context, then d grows rapidly, leading to linear regret for them (Deb et al., [2024)). |Ban
et al.|(2022) prove (5(\/?) regret which hides the dependence on the number of arms in logarithmic
terms under stochastic i.i.d. contexts. Regression oracle-based contextual bandits (Foster & Rakhlin,
2020; Foster & Krishnamurthy|, 2021} Zhu & Mineiro, 2022)) assume that an off-the-shelf online
supervised learning method is accessible for learning the reward model. |[Foster et al.| (2020) assume
that the oracle optimizes the squared loss and propose the inverse gap weighting exploration. [Foster
& Krishnamurthy| (2021) employ an oracle for logarithmic loss to obtain first-order regrets under
small losses, while [Zhu & Mineiro| (2022) propose a smoothed variant of the IGW technique to adapt
to continuous action spaces. However, as mentioned, simply adapting these bandit algorithms to DP
problems results in suboptimal performance due to the disregard for the unique structure of DP and
the need for discretization.

3 PRELIMINARIES

Problem Setting. We formally specify our setting. The seller interacts with the customer for
T consecutive steps: (1) At step ¢, the seller observes a context x; € X. (2) The seller sets a
price p; € P based on z; and the previous history. (3) The seller observes the binary response
ye|xe, pr ~ Ber(f*(x¢, pt)) whether the product was sold or not. We assume that the contexts are
determined by an oblivious adversary, and the price is chosen from a bounded interval P = [0, 1].
Initially, the valuation function f* is not known to the seller. The expected revenue of the price
p given the context x; is El[py:|z:,p] = pf*(x+, p). Thus we define optimal price at time ¢ by
p; € argmax, pf* (z¢, p), where there might exist multiple optimal prices. The goal of the seller is
to maximize the expected revenue for T’ steps which is equivalent to minimizing the regret,

Regret(T) :=E Z{pt (e, p7) = pef (@, 00) }| - (D

Regression Oracle. We assume that the seller can access a regression oracle Alg , that sequentially
estimates the probab1hty of purchase. At each step ¢, Algp, receives the previous history H;_1 :=

{(x27 Pi, yi) _1 as input and returns f;, an estimator of f*. We denote the fitted probability as

= fi(x¢, pt). The goal of the oracle is to minimize the cumulative loss S Li(f) over f € F,
Where we consider logarithmic loss £;(f) = —y;log(f(z;,p;)) — (1 — ;) log(1 — f(x;,p;)) or
square loss £;(f) = (f(z:,pi) — yi)*. We assume that Alg, guarantees bounded regret:
Assumption 3.1. (Online regression oracle) The regression oracle Alg guarantees that for any
sequence Hy, the regret of Alg R is bounded by some data-independent function Regret (),

t
Zf (f:) — 1nf 6:(f)| < Regrety(2).

z 1

There is a large body of literature developing online regression algorithms for various function classes
F such as finite function class (Vovk, [1995), generalized linear functions (Jézéquel et al., [2020)),
nonparametric regression (Gaillard & Gerchinovitz, 2015)), and neural networks (Chen et al.l 2021}
Deb et al., 2024).

4 ALGORITHM

We describe the details of the proposed DP-IGW algorithm. Algorithm [I]states the pseudocode with
online regression oracle.



Under review as a conference paper at ICLR 2025

Algorithm 1 DP-IGW

1: Input: Regression oracle Alg, exploration parameter 7o
2: for Epochk =1,2,... do

3:  Set epoch length 7, = 2* and epoch index set &, = {Ef;ll t+1,..., Zle T}

4:  Set exploration parameter v, = g - T,i /®Regret r(2m, —2)71/3

5 fort € & do

6 Observe x; and access ft (x¢,-) via Algp

7: Compute p; < arg max,cp pft (@, p), then sample p; ~ P, = M, + (1 — My(P))L;,
8 Set price p; and observe y;, then update Algy, with (x, p;, y¢)

9 end for
10: end for

Exploration via Inverse Gap Weighting. At each step, the online regression oracle predicts the
probability of purchase f(x,-). The greedy price is computed as p; < argmax,cp pfi(z¢,p)
based on the prediction, then the price p; is sampled from the distribution P, = M, + (1 — M (P))I;,

1
B 1+ ’)’k(ﬁtft(wt;ﬁt) *Pft(ftvp)).

The hyperparameter v; > 0 determines the degree of exploration, which is discussed in the next
paragraph. Given a sampling oracle for drawing samples from p, the sampling from P; can be
efficiently done by rejection sampling. The construction of P; is based on the SmoothIGW algorithm
in|{Zhu & Mineiro| (2022)), which extends the inverse gap weighting (IGW) technique (Abe & Long,
1999; [Foster & Rakhlin, |2020) to continuous spaces. Specifically, P; is a mixture of the atomic
distribution I;, and the distribution induced by the density m.(p) and the base measure ;. Note
that m(p) < 1 for all p € P, thus M;(P) < 1 and P; is well-defined. The density m.(p) assigns
probability inversely proportional to the gap in the estimated revenue, between the greedy price p;
and price p. Intuitively, the IGW smoothly balances exploration and exploitation by placing more
weight on the region of high estimated revenue.

where M, (w) = / _me)dn(p). m) @

Scheduling the Degree of Exploration. We divide the horizon T into several epochs, where k-th
epoch spans 2* steps. In each epoch, we set the exploration hyperparameter -, to construct the
sampling distribution equation[2] Our proposed scheduling of ;, enables DP-IGW to be an anytime
algorithm. If we fix the exploration parameter as v, = - for T steps, ¥ must depend on the horizon
T to ensure bounded regret. However, with the proposed scheduling, v, depends only on the current
epoch length 7, thus the algorithm is executable without knowing the horizon beforehand.

Remark. The DP-IGW algorithm is fully sequential; we do not discard any past data, and fully
adaptive; we explore adaptively based on full data, as opposed to many existing epoch-based dynamic
pricing algorithms (Javanmard & Nazerzadeh, |2019; [Fan et al., 2022; |Luo et al., 2022} |Choi et al.,
2023)). Unlike the standard doubling trick (Cesa-Bianchi & Lugosi,2006), our use of epoch is only for
scheduling the value of ;. The computational complexity of DP-IGW is determined by the argmax
operation (Line 6) and oracle update (Line 8), as the sampling of p, can be done by rejection sampling
at a constant cost per step. The argmax operation and the oracle update depend on function class
F, and we note that almost every DP algorithm has the argmax operation for finding the greedy
price, thus DP-IGW is no worse than existing DP algorithms with respect to the argmax operation.
The oracle update also maintains feasible complexity if we use neural regression algorithms (Deb
et al.,2024) which is based on standard gradient descent. Therefore, our algorithm is computationally
efficient.

5 THEORETICAL ANALYSIS

We derive a regret upper bound of DP-IGW with an online regression oracle satisfying Assumption
[3.1] Furthermore, we prove the regret lower bound of the generic binary choice model under the
Lipschitz continuity Assumption
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5.1 REGRET UPPER BOUND

Assumption 5.1. The true valuation function f* is realizable, i.e. f* € F.

Assumption 5.2. There exists some constant L > O such that, for any x € X and any p,p2 € P, it
holds that | f*(x,p1) — f*(z,p2)| < Llp1 — pal.

We make two assumptions to derive the regret upper bound. Assumption[5.1]is a common one in
dynamic pricing and bandit literature, indicating that we are working within the realizable setting.
Assumption [5.4]is a Lipschitz continuity on the purchase with respect to the price domain, which is a
considerably weaker assumption compared to those in previous studies under the customer valuation
models. Now we present our main theorem, whose detailed proof is deferred to Appendix [A]

Theorem 5.3. Under Assumption and setting vo = O((L + 1)73), Algorithm
guarantees

-

Regret(T) < O (T% 'RegretR(T)g) .

Discussion on Theorem 5.3 Consider a finite function class F. Vovk’s aggregation algo-
rithm (Vovk, [1995) ensures Regrety (7)) < log|F|. Plugging this into Theorem DP-IGW

guarantees O(T'3 log%(|}" |)) regret bound. This matches the lower bound of Theorem up
to logarithmic factors, thus we obtain nearly minimax optimal regret guarantee. We emphasize that
DP-IGW guarantees regret upper bound for any F satisfying Assumption and if we have a
regression oracle for F. The neural networks are arguably the most practical instance of F for which
we have a regression oracle. The online regression method in |Deb et al|(2024) has a regret bound of
Regret () < O(logt) for a certain class of neural networks. Using the neural regression algorithm
in Deb et al.| (2024), DP-IGW achieves O(T'% ) regret. Remarkably, the O(T'3 ) rate is sharper than or
matches the regret bound of semi-parametric DP algorithms (Shah et al., 2019} [Fan et al., 2022} |Luo
et al.,|[2022; Xu & Wang} 2022} |Choi et al.,|2023)), despite DP-IGW is based on the more expressive
model and the weaker assumption: F is the set of functions realizable by neural networks whose input
is (¢, pt), and the contexts are adversarial. The detail on the neural regression oracle is explained
in Appendix [D} There are other efficient regression oracles on different function classes, including
logistic regression (Jézéquel et al., [2020), nonparametric regression (Gaillard & Gerchinovitz, [2015),
and kernel regression (Jézéquel et al.,2019), to list a few.

Remark. Our result in Theorem @] holds for adversarial contexts, which is why the online
regression oracle satisfying Assumption is required. We note that Assumption can be
relaxed to an offline regression oracle in Assumption [B.I when the contexts are stochastic. In the
offline setting, with probability 1 — d, the oracle achieves an upper bound of learning guarantee
Er,5(n) which decreases with training dataset size n, hence we can derive a regret upper bound
O(T - £x,45(T)*/3) (Theorem [B.2). The offline oracle version is computationally efficient in
that the oracle update is only made at the end of each epoch, so the number of oracle updates
is O(log(T)). The extension is based on the technique from [Simchi-Levi & Xu| (2022), and we
discuss the offline version of DP-IGW in Appendix Consider a finite function class F. Using
the ERM(Empirical Risk Minimization) predictor of Theorem 7.6 in|Van Erven et al.|(2015)) which
guarantees Ex 5(n) = 2log(|F/d])/n, DP-IGW achieves O(T'%) regret, which is a sharp rate as
discussed above. We also consider F of neural networks. Assume d be the context dimension and 3
be the Sobolev ball smoothness containing f*. Using the neural network estimator in [Farrell et al.

(2021) which guarantees Ex 5(n) = @(n_% ), our DP-IGW achieves @(Tg(ﬁﬁtraf’% ).

5.2 LOWER BOUND OF LIPSCHITZ DYNAMIC PRICING

We now present a lower bound for any dynamic pricing problem that assumes a Lipschitz continuity
on the conditional probability of purchase, as below.

Assumption 5.4. There exists some constant L > 0 such that, for any x1,x2 € X and any p1,ps € P,
it holds that | f*(x1,p1) — f*(x2,p2)| < L(||z1 — x2|l2 + |p1 — p2|). In addition, for any x € X, it
holds that f*(x,p1) > f*(x, p2) whenever p1 < po.
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Note that Assumption [5.4] is stronger than Assumption [5.2] where the former assumes Lipshitz
continuity in both context and price space, but the latter assumes context-wise Lipschitz continuity.
The monotonicity in Assumption [5.4]addresses a canonical axiom that demand would be monotone
decreasing with respect to price. Theorem [5.5] establishes the lower bounds for this setting. The
proof is based on the standard “needle in the haystack” instance (Auer et al., 2002; [Kleinberg}, 2004;
Slivkins, [2011)) and its extension to DP (Luo et al.| 2022; Xu & Wang| [2022)).

Theorem 5.5. Under Assumption for any dynamic pricing algorithm, there exists a problem
a+2

instance that has regret Regret(T) > Q(Tdfh) If the reference function class is finite, we have

Regret(T) > QT3 log3 (|F))).

Discussion on Theorem Chen & Gallego|(2021)) establish (’N)(T%i) regret upper bound for
Lipschitz dynamic pricing, with additional smoothness and local concavity assumptions. Our result

shows that the assumptions they made have an impact on the complexity of learning. The Q(7T° %)

and Q(T'3 1og% (|F1])) lower bound match the lower bound of Lipschitz contextual bandits (Slivkins,
2011; [Krishnamurthy et al., 2020). This implies that contextual dynamic pricing is as hard as
contextual bandits with the minimal assumption of Lipschitz continuity. Compared to the semi-
parametric customer valuation models (Fan et al.| 2022; [Luo et al.,[2022; Xu & Wang, [2022; |Choi

et al.,2023)), their Q(T %) lower bound implies that the semi-parametric DP is considerably simpler
than the general Lipschitz DP. It is worth noting that the proof of the lower bound in [Luo et al.
(2022); | Xu & Wang| (2022)) construct a non-contextual function class, albeit the model contains
contexts. Therefore, their lower bound falls in the special case of our result, where d = 0. Finally, it
is noteworthy that Theorem [5.3]does not require the monotonicity assumption, which implies that the
monotonicity has no impact on the asymptotic complexity.

6 NUMERICAL EXPERIMENTS

We evaluate our DP-IGW algorithm via extensive numerical experiments including simulation environ-
ments and real data. We train a neural network oracle by minimizing logarithmic loss, as described in
Appendix [E]| We compare our method to existing DP algorithms and contextual bandit algorithms
(with proper modification), using cumulative regret as the performance metric.

Baseline Methods: Dynamic Pricing We first consider dynamic pricing methods with flexible model
assumptions as baselines, as algorithms with strong assumptions are impractical due to the potential
for model misspecification. Therefore, we select 5 semi-parametric or nonparametric dynamic
pricing methods as baseline methods: ExXUCB (Luo et al.,[2022), Fan et al.| (2022)), DEEP-C (Shah
et al., 2019), CoxCP (Choi et al.,2023)), and ABE (Chen & Gallego,|[2021). ExXUCB and |Fan et al.
(2022) assume the linear valuation model, DEEP-C works on the log-linear model, and CoxCP
is based on the PH model. ABE is a nonparametric DP algorithm. We then consider dynamic
pricing methods which has prior information on the model with strong assumptions as baselines to
verify whether our algorithm performs well despite such prior information. ONSP (Xu & Wang,
2021)), RMLP (Javanmard & Nazerzadeh, 2019), and RMLP2 (Javanmard & Nazerzadehl 2019))
are parametric methods which assume the linear valuation model with known noise distribution Fj
and log-concavity of both Fy and 1 — Fj,. We optimized hyperparameters for each method, see
Appendix [E] for the details.

Baseline Methods: Neural Bandits Although contextual bandits are not equivalent to dynamic
pricing problems in general, we can interpret dynamic pricing problems as contextual bandits with
stochastic rewards. Considering the price p; as an action and the realized revenue p;y; as a reward, the
distribution of the reward is determined by the context x; and the action p;. From this viewpoint, we
can interpret the regret[T]as the pseudo-regret of the bandit problem. Therefore, we compare DP-IGW
with recent state-of-the-art contextual bandit algorithms leveraging neural networks: NeuralUCB
(Zhou et al., [2020), Neural Thompson sampling (NeuralTS), Zhang et al.|(2020)), SquareCB (Foster
& Rakhlin, 2020), and SmoothIGW (Zhu & Mineiro, [2022). Since NeuralUCB, NeuralTS, and
SquareCB are finite-armed bandit algorithms, we evenly discretize the price with finite arms. The
neural network structures for all algorithms are the same, as described in Appendix
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428 Figure 1: Cumulative regret of the algorithms in simulation environments, averaged over 5 experi-
429 ments. Abbreviations each indicate TN: Truncated Normal, MoU: Mixture of Uniform.
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Figure 2: Cumulative regret of the algorithms with real data, averaged over 5 experiments. Abbrevia-
tions each indicate TN: Truncated Normal, MoU: Mixture of Uniform.

6.1 SIMULATION ENVIORNMENTS

We employ customer valuation models to configure simulation environments. Since semi-parametric
DP methods assume different valuation models, we consider three valuation models P(v; > p | z:):
linear valuation 1 — Fy(p — 87 2¢), log-linear valuation 1 — Fyy(p exp(—37x,)), and proportional
hazard (PH) model (1 — Fy (p))c"p(ﬁ%f). For each valuation model, we consider two base CDFs Fy:
Truncated Normal and Mixture of Uniform. Contexts x; are sampled i.i.d. from three distributions:
normal distribution, uniform in a unit ball, and Bernoulli distribution for all ¢ € [d]. In total, there are
6 combinations of Fj, context distributions pair for each valuation model. The model parameter is
randomly sampled by 8 ~ A/ (0, ﬁ] ), with d = 5. Details on settings and hyperparameter search
are provided in Appendix [E]

As illustrated in Figure [T] DP-IGW significantly outperforms these algorithms in all settings. We
emphasize that the parametric and semi-parametric dynamic pricing methods exploit the model
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Figure 3: Cumulative regret (for 7' = 30000 steps) of parametric DP algorithms in simulation
environments, averaged over 10 experiments. We experiment with the linear valuation model and
normal CDF to satisfy the model assumptions.

structure, yet DP-IGW learns the valuation models better. Even if DP-IGW has no prior information
on the model, it outperforms the parametric algorithms with a lower variance of performance as
in Figure 3] We attribute the superior performance of DP-IGW to two factors: (i) Enhanced data-
efficiency. Doubling-epoch-based semi-parametric algorithms discard past data at the initiation of
epochs, utilizing less than half of the observed data up to the current step. In contrast, DP-IGW utilizes
all data for learning. (ii) DP-IGW benefits from the generalization capacity of the neural network-
based regression oracle, ensuring consistent performance across diverse environments. Moreover,
DP-IGW smoothly balances exploration and exploitation, unlike epoch-based algorithms that show
discontinuous transitions in the regret curves.

While the neural network is a factor in performance improvement, it does not explain everything, as
DP-IGW consistently outperforms neural bandit algorithms. This results from the structure of dynamic
pricing problems, where the reward (revenue) in the regret and the feedback (purchase) are defined in
distinct ways. DP-IGW successfully exploits this structure by separating the learning target and the
exploration target: Algy aims to estimate f*(xy, p;), while p; is sampled inversely proportional to

pf (x4, p).

6.2 REAL-WORLD DATA

In the dynamic pricing literature, experiments with real-world data have been limited since com-
plex underlying structures of real-world data may violate model assumptions. However, DP-IGW
empowered by neural networks can successfully learn with real-world data, as we demonstrate in
this section. We experiment with six real-world datasets for regression tasks: Abalone (Nash &
Ford, [1994), Diamonds (Wickham, 2016), Appliance Energy Prediction (Energy) (Candanedo, 2017),
Estimation of Obesity Levels (Obesity) (Palechor & De la Hoz Manotas| 2019)), California Housing
(Housing) (Pace & Barryl, [1997), Wine Quality (Wine) (Cortez & Reis,[2009). The datasets contain
continuous and categorical features, with dimensions ranging from 10 to 26 after one-hot encoding
of the categorical features. Therefore, we can investigate the performances of algorithms in various
real-world scenarios. Refer to Appendix for the details on the datasets. We left out DEEP-C
because its computational cost increases exponentially with d, and also excluded CoxCP as it can’t
estimate model parameters when dealing with categorical features.

To simulate the online interaction of dynamic pricing problems, we treat the regression targets of
the datasets as valuations. At step ¢, one context vector x; and corresponding valuation (regression
target) v, is sampled from the dataset. The algorithm sets the price p; based on x, then y, is sampled
from Ber(1 — Fo(p: — v¢)). As in the simulation experiments, we consider two options for Fp.

Figure 2] shows that DP-IGW has the best performance among the baselines, in almost every dataset.
This shows that DP-IGW can efficiently learn complex real-world data. Also, it scales well with the
dimension of contexts and the size of datasets.

10
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7  REPRODUCIBILITY

We provide detailed descriptions of the experiments, including training protocol and neural network
architecture, in Section [6]and Section[E| Supplementary materials include the code used to run the
experiments, instructions for setting up the environment, commands to run experiments, and code for
generating the figures. Additionally, the processed real-world dataset and the code for data processing
is included in the supplementary material.
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A PROOF OF THEOREM [3.3]

In this section, we present the detailed proof of Theorem Our proof is based on the IGW
technique in|Zhu & Mineiro| (2022), and the following definition of smooth regret plays an important
role:

Definition A.1. Ler (2, G, ) be a probability space. For h > 0, define the set of h-smooth kernels

Oy, such that any Q € Qy, satisfies: (i) Absolute continuity () < u (ii) Bounded Radon-Nikodym

derivative % < 1/h. For any x € X, the largest revenue that can be achieved by h-smooth

kernel is Smoothy, () := supge g, Ep~q[pf*(z,p)]. Based on that, the smooth regret is defined as:
Regret,, (T') := E[Zle Smoothy, (x) — pef*(xe, pt)]-

The smooth regret Regret, (T') is a “smoothed” version of Regret(T"), in that the algorithm competes
with the best -smooth policy instead of the best atomic policy I,x. Under a Lipschitz continuity
assumption on f*, a bound on the smooth regret can be transformed into a bound on the standard
regret by Lemma[A.2] Overall, the smooth regret is a stepping stone for the standard regret bound.

Lemma A.2. Forany h € (0, 1] and any episode &, we have
Regret(&y,) < Regret,, (k) + (L + 1)h7y. 3)
where

Regret (&) : Z E [pf f*(x¢,07) — pef™ (24, 0t)]

tely

is the standard regret within & and

Regret; (&) : Z E [Smoothy, (z1) — prf* (z¢, pt)]
te€y

is the smooth regret within Ej.

Proof. We employ the discretization argument of Zhu & Mineiro| (2022). Fix any f € F, and divide
the price set P = [0, 1] into B = [+] intervals {I, }/ | such that I, = [(b — 1)h, bh), and b* is the
interval containing the optimal price p*,i.e. p* = argmax,cp pf(7s, p) € Ip-. Observe that

Ip* (e, p*) = pf (@0, p)| = |p*(f (x4, 0") = fz,0)) + (" — p) f (21, D)
< p*|f(xe, p™) = flze, )|+ [p" = pl[f (26, )| < (L +1) [p* = pl

due to triangular inequality, [p*| < 1, | f(z,p)| < 1, and Assumption[5.4] Setting the smoothing
kernel Unif (I,,) € Qp, as a reference policy, we have

“

p*f(‘rhp*) S EPNUnif(Ibt) [pf(mtvp)] + (L + 1)h (5)
< qug E,wq [pf(zt,p)] + (L + 1)h = Smoothy, (z;) + (L + 1)h. 6)
51973

Since equation[5]holds for f*, taking summation over ¢ € &, we have
Regret(&y,) < Regret,, (k) + (L + 1)h7y. @)
O

Now we introduce the Decision-Estimation Coefficient (DEC, [Foster & Rakhlin! (2020)); [Zhu &
Mineiro| (2022); [Foster & Krishnamurthy|(2021)):

Definition A.3. Fory > 0 and a function class F, define dec,(F) := sup; , dec, (F, f,z) where
dec (F, f, ) :=

inf pea(p) SUP po e 7 Epnp [Smoothh(w) —pf*(x,p) — 1 (f*(x,p) - f(w,p))Q} :
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By the definition of Smoothy,(z) = supgeq, Ep~q[pf*(z,p)], it is easy to see that dec, (F, fx)
can be expressed as another form:

. ¥ N 2
f . ., E. o * Pk 7 *\ ek p) — — ( * , _ , ) )
pdl gggh fb*uegr p~Ppr~Q [P (2, p") — pf*(2,p) o\ (z¢,pt) — f(xt, D) }

The following two lemmas from Zhu & Mineiro| (2022)) guarantee that dec., (F) is upper bounded.
We include the proof for completeness.

Lemma A.4. Forany~ > 0and h € (0, 1], it holds that
3

dec,(F) < —

SEES

under sampling distribution P = M + (1 — M(P)) - I{p} with

p= argmax pf(z,p), M(w)= / m(p)du(p), m(p)
pEP PEW

1
1+ y(0f (2, D) — pf(x,p))

Proof. Fix Q € Qp, and f € F, then simplify the notations as f(p) := f(x,p) and f(p) := f(z,p).
It holds that

Ep~rpinq [P (0°) = 0 (0) = 2-(F(p) = F(p))?]
< (1= M(P)) (=55 () — 5 (FB) — f(

0)?) ®)
’y ~
+ Byt [P (07) = pF(P) = 15 (F(0) = f))’]
by the definition of P. For the first term, it holds that

(1= M(P)) (=5 (B) — 1 (F®) — F5))?)
= (1= MP)) (=pf () (S (B) — [(0) = - (F5) = F()?) ©
< a-up) (-ai) + ).

By the definition of Q, and the fact that m(p) > 0, we have Q < p and p < M, hence Q < M.
Therefore, Lemma [AZ5]implies that

Epatpng [P (07) = p1(0) = - (F0) = F2))?]

~
< Eo [pf )] ~ B [pf )] + 28ar | (22 - 1)2

< £ [pf 9] ~ Eat o) + 28, [ L2 — 24+ m(r) (10)
< £ [pf9)] - Eut o) + 25, [ L8] 4 2P

= —Ex [pf ()] + SEs {Q(p) <7pf (p) +h ri(f;))] + hMW(P)

Now we bound each term in equation[I0] First, by definition of M, the first term of equation[I0]is
bounded by:

e lio] — B pf(p) ]
P50 = B | e )
e | wiE) L ABf@) - pfp) 1 (11)
YL 1 HABfB) - pf ) 1+ (B) - pf(p))
= 18, [-pf@Im(p) + (1= me)] = - 1P + L
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The second term of equation [I0]is bounded by:

28, [ato) (w70 + 022 = 28, [a) (300 + hato) (14467 0) - 0700 )]
< 2B, [a) (wF o) + 1 +960) = pf o)) | = 28, (o) (1+7870))] < = +5F0)

(12)
where the first inequality holds due to the fact that pf (p) — %p) > 0 and we use the property of

h-smooth kernel, ¢(p) < 7. Combining the results equation (9} equation |I1|and equation we
finally bound equatlon@

EpePpnQ [p*f(p*) —pf(p) - slh (f(p) - f(p)ﬂ

s hp? . 1-MP) hM(P 1 ..
< - we) (< @)+ ") - pfonap) + T2 L Ly
1-M hp?> WM 1 1-M 2h 1
_ (- MP)F  BM(P) 1 1-M(P) 2% 1_3
0 Y Y Y 0 Yo
Since the result holds for any Q € Q;, and f € F, the proof is complete. O

Lemma A.5. Fix f, f € F,x € X, and v > 0. Then for any measures P, (Q on P satisfying Q < P,
the following holds.

perpina [0 o) = o) = 3 (1) = fo) |

<Eq {pf(w,p)} ~Ep {pf(%p)} - %Ep

Proof. Let us simplify the notations as f(p) := f(x,p) and f(p) := f(x,p). Rearranging the first
two terms inside the expectation, we have

P —pfp) =" f0") —pf () + 0 (f (") = F (")) — p(f () — ()
Define 6(p) := f(p) — f(p). Then it follows that
Epnrprna 7" F(0) = pf () = Eq [pf(0)] — Er [pf(p)| + Er [jgpm - p6<p>] NG

For any p € [0, 1], we have

st - o "2 (42 2)" 2 (191 22 s

2 2 2
WP Q' _h(da N\
— v \dP ~ v \dP
Combining equation ?? and equation [[3] we obtain

Epeppenq [0 F(0") = p(p) — < Dice (Ber(f(z,p))|[Ber(f (. )]

14
<dQ_1)21 (14)
dP

Since equation[T4]holds for all f € F, the proof is complete. O

< Eo [p/(9)] ~ Er [p()] + LB

For the last step, the following lemma bridges Assumption [3.1]and DEC.
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Lemma A.6. Suppose Assumption holds. If £ is set to be logarithmic loss (;(f) =
—yilog(f(zi,pi)) — (1 — yi)log(L — flxi,pi)) or square loss &;(f) = (f(wipi) — vi)* we
have that

t
Z(fi(xivpi) - f*(zi,pvz))Q

i=1

E < Regretp(t)

Proof. Since f* € F, we have
t t

S - zem] |

i=1 i=1

t t
Regrety(t) > E [Z Gi(fi) = jnf zm] >E
=1

=1

First consider the case ¢;(f) = —y; log(f(2i,p;)) — (1 —y;) log(1 — f(z;,p;)). By Assumption[3.1]
we have

E lz i(fi) - Zgi(f*)]

& (i, pi) 1— f*(zi,p:)
=E i log =————=~ 1—vy;)log ——————=

; <y ¢ fi(zi,pi) o8 1 — fi(wi, pi) >]

& * f*(xhpi) * 1—f*($i7pi)
=FE zi, p;) log L2242 — (x4, pi)) log — L0228

_; <f (i) los fi(zi, pi) P p)log 1_fi(xi7pi)>‘|
=K ZDKL (Ber(f*(aji,pi))||Ber(fi($i,pi)))]

> 2E li (f*(l”i’pi) - ng(fupz))Q] :

i=1
where we use the law of total expectation in the second step and the last step holds due to Pinsker’s
inequality.

Now consider the case 4;(f) = (f (x4, p;) — y;)*. Similarly, we have that

> b(fi) - Zfi(f*)]

=1 i=1

E

=E Z {(fi(l“mpi) - Z/z‘)2 = (f* (@i, pi) — yi)Q}]
=E Z(fi(xz‘apz‘) — (@) (filwi,pi) + (@i pi) — 2%)]

=k .Z(fi(xhpi) — (@, p0)) (fil@i, pi) + F* (@i, pi) — 2f*($i,pi))1

Finally, we prove the upper bound based on the supporting lemmas.

Theorem (Restated). Under Assumption and setting o = O((L +1)73), Algorithm
guarantees that

-

Regret(T) < O (T% ~RegretR(T)§) .
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Proof. The smooth regret of k-th episode is decomposed as

Regret;, (&) = Z [E [Smoothy, (2) — pe f* (x4, pe)]

te€
. 2
= Z E [SmOOthh(iUt) —Ptf*(CUt,pt) - %Z (f*(ﬂfupt) - ft(xtapt)) ]
te€ (15)
@D
. 2
+ g% Z E |:(f*(xt7pt) - ft(ztapt)) ] .
tely
In
By Lemma(A.4] it holds that
. 2
OD=E [SmOOthh(ft) *Ptf*(xt,pt) - g% (f*(l‘t,pt) - ft(»’%a?%)) ]
* px * * * ¢ 2 3
= sup Epruqp,~p, [ptf (x4, 0}) — pef* (e, pe) — ’SLZ (f (¢, pr) —ft(xnpt)) } < —.
QEQy Yk

Since the k-th episode is &, = {1 7. +1,..., 3¢ 7.} with 7, = 2, thus S2F_ 7. = 27, — 2.
Using this fact with Lemma[A.6] we obtain

27‘)€72 R 2
< B > (£ @) = filwepy) ] < JrRegret (27 — 2). (16)

Here, without loss of generality, we assume that 7" = Zgi 1 Tk Where N¢ is the number of episodes.
Therefore, the smooth regret from the k-th episode is bounded by

8h
Furthermore, Lemma[A.2]implies that the standard regret within &, is bounded as follows:

3
Regret,;, (&) < SAL %RegretRQm —2).
Tk

3
Regret (&) < Regret,, () + (L + 1)h7y, < % + g—ZRegretR(Zm —2)+ (L 4+ 1)h7y.
k

Setting the parameters as
h=0©((L+ 1)*2/37',;1/3Regretl.;z(27;€ —2)/3)  and
v =O((L+ 1)71/372/3R6:gret];5(277€ —2)71/3),
we have
Regret(&) < © ((L +1)/372 3 Regret (274 — 2)1/3>

Taking a summation of all episodes, the standard regret for 1" steps is bounded by

Ng Ng
Regret(T) = Z Regret(£;) < Regret,(T)/3 Z 2% <0 (T2/3RegretR(T)1/3)
k=1 k=1

where the last step holds due to the fact that Zszgl 2% = (2* —1)/(22/3 —1) < T?3 and <
hides absolute constants. This completes the proof. O

B DP-IGW WITH OFFLINE REGRESSION ORACLE

In this section, we provide an alternative offline regression oracle-based Algorithm [2]and show its
performance guarantees. Suppose the offline regression oracle Algy, satisfies Assumption [B.T} then
Algorithm [2] guarantees bounded regret as Theorem [B.2} Algy, is updated every epoch unlike [I]
where Alg, is updated every time step, therefore computationally efficient.
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Algorithm 2 DP-IGW with offline regression oracle

1: Input: Regression oracle Algp, epoch schedule {Tk}Z(ZTl) price discretization number K,
confidence parameter J, tuning parameter ¢
for Epoch k =1,2,... do

2:
3 Set v, = C\/K/E_F,5/(2k2)(7—k—1 — Th—2)

4 Update fi with {(zi, pi, yi)} 127" via Algp
5

6

7

i=Tp_2+1
for ¢ in epoch k do
Observe z; and access fi (x4, -)
Compute p; < argmax,cp pfi(z¢,p), then sample p; ~ Py (-|x;), where

1 A
f 7 f
Pk(p\xt) — K+v5 (fr(6,0t)— fr (e,p)) or p 7& pit
1_Zp7£ﬁtpt(p) fOI'p:pt
8 Set price p, and observe y;
9: end for
10: end for

Assumption B.1. (Offline regression oracle) The regression oracle Alg , guarantees that given i.i.d.
sampled history Hy = {(x;, pi, i) } -1 according to x; ~ Dy, p; ~ P(-|x;) where P is an arbitrary
action selection kernel, { is the loss function, either logarithmic loss ((f) = —ylog(f(x,p)) — (1 —
y) log(1 — f(x,p)) or square loss £(f) = (f(z,p) —y)?, with probability at least 1 — §, the expected
estimation is bounded by the offline learning guarantee Ex 5(n) that decreases with n.:

B 4) - ot 100)] < £l

Theorem B.2. Under Assumptionand Assumption setting T, = 2%, c = 1/2, Algorithm
guarantees that

Regret(T) < O (T- (Ex.) 1OgT(T))l/B) .

Proof. Let K be the discretization number of the price space. Setting 7, = 2¥, we have the regret
bounded by Lemma summed with cumulative gap due to discretization as the following,

Regret(T) < O ( KErs) logT(T)T) +O(T/K).
Setting K = O (€7 ,5/10 7(T) ~*/?) which minimizes RHS, we get

Regret(T) < O (T (Er.5/1057(T))'"*) .

Our proof is inspired by [Simchi-Levi & Xu|(2022)), and we show analogous lemmas. Define:

" 1 _
V(P,P') = E$~Dm»PNP'('|-T) [P(p|$) Vi(P) = 1§krglzj(}§)—1 V (P, P)
R(P) = EwmepNPHz) [pf* (xap)]v,]ét(P) = EJJN'Dw,pNP(-\w)[pfk:(t) (xap)]
Regret(P) := R(ps-) — R(P), Regret,(P) := Ry (p Few) ™ Ri(P).

We consider logarithmic loss £(f) = —ylog(f(z,p)) — (1 — y)log(1l — f(z,p)) or square loss
((f) = (f(z,p) —y)*.

Lemma B.3. (Analogous to Lemma A.2 in|Simchi-Levi & Xu|(2022)))

With probability at least 1 — §/2, Vk > 2 and t in epoch k, E[(f(x1,ps) — f* (x4, p¢))?] < K/ (472).
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Proof. Fix epoch k, then for all ¢ in epoch k, we show that the following holds with probability at
least 1 — §/(2k?) for both logarithmic loss and square loss,

K
4y

E[(fe(@tpe) = f*(z0,p0))?] <E [ﬂ(ﬂ) - figffaf)} < Era/u) (Tt — ko) =

First consider the case £(f) = —ylog(f(x,p)) — (1 — y)log(1 — f(x,p)). By Assumption
2E [(fu(we,pe) = (00, p0))?] < E [Dice, (Ber(fean, po) IBer(F* (w0, p2) )|

i * I (ze,pt) * 1 — f* (x4, pr)
=E Ty, pt) log =———————= 1— f*(xy, log ——————=
_f (zt,pt) log ez pe) + (1= f*(z4,pt)) log 1_fk(xt,pt)]

=E :yt log f* (x4, pe) + (1 — yi) log(L — f* (x4, p¢)) — ye log fro(e, pr) — (1 — ye) (1 — fk(xhpt))}

= E[t(fulwepe) we) = 0F (e pe) )| SE[e(f) — (7)) <E [afk) — inf af)] :

fer

where the first inequality is due to Pinsker’s inequality and the last inequality is because f* € F.
Apply union bound. Now consider the case /(f) = (f(z,p) — y)?. Similarly, we have that

= E|(fu(a.p) = £ (@) (fuw,p) + £ (@.0) = 29)| = E |(fule,p) =) = (F*(2.) —)’]
~ e[t - ") <& [t - L)

feF

E[(fe(@spe) = f*(ze,pe)?] = E [(fuw,p) = 1 (@.0) (Fal@.p) + £ (@) = 2F(2,p))]
E

Therefore we have for all ¢ in each epoch & with probability at least §/(2k?),

E [(fk(xtapt) - f*(fﬂt»Pt))ﬂ

< —.
4y
Now apply union bound. O

Lemma B.4. (Analogous to Lemma A.5, A.6 in|Simchi-Levi & Xu|(2022))
For the algorithm’s randomized policy Py, and any randomized policy P,

Regret, (P,) < K/
V(Py, P) < K + ~.Regret, (P)

Proof.

Regret, (Pr) = Eyup, popy(|2) (@, br) —pfk(iﬂap)}

= Eonn, | Y Pulplz)(Brfr(x, br) —Pfk(xvp))]
—_ ]E.TNDw Z ﬁkka(l':ﬁk) 7pfk(x:p)) < K-1
v K+ e (Brfr (2, Pr) — pfi(2,p))) Vi

Ifp # pr. 1/Pu(p,2) = K + w(pufu(z.px) — pf(e,p)), while if p = py, 1/Py(p,z) <
1/(1 - %) =K = K 4+ v (prfr(z,Px) — pfr(z,p)). Therefore,

1 L . .
EonD, poP(l2) [W] < K+ %Eenp, pop()2) [Pkfk(ﬁﬂ,pk) —pfk(x,p)} = K + yrRegret,(P)

O
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Lemma B.5. (Analogous to Lemma A.11 in|Simchi-Levi & Xu|(2022))
For any randomized policy P,

Ru(P) - R(P)| < YULIWE
29k(t)
Proof. Let sy = Th(t)—2 T 1.
Tk(t)—1 Tk(t)—1
Vt(P) Z E[(fk(xsaps)_f xsvps :| Z V ka [(fk(l‘s,ps)—f*($37ps))2]
Thk(t)—1 1 R .
= S:ZSO EmstmpsNP(-lxs) |:Pk(ps$s):| EESNDI,PSNPk('\Es) [(fk(x&pS) - f (fﬂs,ps))ﬂ
Thk(t)—1 1 R ?
> Z (Ex.tz l\/EpSNp(.zs) {Pk(pm)] Ep,~pPy(|a) {(fk(%aps) - f*(xs;Ps))2H>
2
Tk(t)—1
= Z EmSNDT, Z Pkp|xs ZPk p‘me fk(l"s,p) f*(l’s,p))2
Tk(t)—1 X 2
> ) (E%NDI HZ\/IW Frl@s,p) —f*(afs,p)‘ D
Tk(t) 1 2
> ( zs~Dy ZP}?‘SL‘S fk(msap> f*(xsap)‘]>
Tk(t) 1 . 2
= (El ~D, |: ps~P(|zs) [ k(xsvps) - f*('rs’ps) }:D
Tk(t)ol . 2
> ( zs~Dy |: ps~P(-|zs) {|ps| fk(ajsaps) _f*(xsvps) iH)
Tr(t)—1
> > [RuP) = R(P)]* = (ti(t)-1 — s0 + 1)|Ru(P) = R(P)|?

S$=S80
where we use Cauchy-Schwarz inequality, 0 < P(p|zs) < 1,0 < ps < 1, and convexity of L1-norm.
Therefore we have

E?:(;)f:(tl)—z-&-l E {(fk(xsaps) - f*(msaps))2:| < V;:(P)\/E
Th(t)—1 — Th(t)—2 T 2
where the final inequality follows from Lemma [B.3] O

Lemma B.6. (Analogous to Lemma A.12 in|Simchi-Levi & Xu|(2022))
Let co = 5.15. For all epochs k, all rounds t in epoch k, and randomized policy P,

Regret(P) < 2Regret, (P) + co K/
Regret, (P) < 2Regret(P) + coK /7

[Ri(P) = R(P)| < VVi(P)

Proof. The proof follows directly from Lemma A.12 in|Simchi-Levi & Xu (2022)). O

Lemma B.7. (Analogous to Theorem 2 in|Simchi-Levi & Xu| (2022)
With epoch schedule T, > 2F, ¢ = 1/2, Algorithm (to be stated in appendix) guarantees that for any
T with probability at least 1 — 6,

k(T)

Regret(T) < O \/E Z \/5]:,5/(2]6)2 (Tk,1 — kag)(kal — Tk,Q)
k=2
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Proof. The proof follows directly from the proof of Theorem 2 in|Simchi-Levi & Xu (2022)). O

C PROOF OF THEOREM

Theorem [5.5| (Restated). Under Assumption[5.4] any dynamic pricing algorithm has regret
Regret(T) > Q(T%)
If the reference function class is finite, we have

Regret(T) > Q(T%3log'/3(| F])).

Proof. Let S, be a e-net of X, with n, = |S,|. Let S, be a e-net of [, 2], a subset of the price space,

and denote n, = |S,|. Then we have n, = O(e~¢) and n, = O(¢~1). We construct a collection
of functions as follows: For each z( € S, randomly and independently choose py € .S, and set

flxo,p0) = % for some constant C' (the value will be specified later) and set f(xq, po) = 0 for all
other py € S),. Define

fl,p):= — max  max{0, f(zo,po) — C(llz = zoll2 + [p — pol)}-
(m(,,po)eswxsp

which makes f C-Lipschitz. Since the choice of p is independent of x, the feedback under some
context x( reveals no information about the values f(Zo, -), Zo € Sy \ {0}

Suppose the sequence {x;}L_; is a repeated permutation of the set S,. Let I(zg) = {t € [T] :
xy = x0} for each 79 € S;. We can decomposed the regret as Regret(T') = > o Regret, (1)
where Regret, (1) = E[} ¢ () f(z0.Pf) — f(20,pt)]. Since feedbacks from [T \ I(zo) reveals
no information about f(zo, -), any algorithm .4 induces n,, sub algorithms A, for each =y € S,,
and A simulates A, in I(xo). Then we have E[Regret, (T')] = E[Regret A, (T'/n,)] where the
expectations are taken over possible problem instances. In what follows, we fix zo and prove a lower
bound of the contextless dynamic pricing problem associated with x.

Simplifying the notation f(p) := f(xo,p), f(p) is C-Lipschitz, unimodal, and differentiable on
[0,1] except at most 3 points. We denote Sy := {p € [0,1] : f is differentiable at p}. Define
glp)=1-— ﬁ(p) which is C-Lipschitz since

fp) — f(0')
/
p)=—g9)l =
o) =509 = [ 5 7y
Also, g(p) is differentiable on the set where f(p) is differentiable, and |¢’(p)| < C on the set.

Assume C < 1, let b = £ € (0, 1) and define F(p):

‘ < 1) — 10

Fip) 0 0<p<b
p) = b 1-b —b
1—5——9(”—) b<p<i

p

F(p) has key properties to define a problem instance.
1. F(p) is non-decreasing.

Proof. It is  trivial on  [0,b]. On (b,1) N S,  F'(p) =
#(bfpg’ (%:Z +(1-0b)g (f—:i))
Since b — pg’ (p_b) >b—1-C >0, F(p) is non-decreasing on (b, 1) N S;. Since F is

1-b
continuous on [0, 1] and differentiable except finitely many points, F is non-decreasing on
[0, 1]. O

2. F(p) is Lipschitz continuous.
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Proof By definition F(p) is constant on [0,b]. On (b,1) N Sy, |F'(p)| =

i (0 =p (1) + (-0 (£53))

< ‘W‘ < 4. By triangular inequality, F'(p) is 12-Lipschitz on [0, 1]. O

3. There exists a unique maximizer for the revenue function r(p) = p(1 — F(p)).

Proof. By the definition of F'(p), we have

P 0<p<b

hence p(1 — F(p)) < bon [0,b] and p(1 — F(p)) > bon (b, 1]. Since g(p) has the same
unique maximizer p* with f(p), p(1 — F(p)) also has the unique maximizer b+ (1 —b)p* €
[0,1].

Since F'(p) is non-decreasing in p and Lipschitz continuous, we can associate a problem instance
for each F'(p). Specifically, 1 — F(p) is the probability of purchase conditioned on the price p, i.e.
Py, = 1| p. = p) = 1— F(p). Note that there exists a bijection from py € S, to F. In the
following parts, we use {F} } 2, to denote the set of functions generated by S, = {p] JjEnyt,
and define Fy(p) be the functlon derived by fo(p) := 0. Without loss of generality, we assume
p1 < p2 < -+ < py,. Given a policy 7, denote the probability distribution over trajectories
u = (p1,Y1,D2, Y2, - - -, Pt, Yt ), determined by 7 and F}, by P;. Since for any F, price p € [0,b)
incurs regret greater than that incurred by p € [b, 1], we assume p; € [b, 1] for all ¢. Further, define

Uj _ pj—l;rpj , pj+§j+1) forj € {2’ ) 1} U, = [1 P1+p2)’ Unp _ |:Pnp,12+Pnp ,% )
Now we bound the KL divergence D, (Py||P;) for any j € [n,]. We have
I Po(ut)
Dkr, (Po||P;) = Ep, |1
kL (Po[|P;) = Ep, 108 50

= Ep, log

Hf 17T(pi |p1a"'ay1 1)PO( [ |pl):|
I w(pi | p1s -5 yim1) Pi(wi | pi)

Hz 1P0(yi | pi)

=K I
o OB T Py, | o)

-

= > Er, [Dicr (Pol- | ) I P5(- | pi)]

i=1

= ZE% [Dicr. (Ber(1 — Fo(py) [Ber(1 — F;(p:)))]

= ZEPO { Bl Uj}Dxr (Ber(1 — Fo(pi))|[Ber(1 — Fj(pi)))

where the last step holds due to the fact that Fy(p) = Fj(p) for b= b 7 ¢ Uj. For the range of the

Bernoulli parameters, since p € [b, 1] and go(p) > 0, we have 1- FO( i) = M >b> 1.

Moreover, due to the fact that F; is non-decreasing and 5= b e Uj = p; >

1-b b+(1—b) gj(1/3)

=t implies

1-F; <1—-F;
i(pe) < i+ ——)< D
Settlng C=jzandb = 35 Whlle assuming ¢ < 1, we have 1 — F] (pi) < %. Hence, for all
. it holds that
1 1 1
—<1—-Fy(pi)) <1—F;(pi) < =+ =
2 — ()(p ) — J(p) 2 + 3
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where the second inequality holds by the definition of F}. Therefore, by Lemma[C.1] it holds that

Dk, (Ber(1 — Fo(pi))|[Ber(1 — Fj(pi))) < 144.(1)2((1 — Fo(pi)) = (1 = Fj(p)))?
3
36 ( (1= b)(90(ps) = 9;(p)
T 5 ( pi )
36 ( (1= b)(folps) = £i(1) >2 2 576 5
5 N+ folp))(L+ fi(pi)))) — 5
On the other hand, using Lemma with h(uy) = Nj(us) = |{i : 5.1 € [t}

0 < N; <t, we have

1
Ep, [N;] — Ep, [N;] <t/ 5Pk (Po ;)

= ZEH B0 € Uy} Dics (Ber(1 ~ Fo(po) [Ber(1 ~ Fy(50)

1 576 283
221}»(“ >_t - CE, [N;).

Taking summation over all j € [n,], we obtain

1 & 1 & vt [288 t 2 /288

_ . — . _ 2 ] = -

o 2 Ez, [N;] < o E, "Ep, [V;] + §’ :np’/ o Ep, [N;] = o np S/ Epo
j:1 ]:1 _771

t te 1 € 288
< byt Ep [N <t- | —+ -4/ 220t
<Lyt npzpo < (np+np 5np>,

Tp

where we used the fact Z 1 Epy[N;] = t. Since n, = ©(e 1), for large enough ¢, there exists an
absolute constant ¢ such that - Z]: Ep,[N;] < 5t hold, given te* = c. Therefore, there exists
P

some index j such that Ep]. [N. j] < %t. For such j, we can derive a lower bound of regret as follows:

t

> (riw) = ri(pi)

=1

Regret(t) = Ep,

7

> By, [ZH U }) - m-»]

t

) pob (=B - 5) L b
~ B, | MG U e Ao | 2B LZ:“ # Uil ]
> (1 Bp,[N)]) >

Now back to the original contextual pricing problem. For each z¢ € S, A, is executed for t = nl

steps. If € satisfies L¢3 = ©(e4™3T) = ¢, A,, incurs at least @(en%) regret. Therefore, the regret

of A is at least
T dt2
nI-@<enw> :®(e~T):@(Td+ )

This proves the first result in Theorem @ For the second result, note that the function class we
constructed has cardinality log | F| = n, logn, = ©(e~?log 1). By the choice of € = @(Tfﬁ ),
we have 775 = ©(T2/3 log"/? | F)).

O

24



Under review as a conference paper at ICLR 2025

Lemma C.1 (Lemma 6 in|Luo et al.|(2022)). For Bernoulli distributions Ber(p) and Ber(p + €) with
1/2<p<p+e<1/2+4+ C, we have

4
Dy, (Ber(p)||Ber(p +¢)) < m62

Lemma C.2. Assume Py and Py are distributions over trajectories uy = (p1,Y1,- .., Pt, Yt). For
any function h on the trajectories that has a bounded value [0, M|, it holds that

B, ()] — e, [h(u)] < M5 Dicr, (Pal[By). (7)

Proof. The proof is based on the standard KL divergence argument (Auer et al., 2002; |[Luo et al.,

2022; Xu & Wang], 2022). Consider the measure Q = %(]P’l + P3). Then P; < Q and Py < Q,

thus the Radon-Nikodym derivatives % = my and % = mgy exist. Define the set O = {u :

mq(u) — mz(u) > 0}. Then we have
Be, (1)) ~ Be, ()] < [ (s — m2)dQ

< /Oh(m1 — mg)d(@ < /OM(ml - mQ)dQ

(18)
= M(P1(0) = P»(0)) < M sup IP1(0) = P> (0)]
/1
=M|P; —Pofs <M EDKL (P2 ||Pq).
where the last inequality holds due to Pinsker’s inequality. O

D DETAILS OF NEURAL ORACLES

We explain the details of the neural oracles discussed in Section [5] The results in this section are
established in Deb et al.| (2024)), and we present them for completeness. First, we define the neural
function class for which Alg, ensures a regret bound.

Definition D.1 (Neural Function Class). We consider the neural networks fo : R? — R parameterized
by 0:

fg((L') _ m71/2vT¢(m71/2W(L)¢(~ . d)(m*l/QW(l)x)))

where W) ¢ Rm>d Wb ¢ R™™ for | € {2,...,L}, v € R™ and ¢(-) is a Lipschitz and
smooth activation function. We write 0 = (vec(W )T . vec(WUIN)T oT)T € RP (p = md +

(L —1)m? +m) and wh = [wz(lj)] Based on this functional form, we define the function class F =

{fo : 0 € B, ,,(00)} where B, (60) = {0+ [W® = W ||z < pfori € [L] v —volla < p1}
for some initial parameter 6y = (vec(Wo(l))T, e 7Vec(VVO(L))T7 o).

The neural function class F is a set of multi-layer perceptrons with depth L and width m, whose
parameters are />-norm bounded. This captures many widely used deep neural networks.

We need a specific initialization scheme to guarantee good properties of the neural function class F.
O]

Assumption D.2 (Network Initialization). The network parameters are initialized with wg; ; ~
N(0,03) for all | € [L] where og = 2(1_|r#1m/\/27n)for some o1 > 0, and vg is a random unit

vector.

Additionally, a standard assumption on the positive definiteness of Neural Tangent Kernel (NTK) (Ja{
cot et al.,|2018)) is required.

Assumption D.3 (Positive Definite NTK). The neural tangent kernel Kyrg(0) =
[(V fo(2:))TV fo(x;)] is positive definite, i.e. Knrx(0) > oI for some Ao > 0.
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Our goal is to perform an online regression that guarantees Assumption [3.1] Formally, for each
t € [T, we compute the estimator f; to compete the best fy in hindsight:

t t
E ;&(ﬁ) - eeB,iin,fl o0 ;Ei(ﬂ;) < Regrety(t) forall t € [T].

Deb et al.|(2024) shows that a projected Online Gradient Descent (OGD) in conjunction with random
perturbation can serve as a regression oracle satisfying Assumption

Proposition D.4 (Theorem 3.2, 3.3 in[Deb et al| (2024)). Suppose that Assumption and
[D.3|hold. If { is square loss, there exists a projected OGD-based regression oracle that guarantees
Regret (t) < O(logT). If ¢ is logarithmic loss, by additionally assume that y, € [z,1 — z] Vit for
some fixed z > 0, the oracle ensures Regret(t) < O(logT).

Using the regression oracle in Proposition DP-IGW achieves (’)(T%) regret upper bound.

E DETAILS ON EXPERIMENTS

Settings. We explain details for F; and context distributions. Truncated Normal (TN) indicates
Fy = TN(0,0.2%2,—1,1) where TN (u, 02, a,b) is the truncated normal distribution of mean p,
standard deviation of o, and support [a, b]. Mixture of Uniform (MoU) indicates Fy = %U [—0.25, 0]+
$U10,0.25]. Since p € [0,1] and f7z, is zero-mean, we add bias to the linear model so that
P(v; > p|x¢) =1 — Fo(p— (T2 +0.5)). The PH model shows degenerate narrow distribution if
the base CDF has narrow support, so we modify the truncated normal CDF to have wider support:
Fy = TN(0,12,—1,1). In addition, we scale the true parameter for the PH model as P(v; >

p | @) = (1 — Fy(p))*>P@VdA =) The details on context distributions are as follows: normal

distribution indicates x; ~ N (0, \/%I ), uniform in the unit ball indicates x; ~ U{x : ||z||2 < 1},

and Bernoulli distribution indicates x; ; ~ Ber(0.5) for all ¢ € [d].

Neural Network Structure. For DP-IGW, NeuralTS, NeuralUCB, SquareCB, and SmoothIGW,
we use neural networks of the same structure. The networks consist of fully connected 3 layers,
with input dimension d + 1 (context plus price) and output dimension 1, and hidden dimension
d + 1. LeackyReLU activation with a negative slope 0.01 is used except in the output layer, where
sigmoid activation is used. Adam (Kingma & Bal [2014) optimizer with averaging coefficients
B1 = 0.9, B2 = 0.999 is used with no weight decay. For each step, the optimizer performs 2 gradient
steps with the loss computed with full-batch.

Hyperparameter Search and Computational Resources. Since every algorithm has hyperparam-
eters to tune, we conduct a grid search on hyperparameters for 7y = 2000 steps and report the result
with the best hyperparameter and longer horizon 7' = 5000. For the experiments in Figure 3] longer
steps of T, = 3000, T" = 30000 are used.

For DP-IGW, we search with v € {4, 16,64, 256,1024} and regression oracle learning rate o €
{0.002,0.01,0.05}.

For |Fan et al {(2022) and ExXUCB (Luo et al., 2022), we optimize for [, € {32,64, 128,256,512} and
C1 € {3, 35,1,2,4}, where [ is the initial episode length and C controls the ratio of exploration.

DEEP-C (Shah et al., 2019) also has two parameters v € {1, &, 75, 55 37 }> Where 7 is the confidence
bound parameter.

For CoxCP (Choi et al 2023), the search range is Iy € {64,128,256,512,1024} where [j is the
initial episode length.

For ABE (Chen & Gallego| [2021)), we search over the exploration parameter C' € {i, %7 1,2,4}.

For SmoothIGW (Zhu & Mineirol 2022) and SquareCB (Foster & Rakhlin, [2020), we search over
exploration parameter v € {4, 16,64, 256,1024} and v € {4, 16, 64, 256, 1024}, respectively.

For NeuralUCB (Zhou et al., 2020) and NeuralTS (Zhang et al., [2020), we search over v €
{0.01,0.1,1,10,100} and » € {0.01,0.1,1,10,100} where = is the confidence bound parame-
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ter in NeuralUCB and v is the sampling scale parameter in NeuralTS. Since SquareCB, NeuralUCB,
and NeuralTS are finite-arm bandit algorithms, we discretize the price space with K = 100 arms
for SquareCB, and K = 20 for NeuralUCB, NeuralTS (applying K = 100 requires too much
computational resources).

For RMLP (Javanmard & Nazerzadeh, [2019), we optimize over W € {1,2,4,8,16}, where W is
the 6-norm constraint.

For ONSP (Xu & Wang, 2021), we search over v € {1,4,16,64,256} and e €
{107%,1073,107%,10~ 1,1}, where v is the Newton step update parameter and e is the parame-
ter for initial condition matrix.

The experiments were run on Intel Xeon Gold 6226R CPU and Nvidia GeForce RTX 3090 GPU,
while our algorithm does not require high-throughput computational resources. Each run (7' = 5000)
completes within a few minutes.

E.1 REAL-WORLD DATASETS

We pre-processed all datasets by applying one-hot encoding for categorical features and normalized all
numerical features to have zero mean and unit standard deviation. We also normalized the regression
targets so that they have a mean of 0.5 and a standard deviation of 0.25.

Abalone. The Abalone Dataset (Nash & Ford, |[1994)) contains 4177 data points to predict the age
of abalone based on physical measurements. There are 8 numerical features and one binary feature,
which result in d = 10 dimensional contexts.

Diamonds. The Diamonds Dataset (Wickham, [2016) consists of 53940 data points that measure the
physical properties of diamonds. There are 7 numerical features and 3 categorical values, which lead
to d = 26 dimensional contexts.

Energy. The Appliance Energy Prediction Dataset (Candanedo, 2017) has 19735 data points for the
prediction of energy consumption in a building based on numerical sensor measurements. There are
26 numerical features in this dataset.

Housing. The California Housing Dataset (Pace & Barry}, [1997)) contains 20640 data points to predict
the median price of houses within a block. There are 9 numerical features and one categorical feature,
which result in d = 13 dimensional contexts. There are some missing values in numerical features,
and we filled them with the mean value of each feature.

Obesity. The Estimation of Obesity Levels Dataset (Palechor & De la Hoz Manotas},[2019) aims to
predict the obesity level of individuals based on their physical conditions and habits. There are 2111
data points with 9 numerical features and d = 7 categorical features, that forms d = 23 dimensional
context vectors.

Wine. The Wine Quality Dataset (Cortez & Reis|,[2009) consists of 4898 data points with d = 11
numerical features. We used the data from white wine in the experiments.

F COMPARISON OF LOG-LIKELIHOOD LOSS TO SQUARE-LOSS

We compare the performance of DP-IGW with a log-likelihood oracle to one replaced with a square
loss oracle. We experiment with the linear valuation model with normal/mixture of uniform CDFs and
contexts sampled from normal/uniform distributions. We conduct a grid search for T = 2000 steps
and report the result with the best hyperparameter with a longer horizon 7' = 5000. Figure [F]shows
the experimental results. The result demonstrates that DP-IGW with log-likelihood oracle consistently
performs better than the one with square loss oracle, proving that the choice of log-likelihood loss is
more suitable for regression on binary feedback.
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Figure 4: Cumulative regret (for 7' = 5000 steps) of DP-IGW with log-likelihood loss and square loss.
For each algorithm, we executed 10 experiments and reported the mean and the standard deviation.
Abbreviations each indicate TN: Truncated Normal, MoU: Mixture of Uniform.
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