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Abstract

We propose an analysis in fair learning that preserves the utility of the data while
reducing prediction disparities under the criteria of group sufficiency. We focus on
the scenario where the data contains multiple or even many subgroups, each with
limited number of samples. As a result, we present a principled method for learning
a fair predictor for all subgroups via formulating it as a bilevel objective. In the
lower-level, the subgroup-specific predictors are learned through a small amount
of data and the fair predictor. In the upper-level, the fair predictor is updated to
be close to all subgroup specific predictors. We further prove that such a bilevel
objective can effectively control the group sufficiency and generalization error.
We evaluate the proposed framework on real-world datasets. Empirical evidence
suggests the consistently improved fair predictions, as well as the comparable
accuracy to the baselines.

1 Introduction

Machine learning has made rapid progress in sociotechnical systems such as automatic resume
screening, video surveillance, and credit scoring for loan applications. Simultaneously, it has been
observed that learning algorithms exhibited biased predictions on the subgroups of population [1, 2].
For example, the algorithm denies a loan application based on sensitive attributes such as gender,
race, or disability, which has heightened public concerns.

To this end, fair learning is recently highlighted to mitigate prediction disparities. The high-level
idea is quite straightforward: adding fair constraints during the training [3]. As a result, fair learning
principally gives rise to two desiderata. On the one hand, the fair predictor should be informative to
ensure accurate predictions for the data. On the other hand, the predictor is required to guarantee
fairness to avoid prediction disparities across subgroups. Therefore, it is crucial to understand the
possibilities and then design provable approaches for achieving both informative and fair learning.

Clearly, achieving both objectives depends on predefined fair notations. Consider demographic parity
[1] as the fair criteria, which necessitates the independence between the predictor’s output f(X) and
the sensitive attribute (or subgourp index) A. Thus, if the sensitive attribute A and the ground-truth
label Y are highly correlated, it is impossible to learn a both fair and informative predictor.

To avoid such intrinsic impossibilities, alternative fair notions have been developed. In this work,
we focus on the criteria of group sufficiency [1, 4], which ensures that the conditional expectation
of ground-truth label (E[Y |f(X), A]) is identical across different subgroups, given the predictor’s
output. Notably, the risk of violating group sufficiency has arisen in a number of real-world scenarios.
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E.g., in medical artificial intelligence, the machine learning algorithm is used to assess the clinic risk,
and guide decisions regarding initiating medical therapy. However, [5, 6] revealed a significant racial
bias in such algorithms: when the algorithm predicts the same clinical risk score f(X) for white and
black patients, black patients are actually at a higher risk of severe illness: E[Y |f(X), A = black]�
E[Y |f(X), A = white]. The deployed algorithms have resulted in more referrals of white patients to
specialty healthcare services, resulting in both spending disparities and racial bias [5].

In summary, this work aims to propose a novel principled framework for ensuring group sufficiency,
as well as preserving an informative prediction with a small generalization error. In particular, we
focus on one challenge scenario: the data includes multiple or even a large number of subgroups,
some with only limited samples, as often occurs in the real-world. For example, datasets for the
self-driving car are collected from a wide range of geographical regions, each with a limited number
of training samples [7]. How can we ensure group sufficiency as well as accurate predictions?
Specifically, our contributions are summarized as follows:
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Figure 1: Illustration of the
proposed algorithm. Consider
three subgroups S1, S2, S3, e.g.,
datasets for three different races.
The proposed algorithm is then
formulated as a bilevel optimiza-
tion to learn an informative and
fair predictive-distribution Q. In
the lower-level (cyan), we learn
the subgroup specific predictive-
distribution Q

?

a from dataset Sa

(limited samples) and the prior
Q. In the upper-level (brown), Q
is then updated to be as close to
all of the learned subgroup spe-
cific Q

?

a as possible.

Controlling group sufficiency We adopted group sufficiency
gap to measure fairness w.r.t. group sufficiency of a classifier f
(Sec.3), and then derive an upper bound of the group sufficiency
gap (Theorem 4.1). Under proper assumptions, the upper bound
is controlled by the discrepancy between the classifier f and the
subgroup Bayes predictors. Namely, minimizing the upper bound
also encourages an informative classifier.

Algorithmic contribution Motivated by the upper bound of
the group sufficiency gap, we develop a principled algorithm.
Concretely, we adopt a randomized algorithm that produces a
predictive-distribution Q over the classifier (f ∼ Q) to learn
informative and fair classification. We further formulate the prob-
lem as a bilevel optimization (Sec. 5.3), as shown in Fig.1. (1)
In the lower-level, the subgroup specific dataset Sa and the fair
predictive-distribution Q are used to learn the subgroup specific
predictive-distribution Q

?

a, where Q is regarded as an informative
prior for learning limited data within each subgroup. Theorem 5.1
formally demonstrates that under proper assumptions, the lower-
level loss can effectively control the generalization error. (2) In the
upper-level, the fair predictive-distribution Q is then updated to
be close to all subgroup specific predictive-distributions, in order
to minimize the upper bound of the group sufficiency gap.

Empirical justifications The proposed algorithm is applicable
to the general parametric and differentiable model, where we
adopt the neural network in the implementation. We evaluate
the proposed algorithm on two real-world NLP datasets that have
shown prediction disparities w.r.t. group sufficiency. Compared with baselines, the results indicate
that group sufficiency has been consistently improved, with almost no loss of accuracy. Code is
available at https://github.com/xugezheng/FAMS.

2 Related Work

Algorithmic fairness Fairness has been attached great importance and widely studied in various
applications, such as natural language processing [8–10], natural language generation [11–13],
computer vision [14, 15], and deep learning [16, 17]. Then various approaches have been proposed
in algorithmic fairness. They typically add fair constraints during the training procedure, such as
demographic parity or equalized odds [18–23]. Apart from this, other fair notions are adopted
such as accuracy parity [24, 25], which requires each subgroup to attain the same accuracy; small
prediction variance [26, 27], which ensures small prediction variations among the subgroup; or small
prediction loss for all the subgroups [28–31]. Furthermore, based on the concept of Independence (e.g.
demographic parity A ⊥⊥ f(X)) or conditional independence (e.g. equalized odds A ⊥⊥ f(X)|Y or
group sufficiencyA ⊥⊥ Y |f(X)), another popular line in fair learning is then naturally integrated with
information theoretical framework through adding mutual information constraints such as [32, 33].
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Understanding fairness-accuracy trade-off As for the theoretical aspect, [34] further investigated
the relation of fairness (demographic parity) and algorithmic stability. [35] formally justified the
inherent trade-off between fairness (w.r.t. demographic parity and equalized odds) and accuracy,
whereas the analysis is conducted for the binary sensitive attribute with the population loss. [36]
studied the fair-accuracy trade-off in the multi-task learning.

Group sufficiency The fair notion of group sufficiency has recently been highlighted in various
real-world scenarios such as health [6] and crime prediction [4, 37]. Specifically, [38] demonstrated
that under proper assumptions, group sufficiency can be controlled in the unconstraint learning.
However, this conclusion may not necessarily always hold in the overparameterized models with
limited samples per subgroup, where [6, 39, 40] essentially revealed the prediction disparities
between the different subgroups in the unconstraint learning. [41] recently studied the fair selective
classification w.r.t. group sufficiency through an information theoretical framework, while the
theoretical guarantee is unknown. In contrast, our proposed lower-level loss within the paper can
provably control the generalization error, and the upper-level loss controls the group sufficiency gap.
Besides, a close notion to the group sufficiency is the probability calibration [42], which is defined as
E[Y |f(X)] = f(X) in binary classification. We will empirically show the probability calibration
could be consistently improved within our framework, whereas the analysis on finite samples and its
theoretical relation with group sufficiency remains still opening [43].

Bi-level optimization in fairness Bi-level optimization seeks to solve problems with a hierarchical
structure. Namely, two levels of optimization problems where one task is nested inside another [44].
Several ideas related to bi-level optimization have been proposed in the context of fair-learning. For
instance, we could design a min-max optimization to learn fair representation when considering
demographic parity (DP) or equalized odds (EO) [19, 32, 25]. In this context, a representation
function aims to minimize the loss caused by the discriminator in the lower-level. Simultaneously, in
the upper-level, a discriminator could be introduced to maximize the loss. Then fair representation
could be enforced through the bi-level optimization. Besides, if the accuracy and its variants are
tracked as the metrics for each subgroup [12], the bi-level objective could also be deployed in
controlling the loss [45] or the prediction variance [27], where the lower-level’s goal is to minimize
the loss for each subgroup and the upper-level’s goal is to estimate the prediction disparities. In
our paper, we theoretically justified a novel bi-level optimization perspective: controlling group
sufficiency and accuracy. Simultaneously, other bi-level optimization and its relevant meta-learning
algorithms could be further considered in the fair learning such as recurrent based gradient updating
[46], layer-wise transformation [47] or implicit gradient based approach [48].

3 Preliminaries

We assume the joint random variable (X,Y,A) follows an underlying distributionD(X,Y,A), where
X ∈ X is the input, Y ∈ Y is the label, and the scalar discrete random variable A ∈ A denotes
the sensitive attribute (or subgroup index). For instance, A represents gender, race, or age. We also
denote E[Y |X] as the conditional expectation of Y , which is essentially a function of X . EA,X [·]
is denoted as the expectation on the marginal distribution of D(A,X). Throughout the paper, we
consider binary classification with Y = {0, 1}. We further define the predictor as a scoring function
f : X → [0, 1] that maps the input into a real value in [0, 1]. It is worth mentioning that in general
f(X) /∈ Y since f(X) is continuous. We then introduce group sufficiency and group sufficiency gap.
Definition 3.1 (Group sufficiency [1, 4, 38]). A predictor f satisfies group sufficiency with respect to
the sensitive attribute A if E[Y |f(X)] = E[Y |f(X), A].

Intuitively, given a output score of the predictor f(X) = τ , the conditional expectation of Y is
invariant across different subgroups. Namely, conditioning on the specific subgroup A = a does not
provide any additional information about the conditional expectation of Y . Then we could naturally
define group sufficiency gap.
Definition 3.2 (Group sufficiency gap [38]). The group sufficiency gap of a predictor f is defined as:
Suff = EA,X [|E[Y |f(X)]− E[Y |f(X), A]|]

Specifically, Suff measures the extent of group sufficiency violation, induced by the predictor f ,
which is taken by the expectation over (X,A). Clearly, Suff = 0 suggests that f satisfies groups
sufficiency and vice versa. For completeness, we also discuss other popular group fairness criteria:
demographic parity and equalized odds.
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Definition 3.3 (Demographic Parity (DP)). A predictor f satisfies the demographic parity with
respect to the sensitive attribute A if: E[f(X)] = E[f(X)|A]

Demographic Parity (DP), also known as statistical parity or independence rule, emphasizes that the
expectation of the output score f(X) is independent of A. [1, 4] further revealed that if A 6⊥⊥ Y ,
group sufficiency and demographic parity could not be simultaneously achieved.
Definition 3.4 (Equalized Odds (EO) [18]). A predictor f satisfies the equalized odds with respect
to A if: E[f(X)|Y ] = E[f(X)|Y,A]

Equalized odds (EO) emphasizes the conditional expectation of output f is invariant w.r.t. A, given
the ground truth Y . [1, 37] reveal that if D(X,Y,A) > 0 and A 6⊥⊥ Y , group sufficiency and
equalized odds can not both hold.

The analysis reveals a general incompatibility between group sufficiency and DP/EO when A 6⊥⊥ Y ,
which often occurs in practice. Besides, DP/EO based criteria generally suffers the well-known fair
accuracy trade-off [32]: enforcing the fair constraint degrades the prediction performance. This paper
depicts that under the criteria of group sufficiency, these objectives could be both encouraged.

4 Upper bound of group sufficiency gap

To derive the theoretical results, we first introduce the group Bayes predictor.

Definition 4.1 (A-group Bayes predictor). The A-group Bayes predictor fBayes
A is defined as:

fBayes
A (X) = E[Y |X,A]

The A-group Bayes predictor is associated with the underlying data distribution D(X,Y,A). Given
the fixed realization X = x,A = a, we have fBayes

A=a (x) = E[Y |X = x,A = a], which suggests the
ground truth conditional data generation of subgroup A = a. By adopting fBayes

A=a (x), we could derive
the upper bound of group sufficiency gap w.r.t. any predictor f :

Theorem 4.1. Group sufficiency gap Suff is upper bounded by: Suff ≤ 4EA,X [|f − fBayes
A |]

Specifically, if A takes finite value (|A| < +∞) and follows uniform distribution with D(A = a) =
1/|A|. Then the group sufficiency gap is further simplified as:

Suff ≤
4

|A|
∑
a

EX [|f − fBayes
A=a ||A = a]

The proof is inspired by [38]. Specifically, Theorem 4.1 reveals that the upper bound of group
sufficiency gap depends on the discrepancy between the predictor f and A-group Bayes predictor
fBayes
A (X). Namely, given different subgroups A = a, the optimal predictor f ought to be closed to

all the group Bayes predictors fBayes
A=a (X), ∀a ∈ A.

Underlying assumption Theorem 4.1 also reveals underlying assumptions w.r.t. the data generation
distribution D(X,Y,A) for achieving a small group sufficiency gap. If fBayes

A for each subgroup
A = a are quite similar, then minimizing the upper bound yields a small group sufficiency gap
Suff . For example, consider the extreme scenario if the A-group Bayes predictors are identical
w.r.t. A, E[Y |X,A = a] = E[Y |X],∀a ∈ A, where E[Y |X] is the conventional Bayes predictor
defined on the marginalized distribution D(X,Y ). The upper bound recovers the difference between
the predictor f and standard Bayes predictor. If we use a probabilistic framework to approximate
predictor f(X) ≈ E[Y |X] (i.e, training the entire dataset without any fair constraint), both group
sufficiency gap and prediction error (since Bayes predictor is optimal) will be small, which is
consistent with [38]. On the contrary, if A-group Bayes predictors are completely arbitrary with high
variance for A, both group sufficiency gap and prediction error are large and it would be impossible
for an informative prediction.

5 Principled Approach

Based on the upper bound, we propose a principled approach to learn the predictor that achieves both
small generalization error and group sufficiency gap.
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5.1 Upper bound in randomized algorithm

To establish the theoretical result, we consider a randomized algorithm that learns a predictive-
distribution Q over scoring predictors from the data. For instance, if we consider Bayes framework,
the predictor is drawn from the posterior distribution f̃ ∼ Q. In the inference, the predictor’s output
is formulated as the expectation of the learned predictive-distribution Q: f(X) = Ef̃∼Qf̃(X).

In practice, it is infeasible to optimize over all the possible distributions. Then we should restrict
the predictive-distribution Q within a distribution family Q ∈ Q such as Gaussian distribution.
We also denote Q?

a ∈ Q as the optimal prediction-distribution w.r.t. A = a under binary cross-
entropy loss within the distribution family Q: Q?

a := argminQa∈Q Ef̃a∼Qa
LBCE
a (f̃a). In generally

Q?
a 6= fBayes(x,A = a), since the distribution familyQ is only the subset of all possible distributions

(shown in Fig. 2). We then extend the upper bound in the randomized algorithm.

Corollary 5.1. The group sufficiency gap Suff in randomized algorithm w.r.t. learned predictive-
distribution Q is upper bounded by:

Suff ≤
2
√
2

|A|
[
∑
a

√
KL(Q?

a‖Q)︸ ︷︷ ︸
Optimization

+
√

KL(Q?
a‖D(Y |X,A = a))︸ ︷︷ ︸
Approximation

]

Where KL is the Kullback–Leibler divergence. Corollary 5.1 further reveals that the upper bound is
decomposed into two terms, showing in Fig.2.

•Q?
a

•
D(Y |X,A = a)

•Q?
b

• D(Y |X,A = b)
•QQ

Figure 2: Illustration of optimiza-
tion and approximation term. In the
binary subgroupA = {a, b}, the op-
timization term is to find Q ∈ Q to
minimize the discrepancy between
(Q?

a, Q
?
b). The approximation term

is solely based on the distribution
family Q (brown region). If the
predefined Q has a rich expressive
power, the approximation is treated
as a small constant.

Optimization term The optimization term is the average KL
divergence between the learned distribution Q and optimal
predictive-distribution Q?

a for each subgroup A = a. Minimiz-
ing the optimization term implies that the learned distribution
Q will be both fair and informative for the prediction, because
it aims to minimize the upper bound of the group sufficiency
gap Suff and be close to the optimal predictive-distribution
w.r.t. each A = a.

Approximation term The approximation term is the average
KL divergence between the optimal distribution Q?

a and the
underlying data generation distribution. Given the distribution
family Q, it is a unknown constant. Besides, if the distribution
family Q has a rich expressive power such as deep neural-
network, the approximation term will be small [49]. However,
an extreme large distribution family Q could simultaneously
yield a potential overfitting on finite samples. In this paper,
the neural network is adopted and the approximation term is
assumed to be a small constant. Thus, controlling Suff implies
minimizing the optimization term.

5.2 Challenge in learning limited samples

In practice, we only have access to finite or even limited samples in each subgroup, rather than the
underlying distribution D. We denote Sa = {(xai , yai )}mi=1 as the observed data w.r.t. subgroups
A = a, which are i.i.d. samplings from the underlying distribution D(x, y|A = a). We also denote
the empirical binary cross entropy loss w.r.t A = a as: L̂BCE

a (f̃) = 1
m

∑m
i=1−[yai log(f̃(xai )) +

(1− yai ) log(1− f̃(xai ))]. Then a straight approach is to minimize the empirical term Q̂?
a:

Q̂?
a = argminQa∈Q Ef̃a∼Qa

L̂BCE
a (f̃a) (1)

Then Q is updated through minimizing the average KL-divergence:
∑

a KL(Q̂?
a‖Q) from learned Q̂?

a.
However, this idea generally does not work in our setting, because each subgroup contains limited
number of samples. Therefore, a straight minimization leads to overfitting for each subgroup and
generalization error Ef̃∼Q̂?

a
LBCE
a (f̃) is quite large, showing in Fig. 5.
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5.3 Q as an informative prior

We have demonstrated that Q can achieve both fair and informative prediction. Therefore, we regard
Q as a prior information for minimizing the loss, yielding a bilevel objective.

min
Q∈Q

1

|A|
∑
a

KL(Q
?

a‖Q) (Upper-level)

s.t. Q
?

a = argminQa∈Q{Ef̃a∼Qa
L̂BCE
a (f̃a) + λKL(Qa‖Q)},∀a ∈ A (Lower-level)

Where λ > 0 is the hyper-parameter. The proposed loss is a typical bilevel optimization. (1) In the
lower-level, we aim to learn Q

?

a for each a ∈ A. Different from Eq. (1), the loss in lower-level adds
a regularization term KL(Qa‖Q) as an informative prior in learning Q

?

a, given a fixed predictive-
distribution Q. Moreover, Theorem 5.1 formally justified that optimizing the lower-level loss is to
minimize the upper bound of the generalization error. (2) In the upper-level, Q is updated through
minimizing the average KL divergence between different Q

?

a, which controls the upper bound of
Suff .

Theorem 5.1 (Generalization error bound). Supposing that datasets {Sa}|A|a=1 with Sa =
{(xai , yai )}mi=1 are i.i.d. sampled from D(x, y|A = a), the binary cross entropy (BCE) loss is
upper bounded by L, Qa ∈ Q is any learned distribution from dataset Sa and Q ∈ Q is any
distribution. Then with high probability ≥ 1− δ with ∀δ ∈ (0, 1), we have:

1

|A|
∑
a

Ef̃a∼Qa
LBCE
a (f̃a) ≤

1

|A|
∑
a

Ef̃a∼Qa
L̂BCE

a (f̃a)︸ ︷︷ ︸
(1)

+
L√
|A|m

∑
a

√
KL(Qa‖Q)︸ ︷︷ ︸

(2)

+L

√
log(1/δ)

|A|m︸ ︷︷ ︸
(3)

Discussions The proof is inspired by PAC-Bayes theorem such as [50–52]. Secpficially, Theorem
5.1 reveals the generalization error in the lower-level is upper bounded by three terms. (a) Term (1) is
the average empirical prediction error, which corresponds to the first term in the lower-level loss. (b)
Term (2) indicates the average KL-divergence between the learned subgroup distribution Qa and the
prior distribution Q, which corresponds to the second term in the lower-level loss. The combination
of term (1-2) recovers the averaged lower-level loss w.r.t. A. 2 Thus optimizing the lower-level loss
could control the generalization error. (c) When the confidence δ is fixed, term (3) will converge if
|A|m → +∞. Moreover, even if m (the sample size in each subgroup) is quite small, a sufficient
large number of subgroups |A| can also ensure the convergence of term (3).

For the sake of simplicity, we assumed the identical samples size m in each subgroup Sa, while the
theoretical result can be extended to subgroups with different samples ma.

5.4 Practical Implementations

In this section, we develop a practical learning algorithm that can be applied to a wide range of
differentiable and parametric models, including neural networks.

Parametric models We choose the Isotropic Gaussian distribution (with diagonal covariance
matrix) as the distribution family Q, where the mean and covariance are set as d-dimensional
parameter. Thus we need to learn the parameter (θ,σ) for fair and informative Q ∈ Q. As for the
subgroup A = a, we learn parameters (θa,σa) for Q

?

a ∈ Q. It is worth mentioning that the Isotropic
Gaussian distribution is selected for its computational efficiency in the optimization. We can use any
distribution as long as the density function is differentiable with respect to the parameters.

For the single predictor f̃ , we use parametric neural-network models and assume f̃ is parameterized
by a d-dimensional vector w ∈ Rd, denoted as f̃w. Then f̃w ∼ Q is equivalent to sampling the model
parameter w from the predictive-distribution Q: w ∼ N (θ,σ2) =

∏d
i=1N (θ[i],σ2[i]). Since Q is

Isotropic Gaussian, each element i in the parameter w[i] follows a 1-dimensional Gaussian. Following
the same line, f̃wa

∼ Q?

a can be modeled analogously: wa ∼ N (θa,σ
2
a) =

∏d
i=1N (θa[i],σ

2
a[i]).

2In Theorem 5.1, the differences are in the square norm of KL divergence and setting the specific hyper-
parameter: λ = L

√
|A|/m.
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Algorithm 1 Fair and Informative Learning for Multiple Subgroups (FAMS)

1: Input: Parameters w.r.t. distribution Q:(θ,σ2), datasets {Sa}, a ∈ A.
2: for Sampling a subset of {Sa}, where a ∈ A′ ⊆ A do
3: ### Solving the lower-level ###
4: Fix Q, optimizing the loss w.r.t. Qa = N (θa,σ

2
a) through SGD for each a ∈ A′

Ef̃wa∼Qa
L̂BCE
a (f̃wa

) + λKL(Qa‖Q)

5: Obtaining the solution Q
?

a, a ∈ A′.
6: ### Solving the upper-level ###
7: Fix Q

?

a with a ∈ A′, optimizing the loss w.r.t. Q through SGD: 1
|A′|

∑
a KL(Q

?

a‖Q)

8: Obtaining updated parameter (θ,σ2) in Q
9: end for

10: Return: Parameter of distribution Q: (θ,σ2)

As a result, learning the distribution Q is equivalent to learning parameter (θ,σ) in the bilevel
objective.

Gradient Estimation Based on the previous setting, we aim to optimize the bilevel objective
to obtain the parameter of Q: (θ,σ). We use stochastic gradient descent (SGD) to optimize
the parameters. In the lower-level, the loss in Sec. 5.3 is composed by the empirical prediction
error and KL divergence term. The KL divergence has a closed form that can be differentiated
efficiently. Specifically, since Q and the subgroup specific Q

?

a are factorized Gaussian, the KL
divergence takes a simple closed form and the gradient can be easily calculated: KL(Q

?

a‖Q) =
1
2

∑d
i=1

{
log

σ2
a[i]

σ2[i] +
σ2

a[i]+(θa[i]−θ[i])2
σ2[i] − 1

}
.

Re-parametrization trick As for the prediction error Ef̃wa∼Qa
L̂BCE
a (f̃wa

), the term L̂BCE
a (f̃wa

)

is non-linear for w, rendering the expectation intractable in the computation. To this end, we
adopt the re-parameterization trick [53, 54] in computing the gradient w.r.t. the expectation term.
The trick is based on describing the Gaussian distribution wa ∼ N (θa,σ

2
a) as first drawing

ε ∼ N (0, I) and then applying the deterministic function wa(θa,σa) = θa + σa � ε (� is
element-wise product) to approximate the sampling. Then the gradient term can be estimated as:
∇(θa,σa)Ewa∼N(θa,σa) L̂BCE

a (f̃wa
) = ∇(θa,σa)Eε∼N (0,I)L̂BCE

a (f̃wa(θa,σa)), where the expectation
can be approximated by Monte-Carlo sampling w.r.t. ε. For a fixed sample ε, the gradient can be
computed through backpropagation. In the upper-level, the KL divergence has a closed form, thus it
is easy to update the parameter of Q through backpropagation.

Proposed Algorithm Based on the analysis, the algorithm is shown in Algorithm. 1 for solving
the bilevel objective in Sec. 5.3. Specifically, we adopt the alternating optimization. Namely, in
the lower-level, we fix Q and optimize the subgroup specific predictor Q

?

a through SGD. Then in
the upper-level, we fix the learned Q

?

a and update Q. Since we may face many subgroups, at each
training epoch, we randomly sample a subset A′

such that |A′ | � |A| for the memory saving.

Inference In the inference, we use the Monte-Carlo method to sample the weights of the neural
network from distribution w ∼ N (θ,σ2), then averaging the output w.r.t. different sampled weights
to approximate f(x) = Ef̃w∼Qf̃w(x)

6 Experiments

6.1 Experimental Setup

Dataset: Amazon review We adopt Amazon review dataset [55, 40], which aims to predict the
sentiment (classification) from the review. The datasets consist of large-scale users. Each user has
limited number of reviews, ranging from 75 to 400. The user is then treated as a subgroup, and it
has been observed that standard training can lead to prediction disparities in several users.[56].The
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(c) Probability Calibration

Figure 3: Amazon Review dataset. (a) Boxplot of accuracy and group sufficiency gap Suff with
5 repeats: median, 75th percentile and minimum-maximum value. (b) Group sufficiency gap on
subgroup A = a, which is the difference between E[Y |f(X)] and E[Y |f(X), A = a]. We visualize
the top-9 users’ group sufficiency gap in ERM, whereas the result for all users is delegated to
the Appendix. (c) Probability calibration curve over 5 repeats with mean and standard deviation.
i.e (f(X),E[Y |f(X)]). The proposed approach demonstrated a consistently improved probability
calibration.

experiment is adapted from the protocol of [40]. Specifically, we convert the original review score
(ranging from 1-5) to the binary label: the positive review (score≥ 4) and negative review (score≤ 3).
We draw and then fix 200 users from the original dataset, which includes the training, validation,
and test sets. In the implementation, we first adopt DistilBERT [57] to learn the embedding with
dimension R768. Then we adopt f̃w and f̃wa as the four-layer fully connected neural network, where
w ∼ Q and wa ∼ Qa. Additional experimental details are delegated to the Appendix.

Dataset: Toxic Comments We also use the toxic comment dataset [58] to predict the text com-
ment being toxic or not, which has shown the significant performance degradation on specific
sub-populations. Following [58], we select race as sensitive attribute, which includes Black, White,
Asian and Latino & others (4 subgroups). We also follow the same setting as the original dataset
[40], which has the separate training, validation, and test sets. Since toxic comments are marked
by multiple annotators, we decide that the comment is toxic if it is marked by at least half of the
annotators. In the implementation, we adopt the DistilBERT [57] as the embedding with output
dimension R768. Then we also adopt f̃w and f̃wa as the four-layer fully connected neural network,
with the same network structure as Amazon. Additional details are delegated to the Appendix.

Baselines We compare with following baselines. (1) ERM: training a deep model without con-
sidering the sensitive attribute. (2) SNN. Since we adopt randomized algorithms in the paper, we
additionally compare the stochastic neural network through the vanilla training from the whole
dataset. Namely, we find a predictive-distribution Q to minimize 1

|A|
∑

a Ef∼QL̂BCE
a (f). (3) EIIL

[43] proposed an IRM based approach to promote the group sufficiency. (4) FSCS [41] adopted
the conditional mutual information constraint I(A, Y |f(X)) to promote the sufficiency. (5) DRO
[24]. A re-weighting approach to assign the importance of the task. Indeed, DRO does not provably
guarantee group sufficiency, while it encourages identical losses. All the experiments are repeated
five times.

Computing Suff Since f(X) is continuous, the group sufficiency gap is calculated by splitting the
output of predictor into multiple intervals in [0, 1] and computing the conditional expectation within
each interval, as detailed in Appendix.

6.2 Experimental Results

We visualize the results in Fig. 3 for Amazon review product and Fig. 4 for toxic comment.

Accuracy and Fairness The accuracy and group sufficiency gap are depicted in Fig. 3(a) and Fig. 4(a).
In Amazon review, the accuracy in the proposed approach has a slight decrease, compared with ERM.
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Figure 4: Toxic dataset. (a) Boxplot of accuracy and group sufficiency gap Suff with 5 repeats:
median, 75th percentile and minimum-maximum value. (b) Group sufficiency gap on the specific
subgroupA = a, which is the difference between E[Y |f(X)] and E[Y |f(X), A = a]. (c) Probability
calibration over 5 repeats with mean and standard deviation. i.e (f(X),E[Y |f(X)]), where the
probability calibration for each subgroup is delegated to Appendix.

While the group sufficiency gap has improved by 3.0%, showing a significant improvement in the
fairness. In toxic comments, the accuracy in proposed approach is nearly identical to the baseline,
whereas group sufficiency gap has been significantly improved by 3.0-3.5%.

Group sufficiency gap on the specific subgroup To gain better understandings of group sufficiency
gap, we visualize group sufficiency gap on specific subgroup A = a, i.e the discrepancy between
the E[Y |f(X)] (conditional expectation on the entire data) and E[Y |f(X), A = a] (conditional
expectation on subgroup A = a). I.e, EX [|E[Y |f(X)]− E[Y |f(X), A = a]|].
In Amazon review dataset, we visualize the top-9 users’ sufficiency gap in ERM, as shown in Fig.
3(b), where the gap of entire users is delegated to the Appendix. The proposed approach significantly
reduces the group sufficiency gap of in most subgroups. The similar trend is also observed in Toxic
dataset, as shown in Fig. 4(b), where the proposed approach has the nearly identical and small group
sufficiency gap for each race. In contrast, the baselines exhibit significant group sufficiency bias on
the Asian and Latino & other races.
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Figure 5: Analysis. Accuracy-Suff curve under
different λ in Amazon review dataset.

Probability Calibration A related concept to
group sufficiency is the probability calibration
[42], which is defined as E[Y |f(X)] = f(X)
in the binary classification. We visualize the
probability sufficiency of Amazon review in
Fig. 3(c) and Toxic comments in Fig. 4(c).
The results suggest that the proposed approach
demonstrates a consistently better probability
calibration on the whole data. We then visualize
the probability calibration for each subgroup, as
shown in the Appendix, where the results reveal
the improved probability calibration for each
subgroup.

Other sensitive attributes in Toxic comments Apart from adopting race as sensitive attribute, we
also consider other possible sensitive attributes such as gender and religion, and the results are showed
in the Appendix. The results in other sensitive attributes are similar to race, with improved fairness
and no loss on accuracy.

Influence of λ. Fairness and accuracy can be simultaneously achieved. Theorem 5.1 suggests
that there exists an optimal λ in the generalization error bound. Then we changed the value of λ in
Amazon dataset, as shown in Fig. 5.

When λ→ 0, the subgroup specific parameters are simply learned from the limited samples within
each subgroup. Then the fair predictor could not learn a proper prior from the subgroup specific
predictor with a significant generalization error. Meanwhile, the group sufficiency gap is also large,
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which is consistent with [38]: overfitting generally degrades the group sufficiency. When λ is set
between [0.2, 1], the generalization error is small (with a high accuracy) and group sufficiency gap is
kept small, implying that both fairness and accuracy can be achieved. In contrast, if we set a large
value for λ � 0, the predictor is unable to learn from the data but from the random prior Q. The
prediction will be completely random (accuracy = 55% when λ = 50). When the predictor outputs a
random guess, different from demographic parity (DP) or equalized odds (EO), the group sufficiency
gap is also large. The analysis reveals that there exists an optimal λ for simultaneously achieving
accuracy and group sufficiency.

7 Conclusion

We conducted a novel analysis by simultaneously learning an informative and fair classifier for
multiple or even many subgroups. We derived a novel principled algorithm. We further theoretically
justified the generalization error and fair guarantees of the proposed framework. The empirical results
in two real-world datasets demonstrated the effectiveness in both preserving the accuracy, as well as
group sufficiency.

Discussion on Limitations

We proposed the analysis on learning group sufficiency and informative predictors, and developed
a principled approach for it. Simultaneously there are several limitations to the proposed theory
and algorithm. (1) In general, group sufficiency and DP/EO are incompatible. Controlling group
sufficiency, for example, would cause DP/EO degradation. This would be problematic if DP/EO were
preferred in practice. (2) We also assumed that the ground truth A-Bayes predictors would be similar
across groups. However, this assumption could be violated, resulting in a highly non-trivial scenario.
Thus, in order to evaluate the conditional distribution shift, we need to consider a new setting by
collect sufficient data per subgroup.
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