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Abstract

Vision Large Language Models (VLLMs) are widely acknowledged to be prone1

to hallucinations. Existing research addressing this problem has primarily been2

confined to image inputs, with sparse exploration of their video-based counterparts.3

Furthermore, current evaluation methods fail to capture nuanced errors in generated4

responses, which are often exacerbated by the rich spatiotemporal dynamics of5

videos. To address these two limitations, we introduce VIDHAL, a benchmark6

specially designed to evaluate video-based hallucinations in VLLMs. VIDHAL7

is constructed by bootstrapping video instances across a wide range of common8

temporal aspects. A defining feature of our benchmark lies in the careful creation9

of captions which represent varying levels of hallucination associated with each10

video. To enable fine-grained evaluation, we propose a novel caption ordering task11

requiring VLLMs to rank captions by hallucinatory extent. We conduct extensive12

experiments on VIDHAL and comprehensively evaluated a broad selection of13

models, including both open-source and proprietary ones such as GPT-4o. Our14

results uncover significant limitations in existing VLLMs with respect to video-15

based hallucination generation. Through our benchmark, we aim to inspire further16

research on i) holistic understanding of VLLM capabilities, particularly regarding17

hallucination, and ii) advancing VLLMs to alleviate this problem.18

1 Introduction19

Building on the advancements of Large Language Models (LLMs), Vision LLMs (VLLMs) have20

recently gained significant attention. Models such as LLaVA [36, 34] have shown impressive21

performance across various visual understanding tasks involving both images and videos. Despite22

their potential, VLLMs are notably prone to hallucinations, where generated responses that appear23

to be plausible contradict the visual context [1, 59]. This problem significantly compromises the24

reliability of VLLMs, hindering their practical use in real-world applications.25

To tackle this challenge, some methods propose to leverage post-hoc techniques such as contrastive26

decoding [22, 77, 11, 78] and attention calibration [16, 41, 39, 66, 14, 71, 58]. Other efforts have27

been devoted to the evaluation of hallucinations in VLLMs. For example, CHAIR [47] initially28

studies object-based hallucination evaluation with the aid of the image captioning task. Subsequent29

studies [31, 38, 20, 10] instead harness paired 〈positive, hallucinatory〉 questions to probe such30

hallucinations. Additionally, MMHalBench [50] and AMBER [53] expand beyond object-based31

evaluations by constructing benchmarks that cover attribute and relationship hallucinations.32

Unlike their image-based counterparts, video hallucinations pose unique challenges primarily due to33

the intricate spatiotemporal dynamics of videos [29, 45, 6, 12, 40, 42]. In particular, video-specific34

temporal aspects, such as movement direction and chronological order of events, are especially35

concerning for video-based VLLMs. Furthermore, the richness of video content necessitates a finer-36
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grained understanding, making VLLMs more vulnerable to nuanced hallucinations. Nonetheless, to37

the best of our knowledge, video-based hallucinations remain underexplored in the existing literature.38

To address this research gap, we present VIDHAL, a benchmark specifically designed to evaluate39

video-based hallucinations of VLLMs. VIDHAL features videos that comprehensively cover a broad40

range of temporal aspects, such as entity actions and sequence of events. Each video is automatically41

annotated with multiple captions exhibiting varying levels of aspect-specific hallucinations, capturing42

both subtle and significant discrepancies. In addition, we perform detailed human validation to ensure43

the robustness and reliability of our annotation process. An additional motivation stems from the44

limited metrics for quantifying hallucinations in VLLMs. To capture fine-grained hallucinatory errors45

of these models, we propose a unique caption ordering task that requires models to rank captions46

by hallucination levels. This consequently leads to a ranking-based NDCG metric and an MCQA47

accuracy metric, both are distinct from prior ones and specifically tailored to evaluate nuanced48

hallucinations in video-based VLLMs.49
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Figure 1: Multiple-Choice Question Answering
(MCQA) performance of representative VLLMs
on our VIDHAL benchmark. (Left) Overall rank-
ing of VLLMs. (Right) Detailed accuracy results
pertaining to each temporal aspect, wherein higher
scores indicate fewer hallucinations.

Using our VIDHAL dataset, we benchmark thir-50

teen VLLMs including both open-sourced and51

proprietary models, with abstracted results sum-52

marized in Figure 1. Through these exten-53

sive experiments, we identify limitations in nu-54

anced video understanding among all evaluated55

VLLMs. Specifically, our findings reveal that ex-56

isting VLLMs struggle to differentiate between57

captions with varying levels of hallucination.58

This deficiency is particularly evident when eval-59

uating video-specific aspects, such as Direction60

and Order, as illustrated in Figure 1, indicat-61

ing substantial room for improvement in current62

video-based VLLMs. Additionally, proprietary63

models, e.g., GPT-4o [43], often outperform64

open-source counterparts by significant margins.65

Overall, the contributions of this work are three-fold:66

• We present VIDHAL, a benchmark dataset dedicated to video-based hallucination evaluation of67

VLLMs. Our dataset is distinguished by i) video instances sourced from public video understanding68

datasets encompassing a diverse range of temporal concepts and ii) captions with varying levels of69

hallucination1.70

• We introduce a novel evaluation task of caption ordering along with two metrics designed to71

evaluate fine-grained hallucination generation in existing VLLMs.72

• We conduct extensive experiments on VIDHAL with a variety of VLLMs, uncovering limitations in73

their fine-grained video reasoning abilities, particularly in their tendency to generate hallucinations.74

2 Related Work75

Vision Large Language Models. The emergence of powerful LLMs has advanced the development76

of VLLMs [36, 34, 25, 9, 62, 63, 61]. Typical methods in this category include LLaVA [36],77

mPLUG-Owl [63, 61, 62], InstructBLIP [9], and MiniGPT-4 [75]. These VLLMs rely on aligning78

vision encoders with LLMs using connective modules such as Q-Former [9, 26, 25, 67, 8] or79

MLPs [36, 34, 49] with the instruction tuning stage. Recent methods have extended visual inputs80

from images to (long) videos, delivering impressive joint spatial-temporal reasoning capabilities.81

For instance, VideoLLaMA2 [8] enhances the LLaMA model with video understanding capabilities82

through a Spatial-Temporal Convolution (STC) module. LLaVA-NeXT-Video [35, 68] presents an83

AnyRes approach that enables reasoning with long videos.84

Hallucinations in VLLMs. Despite their impressive performance on visual reasoning benchmarks,85

current VLLMs remain notoriously susceptible to hallucinations [18, 39, 76, 5]. A common demon-86

stration is that the generated responses contain information which is inconsistent with the visual87

1Our VIDHAL dataset will be made available to the public.
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moving clockwise?
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Q: What is the direction in
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A: Clockwise.

You are given one or more
questions targeted at
content of a video...
<Y/N QA>
<MCQA>

Generate an appropriate and
informative single line
caption for the video...
Video Description:

Based on the information
provided, an accurate
description of the video is:

The clock hands are moving
clockwise.

You are tasked with
generating hallucinatory
captions for a video with the
description: The clock hands
are moving clockwise...

Modify the direction in the
caption to generate 2 captions
in different levels of
hallucination.

Here are suitable
hallucinatory captions:

Moderate Hallucination:
The clock hands are moving
counter-clockwise.
High Hallucination: The
clock hands are stationary.

Figure 2: Overview of our VIDHAL benchmark construction pipeline. Using direction as an example
from the five selected aspects, we begin by sourcing relevant video instances from existing datasets.
Next, the anchor (positive) caption is generated from the original video metadata. Finally, GPT-4o is
employed to generate hallucinatory captions at varying levels.

content [1, 33, 65, 57]. Most approaches address the hallucination problem with post-hoc techniques.88

For example, LURE [73] and Woodpecker [64] develop pipelines that assist VLLMs in revising89

their responses using expert models. To reduce bias from unimodal and statistical priors, contrastive90

decoding methods, such as VCD [22] and M3ID [11], along with attention calibration techniques91

like OPERA [16] are employed to refine token predictions. Building on the success of reinforcement92

learning for preference optimization in LLM development [44], HA-DPO [69], POVID [72] and93

CSR [74] adopt this paradigm to fine-tune VLLMs, yielding outputs with fewer hallucinations.94

Video Reasoning Benchmarks. The rise of video-based VLLMs has driven the development95

of numerous video benchmarks. Notable examples, such as SEEDBench [23], VideoBench [42],96

MVBench [29], and VideoMME [12], focus on dynamic events requiring temporal reasoning beyond97

individual frames. However, these benchmarks often lack diversity in reasoning tasks and visual98

concepts. To address this, AutoEval-Video [6] and Perception Test [45] introduce complex reasoning99

tasks such as counterfactual and explanatory reasoning, while TempCompass [40] expands temporal100

concept coverage. Several benchmarks [31, 53, 50, 20, 32, 19, 55, 70, 5, 4, 56, 51, 7] have been101

constructed to quantify visual hallucinations, primarily targeting object-based hallucinations in102

images. HallusionBench [15], VideoCon [2], and Vript [60] provides partial coverage of video-103

based hallucinations, while VidHalluc [24] and VideoHallucer [54] introduces a benchmark for104

hallucination detection in videos. However, these benchmarks provide limited coverage of spatio-105

temporal concepts, focusing on conventional aspects like actions while neglecting other video-centric106

elements such as direction. Additionally, their evaluation strategies primarily follow image-based107

approaches, which we argue are less effective in capturing nuanced, video-specific hallucinations.108

3 VIDHAL Dataset Construction109

We introduce VIDHAL, a unique video-language benchmark designed to evaluate hallucinations of110

Video-LLMs in a comprehensive manner. As depicted in Figure 2, VIDHAL comprises of video111

instances which span a diverse spectrum of temporal aspects, including previously unexplored aspects112

such as directional movement. In contrast to previous studies on video hallucination evaluation [60,113

54, 2], VIDHAL incorporates multiple hallucinated captions per video, enabling the assessment of114

video hallucinations at multiple levels of granularity.115

3.1 Temporal Hallucinations in Videos116

Hallucinations in VLLMs occur when the model fabricates details in its responses that contradict117

the provided visual content. Compared to images, video hallucinations extend beyond static visual118

elements to include misperceptions of dynamic changes within scenes. We categorize these temporal119

hallucinations into two semantic levels:120

Lexical Semantics (L-Sem) captures instances where VLLMs misinterpret words related to temporal121

features, including nouns referring to objects or attributes (e.g., misidentifying a color change from122
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green to red as green to orange) and verbs describing actions (e.g., interpreting “kicking a ball” as123

“throwing a ball”).124

Clause Semantics (C-Sem) encompasses errors involving event descriptions and their sequences,125

where the VLLM incorrectly predicts the order of events occurring in the video. For example, given126

sequentially occurring events A and B in a video, the model may perceive B preceding A.127

By addressing these two dimensions of video-based hallucinations, VIDHAL offers holistic coverage128

over the level of detail in which VLLMs may hallucinate.129

3.2 Temporal Concept Selection130

Prior research on hallucination evaluation for both images [31, 53, 47] and videos [54, 60, 15] has131

predominantly focused on common visual aspects such as action- and object-based hallucinations.132

However, video-based hallucinations may involve additional dynamic factors associated with spatio-133

temporal patterns, which these studies overlook. In light of this, we propose to focus on the following134

five aspects to ensure comprehensive coverage of temporal concepts. Specifically, the first four135

aspects address hallucinations based on lexical semantics, while the fifth targets clause semantics.136

• Attribute (L-Sem) describes the fine-grained characteristics and properties of objects or subjects137

in the video. We additionally categorize this aspect into sub-aspects of Size, Shape, Color, Count138

and State Change.139

• Object (L-Sem) relates to the interactions between objects and entities within the video. We140

further delineate this aspect into two fine-grained sub-aspects: Object Recognition, identifying the141

objects engaged in interactions, and Interaction Classification which concentrate on how these142

objects interact with other objects or subjects.143

• Action (L-Sem) refers to the movements and behaviours exhibited by entities.144

• Direction (L-Sem) indicates the orientation and movement trajectory of subjects or objects.145

• Event Order (C-Sem) represents the correct sequence of events in the video. During our collection,146

we retain videos that contain at least three distinct events.147

We present an example that illustrates the direction aspect in Figure 2, with additional examples148

available in the supplementary material.149

3.3 Hallucinatory Caption Generation150

Based on the aspects in Section 3.2, we build our benchmark upon four public video understanding151

datasets: TempCompass [40], Perception Test [45], MVBench [29] and AutoEval-Video [6]. Tem-152

pCompass and MVBench extensively cover all five temporal aspects, while Perception Test and153

AutoEval-Video highlights human-object interactions and attribute changes, respectively.154

Existing hallucination benchmarks [31, 53] rely mostly on binary questions for evaluation, limiting155

their efficacy in detecting subtle video hallucinations, such as minor event inconsistencies. To address156

this issue, we advocate a novel evaluation protocol incorporating several carefully annotated captions.157

Specifically, each video will be annotated with a set of M captions that reflect varying degrees158

of hallucination in VLLMs. Given the cost and labor intensity of manual annotation, we follow159

existing studies such as PhD [38] and MVBench [29], opting for automatic caption generation using160

a carefully designed pipeline illustrated in Figure 2.161

Anchor Caption Generation. The video instances in VIDHAL are sourced from various public162

datasets, resulting in distinct associated metadata such as long-form captions in AutoEval-Video and163

question-answer pairs in MVBench. To ensure structure consistency and information granularity in164

the respective dataset description across all instances, we automatically generate an anchor caption165

for each video. Specifically, we input the metadata for each video V i into GPT-4o and prompt it to166

generate a concise and accurate description yi+ using the provided metadata information.167

Hallucinatory Caption Generation. After obtaining the positive caption for each video instance,168

we augment the dataset with M − 1 additional captions containing hallucinated content. For a given169

video instance V i, we construct a set Yi
− = {yi,1− , · · · , yi,M−1

− } containing captions with different170
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Dataset
Temporal Aspects Task

Formats
Evaluation

MetricsAction Attribute Direction Object Order

Size Shape Color Count State-Change Recognition Interaction

Vi
de

o
R

ea
so

ni
ng SEEDBench [23] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ MCQA Accuracy

VideoBench [42] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy
MVBench [29] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ MCQA Accuracy

Video-MME [12] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✗ MCQA Accuracy

H
al

lu
ci

na
tio

n
E

va
lu

at
io

n Vript [60] ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓
Video Captioning F1 Score
Event Ordering Accuracy

VideoCon [2] ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ ✓ VL Entailment ROC-AUC
HallusionBench [15] ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ Y/N QA Accuracy

VIDHAL (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MCQA Accuracy

Caption Ordering NDCG

Table 1: Comparison of our benchmark dataset with existing video-based reasoning and hallucination
evaluation datasets. For datasets with multiple evaluation tasks, only those relevant to hallucination
evaluation are included. VL Entailment denotes the task of video-language entailment, while Event
Ordering prompts the model to determine the chronological sequence of scenes in a video.

levels of hallucination based on the temporal concepts associated with it. Specifically, yi,k− exhibits171

heavier hallucination than yi,j− for j < k. We leverage GPT-4o to generate Yi
− by combining the172

anchor caption yi+ and prompting it to create yi,1− , · · · , yi,M−1
− progressively in increasing levels of173

hallucination. The set of captions associated with V i is then defined as Yi ← {yi+}
⋃
Yi
− consisting174

of both the anchor and hallucinatory captions.175

3.4 Dataset Statistics and Human Validation176
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Figure 3: Human agreement on hallucination lev-
els in the VIDHAL dataset. (Left) Distribution of
agreement ratios per video sample. (Right) Aver-
age agreement ratio for each temporal aspect, with
an overall average of 87%.

Our VIDHAL benchmark consists of a total of177

1,000 video instances. Using our automatic an-178

notation pipeline, each video instance is tagged179

with M = 3 captions. As shown in Table 1, our180

VIDHAL dataset stands out from other video181

understanding [23, 42, 29, 12] and hallucination182

benchmarks [2, 15, 37] in terms of two dimen-183

sions: I) VIDHAL encompasses a diverse range184

of video-centric temporal aspects; and II) We in-185

troduce a novel caption ordering task along with186

two tailored metrics to capture subtle hallucina-187

tions previously ignored by paired questions.188

To ensure the reliability of our generated cap-189

tions at varying levels, we randomly selected 100 examples for human validation, where each sample190

is labeled by 15 annotators on average. Our human validation process focuses on verifying that the191

order of hallucinatory captions generated by our pipeline aligns with human judgment. Figure 3192

reflects an overall agreement rate of 87% between our automatically generated hallucinatory captions193

and human annotators, indicating consistency between these two across all temporal aspects.194

4 VIDHAL Evaluation Protocol195

Aiming to address the limitations of binary question-based benchmarks, we propose two evaluation196

tasks: multiple-choice question answering and a novel caption ordering task, detailed in Section 4.1.197

We also develop corresponding metrics to comprehensively measure hallucinations in video-based198

VLLMs, elaborated further in Section 4.2.199

4.1 Evaluation Tasks200

Multiple-Choice Question Answering (MCQA) assesses the model’s spatiotemporal understanding201

in a coarse-grained manner. Specifically, the model is provided with a video V i and its corresponding202

set of captions Yi as answer options. The VLLM is then instructed to select the most appropriate203

caption for the video.204

205
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Caption Ordering evaluates a model’s visual reasoning from a nuanced granularity, instructing206

VLLMs to order the provided captions based on their hallucination level. Through pairwise compar-207

isons across all captions, this task identifies cases where the model struggles to distinguish varying208

levels of hallucination severity beyond anchor-hallucination distinctions.209
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two captions
describes the
video more
accurately?

Order Parsing
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Figure 4: Visual illustration of relative caption
ordering task in VIDHAL.

Specifically, we design two caption ordering sub-210

tasks. The first, naive caption ordering, requires211

VLLMs to rank all captions at once. However,212

this sub-task can confuse several VLLMs due213

to its inherently challenging nature and the in-214

ferior instruction-following capabilities of some215

models. As a complement, we propose an addi-216

tional sub-task, relative caption ordering, which217

decomposes the prior task into multiple paired218

caption ordering tasks. Since each paired order-219

ing task is answered in isolation, the VLLM may220

produce a non-transitive, cyclic ranking. To circumvent this, we query the model with consecutive221

caption pairs, prompting the final pair only if multiple orderings are possible. For instance, given222

captions A, B, and C, if the model predicts A ≺ B and B ≺ C, the overall order A ≺ B ≺ C can be223

directly inferred. However, if it instead ranks B ≺ A , as shown in Figure 4, we additionally include224

a third comparison between A and C to resolve any ambiguity in determining in the final order.225

Notably, our relative caption ordering task is more challenging than previous binary questions. This226

complexity arises from certain paired questions in VIDHAL where both options are hallucinatory,227

making them harder to distinguish as opposed to 〈positive, hallucinatory〉 pairs.228

4.2 Evaluation Metrics229

Notations For a particular video instance V i, we define the ground truth caption order for V i to be230

Yi
∗ = (yi+, y

i,1
− , · · · , yi,M−1

− ). Further let the jth element in this ordering be indexed as Yi,j
∗ .231

MCQA We employ the standard accuracy metric:232

Accuracy =
1

N

N∑
i=1

I
[
RMCQA(V

i,Yi) = yi+
]
, (1)

where N is the number of video instances, I denotes the indicator function, and RMCQA(V
i,Yi)233

represents the best matched caption from Yi for V i as predicted by a VLLM.234

Caption Ranking Inspired by metrics from the information retrieval domain [13], we adapt the235

well-established Normalized Discounted Cumulative Gain (NDCG) [17] for hallucination assessment236

in VIDHAL. Unlike previous metrics like POPE [31], our metric awards partial credit for correctly237

ordered caption pairs even when the optimal ranking is not achieved. As such, we expect the metric238

to effectively capture and distinguish both subtle and severe hallucinations generated by video-based239

VLLMs. Formally, we define our adapted NDCG metric as follows:240

NDCG =
1

N

N∑
i=1

DCGi − rDCGi

iDCGi − rDCGi
, (2)

where DCGi is formulated as:241

DCGi =

M∑
j=1

r
(
ŷi,j ,Yi

∗
)

log(j + 1)
, (3)

and ŷi,j represents jth caption in the ranked order predicted by the VLLM. The perfect ordering is242

achieved when ŷi,1 = yi+ and {ŷi,j = yi,j−1
− }j=2→M . To evaluate predicted caption orders relative243

to this ideal sequence, a relevance function r
(
ŷi,j ,Yi

∗
)

is designed to assign higher scores to ŷi,j244

with lower hallucinatory extent.245

r(ŷi,j ,Yi
∗) = M + 1− pos(ŷi,j ,Yi

∗), (4)
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Model Vision Encoder LLM #Params #Frames Accuracy NDCG
Naive Relative

Baseline
Random - - - - 0.326 0.505 0.480

Open-Sourced Models
VideoChat [28] EVA-CLIP-G Vicuna 7B 8 0.381 0.475 0.488
LLaMA-VID [30] EVA-CLIP-G Vicuna 7B 1fps 0.358 0.486 0.521
VideoChat2 (Vicuna) [29] UMT-L Vicuna 7B 16 0.426 0.486 0.577
VideoChat2 (Mistral) UMT-L Mistral 7B 16 0.443 0.503 0.475
VideoChat2 (Phi) UMT-L Phi3 3.8B 16 0.514 0.626 0.612
mPLUG-Owl3 [61] SigLIP/SO400M Qwen2 7B 16 0.596 0.641 0.707
LLaVA-NeXT-Video (7B) [68] SigLIP/SO400M Vicuna 7B 32 0.509 0.518 0.620
LLaVA-NeXT-Video (32B) SigLIP/SO400M Qwen1.5 32B 32 0.663 0.641 0.747
VideoLLaMA2 (7B) [8] CLIP ViT-L/14 Mistral 7B 8 0.541 0.564 0.622
VideoLLaMA2 (72B) CLIP ViT-L/14 Qwen2 72B 8 0.647 0.787 0.760

Proprietary Models
GPT-4o [43] - - - 1fps 0.772 0.840 0.826
Gemini-1.5 (Flash) [46] - - - 1fps 0.657 0.738 0.745
Gemini-1.5 (Pro) - - - 1fps 0.671 0.765 0.753

Table 2: Benchmark performance of VLLMs on our VIDHAL dataset. #Params refers to the number
of parameters of the base LLM used. The best performance for each task is highlighted in bold for
open-sourced models, and underlined for closed-sourced models.

where pos(ŷi,j ,Yi
∗) denotes the position of ŷi,j in Yi

∗. Finally, DCGi is normalized to a range of246

[0, 1] using iDCGi and rDCGi, with a score of 1 indicating perfect alignment of the predicted order247

with Yi
∗. Specifically, these terms represent the maximum and minimum DCGi scores obtained from248

the optimal ordering Yi
∗ and its reverse, respectively,249

iDCGi =

M∑
j=1

r
(
Yi,j
∗ ,Yi

∗

)
log(j + 1)

, rDCGi =

M∑
j=1

r
(
Yi,M−j
∗ ,Yi

∗

)
log(j + 1)

. (5)

5 Experiments250

5.1 Experimental Settings251

Models. We evaluated thirteen VLLMs from eight different model families, including six open-252

source models: VideoChat [28], LLaMA-VID [30], VideoLLaMA2 [8], VideoChat2 [29], mPLUG-253

Owl3 [61] and LLaVA-NeXT-Video [68], and two proprietary models: GPT-4o [43] and Gemini-254

1.5 [46]. These models represent a wide variety of architectural designs and training paradigms.255

Additionally, we included a random baseline that selects and ranks candidate options randomly.256

Implementation Details. All experiments were conducted using four NVIDIA A100 40GB GPUs.257

The input captions in Yi were presented in a randomized order using a fixed, predefined randomization258

seed across experiments. We adhered to the inference and model hyperparameters outlined in the259

respective original models, and employed greedy decoding during generation for a fair comparison.260

5.2 Overall Results261

Benchmark Results. We present the overall results of representative VLLMs in Table 2 across both262

MCQA and caption ordering tasks. We make three key observations from this table: i) Proprietary263

models demonstrate superior results compared to open-sourced models. In particular, GPT-4o264

achieves the best performance on all tasks, surpassing other models by significant margins. ii) Larger265

VLLMs generally outperform smaller ones in both tasks. This result is supported by the comparison266

of different LLM bases for the VideoLLaMA2 and LLaVA-NeXT-Video models. iii) The caption267

ordering task poses greater difficulty for current VLLMs than MCQA, evidenced by the larger268

performance margins between the VLLM models and the random baseline. Notably, VideoChat269

and VideoChat2 (Mistral) show slight to no improvement over the random baseline across both270

caption ordering tasks. This indicates that current VLLMs greatly suffer from poor fine-grained video271

understanding and are inclined to generate hallucinations.272
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Figure 5: Aspect-specific NDCG scores for the
(Left) naive and (Right) relative caption ordering.

Aspect-aware Results. Figure 5 highlights273

the fine-grained, aspect-specific performance of274

the evaluated models. Notably, VLLMs demon-275

strate substantially stronger results on the Action276

and Object aspects compared to others. This277

can likely be attributed to current visual instruc-278

tion tuning datasets predominantly emphasizing279

object-centric recognition and coarse-grained280

activity classification, potentially encouraging281

strong reliance on image-based priors when gen-282

erating predictions. In contrast, these models283

tend to underperform on temporally nuanced as-284

pects such as direction and event order, which285

are inherently unique to the video modality.286

mPLUG-Owl3 VideoChat2 (Vicuna) LLaVA-NeXT-Video (7B) Gemini-1.5 Flash

0.2

0.4

0.6

0.8

1Color

Shape

Size

State Change

Count

0.2 0.4 0.6 0.8 1

VideoChat2 (Mistral) VideoChat2 (Phi) GPT-4o
mPLUG-Owl3 LLaVA-NeXT-Video (32B) VideoLLaMA2 (72B)
VideoChat2 (Vicuna) VideoChat LLaVA-NeXT-Video (7B)
LLaMA-VID Gemini-1.5 Flash VideoLLaMA2 (7B)
Gemini-1.5 Pro Average

Object Recognition
Object Interaction

Figure 6: NDCG scores for Attribute (Left) and
Object (Right) sub-aspects in caption ordering.

We further analyzed the distribution of results287

for the relative caption ranking task across sub-288

aspects of the Attribute and Object aspects in289

Figure 6. While VLLMs generally maintain con-290

sistent performance across Attribute sub-aspects,291

their effectiveness declines slightly when rea-292

soning about Count and Color, suggesting that293

reasoning over such fine-grained visual proper-294

ties remains challenging for VLLMs. For the295

Object aspect, several models performed signif-296

icantly worse in Interaction Classification than297

in Object Recognition, highlighting the need to298

better model object interactions to bridge the299

gap between recognition and understanding.300

5.3 Ablation Studies301

Hallucination Differentiation Sensitivity. We investigate the tendency of VLLMs to favor captions302

with higher hallucination over those with lower degree in the relative caption ranking task. For two303

captions with different hallucination levels j, k where j > k, we introduce the following metric to304

quantify such hallucination misalignment cases:305

HMj→k =
1

N

N∑
i=1

I
[
Yi,j
∗ ≺ Yi,k

∗
]
. (6)

0.1 0.2 0.3 0.4 0.5

VideoChat

LLaMA-VID

VideoChat2 (Vicuna)

LLaVA-NeXT-Video (7B)

VideoLLaMA2 (7B)

mPLUG-Owl3

Gemini-1.5 Pro

LLaVA-NeXT-Video (32B)

VideoLLaMA2 (72B)

GPT-4o HM 3→1 
HM 3→2 
HM 2→1 

 Random

1.52x Lower 

4.02x Lower 

Figure 7: Hallucination misalignment (HM) scores
on VIDHAL, with Random representing HM scores
from the random baseline.

which reflects the proportion of cases in which306

the VLLM selects the caption with a higher level307

of hallucination j over k. Specifically, we ex-308

amine three key cases: when the most halluci-309

natory caption is chosen over both the lower-310

hallucination and anchor captions, and when the311

lower-hallucination caption is selected over the312

anchor caption. These cases are represented by313

HM3→1, HM3→2, and HM2→1, respectively,314

with results presented in Figure 7.315

Our findings show that advanced VLLMs, such316

as VideoLLaMA2 (72B), can generally distin-317

guish positive captions from severely halluci-318

nated ones, as reflected by their low HM3→1 scores in Figure 7. However, two key observations319

emerge from our experiments: First, most VLLMs struggle to differentiate the lower hallucinatory320

caption from the anchor, as evidenced by the gap between HM3→1 and HM2→1. Second, all321

models exhibit high HM3→2 scores, indicating difficulty in distinguishing between two hallucinatory322

captions with varying degrees. These results suggests that gaps in nuanced video reasoning may323

contribute to hallucinatory behavior in VLLMs, a challenge not addressed by existing 〈positive,324

hallucinatory〉-based evaluation methods. [31, 53, 54, 15].325
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Figure 9: Qualitative examples of VLLM responses on the caption ordering tasks, for the Attribute,
Order and Action aspects.
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Figure 8: Overlapping ratios of model predictions
under single-frame and full-video inputs for cor-
rect, incorrect and overall predictions. Complete
Reliance indicates that the VLLM always pro-
duces the same response for both video and single
frames.

Image Prior Reliance. Previous research326

shows that VLLMs often rely on image priors327

for reasoning [21, 3], overlooking key spatiotem-328

poral features. This is exemplified by a few329

frames having dominant influence on response330

generation. To examine how this bias affects331

hallucination generation in video-based VLLMs,332

we used a video summarization algorithm [48]333

to extract the most salient frame vi from V i. We334

then generated VLLM responses on VIDHAL335

using vi instead of V i as the visual input. The336

effect of image priors is evaluated by identify-337

ing overlapping instances where responses from338

V i and vi remain consistent across both correct339

and incorrect orderings. As shown in Figure 8,340

results reveal that VLLMs heavily rely on image341

priors. This is especially pronounced in smaller models such as VideoLLaMA2 (7B).342

5.4 Qualitative Results343

We conducted a qualitative analysis of responses generated by various VLLMs for the caption344

ordering task, with examples shown in Figure 9. We observe that: i) Relative caption ordering345

generally guides VLLMs to produce more accurate responses, as evidenced by improvements from346

naive to relative caption order predictions in most cases. ii) Advanced VLLMs exhibit more stable347

performance across both ordering tasks, with lower variation in predictions between both sub-tasks.348

6 Conclusion349

Summary. In this work, we introduce the VIDHAL benchmark to address gaps in the video-based350

hallucination evaluation of VLLMs. VIDHAL features video instances spanning five temporal aspects.351

Additionally, we propose a novel caption ordering evaluation task to probe the fine-grained video352

understanding capabilities of VLLMs. We conduct extensive experiments on VIDHAL through the353

evaluation of thirteen VLLMs, exposing their limitations in unexpected hallucination generation. Our354

empirical results shed light on several promising directions for future work: e.g., incorporating a355

broader range of temporal features during pretraining and mitigating single-frame priors to enhance356

temporal reasoning. These advancements will help to address the hallucination problem in video-357

based VLLMs, enhancing their robustness for real-world video understanding applications.358

Limitations. We acknowledge that the VIDHAL evaluation suite relies on synthetic captions generated359

by GPT-4o, which may contain biases inherently present in the model. We note that this design360

choice is consistent with prior research, as several established language-only and vision-language361

benchmarks similarly use GPT-4o for dataset construction [38, 24, 29, 23, 27] or response evaluation362

[15, 50, 32]. To reduce over-alignment to GPT-4o’s preferences, we leverage additional strong LLMs,363

including Gemini-1.5 [46] and LLaMA2 (70B) [52] to assess and filter generated captions. While364

this improves the robustness of the annotations, we recognize that fully mitigating LLM-induced365

biases in caption generation remains an open challenge.366
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Answer: [Yes]670
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tions section.672
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to make their results reproducible or verifiable.729
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5. Open access to data and code755
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Question: Does the paper provide open access to the data and code, with sufficient instruc-756

tions to faithfully reproduce the main experimental results, as described in supplemental757

material?758

Answer: [Yes]759

Justification: The benchmark dataset, evaluation suite, and accompanying documentation760

and instructions are provided with the paper as part of the submission.761
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public/guides/CodeSubmissionPolicy) for more details.765

• While we encourage the release of code and data, we understand that this might not be766

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not767
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reproduce the results. See the NeurIPS code and data submission guidelines (https:771
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versions (if applicable).779
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6. Experimental setting/details782

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-783

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the784

results?785

Answer: [Yes]786

Justification: The inference hyperparameters are described in the experimental settings, with787

full implementation details provided in the accompanying submitted code.788
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• The answer NA means that the paper does not include experiments.790
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that is necessary to appreciate the results and make sense of them.792

• The full details can be provided either with the code, in appendix, or as supplemental793

material.794

7. Experiment statistical significance795

Question: Does the paper report error bars suitably and correctly defined or other appropriate796

information about the statistical significance of the experiments?797

Answer: [No]798

Justification: Random variability is minimized through the use of deterministic processes,799

such as during decoding. No statistical significance tests are conducted in our experimental800

analysis.801

Guidelines:802

• The answer NA means that the paper does not include experiments.803

• The authors should answer "Yes" if the results are accompanied by error bars, confi-804

dence intervals, or statistical significance tests, at least for the experiments that support805

the main claims of the paper.806
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• The factors of variability that the error bars are capturing should be clearly stated (for807

example, train/test split, initialization, random drawing of some parameter, or overall808

run with given experimental conditions).809

• The method for calculating the error bars should be explained (closed form formula,810

call to a library function, bootstrap, etc.)811

• The assumptions made should be given (e.g., Normally distributed errors).812

• It should be clear whether the error bar is the standard deviation or the standard error813

of the mean.814

• It is OK to report 1-sigma error bars, but one should state it. The authors should815

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis816

of Normality of errors is not verified.817

• For asymmetric distributions, the authors should be careful not to show in tables or818

figures symmetric error bars that would yield results that are out of range (e.g. negative819

error rates).820

• If error bars are reported in tables or plots, The authors should explain in the text how821

they were calculated and reference the corresponding figures or tables in the text.822

8. Experiments compute resources823

Question: For each experiment, does the paper provide sufficient information on the com-824

puter resources (type of compute workers, memory, time of execution) needed to reproduce825

the experiments?826

Answer: [Yes]827

Justification: The compute resources used for all experiments are detailed in the experimental828

settings section.829

Guidelines:830

• The answer NA means that the paper does not include experiments.831

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,832

or cloud provider, including relevant memory and storage.833

• The paper should provide the amount of compute required for each of the individual834

experimental runs as well as estimate the total compute.835

• The paper should disclose whether the full research project required more compute836

than the experiments reported in the paper (e.g., preliminary or failed experiments that837

didn’t make it into the paper).838

9. Code of ethics839

Question: Does the research conducted in the paper conform, in every respect, with the840

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?841

Answer: [Yes]842

Justification: We have adhered to the NeuRIPs Code of Ethics when constructing our843

benchmark dataset.844

Guidelines:845

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.846

• If the authors answer No, they should explain the special circumstances that require a847

deviation from the Code of Ethics.848

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-849

eration due to laws or regulations in their jurisdiction).850

10. Broader impacts851

Question: Does the paper discuss both potential positive societal impacts and negative852

societal impacts of the work performed?853

Answer: [Yes]854

Justification: We briefly highlight the importance of studying video hallucinations to support855

the development of robust algorithms for video reasoning applications in the conclusion856

section.857
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Guidelines:858

• The answer NA means that there is no societal impact of the work performed.859

• If the authors answer NA or No, they should explain why their work has no societal860

impact or why the paper does not address societal impact.861

• Examples of negative societal impacts include potential malicious or unintended uses862

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations863

(e.g., deployment of technologies that could make decisions that unfairly impact specific864

groups), privacy considerations, and security considerations.865

• The conference expects that many papers will be foundational research and not tied866

to particular applications, let alone deployments. However, if there is a direct path to867

any negative applications, the authors should point it out. For example, it is legitimate868

to point out that an improvement in the quality of generative models could be used to869

generate deepfakes for disinformation. On the other hand, it is not needed to point out870

that a generic algorithm for optimizing neural networks could enable people to train871

models that generate Deepfakes faster.872

• The authors should consider possible harms that could arise when the technology is873

being used as intended and functioning correctly, harms that could arise when the874

technology is being used as intended but gives incorrect results, and harms following875

from (intentional or unintentional) misuse of the technology.876

• If there are negative societal impacts, the authors could also discuss possible mitigation877

strategies (e.g., gated release of models, providing defenses in addition to attacks,878

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from879

feedback over time, improving the efficiency and accessibility of ML).880

11. Safeguards881

Question: Does the paper describe safeguards that have been put in place for responsible882

release of data or models that have a high risk for misuse (e.g., pretrained language models,883

image generators, or scraped datasets)?884

Answer: [Yes]885

Justification: Extensive manual inspection has been conducted to ensure the dataset does not886

pose risks of improper or unintended use.887

Guidelines:888

• The answer NA means that the paper poses no such risks.889

• Released models that have a high risk for misuse or dual-use should be released with890

necessary safeguards to allow for controlled use of the model, for example by requiring891

that users adhere to usage guidelines or restrictions to access the model or implementing892

safety filters.893

• Datasets that have been scraped from the Internet could pose safety risks. The authors894

should describe how they avoided releasing unsafe images.895

• We recognize that providing effective safeguards is challenging, and many papers do896

not require this, but we encourage authors to take this into account and make a best897

faith effort.898

12. Licenses for existing assets899

Question: Are the creators or original owners of assets (e.g., code, data, models), used in900

the paper, properly credited and are the license and terms of use explicitly mentioned and901

properly respected?902

Answer: [Yes]903

Justification: All public datasets and models used in the dataset construction and model904

evaluation processes are properly cited in our paper.905

Guidelines:906

• The answer NA means that the paper does not use existing assets.907

• The authors should cite the original paper that produced the code package or dataset.908

• The authors should state which version of the asset is used and, if possible, include a909

URL.910
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.911

• For scraped data from a particular source (e.g., website), the copyright and terms of912

service of that source should be provided.913

• If assets are released, the license, copyright information, and terms of use in the914

package should be provided. For popular datasets, paperswithcode.com/datasets915

has curated licenses for some datasets. Their licensing guide can help determine the916

license of a dataset.917

• For existing datasets that are re-packaged, both the original license and the license of918

the derived asset (if it has changed) should be provided.919

• If this information is not available online, the authors are encouraged to reach out to920

the asset’s creators.921

13. New assets922

Question: Are new assets introduced in the paper well documented and is the documentation923

provided alongside the assets?924

Answer: [Yes]925

Justification: The benchmark dataset, evaluation codebase, and accompanying documenta-926

tion and instructions are provided with the paper as part of the submission.927

Guidelines:928

• The answer NA means that the paper does not release new assets.929

• Researchers should communicate the details of the dataset/code/model as part of their930

submissions via structured templates. This includes details about training, license,931

limitations, etc.932

• The paper should discuss whether and how consent was obtained from people whose933

asset is used.934

• At submission time, remember to anonymize your assets (if applicable). You can either935

create an anonymized URL or include an anonymized zip file.936

14. Crowdsourcing and research with human subjects937

Question: For crowdsourcing experiments and research with human subjects, does the paper938

include the full text of instructions given to participants and screenshots, if applicable, as939

well as details about compensation (if any)?940

Answer: [No]941

Justification: Human validation is conducted by a third-party vendor using their proprietary942

tools and platform. The vendor ensures that all contributors are properly compensated for943

their work.944

Guidelines:945

• The answer NA means that the paper does not involve crowdsourcing nor research with946

human subjects.947

• Including this information in the supplemental material is fine, but if the main contribu-948

tion of the paper involves human subjects, then as much detail as possible should be949

included in the main paper.950

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,951

or other labor should be paid at least the minimum wage in the country of the data952

collector.953

15. Institutional review board (IRB) approvals or equivalent for research with human954

subjects955

Question: Does the paper describe potential risks incurred by study participants, whether956

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)957

approvals (or an equivalent approval/review based on the requirements of your country or958

institution) were obtained?959

Answer: [Yes]960

Justification: All annotators involved in the human validation process are properly informed961

of any associated risks by the engaged vendor.962
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• The answer NA means that the paper does not involve crowdsourcing nor research with964

human subjects.965

• Depending on the country in which research is conducted, IRB approval (or equivalent)966

may be required for any human subjects research. If you obtained IRB approval, you967

should clearly state this in the paper.968

• We recognize that the procedures for this may vary significantly between institutions969

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the970

guidelines for their institution.971

• For initial submissions, do not include any information that would break anonymity (if972

applicable), such as the institution conducting the review.973

16. Declaration of LLM usage974
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only for writing, editing, or formatting purposes and does not impact the core methodology,977

scientific rigorousness, or originality of the research, declaration is not required.978

Answer: [Yes]979

Justification: The process of using GPT-4o to prepare annotations for our dataset is detailed980

in both the main text and supplementary material.981
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for what should or should not be described.986
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