© ® N O O A W N =

20
21
22
23
24
25

26
27
28
29
30
31
32

33
34
35
36

VIDHAL: Benchmarking Temporal Hallucinations in
Vision LLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Vision Large Language Models (VLLMs) are widely acknowledged to be prone
to hallucinations. Existing research addressing this problem has primarily been
confined to image inputs, with sparse exploration of their video-based counterparts.
Furthermore, current evaluation methods fail to capture nuanced errors in generated
responses, which are often exacerbated by the rich spatiotemporal dynamics of
videos. To address these two limitations, we introduce VIDHAL, a benchmark
specially designed to evaluate video-based hallucinations in VLLMs. VIDHAL
is constructed by bootstrapping video instances across a wide range of common
temporal aspects. A defining feature of our benchmark lies in the careful creation
of captions which represent varying levels of hallucination associated with each
video. To enable fine-grained evaluation, we propose a novel caption ordering task
requiring VLLMs to rank captions by hallucinatory extent. We conduct extensive
experiments on VIDHAL and comprehensively evaluated a broad selection of
models, including both open-source and proprietary ones such as GPT-40. Our
results uncover significant limitations in existing VLLMs with respect to video-
based hallucination generation. Through our benchmark, we aim to inspire further
research on i) holistic understanding of VLLM capabilities, particularly regarding
hallucination, and ii) advancing VLLMs to alleviate this problem.

1 Introduction

Building on the advancements of Large Language Models (LLMs), Vision LLMs (VLLMs) have
recently gained significant attention. Models such as LLaVA [36] [34] have shown impressive
performance across various visual understanding tasks involving both images and videos. Despite
their potential, VLLMs are notably prone to hallucinations, where generated responses that appear
to be plausible contradict the visual context [[1, 59]]. This problem significantly compromises the
reliability of VLLMs, hindering their practical use in real-world applications.

To tackle this challenge, some methods propose to leverage post-hoc techniques such as contrastive
decoding [22} [77) [11} [78]] and attention calibration [[16} 41} |39} |66l (14} [71} I58]]. Other efforts have
been devoted to the evaluation of hallucinations in VLLMs. For example, CHAIR [47] initially
studies object-based hallucination evaluation with the aid of the image captioning task. Subsequent
studies [31} 38} 20, [10] instead harness paired (positive, hallucinatory) questions to probe such
hallucinations. Additionally, MMHalBench [50] and AMBER [53]] expand beyond object-based
evaluations by constructing benchmarks that cover attribute and relationship hallucinations.

Unlike their image-based counterparts, video hallucinations pose unique challenges primarily due to
the intricate spatiotemporal dynamics of videos [29, 45l |6} 12} 140, 42]]. In particular, video-specific
temporal aspects, such as movement direction and chronological order of events, are especially
concerning for video-based VLLMs. Furthermore, the richness of video content necessitates a finer-
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grained understanding, making VLLMs more vulnerable to nuanced hallucinations. Nonetheless, to
the best of our knowledge, video-based hallucinations remain underexplored in the existing literature.

To address this research gap, we present VIDHAL, a benchmark specifically designed to evaluate
video-based hallucinations of VLLMs. VIDHAL features videos that comprehensively cover a broad
range of temporal aspects, such as entity actions and sequence of events. Each video is automatically
annotated with multiple captions exhibiting varying levels of aspect-specific hallucinations, capturing
both subtle and significant discrepancies. In addition, we perform detailed human validation to ensure
the robustness and reliability of our annotation process. An additional motivation stems from the
limited metrics for quantifying hallucinations in VLLMs. To capture fine-grained hallucinatory errors
of these models, we propose a unique caption ordering task that requires models to rank captions
by hallucination levels. This consequently leads to a ranking-based NDCG metric and an MCQA
accuracy metric, both are distinct from prior ones and specifically tailored to evaluate nuanced
hallucinations in video-based VLLMs.

Using our VIDHAL dataset, we benchmark thir- Gerds  Direction
teen VLLMs including both open-sourced and Genini-L.5 Pro Action
. . LLaVA-NeXT-Video (32B)

proprietary models, with abstracted results sum- e |
marized in Figure [l Through these exten- — V= !

. . " . i . . mPLUG-OWI3 i
sive experiments, we identify limitations in nu- VideoLLaMA2 (7B) 7  — e
anced video understanding among all evaluated —— Order /)

. ) LLaVA-NeXT-Video (7B) 2N\ -

VLLMs. Specifically, our findings reveal that ex-  rvissserse s N

Object
VideoChat2

isting VLLMs struggle to differentiate between S—
captions with varying levels of hallucination. LLamA-vID

This deficiency is particularly evident when eval- ) . . . .
uating video-specific aspects, such as Direction Figure 1: Multiple-Choice Question Answering

and Order, as illustrated in Figure [T} indicat- (MCQA) performance of representative VLLMs
ing substantial room for improvement in current ™ OUf VIDHAL benchmark. (Left) Overall rank-
video-based VLLMs. Additionally, proprietary 118 of VLLMs. (Right) Detailed accuracy results
models, e.g., GPT-4o [43], often outperform pertaining to each temporal aspect, wherein higher
open-source counterparts by significant margins. SCOT€S indicate fewer hallucinations.

Attribute

Opverall, the contributions of this work are three-fold:

* We present VIDHAL, a benchmark dataset dedicated to video-based hallucination evaluation of
VLLMs. Our dataset is distinguished by 1) video instances sourced from public video understanding
datasets encompassing a diverse range of temporal concepts and ii) captions with varying levels of
hallucination[]

* We introduce a novel evaluation task of caption ordering along with two metrics designed to
evaluate fine-grained hallucination generation in existing VLLMs.

* We conduct extensive experiments on VIDHAL with a variety of VLLMs, uncovering limitations in
their fine-grained video reasoning abilities, particularly in their tendency to generate hallucinations.

2 Related Work

Vision Large Language Models. The emergence of powerful LLMs has advanced the development
of VLLMs [36, 34, 25, 9, 162}, 163} |61]. Typical methods in this category include LLaVA [36]],
mPLUG-OwI [63} 161, 162]], InstructBLIP [9], and MiniGPT-4 [75]]. These VLLMSs rely on aligning
vision encoders with LLMs using connective modules such as Q-Former [9} 26, 25 167, 18] or
MLPs [36, 134, 149] with the instruction tuning stage. Recent methods have extended visual inputs
from images to (long) videos, delivering impressive joint spatial-temporal reasoning capabilities.
For instance, VideoLLaMA?2 [8] enhances the LLaMA model with video understanding capabilities
through a Spatial-Temporal Convolution (STC) module. LLaVA-NeXT-Video [35. 68] presents an
AnyRes approach that enables reasoning with long videos.

Hallucinations in VLLMs. Despite their impressive performance on visual reasoning benchmarks,
current VLLMs remain notoriously susceptible to hallucinations [18} 39,76l 5]. A common demon-
stration is that the generated responses contain information which is inconsistent with the visual

'Our VIDHAL dataset will be made available to the public.
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Temporal Aspect Video Instance Anchor Caption Hallucinatory Caption
Selection Collection Generation Generation

You are given one or more ‘ou are tasked with
questions targeted at generating hallucinatory
content of a video... captions for a video with the
<Y/N QA> description:

<MCQA>

Generate an appropriate and Modify the direction in the
informative single line caption to generate 2 captions
caption for the video... in different levels of

Video Description: hallucination

Q: Are the clock hands
Y/N QA | moving clockwise?
A: Yes

Here are suitable

Based on the information hallucinatory captions:

provided, an accurate
description of the video is:

MCQA Q: What is the direction in
which the clock hands are

Order moving?

A: Clockwise.

High Hallucination: The
clock hands are stationary.

Figure 2: Overview of our VIDHAL benchmark construction pipeline. Using direction as an example
from the five selected aspects, we begin by sourcing relevant video instances from existing datasets.
Next, the anchor (positive) caption is generated from the original video metadata. Finally, GPT-4o0 is
employed to generate hallucinatory captions at varying levels.

content [} 133165 157]. Most approaches address the hallucination problem with post-hoc techniques.
For example, LURE [73] and Woodpecker [64] develop pipelines that assist VLLMs in revising
their responses using expert models. To reduce bias from unimodal and statistical priors, contrastive
decoding methods, such as VCD [22] and M3ID [11], along with attention calibration techniques
like OPERA [16] are employed to refine token predictions. Building on the success of reinforcement
learning for preference optimization in LLM development [44], HA-DPO [69], POVID [72] and
CSR [74] adopt this paradigm to fine-tune VLLMs, yielding outputs with fewer hallucinations.

Video Reasoning Benchmarks. The rise of video-based VLLMs has driven the development
of numerous video benchmarks. Notable examples, such as SEEDBench [23], VideoBench [42],
MVBench [29], and VideoMME [[12]], focus on dynamic events requiring temporal reasoning beyond
individual frames. However, these benchmarks often lack diversity in reasoning tasks and visual
concepts. To address this, AutoEval-Video [6] and Perception Test [45] introduce complex reasoning
tasks such as counterfactual and explanatory reasoning, while TempCompass [40]] expands temporal
concept coverage. Several benchmarks [31} 153 [50% 20} 32, [19} 155} [70, 5L 14} 156 |51} [7]] have been
constructed to quantify visual hallucinations, primarily targeting object-based hallucinations in
images. HallusionBench [[15]], VideoCon [2l], and Vript [60] provides partial coverage of video-
based hallucinations, while VidHalluc [24] and VideoHallucer [54] introduces a benchmark for
hallucination detection in videos. However, these benchmarks provide limited coverage of spatio-
temporal concepts, focusing on conventional aspects like actions while neglecting other video-centric
elements such as direction. Additionally, their evaluation strategies primarily follow image-based
approaches, which we argue are less effective in capturing nuanced, video-specific hallucinations.

3 VIDHAL Dataset Construction

We introduce VIDHAL, a unique video-language benchmark designed to evaluate hallucinations of
Video-LLMs in a comprehensive manner. As depicted in Figure 2] VIDHAL comprises of video
instances which span a diverse spectrum of temporal aspects, including previously unexplored aspects
such as directional movement. In contrast to previous studies on video hallucination evaluation [60}
54, 2], VIDHAL incorporates multiple hallucinated captions per video, enabling the assessment of
video hallucinations at multiple levels of granularity.

3.1 Temporal Hallucinations in Videos

Hallucinations in VLLMs occur when the model fabricates details in its responses that contradict
the provided visual content. Compared to images, video hallucinations extend beyond static visual
elements to include misperceptions of dynamic changes within scenes. We categorize these temporal
hallucinations into two semantic levels:

Lexical Semantics (L-Sem) captures instances where VLLMs misinterpret words related to temporal
features, including nouns referring to objects or attributes (e.g., misidentifying a color change from
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green to red as green to orange) and verbs describing actions (e.g., interpreting “kicking a ball” as
“throwing a ball”).

Clause Semantics (C-Sem) encompasses errors involving event descriptions and their sequences,
where the VLLM incorrectly predicts the order of events occurring in the video. For example, given
sequentially occurring events A and B in a video, the model may perceive B preceding A.

By addressing these two dimensions of video-based hallucinations, VIDHAL offers holistic coverage
over the level of detail in which VLLMs may hallucinate.

3.2 Temporal Concept Selection

Prior research on hallucination evaluation for both images [I31} 53| 47]] and videos [54} 60, [15] has
predominantly focused on common visual aspects such as action- and object-based hallucinations.
However, video-based hallucinations may involve additional dynamic factors associated with spatio-
temporal patterns, which these studies overlook. In light of this, we propose to focus on the following
five aspects to ensure comprehensive coverage of temporal concepts. Specifically, the first four
aspects address hallucinations based on lexical semantics, while the fifth targets clause semantics.

 Attribute (L-Sem) describes the fine-grained characteristics and properties of objects or subjects
in the video. We additionally categorize this aspect into sub-aspects of Size, Shape, Color, Count
and State Change.

* Object (L-Sem) relates to the interactions between objects and entities within the video. We
further delineate this aspect into two fine-grained sub-aspects: Object Recognition, identifying the
objects engaged in interactions, and Interaction Classification which concentrate on how these
objects interact with other objects or subjects.

* Action (L-Sem) refers to the movements and behaviours exhibited by entities.
* Direction (L-Sem) indicates the orientation and movement trajectory of subjects or objects.

* Event Order (C-Sem) represents the correct sequence of events in the video. During our collection,
we retain videos that contain at least three distinct events.

We present an example that illustrates the direction aspect in Figure [2] with additional examples
available in the supplementary material.

3.3 Hallucinatory Caption Generation

Based on the aspects in Section [3.2] we build our benchmark upon four public video understanding
datasets: TempCompass [40]], Perception Test [45], MVBench [29] and AutoEval-Video [6]. Tem-
pCompass and MVBench extensively cover all five temporal aspects, while Perception Test and
AutoEval-Video highlights human-object interactions and attribute changes, respectively.

Existing hallucination benchmarks [31} 53] rely mostly on binary questions for evaluation, limiting
their efficacy in detecting subtle video hallucinations, such as minor event inconsistencies. To address
this issue, we advocate a novel evaluation protocol incorporating several carefully annotated captions.
Specifically, each video will be annotated with a set of M captions that reflect varying degrees
of hallucination in VLLMs. Given the cost and labor intensity of manual annotation, we follow
existing studies such as PhD [38]] and MVBench [29], opting for automatic caption generation using
a carefully designed pipeline illustrated in Figure[2]

Anchor Caption Generation. The video instances in VIDHAL are sourced from various public
datasets, resulting in distinct associated metadata such as long-form captions in AutoEval-Video and
question-answer pairs in MVBench. To ensure structure consistency and information granularity in
the respective dataset description across all instances, we automatically generate an anchor caption
for each video. Specifically, we input the metadata for each video V* into GPT-40 and prompt it to
generate a concise and accurate description y’+ using the provided metadata information.

Hallucinatory Caption Generation. After obtaining the positive caption for each video instance,

we augment the dataset with M/ — 1 additional captions containing hallucinated content. For a given
video instance V¢, we construct a set Y = {yl_’l7 e ,yEM_l} containing captions with different
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Temporal Aspects

Dataset Task Evaluation
; Action Attribute Direction Object Order Formats Metrics
Size Shape Color Count State-Change Recognition Interaction
%  SEEDBench [23 v X X X X X X X X v MCQA Accuracy
S g VideoBench [42] v v v v X X v X X MCQA Accuracy
S 2  MVBench [29 2 S S S X v v v v MCQA Accuracy
&  Video-MME [12] v v 7/ v v X X v X X MCQA Accuracy
. . Video Captioning F1 Score
=

S 5 Vript [60] v X X X X X X v v v Event Ordering  Accuracy
_§ § VideoCon [2] v v 7/ v v X X v X v VL Entailment ROC-AUC
£ < HallusionBench [I5] v X X X X X v X X v Y/N QA Accuracy

~ =
£ VDHALOws) v <V /0 / v v v v v MCQA  Accuracy

Caption Ordering NDCG

Table 1: Comparison of our benchmark dataset with existing video-based reasoning and hallucination
evaluation datasets. For datasets with multiple evaluation tasks, only those relevant to hallucination
evaluation are included. VL Entailment denotes the task of video-language entailment, while Event
Ordering prompts the model to determine the chronological sequence of scenes in a video.

levels of hallucination based on the temporal concepts associated with it. Specifically, yi’k exhibits

heavier hallucination than yi’_’j for j < k. We leverage GPT-40 to generate )’ by combining the
anchor caption yﬁ_ and prompting it to create yﬁl, ceey yl_’M*1 progressively in increasing levels of
hallucination. The set of captions associated with V* is then defined as V" < {y’ } {J V" consisting
of both the anchor and hallucinatory captions.

3.4 Dataset Statistics and Human Validation

Our VIDHAL benchmark consists of a total of e R

1,000 video instances. Using our automatic an- = o femneATImE
notation pipeline, each video instance is tagged = s

with M = 3 captions. As shown in Table[I} our = I
VIDHAL dataset stands out from other video <oz
understanding (23} 42} 29} 12]] and hallucination o :
benchmarks [2} (15 37] in terms of two dimen-

1 08 06 04 0.2 0
Agreement Ratio

Overall Action Attribute Direction Object  Order
Temporal Aspect

sions: I) VIDHAL encompasses a diverse range
of video-centric temporal aspects; and II) We in-
troduce a novel caption ordering task along with
two tailored metrics to capture subtle hallucina-
tions previously ignored by paired questions.

Figure 3: Human agreement on hallucination lev-
els in the VIDHAL dataset. (Left) Distribution of
agreement ratios per video sample. (Right) Aver-
age agreement ratio for each temporal aspect, with
an overall average of 87%.

To ensure the reliability of our generated cap-

tions at varying levels, we randomly selected 100 examples for human validation, where each sample
is labeled by 15 annotators on average. Our human validation process focuses on verifying that the
order of hallucinatory captions generated by our pipeline aligns with human judgment. Figure[3]
reflects an overall agreement rate of 87% between our automatically generated hallucinatory captions
and human annotators, indicating consistency between these two across all temporal aspects.

4 VIDHAL Evaluation Protocol

Aiming to address the limitations of binary question-based benchmarks, we propose two evaluation
tasks: multiple-choice question answering and a novel caption ordering task, detailed in Section4.1]
We also develop corresponding metrics to comprehensively measure hallucinations in video-based
VLLMs, elaborated further in Section 4.2}

4.1 Evaluation Tasks

Multiple-Choice Question Answering (MCQA) assesses the model’s spatiotemporal understanding
in a coarse-grained manner. Specifically, the model is provided with a video V* and its corresponding
set of captions )’ as answer options. The VLLM is then instructed to select the most appropriate
caption for the video.
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Caption Ordering evaluates a model’s visual reasoning from a nuanced granularity, instructing
VLLMs to order the provided captions based on their hallucination level. Through pairwise compar-
isons across all captions, this task identifies cases where the model struggles to distinguish varying
levels of hallucination severity beyond anchor-hallucination distinctions.

Specifically, we design two caption ordering sub-
tasks. The first, naive caption ordering, requires

5 Which of the °

VLLMs to rank all captions at once. However, two captions 8
. describes the Order Parsing | 2'c
this sub-task can confuse several VLLMs due ;g:eu?aTe(I);% 82
to its inherently challenging nature and the in- ' ) €S
s

I

ferior instruction-following capabilities of some
models. As a complement, we propose an addi-
tional sub-task, relative caption ordering, which
decomposes the prior task into multiple paired Figure 4: Visual illustration of relative caption
caption ordering tasks. Since each paired order- ordering task in VIDHAL.

ing task is answered in isolation, the VLLM may

produce a non-transitive, cyclic ranking. To circumvent this, we query the model with consecutive
caption pairs, prompting the final pair only if multiple orderings are possible. For instance, given
captions A, B, and C, if the model predicts A < B and B < C, the overall order A < B < C can be
directly inferred. However, if it instead ranks B < A , as shown in Figure [d] we additionally include
a third comparison between A and C' to resolve any ambiguity in determining in the final order.

Notably, our relative caption ordering task is more challenging than previous binary questions. This
complexity arises from certain paired questions in VIDHAL where both options are hallucinatory,
making them harder to distinguish as opposed to {positive, hallucinatory) pairs.

4.2 Evaluation Metrics

Notations For a particular video instance V%, we define the ground truth caption order for V* to be

Vi= (vt ,y"M=1) Further let the j** element in this ordering be indexed as Y.

MCQA We employ the standard accuracy metric:

N
Accuracy = ~ Z]I [Ruvcqa(VE YY) =yi], M
i=1

where N is the number of video instances, I denotes the indicator function, and Ry;cq A(Vi7 yi)
represents the best matched caption from ) for V¢ as predicted by a VLLM.

Caption Ranking Inspired by metrics from the information retrieval domain [13]], we adapt the
well-established Normalized Discounted Cumulative Gain (NDCG) [17]] for hallucination assessment
in VIDHAL. Unlike previous metrics like POPE [31], our metric awards partial credit for correctly
ordered caption pairs even when the optimal ranking is not achieved. As such, we expect the metric
to effectively capture and distinguish both subtle and severe hallucinations generated by video-based
VLLMs. Formally, we define our adapted NDCG metric as follows:

N
1 DCG; — rDCG;
NDCG = — _ 2
N P iDCG; — rDCG;’ @
where DCG; is formulated as:
e, - 31T :3%) o
T log(j+ 1)’

and §)*7 represents j*" caption in the ranked order predicted by the VLLM. The perfect ordering is
achieved when "' = ¢’ and {§"’ = y"’ 1} ,—2_,ar. To evaluate predicted caption orders relative

to this ideal sequence, a relevance function r (§7, ?) is designed to assign higher scores to §*/
with lower hallucinatory extent.

T(gl,j’yi) =M+1- pos(gi7j7yi)a (4)
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NDCG

Model Vision Encoder LLM #Params #Frames Accuracy —o—v—o o
Naive Relative
Baseline
Random [ - - - - [ 0326 0.505 0.430
Open-Sourced Models
VideoChat [28] EVA-CLIP-G Vicuna 7B 8 0.381 0.475 0.438
LLaMA-VID [30] EVA-CLIP-G Vicuna 7B 1fps 0.358 0.486 0.521
VideoChat2 (Vicuna) [29] UMT-L Vicuna 7B 16 0.426 0.486 0.577
VideoChat2 (Mistral) UMT-L Mistral 7B 16 0.443 0.503 0.475
VideoChat2 (Phi) UMT-L Phi3 3.8B 16 0.514 0.626 0.612
mPLUG-Ow13 [61] SigLIP/SO400M Qwen2 7B 16 0.596 0.641 0.707
LLaVA-NeXT-Video (7B) [68] | SigLIP/SO400M Vicuna 7B 32 0.509 0.518 0.620
LLaVA-NeXT-Video (32B) SigLIP/SO400M  Qwenl.5 32B 32 0.663 0.641 0.747
VideoLLaMA2 (7B) [8] CLIP ViT-L/14 Mistral 7B 8 0.541 0.564 0.622
VideoLLaMA?2 (72B) CLIP ViT-L/14 Qwen2 72B 8 0.647 0.787 0.760
Proprietary Models
GPT-4o [43] - - - 1fps 0.772 0.840 0.826
Gemini-1.5 (Flash) [46] - - - 1fps 0.657 0.738 0.745
Gemini-1.5 (Pro) - - - 1fps 0.671 0.765 0.753

Table 2: Benchmark performance of VLLMs on our VIDHAL dataset. #Params refers to the number
of parameters of the base LLM used. The best performance for each task is highlighted in bold for
open-sourced models, and underlined for closed-sourced models.

where pos(4%7, V) denotes the position of 4"/ in Y. Finally, DCG; is normalized to a range of
[0, 1] using iDCG; and rDCG;, with a score of 1 indicating perfect alignment of the predicted order
with Y. Specifically, these terms represent the maximum and minimum DCG; scores obtained from
the optimal ordering )% and its reverse, respectively,

. o (937, 91) v (YN0
iDCG; = ;1 TG ¥ rDCG; = » oG D 5)

Jj=1

S Experiments

5.1 Experimental Settings

Models. We evaluated thirteen VLLMs from eight different model families, including six open-
source models: VideoChat [28]], LLaMA-VID [30], VideoLLaMAZ2 [8]], VideoChat2 [29], mPLUG-
Owl3 [61] and LLaVA-NeXT-Video [68], and two proprietary models: GPT-4o [43] and Gemini-
1.5 [46]. These models represent a wide variety of architectural designs and training paradigms.
Additionally, we included a random baseline that selects and ranks candidate options randomly.

Implementation Details. All experiments were conducted using four NVIDIA A100 40GB GPUs.
The input captions in ))* were presented in a randomized order using a fixed, predefined randomization
seed across experiments. We adhered to the inference and model hyperparameters outlined in the
respective original models, and employed greedy decoding during generation for a fair comparison.

5.2 Overall Results

Benchmark Results. We present the overall results of representative VLLMs in Table[2]across both
MCQA and caption ordering tasks. We make three key observations from this table: 1) Proprietary
models demonstrate superior results compared to open-sourced models. In particular, GPT-40
achieves the best performance on all tasks, surpassing other models by significant margins. ii) Larger
VLLM:s generally outperform smaller ones in both tasks. This result is supported by the comparison
of different LLM bases for the VideoLLaMA?2 and LLaVA-NeXT-Video models. iii) The caption
ordering task poses greater difficulty for current VLLMs than MCQA, evidenced by the larger
performance margins between the VLLM models and the random baseline. Notably, VideoChat
and VideoChat2 (Mistral) show slight to no improvement over the random baseline across both
caption ordering tasks. This indicates that current VLLMs greatly suffer from poor fine-grained video
understanding and are inclined to generate hallucinations.
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Aspect-aware Results. Figure [5] highlights Direction . Direction ,
the fine-grained, aspect-specific performance of - L
the evaluated models. Notably, VLLMs demon-
strate substantially stronger results on the Action

and Object aspects compared to others. This

02 oB|ig os 1 3
H Order \

can likely be attributed to current visual instruc- Object Object
tion tuning datasets predominantly emphasizing
object-centric recognition and coarse-grained Atribute Attribute
activity classification, potentially encouraging VidooLLWAZ (38)  ~—LLAVANOXT-Video (328) —Videochat.
. . . LLaMA-VID Gemini-1.5 Pro Gemini-1.5 Flash
Strong rellance on lmage-based prlOrS When gen- VideoLLaMA2 (78B) mMPLUG-OwWI3 VideoChat2 (Phi)

LLaVA-NeXT-Video (7B) =Average

erating predictions. In contrast, these models
tend to underperform on temporally nuanced as- Figure 5: Aspect-specific NDCG scores for the
pects such as direction and event order, which  (Left) naive and (Right) relative caption ordering.
are inherently unique to the video modality.

We further analyzed the distribution of results

for the relative caption ranking task across sub- shape e
aspects of the Artribute and Object aspects in !

Figure[] While VLLMs generally maintain con- o

sistent performance across Attribute sub-aspects, I

their effectiveness declines slightly when rea- sz o

soning about Count and Color, suggesting that NN count

reasoning over such fine-grained visual proper- -

ties remains challenging for VLLMs. For the State Change : =

Object aspect, several models performed signif- ) O sz
icantly worse in Interaction Classification than peerai I iR e 7®)

Gemini-1.5 Pro = Average

in Object Recognition, highlighting the need to
better model object interactions to bridge the  Figure 6: NDCG scores for Aftribute (Left) and
gap between recognition and understanding. Object (Right) sub-aspects in caption ordering.

5.3 Ablation Studies

Hallucination Differentiation Sensitivity. We investigate the tendency of VLLMs to favor captions
with higher hallucination over those with lower degree in the relative caption ranking task. For two
captions with different hallucination levels j, k where j > k, we introduce the following metric to
quantify such hallucination misalignment cases:

N
1 > ik
HMjp, = STV <Y (6)
=1
which reflects the proportion of cases in which GPT40 PRI TR——T
the VLLM selects the caption with a higher level VideolLaMa2 (728) v

of hallucination j over k. Specifically, we ex- ‘“eVAtexTviae G20
amine three key cases: when the most halluci- e
natory caption is chosen over both the lower- VideoLLaMAZ (78)
hallucination and anchor captions, and when the =~ ttevanexT-video 78)
lower-hallucination caption is selected over the " """
anchor caption. These cases are represented by VideoChat
HMs_,1, HM3_,o, and H M>_,1, respectively, 0.1 02 03 04 0s
with results presented in Figure

Figure 7: Hallucination misalignment (HM) scores
Our ﬁndings show that advanced VLLMS, such on VIDHAL, with Random representing HM scores
as VideoLLaMA?2 (72B), can generally distin- from the random baseline.

guish positive captions from severely halluci-

nated ones, as reflected by their low H M3_,; scores in Figure [/| However, two key observations
emerge from our experiments: First, most VLLMs struggle to differentiate the lower hallucinatory
caption from the anchor, as evidenced by the gap between H Ms_,; and HM>_,;. Second, all
models exhibit high H Mj3_, scores, indicating difficulty in distinguishing between two hallucinatory
captions with varying degrees. These results suggests that gaps in nuanced video reasoning may
contribute to hallucinatory behavior in VLLMs, a challenge not addressed by existing (positive,
hallucinatory)-based evaluation methods. [31} 53] 54, [13].



327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

343

344
345
346
347
348

350
351
352
353
354
355
356
357
358

359
360
361
362
363
364
365
366

Attribute

Three object

or sl
collisions occur in the collsi
video.

leepi
ubway.

ing in

Naive ; Relative Naive ; Relative Naive ; Relative
' ' '

VideoLLaMA2 (7B): A A B VideoLLaMA2 (7B): BB C VideoLLaMA2 (7B): B ., B A
'
LLaVA-NeXT-Video (32B): '

LLaVA-NeXT-Video (32B): LLaVA-NeXT-Video (32B):

VideoLLaMA2 (72B);

@ > O O
0O 0 O 0
> >» O O
@ @ > >
w O W >
®m @ O 0

Cc
A
VideoLLaMA2 (72B): A
A

o o o »

B

B A A B B A B [} A B

VideoLLaMA2 (72B): B © E A B cC ' A B B ! A C
GPT40: A © A B GPT-40: C . A B GPT-40: G A E

Figure 9: Qualitative examples of VLLM responses on the caption ordering tasks, for the Attribute,
Order and Action aspects.

Image Prior Reliance. Previous research

shows that VLLMs often rely on image priors : e
for reasoning [21} 3], overlooking key spatiotem- o
poral features. This is exemplified by a few
frames having dominant influence on response
generation. To examine how this bias affects .
hallucination generation in video-based VLLMs,
we used a video summarization algorithm [48]]
to extract the most salient frame v* from V*. We Voeslana Vel Vil
then generated VLLM responses on VIDHAL
using v instead of V' as the visual input. The
effect of image priors is evaluated by identify-
ing overlapping instances where responses from
V' and v* remain consistent across both correct
and incorrect orderings. As shown in Figure[§]
results reveal that VLLMs heavily rely on image
priors. This is especially pronounced in smaller models such as VideoLLaMA?2 (7B).

Figure 8: Overlapping ratios of model predictions
under single-frame and full-video inputs for cor-
rect, incorrect and overall predictions. Complete
Reliance indicates that the VLLM always pro-
duces the same response for both video and single
frames.

5.4 Qualitative Results

We conducted a qualitative analysis of responses generated by various VLLMs for the caption
ordering task, with examples shown in Figure 0] We observe that: i) Relative caption ordering
generally guides VLLMs to produce more accurate responses, as evidenced by improvements from
naive to relative caption order predictions in most cases. ii) Advanced VLLMs exhibit more stable
performance across both ordering tasks, with lower variation in predictions between both sub-tasks.

6 Conclusion

Summary. In this work, we introduce the VIDHAL benchmark to address gaps in the video-based
hallucination evaluation of VLLMs. VIDHAL features video instances spanning five temporal aspects.
Additionally, we propose a novel caption ordering evaluation task to probe the fine-grained video
understanding capabilities of VLLMs. We conduct extensive experiments on VIDHAL through the
evaluation of thirteen VLLMs, exposing their limitations in unexpected hallucination generation. Our
empirical results shed light on several promising directions for future work: e.g., incorporating a
broader range of temporal features during pretraining and mitigating single-frame priors to enhance
temporal reasoning. These advancements will help to address the hallucination problem in video-
based VLLMs, enhancing their robustness for real-world video understanding applications.

Limitations. We acknowledge that the VIDHAL evaluation suite relies on synthetic captions generated
by GPT-40, which may contain biases inherently present in the model. We note that this design
choice is consistent with prior research, as several established language-only and vision-language
benchmarks similarly use GPT-4o for dataset construction [38}, 24, |29} 23| |27 or response evaluation
[15,150,132]. To reduce over-alignment to GPT-40’s preferences, we leverage additional strong LLMs,
including Gemini-1.5 [46] and LLaMA?2 (70B) [52] to assess and filter generated captions. While
this improves the robustness of the annotations, we recognize that fully mitigating LLM-induced
biases in caption generation remains an open challenge.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The paper introduces a benchmark for evaluating video hallucinations and
proposes a novel evaluation task, with analysis supported through experimental results. This
reflects the contributions outlined in the introduction and abstract.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Potential biases in the dataset construction process are discussed in the limita-
tions section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: No theoretical results are included in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The benchmark dataset, evaluation codebase, and accompanying documenta-
tion and instructions are provided with the paper as part of the submission.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The benchmark dataset, evaluation suite, and accompanying documentation
and instructions are provided with the paper as part of the submission.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The inference hyperparameters are described in the experimental settings, with
full implementation details provided in the accompanying submitted code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Random variability is minimized through the use of deterministic processes,
such as during decoding. No statistical significance tests are conducted in our experimental
analysis.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources used for all experiments are detailed in the experimental
settings section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have adhered to the NeuRIPs Code of Ethics when constructing our
benchmark dataset.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We briefly highlight the importance of studying video hallucinations to support
the development of robust algorithms for video reasoning applications in the conclusion
section.
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12.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: Extensive manual inspection has been conducted to ensure the dataset does not
pose risks of improper or unintended use.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All public datasets and models used in the dataset construction and model
evaluation processes are properly cited in our paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.
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13.

14.

15.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The benchmark dataset, evaluation codebase, and accompanying documenta-
tion and instructions are provided with the paper as part of the submission.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:

Justification: Human validation is conducted by a third-party vendor using their proprietary
tools and platform. The vendor ensures that all contributors are properly compensated for
their work.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

¢ Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: All annotators involved in the human validation process are properly informed
of any associated risks by the engaged vendor.
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963 Guidelines:

964 * The answer NA means that the paper does not involve crowdsourcing nor research with
965 human subjects.

966 * Depending on the country in which research is conducted, IRB approval (or equivalent)
967 may be required for any human subjects research. If you obtained IRB approval, you
968 should clearly state this in the paper.

969 * We recognize that the procedures for this may vary significantly between institutions
970 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
971 guidelines for their institution.

972 * For initial submissions, do not include any information that would break anonymity (if
973 applicable), such as the institution conducting the review.

974 16. Declaration of LLM usage

975 Question: Does the paper describe the usage of LLMs if it is an important, original, or
976 non-standard component of the core methods in this research? Note that if the LLM is used
977 only for writing, editing, or formatting purposes and does not impact the core methodology,
978 scientific rigorousness, or originality of the research, declaration is not required.

979 Answer: [Yes]

980 Justification: The process of using GPT-40 to prepare annotations for our dataset is detailed
981 in both the main text and supplementary material.

982 Guidelines:

983 * The answer NA means that the core method development in this research does not
984 involve LLMs as any important, original, or non-standard components.

985 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
986 for what should or should not be described.
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