
Implementing Adaptations for Vision AutoRegressive Model

Kaif Shaikh 1 Antoni Kowalczuk 1 Franziska Boenisch 1 Adam Dziedzic 1

Abstract
Vision AutoRegressive model (VAR) was recently
introduced as an alternative to Diffusion Mod-
els (DMs) in image generation domain. In this
work we focus on its adaptations, which aim to
fine-tune pre-trained models to perform specific
downstream tasks, like medical data generation.
While for DMs there exist many techniques, adap-
tations for VAR remain underexplored. Similarly,
differentially private (DP) adaptations—ones that
aim to preserve privacy of the adaptation data—
have been extensively studied for DMs, while
VAR lacks such solutions. In our work, we im-
plement and benchmark many strategies for VAR,
and compare them to state-of-the-art DM adap-
tation strategies. We observe that VAR outper-
forms DMs for non-DP adaptations, however, the
performance of DP suffers, which necessitates
further research in private adaptations for VAR.
Code is available at https://github.com/
sprintml/finetuning_var_dp.

1. Introduction
Recently, Vision AutoRegressive model (VAR) (Tian et al.,
2024) has been proposed as a powerful alternative to Diffu-
sion Models (DMs) (Rombach et al., 2022) in image gen-
eration. Yet, while for DMs, there exist multiple strong
methods (Xie et al., 2023; Ruiz et al., 2023; Gal et al.)
to adapt pre-trained models to specific downstream tasks,
like medical data generation (Kazerouni et al., 2023), simi-
lar adaptations for VAR remain underexplored. Our work
makes the first step in understanding and evaluating possible
adaptations, ranging from full- to parameter-efficient fine-
tuning (LoRA (Hu et al., 2022), LayerNorm (Zhao et al.,
2023)), by implementing and benchmarking the methods on

1CISPA Helmholtz Center for Information Secu-
rity, Saarbrücken, Germany. Correspondence to: Kaif
Shaikh <kaif.shaikh@cispa.de>, Antoni Kowalczuk
<antoni.kowalczuk@cispa.de>, Franziska Boenisch
<boenisch@cispa.de>, Adam Dziedzic <dziedzic@cispa.de>.

Published at Data in Generative Models Workshop: The Bad, the
Ugly, and the Greats (DIG-BUGS) at ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

the class-conditioned VAR.

Since the adaptation data might consist of highly-sensitive
samples, it is crucial that fine-tuned models do not leak
privacy. One of the methods to prevent the leakage em-
ploys Differential Privacy (DP) (Dwork, 2006) to protect
the vulnerable data. We explain how to overcome limita-
tions of the VAR code base to implement privacy-preserving
adaptations, then we implement and benchmark them.

We compare the performance of our adaptations of VAR to
the existing SOTA DM adaptation—DiffFit—on five down-
stream datasets. We find that VAR adapts faster, is computa-
tionally more efficient, and outperforms DiffFit in genera-
tion quality. Yet, DP-adaptations of VAR suffer from low
generation quality, as well as slow convergence. We revisit
augmentation multiplicity (De et al., 2022), a strategy that
improves the performance of DP models at a cost of higher
compute, and find that it is beneficial for DP fine-tuning.
However, the performance of DP-adaptations remains low,
which prompts for further work in that domain.

Our released code with implementation of the methods and
benchmarking serves to aid the researchers and practitioners
to build and evaluate novel adaptation methods, and to close
the gap between DMs and VARs in that domain.

2. Background and Related Work
Image AutoRegressive models (IARs) are a class of gen-
erative models that create images by modeling p(x) =∏N

n=1 p(xn|x<n), where x = (x1, x2, . . . , xN) is an image
represented as a sequence of N tokens, xn is the n-th token.
First proposed by Chen et al. (2020) and further developed
by Tian et al. (2024); Yu et al. (2024); Han et al. (2024)
they offer better generation quality than their predecessor,
namely DMs (Rombach et al., 2022).

IARs are trained to minimize LAR = Ex∼D [−log (p(x))],
where D is a dataset of tokenized images. During genera-
tion, given a prefix x<n the model outputs per-token logits
p(xn|x<n), from which we iteratively sample the next to-
ken to obtain the final image x̂. In practice, the images are
tokenized using a pre-trained VQ-GAN (Esser et al., 2020),
and Transformer-based (Vaswani et al., 2017) architectures
like GPT-2 (Radford et al., 2019) serve as the autoregressive
backbone for modeling p(x).

1

https://github.com/sprintml/finetuning_var_dp
https://github.com/sprintml/finetuning_var_dp

Implementing Adaptations for Vision AutoRegressive Model

Vision AutoRegressive (VAR) model is an IAR proposed
by Tian et al. (2024), which inspired SOTA image generative
model—Infinity (Han et al., 2024). VAR shifts the paradigm
from next-token prediction to next-scale prediction. Instead
of predicting 1D token sequences in raster-scan order (top
to bottom, left to right), images are processed as sequences
of 2D token grids, starting from lower to higher resolution.
Effectively, VAR generates images quicker than classical
IARs, requiring less predictions, as the 2D token grid for
each scale can be sampled simultaneously.

Full Fine-Tuning (FFT) is an adaptation technique that
updates every parameter of a model, given a fine-tuning
dataset. Contrary to regular training, it is initialized from a
pre-trained model (instead of from random initialization),
and the end goal of FFT is to tailor the model to a specific
task, based on a small, domain-specific dataset.

Parameter-Efficient Fine-Tuning (PEFT) helps fine-tune
a model in a more compute-efficient manner by reducing
the number of trainable parameters and memory usage as
compared to FFT (Xu et al., 2023). It is widely used in
adapting general foundation models, pre-trained on large
datasets, to specific downstream tasks, where FFT is not
required to achieve satisfactory performance.

Low-Rank Adaptation (LoRA) (Hu et al., 2022) is a PEFT
method widely used for Transformer-based architectures.
Such models have several dense layers with weight matri-
ces (W) of full rank. However, during fine-tuning, the
updates (∆W ∈ Rd×k) to these layers exhibit a low in-
trinsic rank (Aghajanyan et al., 2020). LoRA builds on
that phenomenon, and attempts to decompose the update
into multiplication of two low-rank matrices, ∆W = BA,
where B ∈ Rd×r and A ∈ Rr×k, and rank r ≪ min(d, k).
During training, only B and A are updated, and other pa-
rameters of the pre-trained model are frozen. Since the
trained matrices are significantly smaller than the updated
weights, LoRA significantly reduces the number of fine-
tuned parameters.

LayerNorm Tuning (LNTuning) (Zhao et al., 2023) is a
PEFT method widely used for transforming large language
models (LLMs) to Multi-Modal LLMs (MLLMs). It tran-
sitions a text understanding model to other modalities by
adding new trainable parameters to targeted LayerNorm
modules inside each attention block. During fine-tuning,
only the newly introduced parameters are updated, and all
the model’s weights are kept frozen. Similarly to LoRA,
LNTuning significantly reduces the number of trainable
parameters.

Differential Privacy (DP) is a mathematical framework
used to bound the possible privacy leakage a mechanism
exhibits. In context of machine learning, the goal is to
quantify and limit the extent of privacy risks associated with

the data used to train a model. If presence or absence of a
specific data point, e.g., an image, in the training set alters
the behavior of the model significantly, then an adversary
can learn about this data point from the model alone, which
constitutes a privacy breach. To address this issue, DP
provides guarantees on the level of impact a single data
point can have on the model, giving an upper bound.

Specifically, we have two datasets, D and D′ differing by
a single data point, and a mechanism M, acting on D and
D′. Let S be a set of all possible outputs of M. We say M
is (ϵ, δ)-DP if Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.
Intuitively, the maximum possible difference of outputs of
M for any D and D′ is bounded by an exponential factor de-
pendent on ϵ, and δ provides an optional safety margin.The
smaller the value of ϵ, the stronger the privacy guarantees.

The go-to algorithm to train DP models is DP-SGD (Abadi
et al., 2016)—a differentially private version of the reg-
ular SGD. DP-SGD first clips per-sample gradients, av-
erages them, and adds Gaussian noise, obtaining priva-
tized gradients. The parameters update at ith iteration
is: θi+1 = θi − η

(
1
L

∑L
k=1 clip(g(xk)) +N (0, σ2C2I)

)
,

where clip(g(xk)) = g(xk)/max(1, ||g(xk)||2
C), η is the

learning rate, C is the clipping norm, σ is the noise magni-
tude, g(xk) is the gradient for a single input data point xk,
L is the lot size and θ are the parameters.

DP Adaptations of Image Generative Models. The noise
from DP-SGD harms the convergence. Augmentation mul-
tiplicity (De et al., 2022) addresses that by averaging per-
sample gradients over multiple views to increase signal to
noise ratio. For DMs, DPDM (Dockhorn et al., 2023) in-
troduced noise multiplicity, averaging per-sample gradients
over multiple input noise draws, which was further extended
to augmentation multiplicity by (Ghalebikesabi et al., 2023).
Since limiting the number of updated parameters also boosts
performance, DP-LDM (Liu et al., 2024) shifts training into
a lower-dimensional latent space via a non-private encoder.

3. Fine-Tuning of VAR
In the following we adapt VAR, a novel IAR, to specific
downstream tasks via fine-tuning. We begin with a de-
scription of the models and datasets used, as well as the
evaluation scheme. Then, we compare the performance of
VAR to the one of SOTA adaptation method for DMs, Diff-
Fit (Xie et al., 2023), and find that VAR outperforms its DM
counterpart on five different datasets. Finally, we provide
insights explaining observed discrepancy, and highlight key
challenges we face during the implementation stage.

2

Implementing Adaptations for Vision AutoRegressive Model

VAR-d16 VAR-d20
0

100

200

300

400

500

600

700

To
ta

l T
ra

in
in

g
PF

LO
Ps

Stanford Cars
FFT
LoRA
LNTuning

VAR-d16 VAR-d20
0

100

200

300

400

500
CUB-200-2011

VAR-d16 VAR-d20
VAR Variants

0

10

20

30

40

50

60
Oxford Flowers

VAR-d16 VAR-d20
0

500

1000

1500

2000

2500

3000

3500

4000

Food-101

VAR-d16 VAR-d20
0

50

100

150

200

250
Oxford-IIIT Pet

Figure 1: Training Compute Cost (PFLOPs) Comparison Across Datasets.
Table 1: VAR fine-tuning outperforms DiffFit (Xie et al., 2023). We compare FID (↓) on 5 downstream datasets between
DiT-XL-2 and VAR-d16 and VAR-d20.

Model Adaptation
Dataset Food-101 CUB-200-2011 Oxford Flowers Stanford Cars Oxford-IIIT Pet Trainable

Parameters

DiT-XL-2 FFT 10.46 5.68 21.05 9.79 - 673.8M (100%)
DiT-XL-2 LoRA 34.34 58.25 161.68 75.35 - 2.18M (0.32%)
DiT-XL-2 DiffFit (Xie et al., 2023) 6.96 5.48 20.18 9.90 - 0.83M (0.12%)

VAR d16 FFT 6.11 5.74 12.08 7.42 13.13 309.6M (100%)
VAR d16 LoRA 6.94 7.84 13.18 8.87 13.70 6.02M (1.91%)
VAR d16 LNTuning 8.01 8.15 22.82 9.27 14.28 100.7M (24.56%)

VAR d20 FFT 5.38 5.58 11.65 6.31 12.81 599.7M (100%)
VAR d20 LoRA 6.97 6.29 11.16 9.42 12.97 9.42M (1.54%)
VAR d20 LNTuning 7.00 6.07 12.74 7.36 12.86 196.7M (24.69%)

3.1. Experimental Setup

Models: We perform evaluation on VAR-d16 and VAR-d20
pre-trained on ImageNet-1k (Deng et al., 2009) to perform
class-conditional image generation in 256x256 resolution,
and are sourced from the repositories provided by their re-
spective authors. We restrict ourselves to these two models,
because they are of comparable sizes to DiT-XL-2 (Peebles
& Xie, 2023). In Appendix C we provide results for bigger
models: VAR-d24 and VAR-d30.

Datasets: As our downstream task, we focus on image
generation in narrow domains, and fine-tune the models
to perform well with small datasets. To this end, we use
Food-101 (Bossard et al., 2014) with 101k total images
of 101 different categories of food, CUB-200-2011 (Wah
et al., 2011) of 11,778 images of 200 bird classes, Oxford
Flowers (Nilsback & Zisserman, 2008) consisting of 1020
images of 102 species of flowers, Stanford Cars (Krause
et al., 2013) with 16,185 images of 196 classes of cars, and
Oxford-IIIT Pet Dataset (Parkhi et al., 2012) with 7,393
images of 37 different breeds of cats and dogs. More details
about the datasets, e.g., size of the training and validation
sets, can be found in Appendix B.

Adaptations and Hyperparameters: In our study we use
LoRA and LNTuning as PEFT methods, and compare them
to FFT. For LoRA, we use rank r = 16, α = 2r, and LoRA
dropout of 0. For LoRA fine-tuning we target self-attention
modules, i.e., the query, key, and value matrices. Addition-
ally, we fine-tune the projection layers of self-attention, and
the Adaptive LayerNorm modules. For LNTuning, we up-
date only the Adaptive LayerNorm modules. FFT updates
all parameters of the model. We provide extended details

in Appendix B.

Performance Metrics: We measure Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017) to quantify generation
quality. For each dataset we generate as many samples as
present in each class of the respective test sets, and compute
FID between images in generated set and test set. Moreover,
we compute the computation cost of fine-tuning, expressed
in Peta Floating Point Operations (PFLOps). Full evaluation
setup can be found in Appendix B.

3.2. Empirical Results

Compute Cost Comparison. In Figure 1 we show that
across all datasets and VAR variants, FFT incurs the highest
compute cost, with the exception of Oxford Flowers, where
the cost is similar for all adaptations. The biggest differ-
ence is visible for Food-101, where FFT requires around
4.5× more compute than parameter-efficient counterparts.
Interestingly, when the size of dataset increases (Food-101
has 101k samples, Oxford Flower only 1020), the difference
in cost between FFT and PEFT also increases. Among the
two PEFT techniques, LNTuning exhibits a slightly smaller
compute footprint than LoRA.

Performance Comparison. While we observe signifi-
cant differences in compute cost between the methods, we
should take other factors into consideration, e.g., conver-
gence speed, or the final generation quality. Importantly,
LNTuning is the cheapest, while FFT performs best (low-
est FID scores), according to the results in Table 1. LoRA
strikes the middle ground between these methods: it matches
FFT’s FID performance, and is similarly demanding to
LNTuning in terms of compute.

3

Implementing Adaptations for Vision AutoRegressive Model

VAR fine-tuning achieves better performance than DiffFit,
with FFT outperforming it across all models and datasets.
It suggests that the adaptations of IARs might gain signifi-
cance as the field progresses. We provide additional metrics
in Appendix C.

VARs Converge Quickly. During our experiments we no-
tice that VAR needs very few update steps to reach its final
performance. This contrasts with the behavior observed
for DMs, which tend to require extended training, which
involves stochastic input noise. We investigate the conver-
gence behavior, and in Figure 2 we show that the models
achieve their final FID after few thousand steps. Interest-
ingly, LoRA fine-tuning converges similarly fast to FFT,
while LNTuning needs more update steps. We provide more
insights on why VAR is faster in Appendix E.

1 100 1000 19000 38000 57000 76000 95000
Training Steps

0

50

100

150

200

250

FI
D

CUB-200-2011

Model + Method
VAR-16 + FFT
VAR-20 + FFT
VAR-16 + LoRA
VAR-20 + LoRA
VAR-16 + LNTuning
VAR-20 + LNTuning

Figure 2: VARs converge after small amount of training
steps. Dataset: CUB-200-2011.

Implementation Details The original implementation of
the attention operator in VAR requires patches (Table 11) to
introduce LoRA adapters. We provide more details in Ap-
pendix F.

4. Differentially-Private Adaptation for VAR
Next, we switch our focus to DP adaptations for VAR, whose
goal is to preserve the privacy of potentially sensitive fine-
tuning data. We show the impact of augmentation multi-
plicity, model’s size, fine-tuning strategy, and the privacy
budget ϵ on the generation quality.

4.1. Experimental Setup

Due to high computation cost of fine-tuning with DP, we
only fine-tune the models on the Oxford Flowers dataset,
and investigate LoRA and LNTuning adaptations. For aug-
mentation multiplicity we use the default pre-processing
image transformation of VAR, with parameter k denoting

how many views per sample we craft.

4.2. Empirical Evaluation

Performance. Contrary to promising results in Section 3.2,
when we fine-tune with DP, the models fail to converge.
Our results in Table 3 show that we need extremely high
values of ϵ to obtain acceptable generation quality. Interest-
ingly, we observe that augmentation multiplicity yields only
modest improvements, with results for LoRA in Table 2 in-
dicating negligible gains at k = 128. Notably, the compute
cost for k = 128 is around 128 times greater for k = 1,
and increasing k further might be prohibitively expensive.
LoRA appears to outperform LNTuning, according to Ta-
ble 2, which might be due to the lower number of trainable
parameters for LoRA (see Table 1).

Table 2: FID (↓) of VAR models fine-tuned using LoRA
and DP with ϵ = 10 on Oxford Flowers Dataset.

LoRA LNTuning
Model k = 1 k = 128 k = 1

VAR-d16 69.92 63.24 106.32
VAR-d20 68.92 59.29 98.2

Table 3: FID (↓) of VAR models fine-tuned using LoRA
of varying ϵ on Oxford Flowers Dataset with augmentation
multiplicity parameter k = 32.

Model ϵ = 1 ϵ = 10 ϵ = 20 ϵ = 50 ϵ = 100 ϵ = 500 ϵ = 1000

VAR-d16 196.52 60.24 52.10 46.36 41.63 35.70 35.36

VAR-d20 160.33 63.38 53.73 47.09 43.35 37.35 35.06

Implementation. Similarly as for LoRA adaptations, tai-
loring the original VAR implementation for DP fine-tuning
requires patches. We identify issues with model-specific
buffers and a non-standard forward function. We provide
more details in Appendix F.

5. Conclusions
With the success of our adaptations of the VAR model, we
expect the broader adoption of IARs tailored specific do-
mains for image generation. Our work is the first step in the
direction of IAR-specific model adaptations, and we already
observe that fine-tuned VAR performs better than the SOTA
adaptation strategy for DMs. Importantly, DP adaptations
remain ineffective, which indicates that further research
in that direction is required to enable privacy-preserving
adaptations on sensitive data.

4

Implementing Adaptations for Vision AutoRegressive Model

Acknowledgments
This project was funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation), Project
number 550224287, and by the Helmholtz Impulse and
Networking Fund as part of the project “Effective Privacy-
Preserving Adaptations of Foundation Models for Medical
Tasks”, reference number ZT-I-PF-5-227.

References
The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/.

Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B.,
Mironov, I., Talwar, K., and Zhang, L. Deep learning
with differential privacy. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS’16. ACM, October 2016. doi:
10.1145/2976749.2978318. URL http://dx.doi.
org/10.1145/2976749.2978318.

Aghajanyan, A., Zettlemoyer, L., and Gupta, S. In-
trinsic dimensionality explains the effectiveness of lan-
guage model fine-tuning, 2020. URL https://arxiv.
org/abs/2012.13255.

Bossard, L., Guillaumin, M., and Van Gool, L. Food-101–
mining discriminative components with random forests.
In Computer vision–ECCV 2014: 13th European con-
ference, zurich, Switzerland, September 6-12, 2014, pro-
ceedings, part VI 13, pp. 446–461. Springer, 2014.

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D.,
and Sutskever, I. Generative pretraining from pixels. In
International conference on machine learning, pp. 1691–
1703. PMLR, 2020.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle, B. Un-
locking high-accuracy differentially private image classi-
fication through scale. arXiv preprint arXiv:2204.13650,
2022.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Dockhorn, T., Cao, T., Vahdat, A., and Kreis, K. Differ-
entially private diffusion models, 2023. URL https:
//arxiv.org/abs/2210.09929.

Dwork, C. Differential privacy. In Bugliesi, M., Preneel, B.,
Sassone, V., and Wegener, I. (eds.), Automata, Languages
and Programming, pp. 1–12, Berlin, Heidelberg, 2006.
Springer Berlin Heidelberg. ISBN 978-3-540-35908-1.

Esser, P., Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis, 2020.

Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano,
A. H., Chechik, G., and Cohen-or, D. An image is worth
one word: Personalizing text-to-image generation using
textual inversion. In The Eleventh International Confer-
ence on Learning Representations.

Ghalebikesabi, S., Berrada, L., Gowal, S., Ktena, I., Stan-
forth, R., Hayes, J., De, S., Smith, S. L., Wiles, O.,
and Balle, B. Differentially private diffusion mod-
els generate useful synthetic images. arXiv preprint
arXiv:2302.13861, 2023.

Han, J., Liu, J., Jiang, Y., Yan, B., Zhang, Y., Yuan, Z., Peng,
B., and Liu, X. Infinity: Scaling bitwise autoregressive
modeling for high-resolution image synthesis, 2024. URL
https://arxiv.org/abs/2412.04431.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and
Hochreiter, S. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Conference
on Neural Information Processing Systems (NeurIPS), pp.
6629–6640, 2017.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., Chen, W., et al. Lora: Low-rank adaptation
of large language models. ICLR, 1(2):3, 2022.

Kazerouni, A., Aghdam, E. K., Heidari, M., Azad, R.,
Fayyaz, M., Hacihaliloglu, I., and Merhof, D. Diffusion
models in medical imaging: A comprehensive survey.
Medical Image Analysis, 88:102846, 2023. ISSN 1361-
8415. doi: https://doi.org/10.1016/j.media.2023.102846.
URL https://www.sciencedirect.com/
science/article/pii/S1361841523001068.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object rep-
resentations for fine-grained categorization. In 2013 IEEE
International Conference on Computer Vision Workshops,
pp. 554–561, 2013. doi: 10.1109/ICCVW.2013.77.

Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J.,
and Aila, T. Improved precision and recall metric for
assessing generative models. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.
cc/paper_files/paper/2019/file/
0234c510bc6d908b28c70ff313743079-Paper.
pdf.

Liu, M. F., Lyu, S., Vinaroz, M., and Park, M. Differentially
private latent diffusion models, 2024. URL https://
arxiv.org/abs/2305.15759.

5

http://dx.doi.org/10.1145/2976749.2978318
http://dx.doi.org/10.1145/2976749.2978318
https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2012.13255
https://arxiv.org/abs/2210.09929
https://arxiv.org/abs/2210.09929
https://arxiv.org/abs/2412.04431
https://www.sciencedirect.com/science/article/pii/S1361841523001068
https://www.sciencedirect.com/science/article/pii/S1361841523001068
https://proceedings.neurips.cc/paper_files/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/0234c510bc6d908b28c70ff313743079-Paper.pdf
https://arxiv.org/abs/2305.15759
https://arxiv.org/abs/2305.15759

Implementing Adaptations for Vision AutoRegressive Model

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, Dec 2008.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In 2012 IEEE conference on computer
vision and pattern recognition, pp. 3498–3505. IEEE,
2012.

Paszke, A. Pytorch: An imperative style, high-performance
deep learning library. arXiv preprint arXiv:1912.01703,
2019.

Peebles, W. and Xie, S. Scalable diffusion models with
transformers. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pp. 4195–4205,
2023.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. 2019.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
10674–10685, 2022. doi: 10.1109/CVPR52688.2022.
01042.

Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M.,
and Aberman, K. Dreambooth: Fine tuning text-to-image
diffusion models for subject-driven generation. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 22500–22510, 2023.

Sajjadi, M. S. M., Bachem, O., Lucic, M., Bousquet, O.,
and Gelly, S. Assessing generative models via precision
and recall, 2018. URL https://arxiv.org/abs/
1806.00035.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual
autoregressive modeling: Scalable image generation via
next-scale prediction, 2024. URL https://arxiv.
org/abs/2404.02905.

Tsai, Y.-L., Li, Y., Chen, Z., Chen, P.-Y., Yu, C.-M., Ren, X.,
and Buet-Golfouse, F. Differentially private fine-tuning of
diffusion models, 2024. URL https://arxiv.org/
abs/2406.01355.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. 2011.

Xie, E., Yao, L., Shi, H., Liu, Z., Zhou, D., Liu, Z.,
Li, J., and Li, Z. Difffit: Unlocking transferability of
large diffusion models via simple parameter-efficient
fine-tuning, 2023. URL https://arxiv.org/abs/
2304.06648.

Xu, L., Xie, H., Qin, S.-Z. J., Tao, X., and Wang, F. L.
Parameter-efficient fine-tuning methods for pretrained
language models: A critical review and assessment, 2023.
URL https://arxiv.org/abs/2312.12148.

Yu, Q., He, J., Deng, X., Shen, X., and Chen, L.-C. Ran-
domized autoregressive visual generation. arXiv preprint
arXiv:2411.00776, 2024.

Zhao, B., Tu, H., Wei, C., Mei, J., and Xie, C. Tuning
layernorm in attention: Towards efficient multi-modal
llm finetuning, 2023. URL https://arxiv.org/
abs/2312.11420.

6

https://arxiv.org/abs/1806.00035
https://arxiv.org/abs/1806.00035
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2404.02905
https://arxiv.org/abs/2406.01355
https://arxiv.org/abs/2406.01355
https://arxiv.org/abs/2304.06648
https://arxiv.org/abs/2304.06648
https://arxiv.org/abs/2312.12148
https://arxiv.org/abs/2312.11420
https://arxiv.org/abs/2312.11420

Implementing Adaptations for Vision AutoRegressive Model

A. Additional Related Work
A.1. Properties of Differential Privacy

DP has the properties of group privacy, composability, and robustness to auxiliary information. Group privacy ensures
graceful degradation of privacy guarantees when datasets have correlated inputs. If a dataset has k such points, then an (ϵ, δ)
algorithm run on such a dataset yields (kϵ, ke(k−1)ϵδ)-DP (Dwork, 2006). Composability ensures that if in a mechanism,
each of the components are differentially private then the mechanism is differentially private too. Robustness to auxiliary
information implies that even with the auxiliary knowledge, DP guarantees hold against an adversary. A common approach
to implement DP guarantees is to add noise, which magnitude depends on the sensitivity of the mechanism. Sensitivity of a
mechanism is defined as the maximum distance between outputs of the mechanism for any two adjacent datasets. Therefore
a mechanism f can be made differentially private using Gaussian noise as follows:

M(d) = f(d) +N (0,∆f2σ2)

where ∆f is the sensitivity of mechanism f and σ is the noise scale. Such a mechanism is called a Gaussian mechanism.

A.2. Differentially Private Diffusion Models

DPDM. Dockhorn et al. (2023) begin from a fact that the gradients at each update step are prone to high variance, because
the training objective relies on the forward process, which adds noise with a varying magnitude. By default, this issue is
alleviated by training for many iterations at a small batch size. However, DP-SGD computes privacy loss on a per-update
basis, which means such an approach is not feasible. The non-private DM loss can be expressed as

li = λ(σi)||zθ(xi + ni, σi)− xi||22 (1)

where, li is the loss, xi + ni is the noisy input passed to the DM, λ is a weighting function and σi is the noise scale for the
forward process. DPDM tackles the problem of li using the noise multiplicity, which replaces the DM objective function
over one noisy sample, with the average of K noisy samples for each data point. Effectively, the new loss function can be
represented as

l̃i =
1

K

K∑
k=1

λ(σik)||Dθ(xi + nik, σik)− xi||22 (2)

The results show a significant improvement of the performance after incorporating this mechanism to the private training.
The gain from the noise multiplicity plateaus around K = 32.

In addition to the noise multiplicity, authors use exponential moving average to update the weights of the DM after each
training step, and very large batch sizes (4096 for MNIST (lec). They also note that biasing the forward process towards
higher timesteps is beneficial for the training.

Ghalebikesabi et al. (2023) show that by sampling an augmentation in addition to the timestep at each repetition in the noise
multiplicity mechanism yields an improvement. They dub that approach augmentation multiplicity. They find that K = 128
yields the best results, with batch size of 16, 384. Similarly to DPDM, they sample the timesteps from a distribution
different than the default U [0, T], t ∼

∑K
i=1 wiU [li, ui], where

∑K
i=1 wi = 1, 0 ≤ l0, uK ≤ T, and uk−1 ≤ lk for k ∈

{2, . . . ,K}. The main difference between their work and DPDM is that they first pre-train the DM using ”public” dataset
without DP, and only then fine-tune on the private dataset, this time with DP.

DP-LDM. Liu et al. (2024) focus on the impact of the size of the DM on the properties of DP-SGD. Intuitively, the bigger
the size of the model, the bigger the norm of the gradient, in effect the bigger the noise added by the DP-SGD mechanism.
Thus, a natural idea is to limit the size of the DM. To this end, authors utilize Latent Diffusion Models (LDMs) (Rombach
et al., 2022), which consist of of a VAE and a DM. VAEs are made of an encoder, which takes a high-dimensional image
in the pixel space as an input, and produces a lower-dimensional latent representation, and a decoder that converts the
latent back to the pixel space. Effectively, the DM is trained in the latent space, and in turn contains less parameters
than a pixel-space alternative. DP-LDM first trains the VAE (without DP), and, similarly to (Ghalebikesabi et al., 2023),
pre-trains the DM on ”public” dataset. To further benefit from the smaller gradient norms, they fine-tune with DP only the
(cross-)attention modules of the DM, which amounts to 10% of the parameters.

7

Implementing Adaptations for Vision AutoRegressive Model

DP-LoRA. Tsai et al. (2024) improve over DP-LDM by utilizing a PEFT method–LoRA–to limit the gradient norms by
reducing the number of trained parameters of the DM even further. LoRA adapters are applied to the QKV matrices of the
attention blocks of the LDM, and the output projection layer following them.

B. Extended Experimental Details
Additional information about the datasets. All variants of VAR are pre-trained on ImageNet 256x256 (Deng et al.,
2009), we finetune them using the datasets mentioned in Table 4. We use the same datasets for regular finetuning and
DP-finetuning as well. All experiments in paper leverage the entire train split for finetuning. We use 100% of the test split
when benchmarking the results for the experiments.

Table 4: Different datasets used across our experiments with VARs.

Dataset Num. Classes Training Set Size Testing Set Size

CUB-200-2011 (Wah et al., 2011) 200 5994 5794
Food-101 (Bossard et al., 2014) 101 75750 25250

Oxford Flowers (Nilsback & Zisserman, 2008) 102 1020 6149
Oxford-IIIT Pet (Parkhi et al., 2012) 37 3680 3669
Stanford Cars (Krause et al., 2013) 196 8144 8041

Hyperparameters used in the experiments (Non-Private finetuning). We apply identical hyperparameter settings across
all variants of each model: VAR-d{16, 20, 24, 30}. Larger variants typically require fewer epochs and allow larger batch
sizes. The hyperparameters for VARs are given in Table 5, Table 6 and Table 7.

Table 5: Hyperparameters for FFT.

Dataset Learning Rate Batch Size Epochs

CUB-200-2011 1× 10−4 512 50
Food-101 1× 10−4 256 30
Oxford Flowers 1× 10−4 256 24
Oxford-IIIT Pet 1× 10−4 256 40
Stanford Cars 1× 10−4 256 50

Table 6: Hyperparameters for LoRA.

Dataset Learning Rate Batch Size LoRA Rank Epochs

CUB-200-2011 1× 10−3 512 16 40
Food-101 5× 10−4 256 16 6
Oxford Flowers 5× 10−4 256 16 40
Oxford-IIIT Pet 5× 10−4 256 16 50
Stanford Cars 5× 10−4 256 16 50

8

Implementing Adaptations for Vision AutoRegressive Model

Table 7: Hyperparameters for LNTuning.

Dataset Learning Rate Batch Size Epochs

CUB-200-2011 1× 10−3 512 40
Food-101 5× 10−4 256 6
Oxford Flowers 5× 10−4 256 45
Oxford-IIIT Pet 5× 10−4 256 50
Stanford Cars 5× 10−4 256 50

Hyperparameters for private finetuning. Differentially-private fine-tuning typically requires more epochs to offset the
utility loss from added noise, so we increase the epoch count accordingly. All DP-finetuning experiments are conducted
exclusively on the Oxford Flowers dataset. We set the total batch size BStotal from the sampling rate q and total examples
N as:

BStotal = ⌊q ×N⌋,

and in a multi-GPU (DDP) run with G GPUs the effective batch size per optimizer step is:

BSdevice =
BStotal

G
.

Table 8: Hyperparameters for DP-finetuning (DP-ε− 10) on Oxford Flowers for VAR.

Method Hyperparameter Value

FFT

Learning Rate 1× 10−4

Sample Rate (q) 0.251
Delta (δ) 1

N

Epochs 180
Max Grad Norm 0.1
Augmentation Multiplicity (k) 128

LoRA

Learning Rate 5× 10−4

Sample Rate (q) 0.251
Delta (δ) 1

N

LoRA Rank 16
Epochs 80
Max Grad Norm 0.5
Augmentation Multiplicity (k) 128

LNTuning

Learning Rate 5× 10−4

Sample Rate (q) 0.251
Delta (δ) 1

N

Epochs 100
Max Grad Norm 0.5
Augmentation Multiplicity (k) 128

Profiling We use built-in profiler module inside PyTorch (Paszke, 2019) for computing the total training cost for each of
our experiment. The designated profiling script utilizes the PyTorch Profiler to aggregate the total number of FLOps for
one single training step, this involves computing the total cost for 2 events inside the training step, forward pass and the

9

Implementing Adaptations for Vision AutoRegressive Model

backward pass. Finally, we calculate the cost for the whole run, based on the effective batch size and number of epochs
multiplied by the cost of each step to obtain the final compute cost in PFLOps.

Compute Cost Profiling for DP-experiments Unlike the non-private baselines, each differentially-private (DP) experi-
ment employs Poisson subsampling: at every update each example i∈{1, . . . , N} is drawn independently with probability
q= batch size

N . Because |Bt| ∼ Binomial(N, q), the FLOps for each update inherit a coefficient of variation 1√
qN

; hence
multiplying a single-step profile by the expected step count yields only a coarse approximation of the total compute
budget. Profiling only the first update and multiplying by an expected step count therefore produces a point estimate that is
systematically biased and may lead to incorrect calculations. To avoid reporting a misleadingly precise figure, we refrain
from quoting aggregate PFLOp totals for DP experiments and instead restrict compute-cost analysis to the deterministic,
fixed-batch baselines.

C. Extended Experimental Results for Non-Private Experiments
Extended Metrics for Performance. Following (Sajjadi et al., 2018; Kynkäänniemi et al., 2019), we evaluate VAR-d16
and VAR-d20 to estimate a local k–NN manifold for both the real and the generated distributions and report Precision and
Recall in Table 9. Precision (↑) is the fraction of generated samples that fall inside the real manifold and thus quantifies
sample fidelity. Recall (↑) is the fraction of real samples that fall inside the generated manifold and therefore measures
coverage/diversity.

Table 9: Extended Precision (P) and Recall (R) of VAR-d16 and VAR-d20 models across five downstream datasets.

Model Adaptation Food-101 CUB-200-2011 Oxford Flowers Stanford Cars Oxford-IIIT Pet Trainable
Parameters

P R P R P R P R P R

VAR-d16 FFT 73.48% 7.65% 61.99% 58.40% 59.45% 26.57% 58.40% 40.03% 68.49% 2.67% 309.6M (100%)
VAR-d16 LoRA 66.89% 9.70% 63.15% 58.16% 61.68% 26.83% 47.24% 31.20% 69.77% 4.52% 6.02M (1.91%)
VAR-d16 LNTuning 67.67% 8.43% 48.15% 62.44% 42.57% 34.85% 43.72% 41.38% 57.23% 4.33% 100.7M (24.56%)

VAR-d20 FFT 73.63% 8.07% 74.74% 47.99% 64.17% 24.84% 59.01 39.68% 69.28% 2.28% 599.7M (100%)
VAR-d20 LoRA 68.90% 9.36% 68.24% 54.26% 59.64% 32.18% 58.97% 39.49% 68.08% 3.08% 9.42M (1.54%)
VAR-d20 LNTuning 69.24% 10.03% 61.23% 58.08% 59.27% 31.71% 51.11% 44.58% 65.46% 3.40% 196.7M (24.69%)

Recall values dip sharply for Food-101 (max. ≤ 10%) and Oxford-IIIT Pet (all methods <5%). Both datasets are (i) fine-
grained, demanding the model to cover hundreds of subtly different classes, and (ii) out-of-domain for the ImageNet-trained
encoder used by the metric, which clusters visually similar species into overly tight neighbourhoods. Under these conditions
the k-NN test rejects many legitimate but stylistically rare samples, driving recall down even for FFT.

FLOPs Compute Cost Analysis. We show extended FLOPs compute-cost analysis for VAR-d{16, 20, 24, 30} in Figure 3.
These results expand upon our primary evaluation, which originally included only the VAR-d16 and VAR-d20 models. By
adding the larger VAR-d24 and VAR-d30 variants, we provide a full picture of how scaling the autoregressive backbone
affects total PFLOPs for each adaptation method.

VAR-d16 VAR-d20 VAR-d24 VAR-d30
0

250

500

750

1000

1250

1500

1750

2000

To
ta

l T
ra

in
in

g
PF

LO
Ps

Stanford Cars
FFT
LoRA
LNTuning

VAR-d16 VAR-d20 VAR-d24 VAR-d30
0

200

400

600

800

1000

1200

1400

1600
CUB-200-2011

VAR-d16 VAR-d20 VAR-d24 VAR-d30
VAR Variants

0

25

50

75

100

125

150

175

Oxford Flowers

VAR-d16 VAR-d20 VAR-d24 VAR-d30
0

2000

4000

6000

8000

10000

12000

Food-101

VAR-d16 VAR-d20 VAR-d24 VAR-d30
0

100

200

300

400

500

600

700

Oxford-IIIT Pet

Figure 3: Extended Training Compute Cost (PFLOPs) Comparison Across Datasets.

The plots clearly show that LoRA and LNTuning deliver greater compute savings as model size grows. While for FFT the
PFLOPs increase steeply from VAR-d16 through VAR-d30, both PEFT methods remain comparatively flat—especially on

10

Implementing Adaptations for Vision AutoRegressive Model

large datasets like Food-101 and Stanford Cars. All compute costs were calculated using the identical hyperparameters
specified in Tables 5 to 7, reinforcing that PEFT is the most scalable strategy under a fixed compute budget.

On the Oxford Flowers dataset, both LoRA and LNTuning were scheduled for more epochs than FFT (e.g., 30 vs. 24), yet
their total PFLOPs remain lower. This occurs because the per-step overhead of PEFT methods is substantially smaller than
that of FFT, so even with an extended training schedule, the aggregate compute cost stays below FFT’s. Consequently, PEFT
retains its efficiency advantage on Flowers despite requiring more epochs.

D. Ablation Study
LoRA outperforms LNTuning in DP experiments.

We check what happens with the performance of VAR when we select different parameters to fine-tune with DP-SGD. To
this end, we run a controlled ablation on VAR-d16 using the Oxford Flowers dataset. We use the same hyperparameters as
in Appendix B. We keep LoRA rank fixed at 16 and vary which weight blocks receive the low-rank adapters: (i) LoRA-A
updates only the attention projections Wqkv and the output projections; (ii) LoRA-M updates only the MLP projections fc1
and fc2; (iii) LoRA-AM + LN combines (i) + (ii) and additionally includes all LayerNorm weights; Finally, (iv) we include
LNTuning as the baseline that trains an adapter for LayerNorm only. Effectively, we ablate over the capacity (number of
parameters to fine-tune) and layers to fine-tune. Table 10 reports FID and number of trainable parameters for each variant.

Table 10: Effect of selectively finetuning specific components of VAR-d16 with DP ε = 10 on Oxford Flowers Dataset with
augmentation multiplicity k = 128 to compare FID (↓) scores.

Adaptation Variant FID (↓) Trainable Parameters Notes

LoRA-A 78.35 1.57M (0.50%) Finetuning only Attention Layers
LoRA-M 81.78 2.62M (0.84%) Finetuning only MLP Layers.

LoRA-AM + LN 63.24 6.02M (1.91%) Main Reported LoRA Method
LNTuning 116.64 100.7M (24.56%) Main Reported LNTuning Method

Our results clearly show that a proper selection of layers to fine-tune is more crucial than the number of fine-tuned parameters.
This happens due to the specifics of privacy training: information from gradients costs privacy, how the signal is allocated in
the model affects its final performance. Low-rank adapters placed in the attention and MLP projections capture task-specific
directions that resists DP perturbations, whereas LNTuning lacks the expressive power to counteract the injected noise.
Consequently, our main LoRA-AM + LN configuration delivers the best privacy–utility trade-off, outperforming LNTuning
in FID while updating fewer than 2% of the weights.

E. Why VAR converges faster?
Results in Figure 2 indicate that VAR converges surprisingly fast to its downstream task when fine-tuned. We argue that this
behavior stems from VAR’s training objective. Specifically, VAR is trained with the standard cross-entropy loss between
predicted and ground-truth tokens. With this objective, the gradient signal remains strong even early in training. Instead,
DMs minimize a denoising score-matching loss, which tries to reconstruct clean latents from various noise levels. The signal
in this objective is diluted across T noise scales; gradients for very noisy time-steps are dominated by injected Gaussian
noise, slowing effective learning until the model acquires a good global estimate of the score function.

11

Implementing Adaptations for Vision AutoRegressive Model

F. Implementation Details of Adaptations and DP for VAR
IARs have model architectures identical to the popular transformer models like GPT-2 (Radford et al., 2019). The IARs’
state-of-the-art next-token prediction mechanism excels at generating high-resolution images significantly faster than the
average diffusion model. During our research, we implemented our own finetuning pipeline for Non-private and Private
finetuning of IARs. The code base allows finetuning pre-trained IARs on private datasets with DP guarantee and compare
that to our Non-Private baseline. Our implementation presents private IARs retaining high quality images on several datasets.

F.1. Overcoming Technical Barriers in Differentially Private IARs

Implementing DP guarantees is not straightforward with many IARs as their functioning is different than how DMs generally
work. Each implementation, Private or Non-Private requires some modification to allow different finetuning adaptations
function properly. Considering one of the class conditional IAR like VAR (Tian et al., 2024) registers buffers which are not
supported by Opacus due to their nature of being a non-trainable parameter as well as the SelfAttention mechanism causes
empty gradient flow when implementing LoRA finetuning. To overcome these constraints we patch the internal code and
calling the modified classes from the updated module while retaining the same performance and efficiency as before.

Table 11: Various patching mechanisms implemented to successfully perform private and non-private finetuning with VARs.

Adaptation Patch Buffers Override Forward Function Patch SelfAttention

Full Fine-tuning ✕ ✕ ✕

LoRA Fine-tuning ✕ ✕ ✓

LayerNorm Fine-tuning ✕ ✕ ✕

DP-Full Fine-tuning ✓ ✓ ✕

DP-LoRA Fine-tuning ✓ ✓ ✓

DP-LayerNorm Fine-tuning ✓ ✓ ✕

In this paper, we illustrate our approach to managing buffers, as they are typically found in most of the IAR implementations
discussed.

F.2. Patching Buffers to handle DP-finetuning

IARs like VAR (Tian et al., 2024) model register three important buffers that are crucial for its functioning. These buffers
primarily handle embeddings, attention mask and bias making them highly important in order for VARs to function. The first
buffer lvl 1L, is a level index tensor where each element contains the pyramid level index for the corresponding position in
the sequence based on the patch numbers. This helps the model distinguish between tokens from different pyramid levels in
the hierarchical structure. Another buffer registered in the VAR model is attn bias for masking which is an Auto-regressive
attention mask to ensure that tokens can only attend from the same or earlier pyramid levels. Lastly, the zero k bias is a
zero-filled tensor with shape embed dim that serves as a placeholder bias for the key projection component. While Query
and Value have learnable biases and are initialized as parameters, the zero k bias is always passed as a fixed zero value
tensor.

Unlike parameters, buffers are not updated at all and are not meant to have gradients computed either in batches or per-
sample. Since the DP-SGD algorithm solely relies on computing gradients for each individual sample, Opacus does not
handle the non-trainable buffer and causes the trainer to break immediately. Generally, buffers are removed in standard
DP-SGD practices to avoid these errors although removing buffers from the VAR model results in unstable and garbled
image generation since tokens are not positioned consistently since lvl 1L buffer does not exist and the attention bias does
not exist to ensure correct level of scaled resolution.

We overcome buffer removal by not registering them at all in the first place and then passing them as functions with property
decorators so Opacus doesn’t create any sort of conflict with those.

This way we do not have to register any buffers in the first place for them to conflict with the finetuning process while every
time the model calls these newly patched functions they are computed on the fly and act like model attributes. This approach
is lightweight and flexible with different types of buffers which are essential while making sure the arbitrary computation
does not slow down the finetuning process.

12

Implementing Adaptations for Vision AutoRegressive Model

attn_bias_for_masking = torch.where(
d >= dT, 0., -torch.inf

).reshape(1, 1, self.L, self.L)

self.register_buffer(
'attn_bias_for_masking',
attn_bias_for_masking.contiguous()

)

(a): Original buffer implementation

@property
def attn_bias_for_masking(self):

d = torch.cat([
torch.full((pn * pn,), i,

device=self.pos_1LC.device)
for i, pn in enumerate(self.patch_nums)

]).view(1, self.L, 1)
dT = d.transpose(1, 2)
attn_bias = torch.where(d >= dT,

0.0, -torch.inf
).reshape(1, 1, self.L, self.L)

return attn_bias.contiguous()

(b): Patched buffer implementation

Figure 4: Buffer patching enables skipping register buffer calls to avoid parameter incompatibility with Opacus.

F.3. Addressing Gradient Flow Issues in SelfAttention Layers for LoRA & DP-LoRA in VARs

The SelfAttention component of the the VAR model contains two base layers we target when passing LoRA configuration
to the model. One of the layers mat qkv was computed by combining several operations in a single line, performing a
linear transformation, adding the bias and reshaping to match the tensor shape. When implementing LoRA finetuning on
this layer caused empty gradient propagation meaning the gradients were not flowing through this layer at all due to the
condensed approach of qkv computation. The problem occurs because Opacus needs to track and clip gradients at all times
and non-initialized gradients causing to break the gradient flow. Simply meaning when using parameter-efficient fine-tuning
methods like LoRA that rely on precise gradient computation for their low-rank updates the gradient computation becomes
opaque to the DP mechanism.

We resolved this issue by decomposing the self-attention operation into its constituent parts, which benefits both standard
LoRA and differentially private DP-LoRA implementations. Our patched approach follows three distinct steps: first applying
the linear transformation through the LoRA-augmented layer self.mat qkv(x), then explicitly adding biases as a separate
operation, and finally reshaping the output tensor to avoid any tensor shape mismatches.

For standard LoRA, this separation ensures that the low-rank adaptation matrices properly participate in the computation
graph, allowing gradients to flow correctly through both the base parameters and the LoRA adaptation matrices during
backpropagation. For DP-LoRA specifically, this explicit separation is even more crucial, as it enables Opacus to correctly
track, compute, and clip gradients at each step of the computation.

The modification maintains the mathematical equivalence of the operation while significantly improving the training
dynamics for both approaches.

F.4. Override Forward Function

VAR models define a custom forward method with two separate inputs label B and x BLCv wo first l, plus on-the-fly
randomness for conditional dropout. Opacus’s DP-SGD hooks expect a single, standard forward(self, input) signature and
deterministic operations. When it encounters extra arguments or stochastic operations inside the forward pass, the privacy
accounting and per-sample gradient machinery break, leading to trainer errors.

13

Implementing Adaptations for Vision AutoRegressive Model

qkv = F.linear(
input=x,
weight=self.mat_qkv.weight,
bias=torch.cat(

(self.q_bias, self.zero_k_bias, self.v_bias)
)

).view(B, L, 3, self.num_heads, self.head_dim)

(a): Original qkv computation method

qkv_raw = self.mat_qkv(x)
qkv = qkv_raw + torch.cat(

(self.q_bias, self.zero_k_bias, self.v_bias)
).view(1, 1, -1)
qkv = qkv.view(B, L, 3, self.num_heads, self.head_dim)

(b): Patched qkv implementation

Figure 5: Patching qkv computation to add support for LoRA fine-tuning in VAR models (Tian et al., 2024).

To restore compatibility, we override the model’s forward by accepting a single concatenated tensor concat tensor. Before
computing the forward pass, we externally concatenate the expanded labels and the inputs along the feature dimension.
Inside the new forward, we unpack label B and x BLCv wo first l by slicing concat tensor, thereby presenting Opacus with
the canonical single argument signature it requires.

Once unpacked, we replicate the original embedding, positional-encoding, and attention-bias computations exactly as
before. The unpacked label B drives the class embeddings and start-of-sequence token, while x BLCv wo first l populates
the remainder of the input sequence. We then proceed through the usual per-layer AdaLN self-attention and final logits
projection unmodified, ensuring functional parity with the upstream VAR implementation.

14

