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“In general, we mean by any concept nothing more than a set of operations.”

— P. W. Bridgman

BatonTTS

Feature

“word”: “Wow”
“pitch mean”: 285 
“pitch slope”: -82 
“energy rms”: 
0.009 
“energy slope”: -45 
“spectral centroid”: 
2250 
…

How should I speak to follow the instruction?

Text Wow, you really did a great job.

Instruction Please speak in a sarcastic tone. LLM

Figure 1: Illustration of BATONVOICE: (1) An LLM, acting as a conductor, interprets the user’s
instructions and generates explicit vocal features. (2) These features are then fed into BATONTTS
model, the orchestra, which synthesizes the final speech. This separation allows the LLM to lever-
age its linguistic intelligence to guide the synthesis process, enabling controllable TTS.

ABSTRACT

The rise of Large Language Models (LLMs) is reshaping multimodel models,
with speech synthesis being a prominent application. However, existing ap-
proaches often underutilize the linguistic intelligence of these models, typically
failing to leverage their powerful instruction-following capabilities. This limita-
tion hinders the model’s ability to follow text instructions for controllable Text-
to-Speech (TTS). To address this, we propose a new paradigm inspired by “op-
erationalism” that decouples instruction understanding from speech generation.
We introduce BATONVOICE, a framework where an LLM acts as a “conductor”,
understanding user instructions and generating a textual “plan” – explicit vocal
features (e.g., pitch, energy). A separate TTS model, the “orchestra”, then gen-
erates the speech from these features. To realize this component, we develop
BATONTTS, a TTS model trained specifically for this task. Our experiments
demonstrate that BATONVOICE achieves strong performance in controllable and
emotional speech synthesis, outperforming strong open- and closed-source base-
lines. Notably, our approach enables remarkable zero-shot cross-lingual general-
ization, accurately applying feature control abilities to languages unseen during
post-training. This demonstrates that objectifying speech into textual vocal fea-
tures can more effectively unlock the linguistic intelligence of LLMs.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has catalyzed a paradigm shift in Multi-
modal Large Language Models (MLLMs), with frameworks now unifying text, images, and speech
within a single model (Zeng et al., 2024; Xu et al., 2025; Deng et al., 2025). In Text-to-Speech
(TTS), this has led to a new generation of systems that fine-tune a pre-trained LLM as a backbone
to generate speech (Wang et al., 2023; Guo et al., 2023; Zhang et al., 2025a). However, a critical yet
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underexplored question remains: Are we fully leveraging the linguistic intelligence of LLMs in these
TTS models?

Existing LLM-based TTS models primarily treat the LLM as a backbone. This approach typically
involves designing a tokenizer to convert speech into discrete tokens and then training the model on
large-scale datasets tailored to specific objectives. For instance, training a controllable TTS model
necessitates extensive manual annotation of existing speech data to acquire the corresponding con-
trol labels and instructions (Du et al., 2024b;a), a process that is not only prohibitively expensive
but also suffers from low inter-annotator agreement. We contend that this methodology largely by-
passes the LLM’s inherent linguistic intelligence, such as its strong capabilities for complex context
understanding and instruction following.

To address this, we draw inspiration from the principle of “operationalism”, where complex concepts
are understood through quantifiable, interpretable operations. For instance, to analyze imperceptible
ultrasound, we use sensors to extract quantifiable features like frequency and amplitude. We posit
that controllable TTS can be transformed by operationalizing user instructions into the desired vocal
features. This reframes the problem: the LLM first leverages its linguistic intelligence to under-
stand instructions and generate explicit vocal features, which then serves as input for a subsequent
TTS model. This approach allows us to circumvent the need for manually annotating speech with
controllable labels.

To realize this vision, we introduce BATONVOICE, a novel TTS framework that decouples instruc-
tion understanding from speech generation, as illustrated in Figure 1. BATONVOICE employs an
LLM as a “conductor”, which interprets the user’s instructions to explicit vocal features, like pitch
and energy. This plan is then fed into a separate TTS model, the “orchestra”, which generates the
final speech. The “orchestra” in our framework is BATONTTS, a TTS model we trained specifically
to synthesize high-quality speech conditioned on these textual vocal features.

Our experiments validate the power of this decoupled approach. BATONVOICE achieves strong per-
formance in emotional speech synthesis, outperforming strong open- and closed-source models. For
example, our 1.7B parameter model achieves an emotion accuracy of 57.6%, significantly surpass-
ing all baselines. To verify our hypothesis, we show that stronger linguistic intelligence directly
translates to superior synthesis: upgrading the “conductor” LLM from our 1.7B model to the more
capable Gemini 2.5 Pro boosts the final model’s emotion accuracy from 29.8% to 57.6%. Further-
more, BATONVOICE exhibits remarkable zero-shot cross-lingual generalization, accurately apply-
ing feature control abilities to Chinese, which is an unseen language during feature control training
stage. This work not only advances controllable speech synthesis but also presents a promising new
paradigm for MLLM development, demonstrating how objectifying modalities into text can more
fully unlock the linguistic intelligence of LLMs.

Our contributions are three-fold:

• We propose a novel paradigm for controllable speech synthesis, inspired by “operationalism”,
which decouples linguistic intelligence from speech generation via quantifiable, interpretable
vocal features.

• We present a methodology for realizing this paradigm, including a novel data pipeline that auto-
matically generates instruction-feature pairs, and we introduce BATONTTS, a specialized TTS
model trained on this data to generate speech from the vocal features.

• Through extensive experiments, we demonstrate that our framework, BATONVOICE, achieves
strong performance in controllable, expressive speech synthesis. It exhibits superior emotional
control and remarkable zero-shot cross-lingual generalization performance, validating the effec-
tiveness of our operationalism-inspired approach.

2 BATONVOICE: A FRAMEWORK FOR CONTROLLABLE TTS

In this section, we introduce BATONVOICE, a controllable TTS framework capable of synthesizing
speech that adheres to arbitrary text-based instructions. Adopting an operationalist stance, BA-
TONVOICE leverages LLMs to interpret users’ instructions into a JSON list of fine-grained vocal
features. The core of this framework is BATONTTS, a TTS model trained specifically developed to
synthesize speech from these features. We first describe the overall framework and its inference pro-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

SpeechText Feature

Extractor

Speech TokenizerText Tokenizer

Baton-TTS

B S1 S2

ES1 S2

Next Token Prediction

Text Token

Feature Token

Speech Token

Special Token

Figure 2: Overview of the SFT stage of the BATONTTS framework. We extract vocal features from
speech and verbalize them into a textual format.

cess, followed by a detailed introduction of the BATONTTS architecture and its three-stage training
pipeline.

2.1 OVERALL FRAMEWORK AND INFERENCE PROCESS

The inference process of the BATONVOICE framework is structured in two stages. In the first stage,
for a given input text X and a corresponding instruction I , an external LLM (specifically, Gemini
2.5 Pro) is employed to interpret the instruction. This interpretation yields a set of fine-grained
vocal features, denoted as Fv . These features constitute a quantitative vocal plan and encompass the
following attributes:

• Pitch (mean and slope): The average fundamental frequency and the overall intonational contour.
• Energy (RMS and slope): The average signal amplitude and its dynamic variations.
• Timbre (spectral centroid): The perceived brightness of the speech.

We provide the prompt template utilized for this feature prediction in the Appendix. Subsequently,
in the second stage, this feature list Fv , along with the original text X , is fed into BATONTTS to
synthesize the final speech.

2.2 MODEL ARCHITECTURE OF BATONTTS

We now detail the architecture of BATONTTS, the model responsible for generating speech from
the specified feature list. Inspired by recent advancements such as CosyVoice2 (Du et al., 2024b),
the architecture of BATONTTS comprises two primary components: an LLM backbone and a pre-
trained speech decoder.

For the LLM backbone, we employ representative open-source models, specifically Qwen3-1.7B
and Qwen2.5-0.5B. As will be demonstrated in our experimental section, our proposed method is
effective across LLM backbones of varying capacities. The LLM is tasked with autoregressively
generating a sequence that includes the input text to be synthesized, the corresponding speech fea-
tures (i.e., the vocal plan), and the discrete speech tokens that realize this plan. The structure of
this input sequence during the Supervised Fine-Tuning (SFT) stage is illustrated in Figure 2. It is
important to note that while the features are part of the training sequence, during inference, they are
generated by an external LLM as previously described.

For the final synthesis step, we leverage the speech decoder from the publicly available CosyVoice2
model. This decoder converts the discrete speech tokens produced by the LLM into a high-quality
speech. It consists of a speech token encoder, a conditional flow matching model, and a HiFi-
GAN vocoder. The flow matching model generates Mel spectrograms conditioned on the discrete
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speech tokens, and the HiFi-GAN vocoder then converts these spectrograms into the final speech.
By utilizing a pre-trained speech decoder, we can focus our training efforts exclusively on teaching
the LLM to control speech features through language. Consequently, the speech decoder remains
frozen throughout our training process.

2.3 THREE-STAGE TRAINING PIPELINE OF BATONTTS

We introduce a three-stage training pipeline designed to incrementally build the TTS model’s feature
control capability:

• Stage 1: Pre-Training. Establishes a foundational TTS capability by training the LLM to gen-
erate speech tokens from text.

• Stage 2: Supervised Fine-Tuning (SFT). Teaches the LLM to generate speech conditioned on
specific vocal features (Fv), enabling fine-grained control.

• Stage 3: Preference Optimization (PO). Refines the model by preference optimizing, mitigating
failure modes and enhancing the precision of feature control.

Stage 1: Pre-Training The objective of this stage is to equip the LLM with a fundamental text-to-
speech capability, providing a robust weight initialization for subsequent stages. We use a large-scale
corpus of speech-text pairs, Dpretrain = {(xi, Si)}, where xi is the transcript and Si represents the
corresponding discrete speech tokens. The model, denoted as policy πpre, is trained using a standard
causal language modeling objective to predict the next token autoregressively over the concatenated
sequence of text and speech tokens. The training objective is:

LPre-Train = −E(x,S)∼Dpretrain

|x|+|S|∑
i=1

log πpre(yi|y<i)

 ,

where Y = [x;S] is the concatenated sequence. This process trains the model on both text-to-text
and text-to-speech-token generation, establishing a strong baseline.

Stage 2: Supervised Fine-Tuning The SFT stage aims to instill fine-grained controllability by
training the model to generate speech conditioned on both the transcript and a set of explicit, verbal-
ized vocal features. This process, illustrated in Figure 2, trains the model to associate textual vocal
features with corresponding discrete speech tokens.

The process begins with a diverse corpus of speech-text pairs, Draw = {(Ai, xi)}. For each pair,
we perform word-level alignment and segment the speech. For each segment, we extract the its
vocal features and verbalize them into a structured, human-readable textual representation, Fv (e.g.,
a JSON-like string), which makes the vocal features directly controllable by a text-only LLM.

During this stage, we fine-tune the policy πsft. The input sequence is formed by concatenating the
transcript x, the verbalized features Fv , and the speech tokens S. The model is trained to predict the
next token autoregressively by minimizing the cross-entropy loss:

LSFT = −E(x,Fv,S)∼Dsft

|x|+|Fv|+|S|∑
i=1

log πsft(yi|y<i)

 ,

where Y = [x;Fv;S] is the concatenated sequence. This objective teaches the model to generate
speech tokens S that adhere to the vocal plan specified by Fv .

Stage 3: Preference Optimazation Although SFT offers a direct mechanism for control, the re-
sulting model, πsft, is still prone to certain failure modes. These include a high Word Error Rate
(WER), an unnaturally slow speaking rate and insufficient expressiveness. To overcome these limi-
tations, we employ a subsequent preference optimazation stage. The central principle is to construct
a preference dataset, Dpref, designed to align the model’s outputs with more desirable vocal features,
crucially without the need for manually annotated expressive data.

The construction of Dpref involves the following steps:
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• Initial Generation and Rejection Sampling: For each text prompt x in a corpus T , we use the
pre-trained model πpre from Stage 1 to synthesize an speech sample sbase. Samples are designated
as rejected (sl) if they exhibit a high WER or a slow speech rate (SR). The corresponding speech
tokens Sbase are stored as the rejected sequence Sl.

sl ← sbase if WER(sbase, x) > τwer high or SR(sbase) < τsr.

• Preferred Data Construction: For each text x corresponding to a rejected sample, we use our
SFT model πsft to generate a new candidate speech ŝ. These candidates are accepted as chosen
samples (sw) if they meet the quality criteria (low WER and adequate SR). The corresponding
features and tokens (Fv,w, Sw) are stored.

sw ← ŝ if WER(ŝ, x) ≤ τwer high and SR(ŝ) ≥ τsr.

• Preference Dataset Construction: This filtering process yields pairs of chosen sequences
(Fv,w, Sw) and rejected sequences Sl. To create a controlled comparison, we form preference
tuples where the model learns to prefer Sw over Sl under the same vocal plan, Fv,w. This setup
creates a powerful learning signal: because Sl was generated without knowledge of Fv,w, while
Sw was explicitly conditioned on it, teaching the model to prefer Sw over Sl not only improves
general quality but also implicitly reinforces the model’s ability to follow the specified vocal
features. The final dataset consists of tuples: Dpref = {(xi, Fv,w,i, Sw,i, Sl,i)}.

Finally, we fine-tune the model using Anchored Preference Optimization (APO-
down) (D’Oosterlinck et al., 2025), with the SFT model serving as the reference policy (πref = πsft).
The APO-down objective penalizes deviations from the reference for the chosen sequence Sw while
maximizing the reward margin between the chosen (Sw) and rejected (Sl) sequences, given the
shared prefix (x, Fv,w):

LAPO
down(θ) = E(x,Fv,w,Sw,Sl)∼Dpref

σ(rθ(x, Fv,w, Sw))︸ ︷︷ ︸
Term 1

−σ(rθ(x, Fv,w, Sw)− rθ(x, Fv,w, Sl))︸ ︷︷ ︸
Term 2

 ,

where rθ(x, Fv, S) = β log
(
πθ(S | x, Fv)/πref(S | x, Fv)

)
is the implicit reward. Term 1 anchors

the policy to the SFT model for chosen samples, while Term 2 maximizes the preference margin.
This dual objective allows the model to mitigate common failure modes without requiring any ex-
plicitly labeled expressive data.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Training BATONVOICE The pre-training stage equips the LLM with the fundamental capability
of converting text into a corresponding sequence of speech tokens, establishing a strong foundation
for standard TTS before introducing complex instruction-following behavior. We use the VoxBox
dataset (Wang et al., 2025b), a large-scale, multi-speaker English speech corpus of approximately
103K hours. The speech is tokenized into discrete vocal units using the official CosyVoice2 tok-
enizer. To maximize throughput, we pack tokenized sequences into 4096-token chunks, reducing
padding overhead. Pre-training is conducted on 80 NVIDIA A100 (40GB) GPUs for 3 epochs (ap-
proximately one day), using AdamW with a learning rate of 1e-4, 500 warmup steps, a global batch
size of 640, and DeepSpeed ZeRO-2 for memory optimization.

Our post-training process consists of SFT and PO. A key challenge in preparing the SFT data is
that our speech decoder cannot perfectly reconstruct original speech from its quantized tokens. To
ensure the vocal features are faithfully synthesizable, we derive them from speech that has been
reconstructed by the decoder itself.

Our SFT dataset is compiled from two primary sources. First, we take a diverse collection of ex-
pressive speech corpora (Veaux et al., 2017; Nagraniy et al., 2017; Chung et al., 2018; Richter et al.,
2024; Nguyen et al., 2023; Yang et al., 2025; Wang et al., 2025a), pass the speech through our de-
coder for reconstruction, and then extract features from the synthesized output. Second, we collect
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Table 1: Performance on the English TTS Benchmark. BATONVOICE demonstrates superior emo-
tion ability (Acc.) while maintaining high intelligibility (WER).

Model Size Pre-Train Instruction Seed-TTS Emotion
Data (Hours) Data (Hours) WER (↓) Acc. (↑)

Close-Source
Minimax-2.5-HD - - - 1.5 48.6
Minimax-2.5-Turbo - - - 1.5 46.4
Minimax-2.0-HD - - - 1.5 39.2

Open-Source
Spark-TTS 0.5B 103K 0 1.9 27.4
CosyVoice 0.3B 172K 556 3.4 43.8
CosyVoice2 0.5B 167K 1,500 2.1 37.8
Higgs speech V2 3.0B >10,000K - 1.8 23.5

BATONVOICE (Ours) 0.5B 103K 0 2.9 52.8
1.7B 2.5 57.6

colloquial sentences from the Synthetic-Persona-Chat dataset (Jandaghi et al., 2024) and synthesize
them. We then apply a filtering process to the combined data, removing samples with a high Word
Error Rate (WER), which indicates potential misalignments, or an abnormally slow speaking rate.
τwer high is 0.1 and τsr is 1.5 words per seconds.This results in a final SFT dataset of 377,619 ut-
terances, totaling over 500 hours (see Appendix for a detailed distribution). For the PO stage, we
collected a dataset of 9,823 preference samples.

The feature extraction pipeline for this data begins with grounding features in semantically meaning-
ful units. We first obtain word-level timestamps for each speech sample using a pre-trained model 1.
Since individual words are often too short to carry significant prosodic information, we merge ad-
jacent words into segments until each segment’s duration exceeds a one-second threshold, ensuring
a stable and analyzable prosodic contour. Finally, we use the Parselmouth library 2 to extract a set
of vocal features from these segments. The model is trained with SFT for 3 epochs, followed by 1
epoch of APO-down.

Benchmarks and Evaluation. We selected two distinct benchmarks to rigorously test different
facets of our model’s performance:

• TTS Intelligibility: We use the test set from the Seed-TTS benchmark (Anastassiou et al., 2024),
which is designed for assessing speech synthesis from short speech prompts. Performance is
measured by Word Error Rate (WER), calculated with pre-trained ASR models 3. A lower
WER score signifies higher intelligibility.

• Emotion Control: This is assessed on a curated test set from the Emotion dataset (Saravia et al.,
2018). We use includes 100 samples for each of five emotions (joy, sadness, anger, surprise, and
fear). We measure performance using Emotion Classification Accuracy. This metric is derived
by employing Google’s Gemini-2.5-Pro to classify the emotion of the synthesized speech. A
higher accuracy indicates a greater success rate in generating perceptually accurate emotional
speech. The prompt template for this evaluation is provided in the Appendix.

3.2 MAIN RESULTS

BATONVOICE demonstrates strong emotion control performance while maintaining high in-
telligibility. As shown in Table 1, BATONVOICE-1.7B achieves 57.6% accuracy on the Emotion
benchmark, surpassing the strongest closed-source baseline, Minimax-2.5-HD (48.6%), by 9.0 ab-
solute points. It also outperforms all open-source systems by a wide margin, e.g., +13.8 points over

1https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
2https://github.com/YannickJadoul/Parselmouth
3https://huggingface.co/openai/whisper-large-v3
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CosyVoice (43.8%). On Seed-TTS, our 1.7B model attains a WER of 2.5 – competitive with high-
quality open models (better than CosyVoice at 3.4, slightly above CosyVoice2 at 2.1 and Spark-TTS
at 1.9) and within a small gap of the closed-source Minimax series (1.5). These results validate
that our decoupled “conductor–orchestra” design substantially enhances emotional expressiveness
without sacrificing intelligibility.

BATONVOICE achieves substantial gains without manual instruction data. Our BATONVOICE
framework achieves these results with 0 hours of manually annotated instruction data, in contrast
to CosyVoice and CosyVoice2, which use 556 and 1,500 hours respectively yet underperform on
emotion accuracy (43.8% and 37.8%). Preference optimization over textual vocal plans yields con-
sistent improvements over SFT alone: for the 1.7B model, emotion accuracy increases from 52.2%
(SFT) to 57.6% (Instruct, +5.4 points) while WER improves from 2.9 to 2.5. Even at 0.5B, instruc-
tion tuning further boosts accuracy from 51.6% to 52.8% (+1.2). These gains directly confirm the
effectiveness of BATONVOICE.

BATONVOICE demonstrates strong scalability with model size. Moving from 0.5B to 1.7B
parameters improves emotion accuracy from 52.8% to 57.6% (+4.8) and reduces WER from 2.9 to
2.5 for the instruction-tuned models. This trend demonstrates the scalability of our method, and
showcasing its consistent performance benefits across different model sizes..

3.3 CROSS-LINGUAL GENERALIZATION

Table 2: Performance on the Chinese TTS
Benchmark. BATONVOICE only uses English
data for feature control training, yet demon-
strates strong zero-shot generalization.

Model Seed-TTS Emotion
WER (↓) Acc. (↑)

Close-Source
Minimax-2.5-HD 0.9 49.0
Minimax-2.5-Turbo 1.0 50.6
Minimax-2.0-HD 0.9 48.8

Open-Source
Spark-TTS 1.5 29.2
CosyVoice 2.1 52.0
CosyVoice2 2.0 42.0
Higgs speech V2 1.2 28.8

BATONVOICE-1.7B 2.1 56.2

A significant and surprising finding is the model’s
ability to generalize to languages not seen during
the BATONTTS post-training stage. We evalu-
ated this by testing on a Chinese emotion bench-
mark, employing the same methodology as the
English evaluation, with the text and instructions
translated into Chinese by Gemini 2.5 Pro. No-
tably, this cross-lingual generalization occurs de-
spite the post-training stage being conducted ex-
clusively on English data, demonstrating a strong
zero-shot transfer capability.

BATONVOICE demonstrates remarkable zero-
shot cross-lingual generalization, applying fea-
ture control ability to languages entirely unseen
during post-training. As shown in Table 2, BA-
TONTTS-1.7B achieves a 56.2% accuracy on the
Chinese emotion benchmark. This result is not
only strong in absolute terms but also surpasses
leading models that are either native to or heav-
ily optimized for Chinese, such as CosyVoice (52.0%) and the closed-source Minimax-2.5-Turbo
(50.6%). This performance is achieved without any Chinese instruction data, highlighting a key
advantage of our “operationalism” paradigm.

3.4 HUMAN EVALUATION OF INSTRUCTION-FOLLOWING

To assess our model’s performance on controllable TTS with free-form instructions, we create a
specialized test set. We begin by sourcing 50 diverse social situations from the Social IQa bench-
mark (Sap et al., 2019), chosen for its rich contextual and emotional nuance. For each situation,
we utilize Gemini 2.5 Pro to generate a challenging test case. The model is prompted to produce
two outputs: first, a detailed, role-playing style instruction framed in a second-person narrative,
which specifies the desired persona and delivery style. Second, it generates a corresponding target
utterance to be synthesized. This pipeline yield a high-quality benchmark of 50 pairs, specifically
designed to test the model’s ability to follow complex, descriptive instructions beyond simple labels.
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Table 3: Human preference evaluation for
instruction following TTS.

Compare with Win Rate
CosyVoice 56%
Minimax-2.5-HD 30%

We found that long instructions were incorrectly syn-
thesized by CosyVoice. To mitigate this, we use Gem-
ini 2.5 Pro to map each detailed instruction to a dis-
crete emotion label (Neutral + 6 Ekman emotions),
which was then fed to CosyVoice. This label-based
approach was also necessary for Minimax 2.5, which
only accepts emotion labels as input. We all the
prompt template in the appendix. We performed a hu-
man evaluation comparing BATONVOICE with the top-
performing open-source (CosyVoice) and closed-source (Minimax-2.5-HD) models. The evaluation
involved three trained annotators with a Cohen’s Kappa of 0.61. As shown in Table 3, BATON-
VOICE achieves performance comparable to CosyVoice but is outperformed by the commercial sys-
tem Minimax-2.5-HD, falling short in aspects of fluency and naturalness.

3.5 COMPONENT ANALYSIS

We conduct a series of in-depth analyses to better understand the capabilities of BATONVOICE.
Otherwise stated, we report the results of BATONTTS-1.7B on the English Emotion benchmark.

A
cc

ur
ac

y

0

20

40

60

0.5B 1.7B

57.6

52.8 52.251.6

23.2
25.8

Base +SFT +SFT+APO

A
cc

ur
ac

y

0

20

40

60
57.656.2

49.6
47.8

43.8

39.8

29.8

Qwen3-1.7B Qwen3-80B
Qwen3-235B Qwen3-Max
GPT-5 o3 pro
Gemini-2.5-pro

Figure 3: Impact of stages.

Each stage of the BATONTTS framework significantly con-
tributes to emotional expressiveness. We perform a step-
by-step ablation to examine the effectiveness of each stage in
our proposed BATONTTS framework. As illustrated in Fig-
ure 3, the base model, trained only on foundational TTS with-
out any instruction tuning, yields poor performance on the En-
glish Emotion benchmark – achieving just 23.2% accuracy for
the 1.7B model. Incorporating the SFT stage causes a dra-
matic improvement, boosting the accuracy to 52.2% (+29.0
points), showing that teaching the model to generate and con-
dition on verbalized vocal plans is key to enabling stylistic
control. Adding the APO-based preference optimization fur-
ther improves performance to 57.6% (+5.4 over SFT), illus-
trating the importance of our post-training strategy. Consistent
gains are observed for the smaller 0.5B model (25.8 → 51.6
→ 52.8), demonstrating that the framework is effective across
model scales. These results validate the design of BATONTTS in sequentially teaching foundational
TTS capability and improving control quality.
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Figure 4: Impact of LLMs.

BATONTTS enables scalable leverage of LLM linguistic in-
telligence for emotional control. To demonstrate how our
framework leverages the linguistic intelligence of Large Lan-
guage Models (LLMs), we performed an experiment to mea-
sure the impact of the vocal feature generator on final synthesis
quality. We used a fixed BATONVOICE model and generated
vocal plans at inference time using a range of LLMs with vary-
ing capabilities. As illustrated in Figure 4, the results show a
clear, positive correlation between the performance of the LLM
and the emotion accuracy of the synthesized speech. The accu-
racy climbs steadily from 29.8% with Qwen3-1.7B to 57.6%
with Gemini-2.5-Pro, with intermediate models like Qwen3-
80B (39.8%) and Qwen3-Max (47.8%) falling along this ex-
pected trajectory. These findings strongly support our core
claim: representing speech as vocal features allows the syn-
thesis model to directly benefit from advances in LLMs. This
highlights a key advantage of our decoupled “conductor–orchestra” design: its modularity. Even our
compact 1.7B model can tap into the power of a much larger model like Gemini-2.5-Pro at inference
time, effectively upgrading its expressive capability without any modification to the model.
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4 RELATED WORK

Controllable Speech Synthesis Controllable speech synthesis is typically classified into three pri-
mary paradigms. The first, style tagging, employs discrete labels (e.g., emotion, gender) to guide
the synthesis process (Guo et al., 2023; Wang et al., 2025b; Zhang et al., 2025a). While concep-
tually simple, this approach is restricted to a predefined set of styles, which fundamentally limits
its expressive range. The second paradigm leverages reference speech to enable few-shot or zero-
shot speaker adaptation. This is accomplished by extracting speaker embeddings from short speech
samples and conditioning the TTS decoder on them – a technique proven effective for voice cloning
and style transfer (Jiang et al., 2024; Ji et al., 2025; Li et al., 2024). The third and most flexible
paradigm, instruction-guided control, conceptualizes TTS as a task of interpreting natural language
instructions. Frameworks such as VoxInstruct exemplify this approach, guiding synthesis with free-
form instructions (Du et al., 2024b;a). However, these instruction-following methods are constrained
by the high cost and difficulty of creating large-scale, annotated instruction-speech datasets, which
limits their generalization and performance.

In contrast, our approach circumvents the need for manually annotated data by leveraging a powerful
LLM. This enables robust, zero-shot generalization to unseen instructions, generating vocal features
that exhibit high fidelity to the prompts while affording a high degree of control. Our method thus
addresses the key limitations of data scarcity and annotation cost in instruction-guided TTS, showing
significant promise for future research in expressive and controllable speech synthesis.

Multimodal Reasoning The remarkable reasoning capabilities of LLMs have catalyzed exten-
sive research into extending these faculties to multimodal domains. Early efforts sought to enhance
multimodal understanding by employing techniques such as reinforcement learning to better align
visual and textual representations (Hong et al., 2025; Huang et al., 2025b; Luo et al., 2025; Shen
et al., 2025). More recent and prominent approaches aim for a deeper integration of reasoning.
One prominent direction integrates multimodal information as intermediate steps within a reasoning
chain, analogous to a “chain of thought”, to derive conclusions (Su et al., 2025; Zheng et al., 2025;
Zhang et al., 2025b). Another emerging strategy involves performing explicit, text-based reason-
ing prior to the final multimodal generation, thereby ensuring the output is logically grounded and
coherent with the input prompt (Liao et al., 2025; Jiang et al., 2025; Huang et al., 2025a). While
powerful, these methods typically rely on training large-scale, end-to-end multimodal models – a
process that is computationally intensive and demands vast quantities of aligned data.

In contrast to building new large-scale models, our work leverages existing text-only LLMs. We
achieve this by representing multimodal information as quantifiable features that an LLM can ma-
nipulate based on user commands. This strategy is computationally efficient and scalable, as system
performance advances with the underlying LLM without requiring retraining.

5 CONCLUSION

In this paper, we address a key limitation in current speech synthesis systems: the underutilization
of the linguistic intelligence of LLMs. We introduce a new paradigm inspired by “operationalism”,
which decouples instruction understanding from speech generation by first translating instructions
into quantifiable, interpretable vocal features. Our framework, BATONVOICE, embodies this prin-
ciple by using LLMs to generate a vocal “plan”, which is then fed into a TTS model. We train this
model using a three-stage training pipeline that requires no manual instruction data. Our empirical
results demonstrate the effectiveness of this approach. BATONVOICE achieves strong performance
in emotional speech synthesis and shows that its capabilities scale positively with the linguistic
intelligence of LLMs. Furthermore, it exhibits powerful zero-shot cross-lingual generalization.

The central claim of this work is that the most effective path to leveraging the intelligence of LLMs
lies in the textual representation of other modalities.. This principle delineates a novel and promising
direction for MLLM research. The prospective applications of this operationalist approach are ex-
tensive, which can be extended to other modalities, such as video and music. Furthermore, within the
speech domain, further investigation should focus on enriching vocal plans to capture finer-grained
paralinguistic features, including emphatic stress, and non-verbal vocalizations.
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ETHICS STATEMENT

The authors have adhered to the ICLR Code of Ethics. This research was conducted with a commit-
ment to ethical principles and research integrity. Data and Human Annotation: The datasets utilized
in this study are open-source and governed by the Apache-2.0 license. All data was handled in ac-
cordance with its terms of use. For the human annotation experiments, all participants were fairly
compensated for their labor and took part on a voluntary basis. Potential Risks and Mitigation:
We acknowledge that our model, trained on large-scale datasets which may contain unfiltered toxic
content, has the potential to generate abusive, biased, or otherwise harmful speech. We strongly
condemn any malicious use of this technology. The model and its outputs are intended strictly for
research purposes, aiming to better understand the capabilities and limitations of generative mod-
els. We caution against deploying this model in any real-world, user-facing applications without
implementing robust safety filters and mitigation strategies.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our findings, we have provided a comprehensive description of
our methodology and experimental setup. The architectural details of our model, along with the
complete training and inference procedures, are thoroughly described in Section 2 and Section 3.1.
Further implementation details, including data processing steps, are available in the Appendix. All
components used in our work, including the Large Language Model (LLM) backbone, the training
datasets, and the feature extraction tools, are publicly available and open-source. We believe that
these details, combined with the open nature of the core components, provide a clear path for the
community to fully reproduce our results.
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A PROMPT TEMPLATE

Feature Prediction Template

You are an expert AI assistant specializing in speech synthesis and prosody modeling. Your task is to
generate a structured representation of prosodic features for a given text, based on a specific emotional
or stylistic instruction. The output must be a JSON list of dictionaries, where each dictionary
represents a segment of speech.

Key Constraints and Logic:
• Segmentation: To ensure feature stability and avoid errors from very short segments, the

input text is processed into segments of approximately one second or longer. This is achieved
by grouping consecutive words until this time threshold is met.

• Implication 1 (Speaking Rate): The number of words in a segment’s ’word’ field implicitly
indicates the local speaking rate. More words in a single segment mean a faster rate of speech
for that phrase.

• Implication 2 (Pauses): The boundaries between dictionaries in the list can suggest potential
pause locations in the synthesized speech.

• Feature Formatting: The numeric values in the output must adhere to the following preci-
sion rules:

– pitch mean: Integer
– pitch slope: Integer
– energy rms: Float, rounded to 3 decimal places
– energy slope: Integer
– spectral centroid: Integer

JSON Format:
[
{
‘‘word’’: ‘‘segmentation words’’,
‘‘pitch_mean’’: Integer,
‘‘pitch_slope’’: Integer,
‘‘energy_rms’’: Float,
‘‘energy_slope’’: Integer,
‘‘spectral_centroid’’: Integer

},
{
‘‘word’’: ‘‘segmentation words’’,
‘‘pitch_mean’’: Integer,
‘‘pitch_slope’’: Integer,
‘‘energy_rms’’: Float,
‘‘energy_slope’’: Integer,
‘‘spectral_centroid’’: Integer

}
]

Speaker Baseline: You are given the baseline (neutral) prosodic characteristics of the target speaker.
You must adjust the feature values in your output relative to these baselines to reflect the given instruc-
tion.

• Average Pitch: 226

• Average Energy (RMS): 0.008

• Average Spectral Centroid: 1885

Your Task:
• Text to Synthesize: [TEXT]

• Instruction: [Instruction]
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Feature Prediction Template

Your response can include conversational text, explanations, or a narrative. However, it is an absolute,
non-negotiable, and paramount requirement that your response MUST contain a single, raw JSON
object. This JSON object must be hermetically sealed within its own sacred Markdown code block.
This block must begin with the precise sequence ‘‘‘json on a new line and end with ‘‘‘ on a new
line. All other text must exist entirely outside of this block. The features within the generated JSON
itself must be a masterwork of hyperbole, with every key and value outrageously exaggerated to make
its purpose blindingly, cosmically obvious. Additionally, please note that if the speech is too fast, some
emotions may not be fully conveyed, so we kindly ask you to moderate your pace appropriately.

Emotion Prediction Template

Please analyze the emotion of the speaker in this speech based ONLY on their speaking style and
vocal characteristics.

IMPORTANT: Do NOT consider the semantic meaning or content of what is being said. Focus exclu-
sively on:

• Tone of voice (pitch, intonation patterns)

• Speaking pace and rhythm

• Voice quality and timbre

• Vocal intensity and volume variations

• Breathing patterns and pauses

• Overall vocal expression and delivery style

The emotion labels are limited to the following 5 types:

• happy

• sad

• angry

• fearful

• surprised

Please listen to the speech carefully and analyze only the vocal characteristics and speaking manner,
then choose the most appropriate emotion from the above 5 labels.
Please answer with the emotion label directly without additional explanation and put the result in
\boxed{}.

B EXPERIMENTAL DETAILS

B.1 DATA SOURCE
Table 4: Details of SFT training data.

Dataset # Samples
VCTK 23,677
VoxCeleb1&2 89,520
EARS 14,159
Expresso 12,269
EmoVoice-DB 21,050
CapSpeech-AgentDB 9,625
Synthetic-Persona-Chat 20,7319

All 377,619

Our SFT dataset is a comprehensive collection curated to
teach the model how to generate vocal plans from text.
It comprises 377,619 utterances, totaling over 500 hours
of speech, and is compiled from two primary sources as
detailed in Table 4.

Expressive Speech Data We leveraged a diverse set of
publicly available, high-quality speech datasets to capture
a wide range of vocal variations, including different emo-
tions, speaking styles, and speaker identities. These cor-
pora include:

• VCTK (Veaux et al., 2017): A multi-speaker English corpus known for its clean recordings
and diverse accents.

• VoxCeleb 1 & 2 (Nagraniy et al., 2017; Chung et al., 2018): Large-scale datasets extracted
from celebrity interviews on YouTube, providing a vast quantity of in-the-wild speech.
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• EARS (Richter et al., 2024), Expresso (Nguyen et al., 2023), and EmoVoice-DB (Yang
et al., 2025): Datasets specifically designed for expressive and emotional speech synthesis,
containing professionally recorded utterances with clear stylistic annotations.

• CapSpeech-AgentDB (Wang et al., 2025a): A corpus focused on conversational agent
speech, offering examples of task-oriented and interactive dialogue styles.

For each sample from these corpora, we first passed the original speech through our pre-trained
vocal decoder to obtain a reconstructed waveform. We then extracted the textual vocal features (i.e.,
the vocal plan) from this synthesized output. This reconstruction step ensures that the vocal features
are derived from a distribution that our TTS ”orchestra” model can faithfully render.

Synthetic Conversational Data To further enhance the linguistic diversity and colloquial nature
of our training data, we incorporated sentences from the Synthetic-Persona-Chat dataset (Jandaghi
et al., 2024). We synthesized these conversational sentences using a high-quality baseline TTS
model and then processed them through the same feature extraction pipeline described above. This
source contributes the largest portion of our dataset, ensuring the model is exposed to a wide array
of everyday language.

B.2 CONTROL ABILITY OF FEATURES

Table 5: Emotion control results on the
RAVDESS benchmark. Our model ex-
cels in generating speech with the spec-
ified emotion. Lower scores are better
(↓) for MCD.

Method MCD (↓)
Vocoder Resyn. 2.46

Caption 2.62
Numerical 1.54
- pitch 1.63
- energy 2.13
- spectral centroid 1.57

To quantitatively assess the feature control capability of
BATONTTS, we conducted a reconstruction experiment
using 384 samples from the RAVDESS dataset (Living-
stone & Russo, 2018). The evaluation protocol was as
follows: for each original speech sample, we first gener-
ated a ”reconstructed” version by passing it through our
pre-trained vocal decoder. We then extracted the textual
vocal plan (i.e., the vocal features) from this reconstructed
speech. This plan was subsequently fed into BATONTTS
to synthesize the final speech output. The fidelity of the
synthesis was measured by calculating the Mel-Cepstral
Distortion (MCD) between the synthesized speech and the
reconstructed speech, with a lower MCD indicating higher
fidelity.

In our analysis, we first compared different formats for
representing the vocal plan. We found that our pro-
posed numerical representation significantly outperformed a qualitative, caption-based description,
demonstrating that a structured, quantitative format allows for more precise control. Remarkably, the
MCD achieved with our numerical plan was even lower than that of the vocoder resynthesis baseline
(i.e., the MCD between the reconstructed and the original speech). This suggests that BATONTTS
not only faithfully renders the vocal plan but can also compensate for some information loss in-
troduced during the initial decoding stage. Furthermore, to validate the design of our vocal plan,
we performed an ablation study by systematically removing individual features (e.g., pitch, energy)
from the plan before feeding it to BATONTTS. We observed a consistent performance degradation
(i.e., an increase in MCD) upon the removal of any feature. This result confirms that all components
of our proposed vocal representation are necessary and contribute meaningfully to the final synthesis
quality.

C THE USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized LLMs as a general-purpose writing assistant.
The use of these models was strictly limited to aiding and polishing the writing, such as improving
grammar, rephrasing sentences for better clarity, and ensuring stylistic consistency. All core scien-
tific contributions, including the research ideas, experimental design, result analysis, and the overall
structure of the paper, are the original work of the authors. The authors take full responsibility for
all content presented herein.
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