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Abstract

Video domain generalization aims to learn generalizable video classification models
for unseen target domains by training in a source domain. A critical challenge of
video domain generalization is to defend against the heavy reliance on domain-
specific cues extracted from the source domain when recognizing target videos. To
this end, we propose to perceive diverse spatial-temporal cues in videos, aiming to
discover potential domain-invariant cues in addition to domain-specific cues. We
contribute a novel model named Spatial-Temporal Diversification Network (STDN),
which improves the diversity from both space and time dimensions of video data.
First, our STDN proposes to discover various types of spatial cues within individual
frames by spatial grouping. Then, our STDN proposes to explicitly model spatial-
temporal dependencies between video contents at multiple space-time scales by
spatial-temporal relation modeling. Extensive experiments on three benchmarks of
different types demonstrate the effectiveness and versatility of our approach.

1 Introduction

Recently, advanced deep network architectures have achieved competitive results for video classifica-
tion [1, 2, 3, 4, 5, 6, 7, 8], leading to wide applications in surveillance systems, sport analysis, health
monitoring, etc [9, 10, 11]. However, existing video classification models rely on the i.i.d. assumption,
i.e., training and test videos are independently and identically distributed. This assumption would be
easily violated, since models often face unfamiliar scenarios in real-world applications. For example,
a housework robot will work in a new house, and a surveillance system will encounter illumination
change caused by camera viewpoint or weather [12, 13, 14]. Holding such an assumption, the
performance of video classification models would drop significantly in unfamiliar test scenarios.

To alleviate the above problem, our work studies the video domain generalization task, which aims
to learn a video classification model that is generalizable in unseen target domains by training in
a source domain [15, 16]. In this task, videos from the source and target domains follow different
distributions though with an identical label space. For example, as shown in Figure 1, humans in the
source domain play basketball shooting on indoor basketball courts while those in the target domain
play outdoors. Different from the video domain adaptation task with available unlabeled target videos
for training [17, 18, 19, 20], video domain generalization can only access the source domain during
training, which is much more challenging but more practical.
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Figure 1: Video classification models suffer from the misguidance of domain-specific cues when
generalizing to unseen domains. As shown in the figure, in the source domain, the static backboard
provides a clearer cue compared with the blurred basketball in motion, thus prevailing video classifica-
tion models are prone to recognize the class “Shoot Ball” by the backboard. However, the backboard
is invisible in the target domain due to viewpoint change, and thus previous models learned in the
source domain would make mistakes in recognition. Videos in the figure are from the UCF-HMDB
benchmark. Best viewed in color.

A critical challenge of video domain generalization is to defend against the reliance on domain-
specific cues in the source domain that are correlated with class labels. For example, as shown in
Figure 1, video classification models prefer to leverage the backboard for recognizing the class “shoot
ball” in the source domain, since the static backboard provides a clearer cue compared with the blurred
basketball in motion (static patterns are usually easy-to-fit [21, 22, 23, 24]). However, in the target
domain, the backboard is occluded due to the viewpoint, thus recognizing the class by the backboard
would cause recognition errors. It is challenging to address this problem in lack of any knowledge
of the target domain. Typically, existing works explore invariance across domains for learning
generalizable video features [25, 15, 16]. For example, Yao et al. propose to learn generalizable
temporal features by encoding information of local features into global features, assuming that local
temporal features are more invariant across domains compared with global ones [15].

In this work, we propose a novel approach for video domain generalization, which explore spatial-
temporal diversity in videos. Our approach aims to perceive diverse class-correlated cues from
abundant video contents, and thus we would leverage not only easy-to-fit domain-specific cues but
also other potential domain-invariant cues for recognizing videos in target domains (e.g., we expect
that our model can capture not only static backboards but also dynamic basketballs in the source
domain). As a result, our approach can alleviate the overfitting of domain-specific cues in the source
domain and generalize better in target domains by leveraging those potential domain-invariant cues.
Specifically, we propose to explore the diversity from both space and time dimensions of video
data, leading to a novel architecture named Spatial-Temporal Diversification Network (STDN). Our
contributions are summarized as follows:

• We propose Spatial Grouping Module to discover various groups of spatial cues within
individual frames by embedding a clustering-like process, enriching the diversity from a
spatial modeling perspective.

• We propose Spatial-Temporal Relation Module to explicitly model spatial-temporal depen-
dencies between video contents at multiple space-time scales, enriching the diversity from a
spatial-temporal relation modeling perspective.

• Extensive experiments are conducted on three benchmarks of different types, including two
newly designed benchmarks, and the results demonstrate the effectiveness and versatility of
our proposed method.

2 Related Works

Video Classification aims to recognize actions or events in videos. Recently, many advanced
deep learning architectures have been proposed for video classification. 3D CNNs extend the 2D
convolution to 3D convolution for video feature learning [1, 2, 3, 26, 27, 28, 29, 30]. Another
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type of models first applies 2D convolution for frame-level spatial modeling and then conducts
temporal modeling based on frame features [5, 6, 31, 32, 33]. Some works propose to couple explicit
shifts along the time dimension for efficient temporal modeling [7, 34, 35]. More recently, pioneer
works have made efforts in adapting Vision Transformer [36] for video classification [37, 38, 39,
40, 41, 42, 43, 44, 45]. Although these advanced architectures achieve appealing performance, they
usually assume an identical test distribution to the training one, which is not practical in real-world
applications.

Video Domain Generalization aims to train video classification models in a source domain for
generalizing to unseen target domains. With target videos inaccessible during training, existing
works usually assume different types of invariance across domains to defend against the reliance
on domain-specific cues [25, 15, 16]. For example, Yao et al. propose to learn generalizable
temporal features according to an assumption from empirical findings, i.e., local temporal features
are more invariant across domains compared with the global ones [15]; Planamente et al. propose to
constrain a consistency across visual and audio modalities by relative norm alignment for addressing
domain generalization of egocentric action recognition [16]. In this work, we propose to perceive
diverse class-correlated spatial-temporal cues in source videos, which alleviates the misguidance of
domain-specific cues in a way that is orthogonal to previous works.

Video Domain Adaptation aims to learn transferable video classification models for a label-free
target domain by transferring knowledge from a label-sufficient source domain [17, 18]. Different
from video domain generalization, video domain adaptation is oriented to a specific seen unlabeled
target domain. Typically, existing works learn invariance between labeled source videos and unlabeled
target videos to tackle video domain adaptation. A class of representative works propose to learn
domain-invariant temporal features by designing temporal modeling modules [18, 19, 46, 47]. In
addition, Choi et al. [20, 48] propose self-supervised methods adaptive to video data. Furthermore,
multi-modal works explore information interaction between different modalities (e.g., RGB, Flow,
Audio) for domain-invariant feature learning [49, 50, 51, 52, 53].

General Domain Generalization, also known as out-of-distribution generalization, studies learning
models generalizable to out-of-distribution data for the image classification task . In recent years, a
plethora of methods have been proposed to address domain generalization [25, 54, 55, 56]. Prevailing
methods are mainly based on feature alignment [57, 58, 59], domain adversarial learning [60, 61],
invariant risk minimization [62, 63, 64, 65], meta learning [66, 67, 68, 69, 70], data augmentation [71,
72, 73, 74, 75], etc. In addition, ensemble learning is an effective way to learn generalizable
models [76, 77, 78]. And recently, Zhu et al. develop a theory showing that ensemble learning
can provably improve test accuracy by discovering the “multi-view” structure of data [79], which
partially inspires our approach. Among architecture-based methods [80, 81], Meng et al. propose to
redesign attention modules for learning diverse task-related features [80]. Different from existing
general domain generalization methods, we propose a domain generalization method specific to
video classification, which explores diverse class-correlated information in intrinsic space and time
dimensions of video data. There are some works that study the identification of out-of-distribution
data of different categories from training data [82, 83, 84, 85, 86, 87, 88], but this topic is not within
the scope of our work.

3 Spatial-Temporal Diversification Network

In this section, we illustrate our proposed Spatial-Temporal Diversification Network (STDN) in detail,
which perceives diverse class-correlated spatial-temporal cues from video contents for generalization
in unseen target domains.

3.1 Problem Formulation

In video domain generalization, a set of labeled videos D = {(x, y)} from a source domain are given
for training, where x ∈ X and y ∈ Y denote a source video and its corresponding class label. Given
only the source video set, the goal of video domain generalization is to learn a video classification
model that is generalizable in unseen target domains. The source and target domains follow different
but related distributions with the same label space Y = {0, 1, . . . , C − 1}, where C denotes the
number of video classes. Following the standard video domain generalization setting [15], each video
is evenly divided into N segments, and one frame is sampled from each segment as the model input
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Figure 2: An overview of our proposed Spatial-Temporal Diversification Network (STDN). We use a
video of N = 5 segments with K = 4 spatial groups for example. After backbone feature extraction,
our STDN extracts spatial cues of K types for each frame by the Spatial Grouping Module, enriching
the diversity in spatial modeling. Then, our STDN explicitly models spatial-temporal dependencies at
multiple space-time scales, enriching the diversity in spatial-temporal relation modeling. Best viewed
in color.

during training and testing, i.e., x = {x1, x2, . . . , xN} and xn denotes the n-th sampled frame from
the n-th segment.

3.2 Model Overview

Aiming at generalization in unseen target domains, our idea is to perceive rich and diverse class-
correlated cues in the source domain. In this way, our model would leverage not only easy-to-fit
domain-specific cues but also other potential domain-invariant cues for recognizing videos in the
target domain, alleviating the misguidance of domain-specific cues. Considering the intrinsic space
and time dimensions of video data, we propose to explore the diversity in both spatial and temporal
modeling. An overview of our proposed STDN is shown in Figure 2. Firstly, given the video
x, our STDN takes N sampled frames as input and separately extracts N spatial feature maps
{z1, z2, ..., zN} by the backbone (e.g., ResNet [89]), where zn ∈ RH×W×D denotes the feature map
of the n-th frame, D denotes the feature dimension and H ×W denotes the size of feature maps.
Then, we extract spatial cues of K types (groups) from each spatial feature map by our proposed
Spatial Grouping Module, aiming to enrich the spatial diversity. In the Spatial Grouping Module, two
entropy-based losses are introduced to enhance the distinction between different spatial cues. On
top of the Spatial Grouping Module, we propose to explicitly model spatial-temporal dependencies
between video contents at multiple space-time scales by our proposed Spatial-Temporal Relation
Module. The learning of the Spatial-Temporal Relation Module is guided by a relation discrimination
loss, which ensures the diversity of the extracted spatial-temporal relation features. Finally, diverse
spatial-temporal features are aggregated for video domain generalization.

3.3 Spatial Grouping Module

Our proposed Spatial Grouping Module aims to discover diverse class-correlated spatial cues from
abundant contents of individual frames, which enriches the diversity from a spatial modeling per-
spective for video domain generalization. Our Spatial Grouping Module extracts various spatial
cues of different types by partitioning features from different spatial positions into several groups
within individual frames. In this way, our Spatial Grouping Module discovers more diverse spatial
cues, compared with prevailing approaches that extract an integrated feature for each frame (e.g., by
average pooling).

As shown in Figure 3 (a), given the spatial feature map zn ∈ RH×W×D of the n-th frame, our
proposed Spatial Grouping Module learns to extract K spatial cues by aggregating the HW spatial
features. Specifically, the proposed spatial grouping process is conducted based on K learnable
anchor features {an,1, an,2, . . . , an,K}, where an,k ∈ RD denotes the anchor feature of the k-th
spatial group for the n-th frame. Then, we calculate the probability of assigning a spatial feature to
each spatial group, which is formulated as follows:

pn,i,k =
exp (−dist (zn,i, an,k) /τ)∑K
j=1 exp (−dist (zn,i, an,j) /τ)

, (1)
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Figure 3: Overviews of our proposed (a) Spatial Grouping Module and (b) Spatial-Temporal Relation
Module. Best viewed in color.

where zn,i ∈ RD denotes the i-th spatial feature in the feature map zn (i ∈ [1, 2, . . . ,HW ]), dist(·, ·)
denotes the Euclidean distance metric and τ is the temperature factor. According to Eq. (1), if the
spatial feature zn,i is closer to the anchor feature an,k, then the zn,i will be assigned to the k-th
spatial group with higher probability. After group partition, our Spatial Grouping Module produces
K integrated features representing K different spatial cues by aggregating spatial features in each
group. The integration process is formulated as follows:

zsn,k =
1∑HW

i=1 pn,i,k

HW∑
i=1

pn,i,k ∗ zn,i, (2)

where zsn,k denotes the spatial cues integrated from the k-th group within the n-th frame.

In order to extract spatial cues of diverse types, we introduce two entropy-based losses to enhance the
distinction between different spatial groups. The first one is an entropy minimization loss to enhance
the confidence of group assignment for each spatial feature. The loss is formulated as follows:

Lemin = − 1

NHW

N∑
n=1

HW∑
i=1

K∑
k=1

pn,i,k log (pn,i,k) . (3)

For the assignment probability vector pn,i = [pn,i,1, pn,i,2, . . . , pn,i,K ]T ∈ RK×D, if the entropy is
minimized, then the feature zn,i will be confidently assigned to a specific spatial group. The second
loss is an entropy maximization loss for the mean assignment probability vector, which guarantees
that those HW spatial features are assigned to different spatial groups. Specifically, the loss is
formulated as follows:

Lemax =
1

N

N∑
n=1

K∑
k=1

p̄n,k log (p̄n,k) , (4)

where p̄n,k = 1
HW

∑HW
i=1 pn,i,k denotes the mean probability of assigning features to the k-th group

within the n-th frame. For the mean assignment probability vector p̄n = [p̄n,1, p̄n,2, . . . , p̄n,K ]T ∈
RK×D, if the entropy is maximized, then the spatial features {zn,i} will be uniformly assigned to K
spatial groups. By using the two entropy-based losses, we guarantee that spatial features are different
from each other across different spatial groups, enriching the diversity of extracted spatial cues.

In the Spatial Grouping Module, the learnable anchor feature for each group is extracted by weighted
combining those HW spatial features, and the weights are calculated conditioned on the feature map
zn by using a lightweight two-layer convolutional network. In this way, the spatial grouping process
can be regarded as conducting clustering over spatial features within individual frames. All involved
parameters in the module are end-to-end trained together with the main network, i.e., we contribute a
parametric clustering module to group spatial features for improving the spatial diversity.

3.4 Spatial-Temporal Relation Module

Our proposed Spatial-Temporal Relation Module aims to discover diverse class-correlated spatial-
temporal cues from abundant video contents, which enriches the diversity from a spatial-temporal
relation modeling perspective for video domain generalization. As demonstrated by previous works [4,
6, 90], there are rich dependencies between entities over space and time dimensions in videos, which
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is crucial for video classification. Accordingly, we propose to explicitly model spatial-temporal
dependencies between video cues at multiple space-time scales. Our proposed Spatial-Temporal
Relation Module conducts dependency modeling at space and time dimensions separately, and an
overview of the module is shown in Figure 3 (b).

First, based on the spatial cues extracted by our Spatial Grouping Module, we conduct spatial
dependency modeling between these spatial cues at multiple space scales. Specifically, given the
representations of spatial cues zsn = [zsn,1, z

s
n,2, . . . , z

s
n,K ]T ∈ RK×D for the n-th frame, we extract

the spatial relation feature at the l-th space scale by the spatial dependency modeling function Rs
l (·)

as follows:
Rs

l (zsn) = Ek1,k2,...,kl

[
Hs

l (zsn,k1
, zsn,k2

, . . . , zsn,kl
)
]
∈ RDs , (5)

where E[·] denotes the expectation calculation and Hs
l (·, ·, . . . , ·) denotes a linear projection function

after feature concatenation. The index set {k1, k2, . . . , kl} denotes the index of spatial features
uniformly sampled from the K spatial features, where the index l ∈ {2, 3, . . . ,K} indicates the
space scale, k1 6= k2 6= · · · 6= kl and ki ∈ {1, 2, . . . ,K}. For each frame, we extract K − 1 spatial
relation features by dependency modeling at K − 1 space scales separately. And, we concatenate
these spatial relation features and produce an integrated feature for each frame, which is given
by ẑn = [Rs

2(zsn)T , Rs
3(zsn)T , . . . , Rs

K(zsn)T , G(zn)T ]T ∈ RKDs . In the integrated feature ẑn,
G(zn) ∈ RDs denotes the global feature extracted from the feature map zn by a convolution layer.

Second, based on the frame-level integrated features, we conduct temporal dependency modeling
between frames at multiple time scales. Specifically, given N frame-level features denoted by
ẑ = [ẑ1, ẑ2, . . . , ẑN ], we extract the temporal relation feature at the m-th time scale by the temporal
dependency modeling function Rt

m(·) as follows:

Rt
m(ẑ) = En1<n2<···<nm

[
Ht

m(ẑn1
, ẑn2

, . . . , ẑnm
)
]
∈ RDt , (6)

where Ht
m(·, ·, . . . , ·) denotes a linear projection function after feature concatenation. The index set

{n1, n2, . . . , nm} denotes the index of frame features randomly sampled from the N frame features,
where the index m ∈ {2, 3, . . . , N} indicates the time scale and ni ∈ {1, 2, . . . , N}. Note that
we keep the relative order of sampled frames for temporal modeling. By using N − 1 temporal
dependency modeling functions, we extract N − 1 temporal relation features at N − 1 time scales
for each video.

To ensure the diversity of temporal relation features, we propose a relation discrimination loss to
constrain that different temporal dependency modeling functions (i.e., different time scales) capture
different temporal cues. This loss constrains that a relation classifier can distinguish one relation
feature from not only relation features of other classes but also relation features of the same class
but of other time scales. Thus, it avoids the feature collapse of learned temporal relation features.
Specifically, the loss is formulated as follows:

Lrel =
1

N − 1

N∑
m=2

CE(Frel(z̃m), ỹm), (7)

where z̃m = Rt
m(ẑ) denotes the temporal relation feature at the m-th time scale, Frel(·) denotes a

relation classifier that classifying (N − 1) ∗ C classes, and CE(·, ·) denotes the cross-entropy loss.
The ỹm denotes the relation label of the video x with label y, i.e., ỹm = y ∗ (N − 1) + (m− 2) ∈
{0, 1, 2, . . . , (N − 1) ∗ C − 1}. In this way, the loss forces different temporal dependency modeling
functions to capture different class-correlated temporal cues in the video since the captured temporal
cues are discriminative across scales. By incorporating the Spatial-Temporal Relation Module with
the relation discrimination loss Lrel, we extract rich and diverse spatial-temporal cues.

Feature Aggregation: After exploring spatial-temporal diversity by our proposed Spatial Group-
ing Module and Spatial-Temporal Relation Module, our model discovers diverse class-correlated
spatial-temporal cues from abundant video contents. Then, we aggregate these diverse spatial-
temporal features for video classification. Specifically, the feature aggregation is formulated as
ž =

∑N
m=2H

a
m(z̃m), where Ha

m(·) denotes a small SE-based block [91] for modulating the m-th
temporal relation features.

Overall Training and Test: We adopt a video classification loss on top of the aggregated feature
ž given by Lcls = CE(F (ž), y), where F (·) is a video classifier. Overall, the training loss of our
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Table 1: Comparison with state-of-the-art methods on the UCF-HMDB benchmark. Red and blue
denotes the best and second best. Results of all compared methods are from VideoDG [15].

Arch DG Method UCF→HMDB HMDB→UCF Arch DG Method UCF→HMDB HMDB→UCF

TSN [5]

ERM 51.4±0.2 68.6±0.3

TSM [7]

ERM 52.2±0.3 69.2±0.3
ADAsem [71] 51.1±0.3 68.2±0.2 ADAsem[71] 51.3±0.3 68.6±0.3
ADApixel [71] 49.6±0.3 67.4±0.2 ADApixel [71] 52.7±0.3 68.3±0.2
M-ADA [92] 52.4±0.2 69.2±0.2 M-ADA [92] 52.5±0.2 69.1±0.3
Jigsaw [93] 51.5±0.3 68.5±0.3 Jigsaw [93] 52.5±0.3 68.9±0.3

APN [15]

ERM 54.3±0.3 71.4±0.3

TRN [6]

ERM 52.4±0.3 69.8±0.3
ADAsem [71] 55.2±0.3 71.9±0.3 ADAsem [71] 52.8±0.2 69.6±0.5
ADApixel [71] 56.9±0.2 72.2±0.3 ADApixel [71] 52.1±0.3 70.6±0.2
M-ADA [92] 55.6±0.3 71.5±0.3 M-ADA [92] 53.4±0.3 69.9±0.3
Jigsaw [93] 55.2±0.4 72.4±0.3 Jigsaw [93] 53.3±0.3 70.1±0.3

VideoDG [15] 59.1±0.3 74.9±0.3 STDN (Ours) 60.2±0.5 77.1±0.4

proposed STDN is given as follows:

L = Lcls + λentLemin + λentLemax + λrelLrel, (8)

where λent and λrel are hyperparameters for trade-off. Following the standard protocol [15], we use
source videos for training and test the model on target videos for evaluation.

4 Experiments

4.1 Benchmarks and Experimental Setups

To demonstrate the effectiveness and versatility of our proposed Spatial-Temporal Diversification
Network (STDN), we adopt three benchmarks of different types for experiments, including two newly
designed benchmarks, namely EPIC-Kitchens-DG and Jester-DG. For these two new benchmarks,
we select video categories and construct domains following previous video domain adaptation
works [49, 19]. We split the source video set into training and validation sets following previous
source validation protocols [25, 15], i.e., a reasonable in-domain model selection scheme for better
generalization ability in unseen target domains. We reproduce general domain generalization methods
(cooperated with video classification architectures) and state-of-the-art video domain generalization
methods for comparison. We report mean and standard deviation of accuracy over three random trials
for all methods.

UCF-HMDB is the most widely used benchmark for cross-domain video classification [15, 18],
which contains 3,809 videos of 12 overlapping sport categories shared by UCF101 [94] and HMD-
B51 [95]. The videos in UCF101 are mostly captured from certain scenarios or similar environments,
and the videos in HMDB51 are captured from unconstrained environments and different camera
viewpoints. This benchmark includes two subtasks, i.e., UCF→HMDB and HMDB→UCF.

EPIC-Kitchens-DG is a cross-scene egocentric action recognition benchmark, which consists of
10,094 videos across 8 egocentric action classes from three domains (scenes), following Munro et
al. [49]. The three domains of EPIC-Kitchens-DG (i.e., D1, D2, D3) correspond to three largest
kitchens (i.e., P08, P01, P22) from the large-scale egocentric action recognition dataset EPIC-
Kitchens-55 [96]. This benchmark includes six subtasks constructed from three domains.

Jester-DG is a cross-domain hand gesture recognition benchmark. We select videos from the Jester
dataset [97] and construct two domains following Pan et al. [19]. The source (S) and target (T)
domains contain 51,498 and 51,415 video clips across 7 categories, respectively. The videos in
EPIC-Kitchens-DG and Jester-DG benchmarks are both hand-centric, but they are captured from
different views, namely first-person and third-person views.

Implementation details: We use ResNet50 [89] pretrained on ImageNet [98] as the backbone for
frame-level feature extraction following the standard video domain generalization protocol [15]. The
backbone takes frames of size 224 × 224 as input and outputs feature maps of size 7 × 7 × 2048.
We take N = 5 frames for each video for temporal modeling. We set K = 4, τ = 0.5, Ds = 192
and Dt = 256. F (·) is a linear classifier and Frel(·) is an MLP classifier. All parameters are
optimized using mini-batch SGD with a batch size of 32, a momentum of 0.9, a learning rate of
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Table 2: Comparison with state-of-the-art methods on the EPIC-Kitchens-DG and Jester-DG
benchmarks. Red and blue denotes the best and second best. Results of all compared methods are
reproduced following their official implementations.

Arch DG Method Epic-Kitchens-DG Jester-DG

D1→D2 D1→D3 D2→D1 D2→D3 D3→D1 D3→D2 Average S→T

TSN [5]

ERM 33.6±0.6 31.3±0.5 32.5±0.9 36.1±1.2 31.7±0.5 40.2±0.7 34.2±0.4 47.5±0.7
Mixup [72] 33.6±0.2 29.1±0.3 31.2±0.7 36.5±0.4 33.0±0.5 39.7±0.1 33.9±0.3 47.8±0.5
IRM [62] 34.6±0.1 30.3±1.3 31.2±1.2 36.3±0.2 32.3±0.1 40.0±0.3 34.1±0.5 47.6±0.5
ADA [71] 33.8±0.2 30.3±0.9 31.1±1.4 36.4±0.6 33.3±0.4 40.1±0.8 34.2±0.6 47.6±0.3
COP [100] 34.7±0.1 29.7±1.6 31.5±0.8 36.7±0.5 31.5±0.1 40.3±0.5 34.1±0.5 47.3±0.9

TSM [7]

ERM 34.6±0.5 32.3±1.2 30.2±0.9 34.8±0.7 31.2±1.9 39.9±1.5 33.8±0.6 47.1±0.4
Mixup [72] 34.1±0.7 29.3±0.6 28.1±0.2 32.4±0.3 31.7±0.7 39.1±0.1 32.4±0.3 47.3±0.4
IRM [62] 34.3±0.2 29.3±1.5 31.1±0.8 36.3±0.7 31.6±1.0 38.5±0.5 33.5±0.7 46.8±0.7
ADA [71] 34.3±0.8 30.6±1.0 30.0±1.0 34.6±1.3 31.8±0.6 38.8±0.9 33.4±0.6 47.1±0.5
COP [100] 34.9±0.3 32.1±1.1 30.5±0.2 32.2±0.6 31.8±1.5 37.5±0.9 33.2±0.4 46.4±0.6

APN [15]

ERM 35.2±0.8 30.2±2.1 35.3±1.0 43.2±1.2 36.4±0.3 45.3±0.9 37.6±0.7 46.9±0.5
Mixup [72] 34.7±0.2 30.9±0.7 33.8±0.7 44.7±0.5 36.4±0.3 44.4±0.7 37.5±0.4 47.8±0.1
IRM [62] 33.6±0.5 28.5±1.6 34.3±0.4 42.8±0.8 34.6±0.6 44.0±0.7 36.3±0.5 47.0±0.3
ADA [71] 36.0±0.3 29.5±0.2 35.0±0.4 43.0±0.3 37.6±0.4 45.6±2.3 37.8±0.6 47.8±0.4
COP [100] 36.5±0.8 32.1±0.7 37.6±1.8 41.8±0.8 37.9±0.2 49.9±1.3 39.3±0.6 47.2±0.3

TRN [6]

ERM 36.8±1.4 32.1±1.2 34.2±1.0 44.7±0.5 37.6±0.9 48.9±0.1 39.1±0.7 46.2±0.4
Mixup [72] 37.5±1.0 31.2±1.6 35.3±1.3 43.2±1.4 39.0±0.6 48.1±0.2 39.0±0.6 46.7±0.1
IRM [62] 37.8±2.3 30.5±0.6 37.0±2.6 42.6±1.3 40.3±0.5 47.9±0.6 39.3±1.1 46.5±0.5
ADA [71] 38.4±1.0 30.4±1.2 35.9±1.3 41.2±0.6 38.8±0.5 47.5±1.1 38.7±0.8 46.1±0.4
COP [100] 36.8±1.1 34.2±2.7 35.8±1.1 39.6±2.4 38.1±0.5 49.0±2.0 38.9±1.1 47.8±0.5

VideoDG [15] 36.2±0.4 31.9±0.2 36.5±0.5 40.5±0.8 39.5±0.5 49.1±0.7 39.0±0.6 47.5±0.1
STDN (Ours) 40.5±0.5 38.6±0.1 38.5±2.6 44.0±1.3 40.4±1.6 47.2±1.2 41.6±1.0 49.8±0.4

1e-3 and a weight decay of 5e-4. By default, the trade-off hyperparameters are set as λent = 0.1
and λrel = 0.5. We adopt an efficient feature augmentation technique namely MixStyle [74] for
simulating novel target domains during training. We modify the original MixStyle to adapt the video
data, i.e., we calculate the mean and standard deviation across both space and time dimensions within
each channel of each instance (instead of only space dimension for image data). All experiments
are conducted by PyTorch [99] with four NVIDIA GTX 1080Ti GPUs. The code is released at
https://github.com/KunyuLin/STDN/.

4.2 Results

Comparison with State-of-the-arts: We compare our proposed STDN with two types of state-of-
the-arts: 1) general domain generalization (DG) methods cooperated with different video classification
architectures; 2) state-of-the-art video domain generalization methods. For the two newly designed
benchmarks (i.e., Epic-Kitchens-DG and Jester-DG), we adopt five different types of general domain
generalization methods for comparison, including Empirical Risk Minimization (ERM), Mixup [72],
Invariant Risk Minimization (IRM) [62], Adversarial Data Augmentation (ADA) [71], Clip Order
Prediction (COP) [100]. All results are summarized in Table 1 and 2. On all the three benchmarks,
our STDN outperforms all the state-of-the-art methods. Specifically, our STDN obtains performance
improvement by 2.2% and 2.3% on HMDB→UCF and Epic-Kitchens-DG respectively, which
is significant compared with previous state-of-the-arts. In addition, VideoDG [15] obtains lower
performance than their proposed architecture APN [15] on Epic-Kitchens-DG and Jester-DG. By
contrast, our superiority on three benchmarks of different types verifies the effectiveness and versatility
of our proposed STDN, demonstrating the effectiveness of perceiving diverse spatial-temporal cues. In
the supplemental material, we make an attempt to compare with two variants of Planamente et al. [16]
to show our effectiveness, following some works in the domain adaptation field [101, 102, 103].

Ablation Study: We analyze the effects of each component in our proposed STDN, as shown
in Table 3. Following the training scheme of TSN [5], we apply a classifier on top of
the backbone as our baseline. By stacking our proposed Spatial Grouping Module (SGM)
on top of the backbone, we obtain significant improvement over the baseline (i.e., 2.2% on
UCF→HMDB and 2.0% on HMDB→UCF), demonstrating the effectiveness of extracting dif-
ferent types of spatial cues within individual frames. Then, by introducing the temporal de-

8



Normalized MSE

SGM+STRM

SGM+TRM

TRM

TRM w/o 𝐿rel

0.5441

0.5124

0.3329

0.0434

Figure 4: Diversity analysis on UCF→HMDB.
We use the normalized Mean Square Error (MSE)
to evaluate the feature diversity of variants of TR-
M, i.e., measuring difference between temporal
relation features of different time scales. A higher
value of normalized MSE indicates higher diver-
sity.

Davies-Bouldin Index: 1.02 Davies-Bouldin Index: 0.63

Baseline Spatial Grouping Module

Figure 5: T-SNE visualization of spatial features.
For both the baseline and SGM, we cluster the
set of spatial features into K = 4 clusters by K-
means before visualization. In the figure, dots
stand for spatial feature vectors and stars stand
for cluster centers, and different colors denote
different clusters.

pendency modeling of our Spatial-Temporal Relation Module (denoted by TRM), we obtain
1.8% and 1.4% improvement on UCF→HMDB and HMDB→UCF, respectively. It should be
noted that the relation discrimination loss Lrel is an important part in temporal dependency

Table 3: Ablation study on UCF-HMDB.
Method UCF→HMDB HMDB→UCF

Backbone 52.7±0.3 71.9±0.3

+SGM 54.9±0.3 73.9±0.4

+TRM 56.7±0.2 75.3±0.4

+STRM 58.3±0.4 76.2±0.3

+MixStyle 59.3±0.3 76.6±0.2

Full STDN 60.2±0.5 77.1±0.4

modeling, since we obtain very minor perfor-
mance improvement without the loss in tempo-
ral dependency modeling. By introducing the
full Spatial-Temporal Relation Module (STR-
M), we obtain 3.4% and 2.3% improvemen-
t over “Backbone+SGM” on UCF→HMDB
and HMDB→UCF, respectively. These results
demonstrate the effectiveness of modeling de-
pendencies between various video cues in both
space and time dimensions, which enriches the diversity in spatial-temporal relation modeling. More-
over, by introducing the feature augmentation technique MixStyle, we obtain further improvement.
Finally, our full model aggregates diverse spatial-temporal features, leading to better generalization
performance on both UCF→HMDB and HMDB→UCF.

Diversity Analysis: We make a quantitative analysis to the diversity of learned video features for
our model. Specifically, we evaluate the difference between temporal relation features of different
time scales, measured by the normalized Mean Square Error (MSE) between feature vectors. A
higher value of normalized MSE indicates a large difference. As shown in Figure 4, without our
relation discrimination loss Lrel, learned temporal relation features at different time scales hold very
small difference (implying feature collapse). By introducing Lrel, our TRM improves the diversity,
indicated by the higher MSE value. By introducing our Spatial Grouping Module, the diversity is
further improved as various spatial cues are extracted from each frame. Moreover, by modeling
spatial dependencies, our model further enlarges the difference between features across scales.

Analysis of Spatial Grouping: We make a qualitative analysis to the grouping process of our
proposed Spatial Grouping Module (SGM). Specifically, we use t-SNE [104] for visualizing feature
distributions of spatial features, and we adopt the model trained without our SGM as the baseline
(adopts average pooling to extract an integrated feature for each frame) for comparison. Also, we
use the Davies-Bouldin Index1 as a quantitative metric to measure the clustering performance, i.e., a
lower value of the Davies-Bouldin Index indicates better separation between clusters. As shown
by the qualitative and quantitative results in Figure 5, our SGM extracts spatial features with better
cluster separation than the baseline, which is attributed to that our SGM enhances the distinction
between features in different spatial groups. These results indicate that our proposed spatial grouping
process forces the model to learn features encoding more different information. In the supplemental
material, we also show Grad-CAM examples to qualitatively compare our SGM with the baseline.

1The Davies-Bouldin Index [105] measures a ratio between the intra-cluster distance and inter-cluster
distance.
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Target Domain (Test)Source Domain (Training)

Baseline STDN (Ours) Baseline STDN (Ours)

Figure 6: Grad-CAM visualization on UCF-HMDB. As shown in the figure, compared with the
baseline, our proposed STDN captures more diverse class-correlated cues in the source domain, i.e.,
including domain-specific backboards and domain-invariant basketballs. As a result, our proposed
STDN generalizes better in the target domain, where backboards are invisible and thus our STDN
uses the basketball for recognition instead. Best viewed in color.

Grad-CAM Visualization: We compare our proposed STDN with a TRN [6] model (the baseline)
by Grad-CAM [106]. As shown in Figure 6, the baseline prefers to use the domain-specific backboard
for recognition, which causes recognition errors in the target domains as backboards are invisible. In
contrast to the baseline, our proposed STDN perceives more diverse class-correlated cues from the
source domain, including some domain-invariant cues such as basketballs. As a result, our STDN
can predict the correct video class by recognizing the basketball in the target video. These results
demonstrate that, our proposed diversity-based approach can discover some potential domain-invariant
cues, which alleviates the overfitting to domain-specific cues and leads to better generalization in the
target domain.

5 Conclusion

In this work, we propose to explore spatial-temporal diversity to address the video domain generaliza-
tion task. Our proposed Spatial-Temporal Diversification Network learns diverse spatial-temporal
features in videos, which discovers potential domain-invariant cues and thus alleviates the heavy
reliance on domain-specific cues. We conduct extensive quantitative and qualitative experiments
on three benchmarks (including two newly designed benchmarks), and the results demonstrate the
effectiveness and versatility of our approach.
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