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ABSTRACT

Histological whole-slide images (WSIs) are central to computational pathology
but are extremely large, often several gigabytes, making them infeasible for di-
rect use in standard vision pipelines. Prior approaches reduce training cost by
condensing WSIs into a fixed number of representative features (prototypes), but
this approach overlooks the varying complexity and diversity of WSIs, leading
to loss of critical information. To this end, we propose NICER, a probabilistic
data condensation framework that decomposes each WSI into feature patterns to
capture heterogeneity and concept prototypes to ensure compactness. By reformu-
lating prototype construction as a nonparametric condensation problem, NICER
adapts the number of prototypes to slide complexity while preserving relevant
information. Experiments on four histological datasets show that NICER outper-
forms prior methods, yielding up to 90% performance gains and superior effi-
ciency trade-offs, setting a new paradigm for histological representation learning.

1 INTRODUCTION

Histological whole-slide images (WSIs) are high-resolution digital scans of tissue slides and have
become central to Computational Pathology (CPath) (Song et al., 2024; 2023), enabling tasks such
as classification (Xiang & Zhang, 2023; Shao et al., 2021), segmentation (Graham et al., 2023;
Guo et al., 2023), and survival prediction (Fan et al., 2023). However, their enormous resolution,
often exceeding 100, 000× 100, 000 pixels (hundreds of gigapixels and several gigabytes per slide),
makes full-slide processing infeasible. For example, even a single WSI cannot fit into a multi-head
self-attention (MHSA) unit due to its quadratic memory complexity.

Challenge. Multiple Instance Learning (MIL) addresses WSI scale by partitioning each slide into
thousands of patches (e.g., > 10, 000), embedding them with a pre-trained encoder, and aggregat-
ing them into a slide-level representation (Tang et al., 2023; Nguyen et al., 2025b; Xiang & Zhang,
2023). Since the full processing and storing of patches is costly (Jin et al., 2025; Sacco et al., 2020),
recent studies reveal the strong morphological redundancy of WSIs (Song et al., 2024; Vu et al.,
2023), summarize them into compact, representative prototype sets that are transferable for down-
stream tasks (Song et al., 2024; Jin et al., 2025). However, the high variability of WSIs undermines
the representativeness of the prototypes. For instance, some slides contain large homogeneous re-
gions, while others show highly heterogeneous tumor areas requiring denser sampling (see Fig. 1).

Limitation of Prior Work. Existing methods (Vu et al., 2023; Claudio Quiros et al., 2024; Song
et al., 2024) operate under the restrictive assumption that a fixed set of prototypes can adequately
represent all slides, regardless of their complexity. While conceptually simple, this assumption
overlooks the wide variability in morphological redundancy and structural complexity across slides
and institutions, leading to either redundant prototypes or information loss (see Fig. 1). Failing to
adapt to this variability forces a trade-off between accuracy and efficiency, with most approaches
sacrificing the former for the latter, as shown in Fig. 2.

Fundamental Gap. In hindsight, what is missing from existing approaches is a mechanism to
balance aggressive feature reduction with information preservation in an unsupervised manner. Be-
cause feature distributions and complexity levels vary widely across slides, using a prototype set
with fixed capacity may achieve efficiency but risks losing critical information or introducing re-
dundancy. Increasing the prototype set size can mitigate information loss but at the cost of reduced
efficiency for the entire WSI pipeline. This raises a fundamental question: How can we identify and
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Figure 1: Conceptual illustration highlighting the key dis-
tinction between our NICER and prior work. When WSI’s
complexity exceeds the prototypes’ capacity, different fea-
tures (different colors) might collapse into less information
prototypes, and simple WSIs might suffer from redundancy.

Figure 2: On the same task and
model, NICER achieves higher com-
pression rate and better downstream
performance (F1) than other base-
lines. (see Sec. 3).

model the varying complexity of WSIs during condensation? Tackling this challenge hence calls for
a new approach that adaptively balances information preservation and efficiency on a per-slide basis,
enabling flexible and optimal slide-level representations.

Solution Vision. To address the above question, our solution insight is: effective WSI condensation
should not begin with aggressive reduction, but rather with intentional redundancy to preserve rare
and heterogeneous signals which vary significantly across WSIs. Redundancy is then adaptively
removed to restore efficiency, allowing each slide to determine its own capacity based on complexity.
This design avoids early information loss, achieves a principled balance between preservation and
efficiency, and provides a flexible foundation for robust, slide-adaptive learning.

Technical Contribution. To realize this vision, we introduce NICER, a novel NonparametrIC
unsupERvised data condensation framework that reformulates prototype construction as an unsu-
pervised condensation problem. NICER first learns a high-capacity set of feature patterns to pre-
serve diverse and heterogeneous information from each slide redundantly, and then condense them
into a compact set of feature concepts. Redundant concepts are pruned, and the number of re-
tained concepts adapts automatically to slide complexity, making the process nonparametric and
slide-adaptive. The entire procedure is formalized through a generative formulation governed by
learnable parameters. Our main contributions are as follows:

1. We cast prototype construction as an unsupervised data condensation task, formulated as a hier-
archical optimization problem. Prototypical information is first distilled from the WSI feature bag
into a set of patterns, which are then condensed into a compact set of concepts. This design adapts
the concept set capacity to the complexity of each WSI, achieving a balance between information
preservation and efficiency (see Section 2.3).

2. We develop an algorithm that identifies the most probable associations between patterns and con-
densed concepts. Framed as a latent variable in our generative model, this association is efficiently
inferred in a probabilistic view, enabling the proposed approach to be practical and applicable across
diverse real-world medical settings (see Section 2.4).

3. We evaluate the performance of NICER against existing baselines through extensive experiments
on cancer subtyping and survival prediction tasks, spanning four benchmark datasets. The results
demonstrate that NICER consistently surpasses competing methods across diverse settings, estab-
lishing new state-of-the-art performance in unsupervised prototype construction (see Section 3).

2 METHODOLOGY

2.1 PROBLEM FORMULATION AND METHOD OVERVIEW

Unlike prior work (Vu et al., 2023; Song et al., 2024), which prioritizes efficiency over information
preservation by fixing prototype capacity across all WSIs, our goal is to balance the two in an un-
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Figure 3: Overview of NICER. NICER decouples preservation and efficiency into patterns Z and
concepts Ω, learned via two stages: pattern exploration to capture diverse information, and conden-
sation to merge redundancies into compact concepts.

supervised and slide-adaptive manner. To this end, we introduce a hierarchical formulation wherein
each WSI is represented by a pattern set preserving the diversity of the original feature bag, which
is subsequently summarized into more compact concepts as follows:

Problem Formulation. Formally, a WSI is tessellated into non-overlapping patches X =
{x1, . . . , xN}, where each patch xi ∈ RH×W×3. A pretrained encoder fenc(·) maps each
patch xi to a latent embedding hi ∈ Rd, yielding a feature bagH = {h1, . . . , hN}. The ob-
jective is to condenseH into a smaller concept (prototype) set Ω = {ωk}Kk=1 with K ≪ N ,
i.e., maximizing P(H | Ω) under Bayesian lens. We rewrite this problem under the hierar-
chical abstraction H ← Z ← Ω, where patterns Z approximate features H and concepts Ω
are their underlying generators, leading to maximization of P(H,Z | Ω).

This two-level abstraction provides a principled framework for efficient WSI condensation and ex-
plicitly balances accuracy and efficiency, addressing a key limitation in previous researches.

Method Overview. Fig. 3 illustrates the NICER framework, which operates in two iterative stages.
In the pattern exploration, patterns Z are learned to capture the diversity of H through selective
interactions between patches and patches (Sec. 2.3). In the condensation stage, concepts Ω are in-
troduced to enforce compactness by modeling patterns as samples generated from a smaller concept
set (Sec. 2.3.2). During condensation, concepts that do not contribute to generating observed pat-
terns are pruned, imparting NICER with a nonparametric nature and scalability to the complexity of
patterns. In summary, patterns ensure information preservation, while concepts enforce efficiency.

2.2 PROBABILISTIC NONPARAMETRIC DATA CONDENSATION

Intuitively, using proposed hierarchical formulation, NICER enriches the standard WSI condensa-
tion framework by inserting an intermediate random variable that helps preserve the diversity of
features in the original WSI. Instead of collapsing the whole slide image into a single compressed
set directly, we first allow each WSI to generate a pattern set of size M . These patterns (Z) re-
tain the originality of the data (H) while naturally containing some redundancy. The condensation
phase then acts like a sculptor, carefully shaving away overlaps and compressing the patterns into a
compact, information-rich concept set Ω.

Data Condensation Model. Given a hierarchical probabilistic model H ← Z ← Ω, the
data condensation model is factorized by:

logP(H,Z | Ω) = logP(H | Z,Ω) + logP(Z | Ω) . (1)

Data condensation is then achieved via fitting the parameterization of this probabilistic
model to the pre-trained feature observation H, followed by the most probable concept set
Ω = argmaxΩ′ maxZ P(H,Z | Ω′) via principled probabilistic inference.
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2.3 PARAMETERIZATION

We parameterize the conditional terms in the condensation model (Eq. 1), interpreting P(H | Z,Ω)
as pattern exploration, where diverse patterns (Z , of sizeM ) are extracted, and P(Z | Ω) as conden-
sation, modeling patterns with an unknown concept set Ω. This formulation enables nonparametric
condensation and slide-wise adaptability.

2.3.1 PATTERN EXPLORATION

In the pattern exploration stage, each feature hi is modeled as a Gaussian sample, hi ∼
N(µi(Z; θ), I) , where the mean function µi(Z; θ) maps the shared pattern set Z into a representa-
tion best aligned with hi. Conceptually, this is akin to a retrieval process: each feature selects its
best-matching pattern, µi(Z; θ) = z∗(i) = Z[m

∗
i ], m∗

i = argmaxm d(hi, zm). where zm is m-th
pattern in Z . When both hi and zm are ℓ2-normalized, the log-likelihood reduces to

logP(H | Z, θ) =
N∑
i=1

logN(hi | z∗(i), σ
2I) ≈ − 1

2σ2

N∑
i=1

(
2− 2⟨hi, z∗(i)⟩

)
. (2)

Remark. Eq. 2 reveals an intuitive principle: maximizing the likelihood of the feature bag H
reduces to aligning features with their closest patterns. Thus, pattern learning naturally emerges as
a retrieval-style process, but one firmly anchored in a probabilistic framework.

Design and Learning. Based on the above probabilistic analysis, we distill prototypical information
from the feature bag H into the pattern set Z by framing distillation as a retrieval-based selection
process. Each feature hi ∈ H associates with pattern zm ∈ Z via cosine similarity,

Γ(hi, zm) ≜ ⟨hi, zm⟩. (3)

Extending the baseline formulation in Eq. 2, we allow each feature to distribute its information
across its top-κ most relevant patterns (κ ≪ M ), which improves expressiveness while preventing
over-dispersion that weakens discriminative power. Maximizing Γ(·, ·) then drives an adaptive se-
lection process, yielding a pattern set Z that is both compressed and information-preserving, diverse
enough to capture the variability ofH, and efficient for the subsequent condensation stage.

2.3.2 PATTERN-CONCEPT CONDENSATION

In this section, we derive the condensation term in Eq. 1 and present the construction of the concept
set Ω. While the pattern set Z provides a comprehensive view of H, it remains tied to local feature
variations and often carries redundancy. To move beyond this, we introduce Ω as a higher-level
semantic abstraction, a compact set of concept prototypes that captures only the essential struc-
tures of the WSI, discarding spurious noise and redundant information. This step is formalized as
a generative process, where each pattern in Z is modeled as a probabilistic sample from a con-
cept prototype in Ω, and the pattern-concept associations are inferred by maximizing the posterior
distribution (Sec. 2.4 for details).

Pattern Prior. In particular, we model this condensation process as a generative model based
on a nonparametric point process. In this view, the point process distributed a prior set of latent
concepts, and each WSI pattern is considered as a sample from a pattern-generation distribution
parameterized with a particular concept. We hence enforce that a pattern zm ∈ Z must be generated
by a distribution governed by exactly one concept prototype ωk ∈ Ω with ωk indicates the k-th
concept. Concretely, each zm ∈ Z is treated as an independent sample from a Gaussian distribution:

zm ∼ N (ψm(Ω), δm(Ω, γ)) (4)

where ψm is an assignment neural function that determines if the concept prototype ωk responsible
for generating zm and δm(·, γ) is neural function estimating corresponding covariance matrix with
parameters γ. Since this generative model aims to perform condensation, each pattern zm must be
assigned to exactly one concept prototype ωk ∈ Ω. This prior is implemented explicitly on the as-
signment function ψm via an introduction of novel assignment variables bm ≜ (bm1, bm2, . . . , bmK)
such as bmk ∈ {0, 1}, ∀m = 1 . . .M, k . . .K and

∑
k bmk = 1. Further diagonalizing the parame-

terized covariance matrix, we can rewrite Eq. 4 as follows:

zm | bm ∼ N (ψm, diag (δ (ψm; γ))) , where: ψm ≜ bm1 · ω1 + bm2 · ω2 + . . .+ bmK · ωK . (5)
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where bmk indicates whether m-th pattern is generated by k-th concept. This reformulation shows
that each pattern associate with one concept in the learnable set Ω and their assignment is governed
by binary variables bmk, ∀m ∈ {1, . . . ,M} and ∀k ∈ {1, . . . ,K}.

Assignment Prior. Using Eq. 4, Eq. 5 and the definition of our new assignment variable b ≜
{bm}Mm=1, we can now solve Eq. 1 with respect to P(Z, b | Ω) instead of P(Z | Ω) as follows,

P(Z, b | Ω) =
M∏

m=1

P(zm, bm | Ω, γ, ζ) =
M∏

m=1

P(zm | Ω, γ)P(bm | ζ) (6)

where P(bm | ζ) imposes an assignment prior governed by parameters ζ. To ensure that every
pattern zm ∈ Z is consistently tied with exactly one concept ωk ∈ Ω, we enforce a categorical
distribution over the assignment variables bm as,

P(bm|ζ) ≜
K∏

k=1

πbmk

k , where: πk ≜
exp(α(ωk; ζ))∑
k exp(α(ωk; ζ))

(7)

This prior serves two complementary purposes. First, the categorical form enforces that each pattern
zm ∈ Z is associated with exactly one concept prototype, thereby encouraging compactness in the
condensation process. Second, by parameterizing the assignment probabilities through learnable
logits, NICER adapts the allocation of patterns to concepts dynamically, ensuring that assignments
reflect the diverse information captured in Z .

2.4 CONDENSATION LEARNING

Given the nonparametric pattern-generating story above, our original objective which maximizes the
joint likelihood ofH,Z given Ω (see Eq. 1) now reduces to the pattern condensation problem as,

max
Ω,γ,ζ,b

{ M∑
m=1

logP(zm, bm | γ, ζ,Ω)
}

= max
Ω,γ,ζ,b

M∑
m=1

{
logP(zm | bm, γ,Ω)+logP(bm | ζ)

}
(8)

which is directly computable when using Eq. 5 and Eq. 7 (see Appendix E for more details). Solving
Eq. 8 is however not trivial due to its mixed set of discrete/continuous variables. To sidestep this
intractability, we instead solve Eq. 8 via alternating between (1) optimizing (γ, ζ,Ω) while fixing
b; and (2) optimizing b given (γ, ζ,Ω). The first optimization sub-problem is straightforward as it
reduces to derivations from Eq. 5, while the latter is less trivial due to the discrete nature of the
optimizing variables b. Fortunately, we must recall that bm is exactly one-hot vector. This constraint
is important in the condensation settings because it allows us to recast the non-linear log probability
function to a linear form that can be solved effectively, as shown in Lemma E.1.

Given (γ, ζ,Ω), this observation allows us to derive the linear form of Eq. 5 and Eq. 7 as direct
consequences (see Appendix E for details), which reformulates Eq. 8 as follows:

b∗ = argmax
b

{ M∑
m=1

logP
(
zm, bm | γ, ζ,Ω

)}
= argmax

b

{
R1(b) +R2(b)

}

where: R1(b) =

M∑
m=1

K∑
k=1

bmk · logN (zm | ωk; diag (δ (ωk; γ)))

R2(b) =

M∑
m=1

K∑
k=1

bmk · log
(

exp
(
α(ωk; ζ)

)∑
k exp

(
α(ωk; ζ)

))
(9)

which is a weighted linear optimization task. Here, R1(b) is derived from log likelihood function
of our pattern prior (see Eq. 5) while R2(b) originates from the log likelihood of our categorical
assignment prior (see Eq. 7) using results of Lemma E.1. Here, we emphasize the many-to-one
nature of the condensation problem, i.e., many patterns can be assigned to a single concept, by
iteratively optimizing each bm while holding the remaining assignments b−m fixed. This reduces
Eq. 9 to a maxima search problem that can be solved with linear complexity O(M). While solving
Eq. 9, concepts that do not contribute to generating any observed patterns are treated as redundant
and removed. This pruning mechanism gives NICER its nonparametric nature, enabling it to adapt
to the varying complexity levels of WSIs. Pseudocode for NICER can be found in Appendix B
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Table 1: Performance of baselines on Condensation Ability tasks. The best and second-best results
are highlighted in bold red, and blue, respectively.

Method Decoder
Cancer Subtyping Survival Prediction

PANDA NSCLC LUAD BRCA

Kappa Accuracy F1 Kappa Bal. Acc. F1 C-Index C-Index

Whole Bag

ABMIL

91.93 ± 0.48 76.21 ± 1.53 76.37 ± 1.38 90.31 ± 1.65 94.52 ± 1.19 95.19 ± 0.78 62.12 ± 1.27 78.52 ± 3.82
DeepSets 57.26 ± 38.13 51.60 ± 17.98 46.42 ± 23.91 79.51 ± 1.80 89.82 ± 0.88 89.73 ± 0.91 59.89 ± 5.34 49.23 ± 3.59
ProtoCount 0.83 ± 9.55 24.24 ± 1.21 11.77 ± 1.28 10.69 ± 3.54 55.34 ± 1.78 53.86 ± 3.15 51.91 ± 5.75 56.47 ± 12.03
H2T 75.03 ± 1.08 53.91 ± 1.10 50.66 ± 1.01 79.45 ± 1.80 89.67 ± 0.88 89.72 ± 0.90 51.83 ± 2.59 45.86 ± 4.29
OT 41.92 ± 11.16 35.50 ± 3.22 29.98 ± 4.49 80.79 ± 4.69 90.39 ± 2.36 90.37 ± 2.37 54.07 ± 3.71 66.61 ± 6.30
InfiniteGPFA 0.00 ± 0.00 26.85 ± 0.00 11.36 ± 0.00 6.61 ± 2.49 53.29 ± 1.25 50.61 ± 3.93 50.48 ± 4.35 46.65 ± 10.52
PANTHER 65.52 ± 12.62 43.77 ± 0.76 42.52 ± 1.32 83.98 ± 2.39 92.02 ± 1.18 92.01 ± 1.21 58.92 ± 2.21 72.07 ± 6.17

NICER (Ours) 90.98 ± 0.97 73.52 ± 1.27 73.22 ± 1.55 89.73 ± 1.81 94.84 ± 0.92 94.87 ± 0.91 64.67 ± 2.11 75.69 ± 2.02

Whole Bag

DSMIL

90.93 ± 0.43 74.05 ± 1.38 74.11 ± 1.31 84.60 ± 4.16 92.27 ± 2.08 92.30 ± 2.08 63.32 ± 4.02 67.96 ± 7.12
DeepSets 85.53 ± 3.36 62.26 ± 1.77 62.88 ± 1.73 25.30 ± 36.76 62.68 ± 18.46 59.10 ± 20.77 56.86 ± 6.41 48.47 ± 15.91
ProtoCount 14.78 ± 8.52 22.52 ± 2.11 14.47 ± 0.53 -0.90 ± 13.16 49.52 ± 6.63 44.24 ± 10.37 52.71 ± 4.47 41.13 ± 8.69
H2T 60.56 ± 1.57 41.83 ± 0.84 34.73 ± 5.23 44.90 ± 3.95 72.61 ± 2.03 70.10 ± 2.64 50.00 ± 0.00 49.82 ± 0.26
OT 55.06 ± 7.77 37.66 ± 3.74 36.60 ± 3.94 48.26 ± 8.11 74.20 ± 4.00 73.52 ± 4.49 58.17 ± 4.11 70.84 ± 0.23
InfiniteGPFA 17.72 ± 9.52 24.76 ± 2.19 20.56 ± 2.03 -2.70 ± 12.64 48.62 ± 6.31 46.52 ± 7.29 46.25 ± 9.89 46.16 ± 6.69
PANTHER 71.74 ± 2.46 46.09 ± 3.02 46.32 ± 3.28 75.05 ± 8.12 87.60 ± 4.04 87.46 ± 4.13 54.15 ± 4.88 69.96 ± 2.49

NICER (Ours) 87.81 ± 0.69 66.07 ± 1.73 65.19 ± 1.65 84.61 ± 1.56 92.30 ± 0.74 91.34 ± 0.79 62.12 ± 1.41 74.53 ± 1.73

Whole Bag

ILRA

93.46 ± 0.24 78.90 ± 1.76 79.26 ± 2.05 87.17 ± 0.90 93.57 ± 0.41 93.58 ± 0.45 67.22 ± 2.12 81.46 ± 1.46
DeepSets 75.49 ± 2.64 58.31 ± 1.12 54.52 ± 2.01 28.20 ± 39.89 64.10 ± 19.94 53.03 ± 27.79 56.72 ± 5.95 48.47 ± 15.91
ProtoCount 8.65 ± 2.83 25.88 ± 0.83 14.98 ± 2.48 13.26 ± 8.39 56.63 ± 4.19 51.57 ± 10.17 55.02 ± 12.35 58.83 ± 6.48
H2T 35.20 ± 17.79 35.05 ± 5.32 30.69 ± 6.22 77.50 ± 3.31 88.65 ± 1.69 88.69 ± 1.71 51.28 ± 1.81 49.82 ± 0.26
OT 39.79 ± 7.28 37.73 ± 3.27 31.92 ± 1.93 83.98 ± 0.89 92.02 ± 0.41 91.98 ± 0.46 63.16 ± 3.32 62.86 ± 7.46
InfiniteGPFA 0.62 ± 2.38 27.00 ± 0.56 13.28 ± 2.61 4.50 ± 5.49 52.26 ± 2.77 45.92 ± 8.34 51.67 ± 5.47 57.03 ± 8.21
PANTHER 69.08 ± 3.63 48.62 ± 5.28 47.91 ± 5.45 81.41 ± 2.38 90.72 ± 1.14 90.69 ± 1.21 63.00 ± 9.98 69.18 ± 1.35

NICER (Ours) 88.92 ± 2.37 69.73 ± 3.02 69.56 ± 3.59 88.47 ± 1.56 94.28 ± 0.76 94.23 ± 0.79 68.06 ± 4.69 76.99 ± 3.95

3 EXPERIMENTS

This section empirically evaluates NICER on four datasets across two key pathology tasks: cancer
subtyping and survival prediction. Dataset details and baselines are provided in Sec. 3.1, while
experimental results are reported in Sec. 3.2.

3.1 EXPERIMENT SETTINGS

Datasets and Evaluation Metrics. For cancer subtyping, we evaluate NICER on two different
tasks: NSCLC subtyping on TCGA (2 classes), and ISUP grading based on PANDA challange (6
classes) (Bulten et al., 2022; 2020). In survival prediction, we evaluate NICER on TCGA across
two cancer repositories: BRCA and LUAD. Following prior work (Song et al., 2024), we evaluate
the cancer subtyping tasks using Cohen’s Kappa (Vieira et al., 2010), accuracy, and weighted F1,
replacing accuracy with balanced accuracy for NSCLC due to class imbalance. For survival tasks,
we report the concordance index (C-Index) (Alabdallah et al., 2024).

Evaluation Settings. We view unsupervised prototype construction as both a condensation frame-
work and a representation learning approach, and evaluate along two axes: (i) condensation ability,
by applying NICER and baselines on the training set and testing against the original WSI feature
bag; and (ii) morphological prototyping, by applying methods to both training and test sets.

Baselines. We consider two baseline categories: 1) unsupervised prototyping methods, which learn
unsupervised representations followed by a task-specific neural predictor, and 2) MIL-based predic-
tors, which construct supervised slide-level prototypical representations. For unsupervised prototyp-
ing, we compare NICER with DeepSets (Zaheer et al., 2017), ProtoCounts (Claudio Quiros et al.,
2024), H2T (Yu et al., 2023), InfiniteGPFA (Yu et al., 2025), Optimal Transport (OT)(Mialon
et al., 2021), and PANTHER(Song et al., 2024). Specifically, DeepSets, ProtoCounts, and H2T
build prototypes from histological information and distance-based clustering (e.g., K-Means); In-
finiteGPFA is adapted to perform latent factor analysis on each WSI; and OT and PANTHER adopt
Gaussian Mixture Models for soft prototypical assignment. For MIL-based predictors, we adopt
three supervised baselines: attention-based MIL (ABMIL) (Ilse et al., 2018), dual-stream MIL
(DSMIL) (Li et al., 2021a), and low-rank MIL (ILRA) (Xiang & Zhang, 2023). These models
are trained on unsupervised prototypes and evaluated on original feature bags to measure condensa-
tion ability, or used directly to assess NICER’s effectiveness in producing slide-level unsupervised
representations. Further implementation details are provided in Appendix C.
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Table 2: Performance of baselines on Morphological
Prototyping tasks. ”TrL”/”TrM” is a linear/nonlinear
transformer. The best and second-best results are high-
lighted in bold red, and blue, respectively.

Method
Cancer Subtyping Survival Prediction

PANDA NSCLC LUAD BRCA

Accur. F1 Bal. Acc. F1 C-Index C-Index

M
IL

ABMIL 74.05 74.42 94.19 94.23 62.20 77.35
DSMIL 72.48 72.52 95.17 95.19 68.90 77.72
ILRA 76.96 77.11 93.21 93.26 55.26 83.43

U
ns

up
er

vi
se

d

DeepSets 61.52 60.51 86.50 86.53 55.02 67.40
ProtoCount 27.52 20.84 55.55 47.03 52.87 59.12
H2T 55.93 53.81 77.75 77.75 53.83 52.85
OT 73.15 72.87 88.42 88.45 64.59 75.51
InfiniteGPFA 14.09 3.48 50.00 34.41 50.00 50.00
PANTHER 70.47 69.98 82.69 82.68 45.45 75.51
PANTHERTrM 70.02 70.06 88.53 89.45 60.29 67.59
NICERTrL 72.48 72.65 94.27 94.23 70.57 76.98
NICERTrM 76.96 77.12 95.17 95.19 70.81 81.40

Figure 4: Impact of initial patterns number on
NICER’s overall performance.

Figure 5: Number of prototypes over first
8 iterations on NSCLC dataset. The val-
ues are reported at log10 scale

Figure 6: NICER concepts disperse over
iterations. This shows that our concept
prototypes encode different information
from the WSI, ensure diversity.

3.2 PERFORMANCE ON CONDENSATION ABILITY

Results on cancer subtyping. Tab. 1 highlights that NICER consistently has superior performance
across different predictors for cancer subtyping. On the PANDA dataset, when paired with com-
plex predictors such as DSMIL and ILRA, NICER achieves improvements of 2.28–15.04% across
evaluation metrics, with a particularly notable gain of 15.04% in F1 score over DeepSets, when
using DSMIL. This advantage becomes even more pronounced with simpler architectures such as
ABMIL, where the performance margin widens to 33.72% relative to the next-best baseline. Im-
portantly, NICER sustains strong performance with only a minor drop from Whole Bag (∼2.87%
in Kappa), offering a favorable trade-off between accuracy and efficiency. Consistent patterns are
observed on the NSCLC dataset, where NICER surpasses competing methods by up to 5.27% in
balanced accuracy. This is due to NICER’s nonparametric design, which condenses WSIs based on
their complexity, yielding robust representations across architectures.

Results on survival prediction. In survial prediction tasks, NICER consistently outperforms other
baselines across diverse predictor architectures, achieving performance gains of up to 79.73%. On
BRCA, NICER improves the C-Index by as much as 33.40% over baselines, with an average margin
of 4.98% compared to the closest competitors. On LUAD, similar improvements are observed, with
margins of 2.82% and 9.56% when combined with ABMIL and DSMIL predictors, respectively. Re-
markably, when paired with the more complex ILRA predictor, NICER, along with methods such as
PANTHER and ProtoCount, can surpass the Whole Bag upper bound, indicating that unsupervised
feature construction can denoise raw feature bags and enhance downstream predictive performance.
These results highlight both the robust effectiveness of NICER and its model-agnostic generality,
underscoring its potential as a broadly applicable framework for histological analysis.

3.3 PERFORMANCE ON MORPHOLOGICAL PROTOTYPING

As shown in Tab. 2, NICER combined with a TrM consistently outperforms other unsupervised
methods across all scenarios, demonstrating its ability to preserve semantic information from the
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Table 3: Performance-Efficiency trade-
offs comparison of NICER and the SOTA
method, on PANDA using ABMIL.

Method Config % Input F1
Whole Bag

(Upperbound) - 100% 74.42

PANTHER
K=16 2.58% 41.11
K=64 10.39% 55.93
K=128 20.78% 69.45

NICER (Ours)

M=50 5.79% 67.64
M=200 11.32% 74.46
M=500 11.56% 74.50
M=1000 11.31% 75.00

Table 4: Impact of top-κ in pattern distillation
on NICER’s performance. Conducted on PANDA
with ABMIL predictor

Task κ Kappa Acc. F1

C
on

de
n

-s
at

io
n

1 90.18 70.02 69.87
3 91.48 74.94 75.00
5 90.47 72.93 72.72
10 89.52 70.47 70.49

Pr
ot

ot
yp

in
g 1 92.89 75.17 75.47

3 93.07 77.85 77.96
5 92.77 75.62 75.80
10 92.89 73.83 73.82

original noisy feature bag. Due to its nonparametric learning process and decomposition of di-
versity and compactness, NICER constructs representations that achieve competitive performance,
exhibit only minimal drops across diverse tasks and datasets, underscoring its model-agnostic na-
ture. In contrast, the performance of conventional MIL methods is strongly dependent on the chosen
architecture.

3.4 ABLATION STUDIES

Impact of Initial Number of Patterns. Fig. 4 illustrates the effect of the number of patterns ini-
tialized at the start of the NICER algorithm on feature construction performance. Experiments are
conducted on the PANDA dataset and evaluated on the Condensation Ability task using ABMIL as
the predictor. As shown, NICER achieves substantial performance gains as the number of patterns
increases, but the improvement begins to saturate beyond a certain point (e.g., ∼200). This trend
arises because a larger pattern set provides greater distillation capacity, while the plateau reflects the
condensation process, which removes redundancy and converges toward stable representations.

Performance-Efficiency Trade-offs Comparison. To assess the effectiveness of NICER in the
condensation problem, we compare its performance-efficiency trade-off against PANTHER on the
cancer subtyping task using the PANDA dataset across varying condensation levels. The conden-
sation level is controlled by the number of prototypes K in PANTHER and the number of initial
patterns M in NICER, where M serves as an upper bound on the number of final concepts. As
reported in Tab. 3, both methods exhibit an upward trend in F1 as the % Input increases. Notably,
at comparable condensation levels (e.g., PANTHER with 10.39% Input vs. NICER with 11.32% In-
put), NICER surpasses PANTHER by a substantial margin of nearly 19%, underscoring its superior
ability to preserve relevant information during condensation.

Effectiveness of Condensation Stage. Tab. 3 shows how M influences the capacity of the con-
densed prototype set. With small M (e.g., 50), the final set is limited by the initial pattern pool. As
M grows (e.g., beyond 200), the number of prototypes increases but quickly stabilizes, as seen in the
(% Input) column. Downstream performance follows the same trend, with F1 scores plateauing once
stabilization occurs. This confirms that NICER’s condensation stage effectively merges redundant
patterns into a compact yet informative concept set.

Impact of Top-κ in Pattern Learning. We perform a sensitivity analysis on the number of patterns
selected per patch feature (top-κ) across both Condensation Ability and Morphological Prototyp-
ing tasks. As shown in Tab. 4, performance steadily improves across all quantitative metrics as κ
increases, but begins to plateau or even slightly decline beyond a certain point (e.g., κ = 3). This oc-
curs because excessively large κ values cause each patch’s information to be distributed too broadly
across patterns, thereby reducing the effectiveness of the distillation process. These findings are
consistent with our earlier observation in Fig. 4 and align with the design discussed in Sec. 2.3.

Concept Prototypes Diversity. To analyze the behavior of our condensation process, which maps
patterns into concepts, we visualize 2D t-SNE embeddings of the concept set on the NSCLC dataset
over the first five iterations. As shown in Fig. 6, the learned concepts become increasingly dispersed
(brighter points) as training progresses, reflecting convergence toward diverse and specific infor-
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mation. This demonstrates the effectiveness of the condensation process in reducing overlap and
redundancy while preserving diversity, a key strength of NICER. More experimental results can be
found in Appendix F

4 RELATED WORK

Multiple Instance Learning. While initial histology-based outcome prediction was centered on
pathologist-annotated region-of-interests (Bychkov et al., 2018; Kather et al., 2019; Mobadersany
et al., 2018), later works have utilized WSIs for clinical prediction tasks with MIL (Campanella
et al., 2019; Chen et al., 2022; Tang et al., 2023; Nguyen et al., 2025b;a). There is a sustained effort
for new MIL schemes, with a focus on developing new patch aggregation strategies to learn more
representative and task-specific embedding, towards better predictive accuracy (Li et al., 2021b; Lu
et al., 2023; Shao et al., 2021; Tang et al., 2023; Xiang & Zhang, 2023) or interpretability (Javed
et al., 2022; Thandiackal et al., 2022). Recent MIL proposals further enhance efficiency during
training and inference by adopting low-rank property of histological images (Xiang & Zhang, 2023)
or using sparse coding model as a regularization in an attention-based aggregator (Qiu et al., 2023).
NICER is similar to MIL in that the patch features in each WSI (represented as a bag) is aggregated
and condensed in different ways to produce a slide-level embedding. Nevertheless, NICER performs
in an unsupervised manner, in contrast to supervised MIL approaches.

Prototype Learning. Prototypes, representative examples summarizing datasets, have been widely
used in bioinformatics and NLP (dan Guo et al., 2022; Kim, 2022; Lee et al., 2019; Mialon et al.,
2021), appear under related notions such as signatures (Lazebnik et al., 2005; Zhang et al., 2006;
Caicedo et al., 2009) and bag-of-visual-words (Caicedo et al., 2009; Cruz-Roa et al., 2009; Sivic
& Zisserman, 2003). In computational pathology, prototypical representations are natural since re-
peating histology patterns often reflect shared morphology (Hou et al., 2016; Kalra et al., 2020; Pan
et al., 2023; Wang et al., 2022b; Xu et al., 2012; Yu et al., 2023). Recent approaches (Vu et al.,
2023; Claudio Quiros et al., 2024; Zaheer et al., 2017) build WSI prototypes using manual features
and distance-based clustering (e.g., K-Means), with state-of-the-art variants adopting Gaussian Mix-
ture Models (Mialon et al., 2021; Song et al., 2024). However, they all impose a fixed number of
prototypes, ignoring the varying complexity of different WSIs. Adaptive clustering methods (Li &
Nehorai, 2018; Vijayan & Aziz, 2023) offer partial flexibility but rely on rigid structures and in-
cur high training costs, making them impractical for gigapixel slides. These limitations motivate
NICER, a probabilistic nonparametric framework that is efficient and slide-adaptive.

Dataset Condensation. Dataset condensation, or distillation, compresses large datasets into small
synthetic sets that preserve model performance (Wang et al., 2020). Unlike prototype learning,
which selects subsets or analytic representations, it treats synthetic samples as learnable parameters
and tries to balance between performance and efficiency via a bi-level learning approaches. This line
of research typically involves in the nested optimization (Wang et al., 2020; Deng & Russakovsky,
2022; Nguyen et al., 2021); or surrogate-objective approaches (Zhao et al., 2021; Wang et al., 2022a;
Liu et al., 2023; Sajedi et al., 2023). In the context of WSIs, FedWSIDD (Jin et al., 2025) extends
condensation to federated settings by synthesizing slides for efficient communication, but like con-
ventional methods it relies on supervision signals, limiting its use in real-world scenarios where an-
notations are scarce. In contrast, NICER introduces an unsupervised data condensation framework
that eliminates the dependency on labels, enabling scalable, annotation-free WSI condensation.

5 CONCLUSIONS

In this paper, we introduce NICER, a novel framework for whole-slide image (WSI) condensation
that addresses histological heterogeneity across slides. NICER reformulates prototype construc-
tion as an unsupervised data condensation problem within a hierarchical probabilistic model, where
prototypical information is distilled from raw features into patterns and then condensed into com-
pact concepts nonparametrically. This adaptive process allows the prototype set to scale with WSI
complexity, effectively handling variability across slides. We further derive a Bayesian inference
algorithm to learn pattern-concept associations efficiently. Across datasets and tasks, NICER out-
performs prior methods with up to 90% gains and strong efficiency, demonstrating practicality for
real-world pathology under limited resources.
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A BROADER STATEMENT OF IMPACT

This research develops an effective nonparametric compression and condensation algorithm for
whole-slide images (WSIs), enabling efficient learning from histological data with varying com-
plexity. The mathematical methods and insights presented in this work help bridge the gap between
large, gigabyte-scale images and their practical applications in healthcare. While the potential appli-
cation of our methods to real patient data may raise ethical considerations, such effects are indirect
and not the focus of this study. Our experiments rely solely on publicly available datasets, ensuring
that no ethical concerns are introduced in the evaluation of our algorithms.

B PSEUDOCODE FOR NICER

Algorithm 1 Nonparametric Unsupervised Data Condensation (NICER)
input: WSI feature bagH, no. T of iterations, no. M of initial patterns
output: condensed concept prototype set Ω

1: initialize pattern set Z of size M
2: for t = 1 to T do
3: for i = 1 to N do
4: query top-κ relevant patterns to hi using Eq. 3
5: distill hi to κ relevant zm by maximizing Eq. 3
6: end for
7: Ω, b← condense({zm}Mm=1) // solving Eq. 8
8: Ω←

{
ωk ∈ Ω |

∑M
m=1 bmk > 0

}
// remove redundant concepts

9: end for
10: return the set Ω of optimal concepts

C IMPLEMENTATION DETAILS

C.1 DATASETS

We provide brief explanations for the datasets that were used for the evaluation of NICER for con-
densation ability and prototyping ability.

PANDA. (Bulten et al., 2022; 2020) For the ISUP grading task, we used prostate cancer core needle
biopses (n=10,616) from the Prostate Cancer Grade Assessment (PANDA) challenge. Each biopsy
is given an ISUP grade, making this a 6-class classification task. These biopses are collected from
Karolinska Institute (KRLS) and Radboud University Medical Center (RUMC). We label-stratify
the PANDA dataset into train/val/test of 80:10:10 and performance was evaluted using Cohen’s
quadratic weighted Kappa κ2, accuracy and weighted F1 metrics.

NSCLC. For the non-small cell lung carcinoma (NSCLC) subtyping task, we use H&E WSIs from
TCGA for classifying lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)
cases. The TCGA cohort contains a total of 1,4041 slides (LUAD: 529, LUSC: 512). We label-
stratify the TCGA cohort into train/val/test fold of 80:10:10 and evaluate performance using Cohen’s
Kappa, balanced accuracy and F1 metrics.

TCGA-BRCA. The Breast Invasive Carcinoma (BRCA) cohort from The Cancer Genome Atlas
(TCGA). a joint effort of the NCI and NHGRI, provides one of the most comprehensive digital
pathology resources for breast cancer. The dataset contains 1,133 diagnostic WSIs spanning 1,062
patients, covering diverse histological and molecular subtypes. In addition to imaging, the cohort
supplies curated clinical outcomes, including Overall Survival (OS) and Progression-Free Interval
(PFI), which have been widely adopted as endpoints for developing and benchmarking survival
prediction models. We label-stratify the TCGA-BRCA dataset into train/val/test fold of 80:10:10
and evaluate performance C-Index for survival prediction

TCGA-LUAD. The Lung Adenocarcinoma (LUAD) cohort within TCGA offers a large-scale,
multi-institutional collection of pathology images and outcome data for a major subtype of non-
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small cell lung cancer. It includes 529 diagnostic WSIs corresponding to 478 patients, with exten-
sive clinical annotation. As with BRCA, the LUAD cohort provides OS and PFI as standardized sur-
vival endpoints, enabling robust prognostic modeling and cross-study comparison in computational
pathology research. We label-stratify the TCGA-LUAD dataset into train/val/test fold of 80:10:10
and evaluate performance C-Index for survival prediction

C.2 EVALUATION SETTING DETAILS

We view unsupervised prototype construction not only as a condensation framework, whose primary
role is to reduce redundancy in the WSI feature bag, but also as a form of representation learning,
since the resulting prototypes are later used as inputs for downstream predictors. Accordingly, we
evaluate all methods along two complementary axes:

Condensation ability. Here, the goal is to assess how well the condensed prototype set preserves
information from the original WSI feature bag. Specifically, we apply NICER and baseline methods
on the training set to obtain prototypes, and then evaluate them on the original uncompressed bag
of features. This setup isolates the effectiveness of condensation by measuring how much predictive
power is retained (or lost) after summarization, independent of downstream task complexity. It
answers the key question: Does condensation discard critical information or faithfully represent the
original slide?

Morphological prototyping. In this setting, we follow the prior evaluation protocol Song et al.
(2024) to test whether condensed prototypes can generalize as useful, task-agnostic representations.
Condensation methods are applied to both the training and test sets, and the resulting prototypes
are directly used for downstream prediction. Unlike the condensation ability evaluation, this setup
emphasizes the representation learning capacity of the prototypes, focusing on whether they capture
robust morphological cues transferable across unseen WSIs rather than reconstruction fidelity. To
ensure fairness, we use linear probing for all baselines, thereby isolating the quality of the learned
prototypes. For PANTHER and NICER, we additionally evaluate with a transformer layer (with or
without linearity), since NICER produces prototype sets whose capacity adapts to WSI complexity
and thus cannot be fully exploited by a fixed linear layer alone.

C.3 TRAINING DETAILS AND COMPUTATIONAL RESOURCES

Data preparation. WSIs at 20× magnification (0.5, µm/pixel) are divided into non-overlapping
256 × 256 patches, and all patches are used without sampling. These patches are converted to
representations using UNI Chen et al. (2024), a pretrained foundation encoder. We set κ = 3 and
found T = 50 iterations sufficient for convergence across all datasets.

Hyperparameter settings. For training, we adopt the AdamW optimizer with weight decay set to
1 × 10−5 and employ a cosine decay learning rate scheduler. In the cancer subtyping experiments,
models are trained with cross-entropy loss for up to 50 epochs, with early stopping triggered if the
validation loss fails to improve for 10 consecutive epochs. The initial learning rate is set to 1×10−4.
Since both the original feature bags and the NICER’s representations form variable-length WSI sets,
we use a batch size of 1 combined with gradient accumulation over 32 steps across all methods.
For the survival prediction task, we optimize using the negative log-likelihood (NLL) loss (Zadeh &
Schmid, 2021), training over 50 epochs with a per-patient batch size of 1 and an initial learning rate
of 1 × 10−5. The training of NICER further involves an alternating optimization process over 20
iterations, with κ = 3 and an initial pattern set size of M0 = 1000, which decreases progressively
through the condensation procedure. As a nonparametric random process, NICER allows us to
directly regulate the number of generated prototypes via κ and M0. Following prior practices (Vu
et al., 2023; Song et al., 2024), we set a number of prototypes generated by unsupervised baselines
to 16 for all WSIs used in our experiments. The implementation details of predictor architectures,
unsupervised baselines follow original papers and previous settings (Song et al., 2024).

Computational considerations. All experiments and data preprocessing are conducted on a
NVIDIA RTX A6000 with 46GB of memory.
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D DERIVATION OF EQ. 2

We begin from the conditional likelihood in Eq. 2:

logP(H | Z, θ) =
N∑
i=1

logN(hi | z∗(i), σ
2I), (10)

where each feature hi is modeled as a Gaussian centered at its assigned pattern prototype z∗(i).
Expanding the Gaussian log-likelihood yields:

logP(H | Z, θ) = − 1

2σ2

N∑
i=1

∥hi − z∗(i)∥
2 + C, (11)

with C denoting terms independent of hi or z∗(i). The squared distance can be written as

∥hi − z∗(i)∥
2 = ∥hi∥2 + ∥z∗(i)∥

2 − 2⟨hi, z∗(i)⟩. (12)

Since both hi and z∗(i) are ℓ2-normalized embeddings, we approximate ∥hi∥2 ≈ ∥z∗(i)∥
2 ≈ 1. This

reduces the squared distance to

∥hi − z∗(i)∥
2 ≈ 2− 2⟨hi, z∗(i)⟩. (13)

Plugging this into the log-likelihood gives

logP(H | Z, θ) ≈ − 1

2σ2

N∑
i=1

(
2− 2⟨hi, z∗(i)⟩

)
+ C. (14)

Dropping constants, we recover Eq. 2. This shows that maximizing the Gaussian likelihood is
approximately equivalent to maximizing feature - prototype similarity, providing a probabilistic
justification for our design.

E LEMMAS AND DERIVATIONS

Lemma E.1. (adapted from Weng et al. (2024) ) For any scalar function g(r) and a binary vector
ξ = [ξ1, ξ2, . . . , ξn] such that ξi ∈ {0, 1} and ξ has exactly one non-zero component, we have

g

(
n∑

i=1

ξi · ri

)
=

n∑
i=1

(
ξi · g(ri)

)
(15)

with respect to any set {ri}ni=1 of valid inputs to g(r).

Proof. First, if there is no non-zero component, both sides of Eq. 23 evaluate to g(0). Otherwise,
suppose the only non-zero component appears at position j, both sides of Eq. 23 will evaluate to
g(rj). In both cases, Eq. 23 holds.

Lemma E.2. Let P(zm | bm,Ω defined as in Eq. 5. Let R1(b) ≜
∑M

m=1 logP(zm | bm,Ω),
considering (zm,Ω) as constants. We have

R1(b) =

M∑
i=1

K∑
k=1

bmk · logN (zm | ωk, diag (δ (ωk; γ))) , (16)

which is linear in terms of the assignment parameter b.

Proof. To derive results of Lemma E.2, note that Eq. 5 implies the following,

logP(zm | bm,Ω) = logN

(
zm |

K∑
k=1

bmk · ωk, diag

(
δ

(
K∑

k=1

bmk · ωk; ζ

)))
(17)

= g

(
K∑

k=1

bmk · ωk

)
(18)
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where we define

g(x) ≜ logN
(
zm | x, diag (x; ζ)

)
(19)

In addition, since
∑

k bmk = 1 with bmk ∈ {0, 1}, Lemma E.1 implies that

g

( K∑
k=1

bmk · ωk

)
=

K∑
k=1

(
bmk · g(ωk)

)
(20)

We then plug Eq. 20 into Eq. 18 to have

logP(zm | bm,Ω) = g

( K∑
k=1

bmk · ωk

)
=

K∑
k=1

(
bmk · ωk

)
(21)

=

K∑
k=1

bmk · logN
(
zm | ωk, diag

(
σ(δk; ζ)

))
(22)

Finally, taking summation over m = 1, 2, . . . ,M on both sides of Eq. 22, we arrive Lemma E.2.

Lemma E.3. Let P(bm | ζ) defined as in Eq. 7. Let R2(b) ≜
∑M

m=1 logP(bm | ζ), considering (ζ)
as constants. We have

R2(b) =

M∑
i=1

K∑
k=1

bmk · log

(
exp

(
α(ωk; ζ)

)∑
k exp

(
α(ωk; ζ)

)), (23)

which is linear in terms of the assignment parameter b.

Proof. Plug Eq. 7 into the definition of R2(b), we have

R2(b) =

M∑
m=1

logP(bm | ζ) =
M∑

m=1

log

(
K∏

k=1

(
exp

(
α(ωk; ζ)

)∑
k exp

(
α(ωk; ζ)

))bmk
)

(24)

=

M∑
m=1

K∑
k=1

bmk · log

(
exp

(
α(ωk; ζ)

)∑
k exp

(
α(ωk; ζ)

)) (25)

which naturally arrives Lemma E.3.

F ADDITIONAL RESULTS

F.1 PROTOTYPE ANALYSIS

Concept Prototype Diversity and Convergence. We extend the findings of Section 3.2
by examining additional WSI instances from TCGA-NSCLC. Figure 7 illustrates the tra-
jectories of concept prototypes over 10 optimization iterations of NICER for three repre-
sentative samples: TCGA-93-A4JN-01Z-00-DX1.ED4C9365-6CCF-4AEE-B4C9-3CC5EC57286C,
TCGA-50-6594-01Z-00-DX1.43b2005a-4245-4025-ad85-4a957f308a5c, and TCGA-49-4514-01Z-
00-DX2.f1565a36-257d-432e-a84d-47c1d7a0185f. The visualizations reveal that different WSIs
exhibit distinct condensation dynamics, reflecting variation in morphological complexity and fea-
ture distribution. For example, the first sample (ending in “86C”) shows prototypes that initially
cluster tightly, suggesting greater homogeneity, whereas the other two slides begin with more dif-
fuse clusters, indicating higher heterogeneity.

Despite these sample-specific differences, a consistent pattern emerges across all trajectories: pro-
totypes gradually diverge from their initialization with increasing variance, reflecting how conden-
sation enforces specialization and reduces redundancy while preserving diversity. This behavior
highlights NICER’s ability to uncover distinct and non-overlapping concept structures within each
slide. Complementary evidence is shown in Figure 10, where the number of prototypes stabilizes
after only a few iterations. This rapid convergence indicates that redundant concepts are pruned
early, leaving a compact and stable set that continues to refine qualitatively rather than quantita-
tively. Together, these results emphasize NICER’s efficiency in learning diverse, non-redundant
representations of WSIs with minimal optimization steps.
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Figure 7: 2D t-SNE visualizations of NICER’s concept prototypes learned over five iterations using
three representative TCGA slides. These plots highlight that NICER can capture different diverse
information across different WSIs.

Diversity Preservation. To evaluate NICER’s ability to preserve diversity across whole-
slide images (WSIs), we compare 2D t-SNE visualizations of concept prototypes gener-
ated by NICER and PANTHER, alongside the original feature bags, on three TCGA-
NSCLC samples: TCGA-93-A4JN-01Z-00-DX1.ED4C9365-6CCF-4AEE-B4C9-3CC5EC57286C,
TCGA-50-6594-01Z-00-DX1.43b2005a-4245-4025-ad85-4a957f308a5c, and TCGA-49-4514-01Z-
00-DX2.f1565a36-257d-432e-a84d-47c1d7a0185f. For fair visualization, NICER’s prototypes are
clustered with K-Means to 16, matching the fixed prototype count used in PANTHER (Song et al.,
2024). As shown in Figure 8, PANTHER fails to capture the inherent diversity of WSIs, collapsing
heterogeneous regions into a limited number of clusters and discarding critical information required
for downstream tasks, an effect consistent with its suboptimal performances in Table 1 and Table 2.
This limitation arises because PANTHER enforces a rigid and heuristically small prototype budget,
prioritizing efficiency at the expense of representational fidelity. In contrast, NICER employs an al-
ternating optimization strategy that leverages pattern-based diversity preservation and condensation-
driven efficiency, ensuring prototypes remain well-separated and encode distinct, slide-specific in-
formation. This balance enables NICER to adapt to the variability of individual WSIs while main-
taining compact yet expressive concept sets.

F.2 SENSITIVITY ANALYSIS

Extensive Results on Impacts of Number of Initial Prototypes (M ). Table 5 complements the
analysis in Figure 4 by evaluating how the initial number of patterns influences NICER’s perfor-
mance across different predictor architectures. The results demonstrate that increasing the pattern
set size consistently improves performance, as a larger pool enhances the model’s capacity to distill
informative representations. However, these gains diminish once the pattern set grows beyond a
certain threshold, with performance gradually reaching a plateau. This saturation reflects the role
of the condensation process, which systematically eliminates redundancy and stabilizes the number
of effective representations required to characterize a WSI, regardless of the starting pattern count,
aligning our insights discussed from Figure 4.
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Figure 8: 2D t-SNE visualization of original WSI feature bags and learned concept prototypes,
comparing our method (NICER) with a representative prior approach (PANTHER).

Table 5: Performance-Efficiency trade-
offs comparison of NICER and the SOTA
method. Conducted on PANDA using AB-
MIL.

Predictor M Kappa Accuracy F1

ABMIL

50 85.48 67.56 67.64
200 90.36 73.15 73.04
500 91.85 74.50 74.46

1000 91.48 74.94 75.00

DSMIL

50 82.75 60.18 61.03
200 86.74 66.89 64.56
500 88.59 67.34 68.03

1000 88.73 68.46 67.52

ILRA

50 84.41 65.55 65.13
200 89.67 66.62 67.34
500 92.25 73.83 74.55

1000 92.25 73.83 74.55

Figure 9: Impact of top-κ in number of final con-
cept prototypes, conducted on PANDA. The plots
show that number of concepts increases when we
increase κ, allowing more preservation capacity.
After a certain point, the condensation process sat-
urates this count to a stable value range.
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Figure 10: Number of prototypes tracked over the first 8 iterations on PANDA and NSCLC dataset.
The values are reported at log10 scale

Table 6: Ablation study of top-κ on downstream tasks performance across different predictor archi-
tectures. The experiments are conducted on PANDA dataset.

Predictor ABMIL DSMIL ILRA
Top-K Kappa Acc. F1 Kappa Acc. F1 Kappa Acc. F1

1 90.18 70.02 69.87 85.42 64.65 65.95 89.17 64.88 64.24
3 91.48 74.94 75.00 88.73 68.46 67.52 92.25 73.83 74.55
5 90.47 72.93 72.72 88.80 68.46 66.66 88.66 71.36 71.47

10 89.52 70.47 70.49 85.42 66.89 66.94 88.88 68.90 68.92

Extensive Results on Impacts of Top-κ during Pattern Exploration. We further conduct a sen-
sitivity analysis on the number of pattern assigned to each patch feature, controlled by the top-κ
selection in the Condensation Ability tasks. The results, reported in Tab. 6, reveal a clear trend:
model performance improves steadily across all evaluation metrics as κ increases, indicating that in-
corporating multiple patterns per patch allows richer information to be preserved. However, beyond
a moderate value (e.g., κ = 3), this benefit begins to diminish, with performance gains plateauing
or even slightly decreasing. The degradation at larger κ arises because information from each patch
becomes overly dispersed across many patterns, weakening the sharpness of the distilled represen-
tation. These observations corroborate our earlier findings in Fig. 4 and Tab. 4, and reinforce the
design principle outlined in Sec. 2.3 that pattern assignments must balance informativeness with
compactness.

Extensive Results on Effectiveness of Condensation Stage. Fig. 9 shows the distribution of the
number of final concepts produced by NICER across different κ values. As expected, the average
number of prototypes increases with larger κ, since greater capacity enables the model to capture
more diverse patterns from complex WSIs. Beyond a certain point, however, this growth plateaus,
indicating that the condensation process has effectively merged overlapping patterns and compressed
them into a compact, stable concept set. This stabilization highlights NICER’s ability to balance
capacity with redundancy removal, yielding a consistent number of meaningful prototypes.

G LIMITATIONS

Despite NICER’s strengths in handling heterogeneous WSI complexity under limited-resource set-
tings, there remain several avenues for improvement that we plan to explore in future work. First,
NICER relies on a bag-of-features paradigm, where patches are treated independently and fine-
grained spatial or multi-scale context is ignored. This prevents explicit modeling of tissue archi-
tecture and spatial priors—an important direction for future work, particularly in clinically critical
settings. Second, prototype interpretability remains underexplored. While NICER’s nonparamet-
ric concepts improve efficiency and performance, their clinical meaning and uncertainty calibration
have not been systematically assessed. Bridging these gaps is essential for making condensed rep-
resentations both effective and trustworthy in medical applications.
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