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Abstract

Motion-to-music and music-to-motion have been studied separately, each attracting
substantial research interest within their respective domains. The interaction
between human motion and music is a reflection of advanced human intelligence,
and establishing a unified relationship between them is particularly important.
However, to date, there has been no work that considers them jointly to explore
the modality alignment within. To bridge this gap, we propose a novel framework,
termed MoMu-Diffusion, for long-term and synchronous motion-music generation.
Firstly, to mitigate the huge computational costs raised by long sequences, we
propose a novel Bidirectional Contrastive Rhythmic Variational Auto-Encoder
(BiCoR-VAE) that extracts the modality-aligned latent representations for both
motion and music inputs. Subsequently, leveraging the aligned latent spaces, we
introduce a multi-modal Transformer-based diffusion model and a cross-guidance
sampling strategy to enable various generation tasks, including cross-modal, multi-
modal, and variable-length generation. Extensive experiments demonstrate that
MoMu-Diffusion surpasses recent state-of-the-art methods both qualitatively and
quantitatively, and can synthesize realistic, diverse, long-term, and beat-matched
music or motion sequences. The generated samples and codes are available at
https://momu-diffusion.github.io/.
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Figure 1: The pipeline of MoMu-Diffusion. MoMu-Diffusion integrates the alignment of motion and
music through the novel Bidirectional Contrastive Rhythmic Auto-Encoder (BiCoR-VAE). Leveraging
the aligned latent space, MoMu-Diffusion facilitates both cross-modal and multi-modal generations.

1 Introduction

Dancing to the musical beats or creating a variety of rhythmically synchronized music for a given
motion is a fundamental aspect of human creativity. Music and human motions serve as universal
languages that are shared by all civilizations, transcending cultural and geographical boundaries
around the world [25]. For computational methodologies, the motion-music generation poses several
challenges: 1) maintaining long-term coherence in typically lengthy motion-music sequences 2)
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Table 1: Comparison with the state-of-the-art audio-visual generation works, including but not limited
to motion-music generation.

Method Pub. Joint Generation Pretrain Long-Term Synthesis Latent Space

Diff-Foley NeurIPS’23 ✗ ✓ ✗ ✓
MM-Diffusion CVPR’23 ✓ ✗ ✗ ✗
LORIS ICML’23 ✗ ✗ ✓ ✗
D2M NeurIPS’19 ✗ ✓ ✗ ✓
CDCD ICLR’23 ✗ ✗ ✓ ✓

MoMu-Diffusion ✓ ✓ ✓ ✓

ensuring temporal synchronization and rhythmic alignment between motion and music sequences,
and 3) generating realistic, diverse, and variable-length human motions or music.

Existing works usually divide the motion-music generation into two distinct tasks: motion-to-
music and music-to-motion. For motion-to-music, some methods compress the conditional video
frames into a single image, in which the temporal information is lost [52, 53]. The state-of-the-
art work, LORIS [49], employs a hierarchical conditional diffusion model to generate long-term
musical waveforms. However, LORIS introduces huge computational costs and training difficulties
since it generates long-term musical waveforms directly. For music-to-motion, the Dancing2Music
(D2M) [26] framework divides the generation process into two stages: decomposing the dance into
basic dancing movements with a VAE and compositing the basic movements into dance with a GAN.
Nonetheless, D2M’s approach of segmenting long-term music into short clips (approximately 1-2
seconds) diminishes the coherence of the synthesized motion sequences.

Motivated by the fact that human motions are highly associated with music yet existing computational
methods often study them in isolation, we propose a novel multi-modal framework, termed MoMu-
Diffusion, to address the aforementioned challenges jointly. Firstly, to mitigate the computational
costs and optimization complexities raised by long sequences, we employ a VAE to encode both
motion and music sequences into latent spaces. Subsequently, to investigate the relationship between
human movements and musical beats, we propose rhythmic contrastive learning. This approach
involves constructing contrast pairs with a kinematic amplitude indicator, which quantifies the
temporal variation in motion and is derived from the spatial motion directrogram differences as
detailed in [4]. Given that the motion and music sequences are interactively aligned in the latent
space to discern the correlation between kinematic shifts and musical rhythmic beats, we call our
model as the Bidirectional Contrastive Rhythmic VAE (BiCoR-VAE).

With the aligned latent space, we introduce a Transformer-based diffusion model that captures long-
term dependencies and facilitates sequence generation across variable lengths. Additionally, we
introduce a simple cross-guidance sampling strategy that integrates different cross-modal generation
models, enabling multi-modal joint generation without extra training. By incorporating the BiCoR-
VAE and the diffusion Transformer model, our MoMu-Diffusion framework effectively models the
long-term motion-music synchronization and correspondence, enabling motion-to-music, music-
to-motion, and joint motion-music generation. Moreover, MoMu-Diffusion supports generating
motion-music samples in variable lengths. The pipeline of MoMu-Diffusion is illustrated in Figure 1.

We have conducted extensive experiments on three motion-to-music and two music-to-motion
datasets, including scenarios such as dancing and competitive sports. The experimental results
demonstrate that MoMu-Diffusion attains state-of-the-art performance across both objective and
subjective metrics, significantly enhancing music/motion quality and cross-modal rhythmic/kinematic
alignment. Furthermore, we have carried out abundant ablation studies to validate the efficacy of
the BiCoR-VAE and the DiT architecture. A comparative analysis with state-of-the-art motion-to-
music methods CDCD [53] and LORIS [49], 2D music-to-motion method D2M [26], and general
video-to-audio methods Diff-Foley [33] and MM-Diffusion [41], is presented in Table 1.

2 Related Works

Neural Motion Synthesis. Neural motion synthesis is often associated with audio, and we focus
on two audio-driven scenarios: music-to-motion generation [12, 27, 35, 26]and co-speech gesture
generation [48, 32, 50]. For music-to-motion, some methods [12, 27, 35] propose to retrieve the
most related music for the given motion sequence. D2M [26] is a generative model that designs
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a “decomposition-to-composition” method to learn the movement units and generate music from
the learned units. Besides, some methods [30, 54, 29, 1] investigate synthesizing 3D motions from
music. For co-speech gesture generation, DiffGesture [50] is a state-of-the-art model with a diffusion
transformer architecture and diffusion gesture stabilizer. We study the 2D music-to-motion problem
and compare the proposed MoMu-Diffusion with DiffGesture and D2M

Neural Music Synthesis. Neural music Synthesis aims to generate melodious music with generative
neural networks. Various generative models have been successfully applied to music synthesis
such as transformer-based autoregressive models [21, 39, 9], VAE [2, 40, 6], GAN [8, 24, 36], and
diffusion models [16, 34]. Some efforts have been made to video-to-music which focuses on the
cross-modal temporal alignment. For example, Foley Music [13] and Audeo [43] utilize Musical
Instrument Digital Interface (MIDI) representations to generate music in a non-regressive manner.
D2M-GAN [52] and CDCD [53] generate video-related music by compressing the video frames into
a single image, in which the temporal information is neglected. LORIS [49] proposes a hierarchical
conditional diffusion model to generate long-term musical waveforms.

Multi-Modal Contrastive Learning. Contrastive has been demonstrated effective in For example,
Elizalde et al. [10] proposed Contrastive Language-Audio Pretraining (CLAP) to learn a unified
latent representation for an audio or text input, facilitating the birth of text-to-audio models [31, 20].
For audio-visual generative tasks, DiffFoley [33] uses semantic and temporal contrastive learning to
promote video-to-audio generation. In this paper, to improve the efficiency and generalization ability
of our generative model, we propose the first motion-music pretraining model with a well-designed
contrastive loss to learn beat synchronization and rhythm correspondence.

3 Bidirectional Contrastive Rhythmic VAE (BiCoR-VAE)

3.1 Multi-Modality Model Architecture

Motion Variational Auto-Encoder. Let n ∈ RTm×J×2 be the 2D motion keypoints extracted from
the corresponding video, where Tm is the motion frames, J is the number of nodes containing the
values of the x-coordinate and y-coordinate. Then, we encode the spatial positions into a latent by
zm = Em(m) ∈ RTzm×d, where Tzm < Tm is the downsampled motion frames and d is the latent
motion dimension. The encoded latent can be decoded by a decoder to obtain the reconstructed
motion sequence: m′ = Dm(m).

Music Variational AutoEncoder. Music is a structured and complex audio signal, composed of
various elements such as melody, harmony, rhythm, and dynamics. Some works [13, 43] utilize
Musical Instrument Digital Interface (MIDI) representations, which yield highly formulated results.
However, processing long-term music directly from the raw waveform is computationally intensive
and challenging [49]. To address this, we train a VAE on the mel-spectrogram derived from the music,
coupled with a high-fidelity vocoder. Let u ∈ RTu be a music input, where Tu denotes the waveform
length. We can extract the mel-spectrogram of the music input: a = Mel(u) ∈ RCa×Ta , where Mel()
is the pre-defined mel-spectrogram extraction function, Ca is the channels, and Ta ≪ Tu is the frames.
Then, an encoder is used to compress the mel-spectrogram into a latent: za = Ea(a) ∈ RTza×d,
where Tza is the downsampled music frames and d is the latent mel-spectrogram dimension. The
encoded mel-spectrogram can be decoded by a decoder a′ = Da(a), and subsequently the musical
waveform can be obtained by a high-fidelity vocoder x′ = V (a′).

3.2 Rhythmic Contrastive Learning

Contrastive learning has proven effective for learning multi-modal representations, enhancing perfor-
mance in downstream tasks [38]. In the context of temporal alignment, a recent work [33] introduces
temporal contrast, which seeks to maximize the similarity of audio-visual pairs from the same time
segment while minimizing the similarity of pairs from different segments. However, this paradigm
faces limitations in long-term motion-music synthesis, as musical pieces typically correspond to
numerous rhythmic beats. The random selection process for constructing negative samples risks
capturing similar rhythmic sequences, which undermines the learning objective. To address it, we
propose rhythmic contrastive learning, designed to align cross-modal temporal synchronization and
rhythmic correspondence. Based on the motion and music VAEs, we can obtain the motion latent
zm ∈ RTzm×d, and music mel-spectrogram latent za ∈ RTza×d, respectively. To synchronize the
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Figure 2: An overview of the proposed MoMu-Diffusion framework. MoMu-Diffusion contains two
integral components: a bidirectional contrastive rhythmic Variational Autoencoder (BiCoR-VAE)
designed to learn the aligned latent space, and a Transformer-based diffusion model responsible for
sequence generation. This framework is adept at facilitating both cross-modal and multi-modal joint
generations, offering a robust approach to the integrated synthesis of motion and music.

motion and music, which are often sampled differently, we employ pre-processing techniques such as
evenly dropping motion frames to match the number of music frames, ensuring that Tzm = Tza.

In the domain of motion-guided music, the inherent irregularity of human movements, characterized
by rapid and abrupt actions, can significantly influence rhythm. To synchronize these rhythmic
patterns, we employ a kinematic amplitude indicator as a basis for constructing contrastive clips
within each motion-music pair. Firstly, we extract the motion kinematic offsets [15] with the motion
directogram [4], a metric that quantifies the variation in motion. We denote F (r, j) as the first-order
difference of j-th node in the 2D motion at temporal timestep r, and divide it into K bins based on
their Euclidean angles with x-axis by tan−1(y/x). Then, the 2D motion directogram D(r, θ) can be
expressed as the aggregate of F (r, j) across each angular bin:

D(r, θ) =

J∑
j=1

||F (r, j)||21θ(∠F (r, j)), where1θ(ϕ) :=

{
1, |θ − ϕ| ≤ 2π/K,

0, otherwise.
(1)

The indicator function 1θ(ϕ) distributes the motion nodes into K angular bins. Then, the kinematic
amplitude indicator is computed by summing the bin-wise directrogram difference in each angular
column:

Q(r) =

K∑
k=1

max(0, |D(r, k)| − |D(r − 1, k)|), (2)

where D(r, k) is the directogram volume at temporal timestep r and k-th bin. The kinematic
amplitude value is normalized within the range of (0,1).

With the kinematic amplitude indicator established, we proceed to prepare the temporal motion-
music clips for contrastive rhythmic learning. For each motion-music latent pair, we randomly
sample NT motion-music clips and divide them into NC categories according to the clip-wise
maximum kinematic amplitude values. In order to maximize the similarity of motion-music pairs
from the same timestep (i.e. temporal alignment) and minimize the similarity of motion-music pairs
across different timesteps and rhythmic patterns, we randomly sample NS motion-music latent clip
(crs:rea , crs:rem , Q(rs : re)) ∈ (Rd,Rd, (0, 1)) from different kinematic amplitude categories for the
temporal and rhythmic alignment:

crs:rea = Pmax(z
rs
a : zrea ), crs:rem = Pmax(z

rs
m : zrem ), Q(rs : re) = max(Q(rs) : Q(re)), (3)

where rs and re denote the start and end timesteps of the sampled clip, respectively, and Pmax

denotes the max-pooling operation across the temporal dimension. Finally, based on the sampled
motion-music clips {(cia, cim)}NC

i=1, the contrastive objective can be formulated as:

Lcontrast = −
1

2
log

exp(sim(cia, c
j
m)/τ)∑NC

c=1 exp(sim(cia, c
c
m)/τ)

− 1

2
log

exp(sim(cia, c
j
m)/τ)∑NC

c=1 exp(sim(cca, c
j
m)/τ)

. (4)
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3.3 Training Strategy

In BiCoR-VAE, the goal is to learn two paired VAEs for motion and music inputs, with a focus on
temporal and rhythmic alignment within the low-level latent space. However, the VAE’s objective
to preserve fine-grained details for accurate reconstruction often conflicts with contrastive rhythmic
learning’s aim to align latent representations across modalities. This presents a trade-off between
representational fidelity and generative alignment, posing optimization challenges. To address it, we
propose a two-stage training strategy: initially, we train the music VAE using both a VAE loss and
a GAN loss to prevent over-smoothing of the mel-spectrogram; subsequently, we train the motion
VAE with a VAE loss and the contrastive rhythmic loss, while keeping the music VAE’s parameters
fixed. The insight behind this strategy is that mel-spectrograms, with their rich and complex acoustic
features, require a more intricate optimization process compared to motion VAE, which deals with a
limited set of body joint data. An overview of BiCoR-VAE is illustrated in Figure 2 (a).

4 Transformer-based Diffusion Model with Aligned BiCoR-VAE

Diffusion Formulation. Recent works have revealed that the U-Net architecture is not essential
for diffusion probabilistic modeling, and in fact, the transformer can achieve superior performance
in text-to-image generation tasks [37, 11]. Additionally, the transformer architecture excels at
capturing long-range dependencies within sequence data and offers flexibility for variable-length
generation [45]. Inspired by these findings, we opt for a Transformer-based architecture for our
motion-music generation framework. Concretely, our approach involves initially concatenating the
noisy input with the embedded conditional inputs and the embedded diffusion timesteps along the
temporal dimension. This fused input is then padded to match a specified maximum length and
combined with positional embeddings prior to being processed by the DiT model. The DiT output
is subsequently truncated to the original temporal length and mapped to the output latent space.
To illustrate the diffusion process, let’s consider the motion-to-music task. During the forward
diffusion, the latent data is gradually perturbed towards a standard Gaussian distribution according to
a pre-defined schedule α1, ..., αT , where T is the total diffusion timesteps and αt =

∏t
i=1 αi:

q(za(t)|za(t− 1)) = N (za(t);
√
αtza(t− 1), 1− αtI), (5)

where za(t) denotes the music latent at timestep t. Then, the training objectives of our DiT-based
cross-modal generation models are defined:

Lm2a = ||ϵθa(za(t), t, zm)− ϵ||22, La2m = ||ϵθm(zm(t), t, za)− ϵ||22, (6)
where ϵ ∈ N (0, 1) denotes the noise in diffusion procedure, θa and θm are the parameterized DiT
denoisers for motion-to-music and music-to-motion generation, respectively.

Conditional Generation. For the cross-modal generation such as motion-to-music and music-to-
motion, we implement classifier-free guidance [5, 18]. This method adeptly combines conditional
and unconditional scores to obtain a trade-off between quality and diversity. By interpreting the
diffusion model output as a score function, the sampling procedure with classifier-free guidance of
motion-to-music can be written as:

ϵ̂θa(za(t), t, zm) = ϵθa(za(t), t, ∅) + s · (ϵθa(za(t), t, zm)− ϵθa(za(t), t, ∅)) (7)
where s > 1 denotes the classifier sampling scale to balance the diversity and quality of synthesized
samples. The diffusion model with ∅ condition is achieved by randomly dropping zm and replacing it
with an embedded “null” representation. Exchanging the latent inputs enables the sampling procedure
for music-to-motion generation since we have built a modality-aligned latent space.

Joint Generation with Cross Guidance. To accomplish multi-modal joint generation, we propose a
cross-guidance sampling strategy. This approach leverages multiple ’expert’ models and introduces a
slight modification to the sampling procedure, rather than integrating multiple modalities into a single
model. Let T be the total diffusion steps, ϵθa be the trained motion-to-music denoising model, and
ϵθm be the trained music-to-motion denoising model, we perform unconditional generation before a
defined diffusion step Tc:

pθa(za(t− 1)|za(t)) = N (za(t− 1), µθa(za(t), t, ∅), σ2
t I), where T > t > Tc, (8)

µθa(za(t), t, ∅) =
1
√
αt

(za(t)−
1− αt√
1− αt

ϵθa(za(t), t, ∅)), σ2 =
1− αt−1

1− αt
(1− αt). (9)
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Table 2: Motion-to-music with beat-matching metrics.

Subset AIST++ Dance
Metrics BCS↑ CSD↓ BHS↑ HSD↓ F1↑
Foley 96.4 6.9 41.0 15.0 57.5
CMT 97.1 6.4 46.2 18.6 62.6
D2MGAN 95.6 9.4 88.7 19.0 93.1
CDCD 96.5 9.1 89.3 18.1 92.7
LORIS 98.6 6.1 90.8 13.9 94.5

Ours 97.5 5.2 98.6 2.8 98.1

Figure 3: Motion-to-music with generation
quality metrics: FAD↓ and Diversity↑.

DANCE FE25 FE50 FS25 FS50
0
5
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35
40

Diversity_LORIS
Diversity_Ours
FAD_LORIS
FAD_Ours

Subset Floor Exercise-25s Floor Exercise-50s
Metrics BCS↑ CSD↓ BHS↑ HSD↓ F1↑ BCS↑ CSD↓ BHS↑ HSD↓ F1↑
Foley 36.0 36.2 32.3 30.7 34.1 32.6 38.0 28.4 32.5 30.4
CMT 46.4 30.1 57.4 29.8 51.3 42.3 32.0 53.8 31.7 47.4
D2MGAN 45.3 27.7 58.7 30.1 51.1 41.9 29.2 54.7 32.7 47.5
CDCD 49.0 21.1 61.0 27.0 54.3 45.9 23.8 57.5 29.3 51.0
LORIS 58.8 19.4 67.1 21.1 62.7 54.7 21.6 63.8 24.5 58.9

Ours 66.6 14.3 76.9 19.1 71.4 62.7 24.0 68.1 20.2 65.3
Table 3: Results on the Floor Exercise dataset with beat-matching metrics.

Eq (8) and Eq (9) delineate the reverse process for motion-to-music generation within the timestep
range T ≥ t > Tc. The reverse process for music-to-motion generation can be similarly constructed.
For reverse timesteps Tc ≥ t > 0, we use the estimated clean motion/music latent to condition the
generation process of music/motion with the classifier-free guidance defined in Eq (7). Given that the
diffusion model adopts a coarse-to-fine refinement in the reverse process, we conduct unconditional
generation before Tc and impose conditional generation with the cross-guidance strategy after Tc, as
the noise in the estimated clean latent is significantly reduced. Determining the value of Tc appears
to be quite challenging; however, our empirical findings indicate that the joint generation maintains
robust performance across a broad range of values for Tc (from 0.3T to 0.7T ). The diversity in joint
generation is sustained by the unconditional process and classifier-free guidance. An overview of
cross-modal generation and joint generation is shown in Figure 2 (b) and (c).

5 Experiments

5.1 Motion-to-Music Generation

Experimental Settings. We evaluate our method on the latest LORIS benchmark [49], which contains
86.43 hours of video samples synchronized with music. This benchmark presents three demanding
scenarios: AIST++ Dance [30], Floor Exercise [42], and Figure Skating [47, 46]. In our experiments,
each dataset is randomly split with a 90%/5%/5% proportion for training, validation, and testing.
For model evaluation, we use five metrics to measure the beat-matching between synthesized music
and ground-truth music [49]: Beats Coverage Scores (BCS) and Beat Hit Scores (BHS), Coverage
Standard Deviation (CSD), Hit Standard Deviation (CSD), and the F1 scores. Besides, we use the
Fréchet Audio Distance (FAD) [22] and Diversity [26] scores to evaluate the quality of synthesized
music. Since the quality of the Floor Exercise and the Figure Skating datasets are poor, we only
conduct motion-to-music generation on them with a learnable motion encoder, whose architecture
is derived from [51]. During sampling, we employ 50 DDIM sampling steps. More experimental
settings are provided in Appendix B.

Baselines. We compare our proposed method to existing advanced video-to-music baselines: 1)
Foley Music [13], a graph transformer framework with MIDI representations. 2) CMT [7], a
controllable music transformer model to learn the rhythmic consistency between video and mu-
sic. 3) D2M-GAN [52], a GAN-based model with vector quantized music representation. 4)
CDCD [53], a diffusion-based model with an additional conditional discrete contrastive diffusion
loss. 5) LORIS [49], a diffusion-based model with hierarchical conditional mechanism, yielding
state-of-the-art performance on video-to-music synthesis.
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Figure 4: Example of beat matching on the motion-to-music generation. The red dashes indicate the
extracted musical beats. The red arrow points to the video frame at that particular moment.

Subset Figure Skating-25s Figure Skating-50s
Metrics BCS↑ CSD↓ BHS↑ HSD↓ F1↑ BCS↑ CSD↓ BHS↑ HSD↓ F1↑
Foley 36.0 36.2 32.3 30.7 34.1 32.6 38.0 28.4 32.5 30.4
CMT 46.4 30.1 57.4 29.8 51.3 42.3 32.0 53.8 31.7 47.4
D2MGAN 45.3 27.7 58.7 30.1 51.1 41.9 29.2 54.7 32.7 47.5
CDCD 49.0 21.1 61.0 27.0 54.3 45.9 23.8 57.5 29.3 51.0
LORIS 58.8 19.4 67.1 21.1 62.7 54.7 21.6 63.8 24.5 58.9

Ours 63.5 16.3 75.6 28.8 69.0 59.9 22.6 68.7 22.2 64.0
Table 4: Results on the Figure Skating with beat-matching metrics.

Main Results. The results of beat-matching are shown in Table 2, 3 and 4. From these tables, we can
draw the following conclusions: 1) MoMu-Diffusion significantly surpasses existing state-of-the-art
methods in cross-modal beat-matching. It demonstrates the effectiveness of BiCoR-VAE and the
multi-modal Transformer-based model in synchronizing kinematic and rhythmic beats. 2) MoMu-
Diffusion realizes a substantial improvement in Beat Hit Scores (BHS), which indicates the beats
in the synthesized music are closely aligned with the ground truth. For example, MoMu-Diffusion
gains 98.6% BHS on the AIST++ dancing subset, while previous methods usually gain about 90%
BHS. An illustrative example of beat-matching for motion-to-music is presented in Figure 4. We
can find the musical beats of synthesized music are aligned with the ground truth and the kinematic
movements of the eference video.

The FAD and Diversity results are shown in Figure 3. In this comparison, we focus on LORIS, the
current state-of-the-art method in motion-to-music generation. It is evident that MoMu-Diffusion
consistently outperforms LORIS across these metrics, particularly in FAD scores. This superiority can
be attributed to MoMu-Diffusion’s architectural innovations for capturing long-term correspondence.
Unlike text, music encompasses a richer sequence length due to its complex acoustic features, such
as melody, rhythm, and driving beats. To address this, MoMu-Diffusion employs mel-spectrograms
in place of raw waveforms, thereby mitigating sequence length. Additionally, the introduction of
BiCoR-VAE facilitates modality alignment in latent spaces.

5.2 Music-to-Motion Generation

Experimental Settings. We use two datasets: AIST++ Dance [30] and BHS Dance. About 71 hours
BHS Dance videos are collected from [26], which contains three dancing types: “Ballet”, “Zumba”,
and “Hip-Hop”. For model evaluation, we compute the beat-matching metrics between synthesized
motion beats and the reference musical beats with the aforementioned five beat-matching metrics. To
validate the quality of synthesized motion sequences, we use Fréchet Inception Distance (FID) [17],
Mean KL-Divergence (Mean KLD), and the Diveristy scores. The feature extractor is based on
MotionBert [51] and trained with a classification task on the BHS Dance dataset. For the BHS Dance
dataset, we exclude the BiCoR-VAE since this dataset only contains the paired audio MFCC features
and motion sequences without raw audio. In the generation process, the settings of the diffusion
transformer model are the same as motion-to-music. More details are provided in Appendix B.

Baselines. We compare MoMu-Diffusion to two baselines: 1) D2M [26], the state-of-the-art music-to-
motion work with a two-stage movement unit-based model; 2) DiffGesture [50], the state-of-the-art
co-speech gesture generation work with a U-Net diffusion model. Dance Revolution [19] reports
better performance on music-to-motion generation but is withdrawn by its authors.
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Motion Frames (Ours)

Figure 5: Example of beat matching on the music-to-motion generation. The red dashes indicate
the extracted kinematic beats of the synthesized motion. The red arrow points to the frame of the
synthesized motion sequence at that particular moment.

Subset AIST++ Dance BHS Dance
Metrics BCS↑ CSD↓ BHS↑ HSD↓ F1↑ BCS↑ CSD↓ BHS↑ HSD↓ F1↑
D2M 23.7 13.8 42.8 23.6 30.5 35.1 15.9 57.5 35.0 43.6
DiffGesture 28.5 16.7 40.4 25.7 33.4 42.8 21.3 61.1 23.9 50.3

Ours 39.2 10.2 56.3 12.0 46.2 47.9 8.4 78.5 12.1 59.5
Table 5: Results on the AIST++ Dance and BHS Dance datasets with beat-matching metrics.

Main Results. The beat-matching results are detailed in Table 5. An analysis of these results
reveals that MoMu-Diffusion achieves superior scores across all evaluated tasks, outperforming the
state-of-the-art music-to-motion method D2M and co-speech gesture generation method DiffGesture.
This performance underscores the efficacy of our BiCoR-VAE in constructing an aligned latent
space for cross-modal generation and the feed-forward diffusion model in capturing long-term
correspondence. It should be noted that the metrics BCS (Beats Coverage Scores) and BHS (Beat Hit
Scores) are defined differently in this context compared to motion-to-music scenarios. Specifically,
BCS calculates the coverage score between the kinematic beats of the synthesized motions and the
musical beats of the ground-truth music, rather than the kinematic beats of the ground-truth motions.

The generation quality results are presented in Table 6. It is observable that MoMu-Diffusion reports
better FID, Mean KLD, and Diversity scores on both the AIST++ and BHS Dance datasets. It
demonstrates that MoMu-Diffsuion can generate more realistic and high-quality motion sequences
while maintaining the capability of diverse generations. We further present a qualitative example of
music-to-motion beat-matching in Figure 5. We can find the kinematic beats of synthesized motion
are highly associated with the reference musical beats. Additionally, the generated dance exhibits a
high degree of diversity, encompassing lateral movements, rotations, squats, and so on.

Subset AIST++ Dance BHS Dance
Metrics FID↓ Diversity↑ Mean KLD↓ FID↓ Diversity↑ Mean KLD↓
D2M 17.3 46.2 14.5 11.6 55.9 7.4
DiffGesture 18.6 37.1 12.6 13.8 38.9 7.0

Ours 7.3 52.7 4.9 6.5 67.4 4.2
Table 6: Results on the AIST++ Dance and BHS Dance datasets with generation quality metrics.

5.3 Analysis and Ablation Study

User Study. We conducted a user study with 20 annotators on the AIST++ Dance dataset to evaluate
the generation performance. For each method, 200 samples were generated, and 20 paired samples
were randomly selected for each comparison group. Annotators were asked to respond on site: “Which
dance/music is more realistic and matches the music/dance better?”. The human evaluation results,
shown in Figure 6, indicate that our method outperforms SOTA approaches in both motion-to-music
and music-to-motion generations. Notably, a preference drop is observed when BiCoR-VAE is not
employed, highlighting the importance of an aligned latent space for cross-modal generation.

Motion Encoding. For motion sequence encoding, we compare the spatial position-based method
with the directional vector-based method, which learns the unit directional vectors of the given
adjacency set, and reconstructs the human pose with the calculated mean bone lengths [48]. However,
as shown in Table 7 (#1), the spatial position-based method proved superior, likely due to the error
introduced by movements that alter bone length, such as squatting and bending.
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Id Method Music Metrics Motion Metrics
FAD ↓ F1 ↑ FID ↓ F1↑

#1 Ours w/ Directional Vectors 10.9 91.4 14.7 38.0
#2 Ours w/o Mel-spectrogram 12.8 95.6 9.5 41.6
#3 Ours w/o Rhythmic Contrastive Learning (RCL) 8.5 93.1 8.1 37.9
#4 Ours w/o Feed-Forward Transformer (FFT) 11.0 95.8 11.6 41.4

#5 Ours (Joint Generation) 8.1 96.5 8.8 45.4
#6 Ours (Joint Generation&Variable Length) 9.1 97.6 8.5 49.6
#7 Ours (Cross Generation) 8.9 98.1 7.3 46.2

Table 7: Ablation study on motion-to-music and music-to-motion generations. We use the FAD/FID
as the quality assessment and the F1 score as the beat-matching assessment.
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Figure 6: Results of human evaluation on motion-to-music and music-to-motion generations.

Music Encoding. For music encoding, we evaluated the spectrogram-based method against the
raw waveform-based method. According to Table 7 (#2), the raw waveform-based method gains
performance declines in both FAD and F1 metrics. This is attributed to the lengthy audio sequences
introduced by the raw waveform, introducing difficulties for diffusion modeling training.

Learning Techniques. In MoMu-Diffusion, there are two key learning techniques: rhythmic
contrastive learning (RCL) and Feed-Forward Transformer (FFT). From Table 7, we can observe
that “Ours w/o RCL” gains a clear drop on the beat-matching metric F1 (#3) and “Ours w/o FFT”
gains a drop on the synthesis quality metric FID/FAD (#4), respectively. “Ours w/o FFT” means
we use a U-Net backbone for the diffusion model, which has been shown inferior to our FFT-based
model in long sequence modeling. Equipped with both RCL and FFT, MoMu-Diffusion ensures both
generation quality and cross-modal alignment.

Joint Generation in Variable Length. MoMu-Diffusion supports multi-modal joint generation in
variable lengths, facilitated by a "pad-and-truncate" strategy in the diffusion model and the proposed
cross-guidance sampling. To validate this capability, 1000 samples with varying lengths (10-30
seconds) are generated using different Gaussian noise vectors. With a cross-guidance sampling
timestep set to Tc = 0.5T , Table 7 (#5, #6), we can find that for multi-modal joint generation,
MoMu-Diffusion shows that MoMu-Diffusion achieves comparable performance to the conditional
models with clean condition inputs and advanced performance on the joint generation scenario. More
ablation studies are provided in Appendix D.

6 Conclusion

In this paper, we propose MoMu-Diffusion, the first multi-modal framework designed to learn the
long-term synchronization and correspondence between human motions and music. In MoMu-
Diffusion, we have two key designs: bidirectional contrastive rhythmic VAE (BiCoR-VAE) for
learning modality-aligned latent spaces and Transformer-based diffusion model for learning long-
term dependencies. Through extensive experiments, we demonstrate MoMu-Diffusion’s efficacy
across motion-to-music, music-to-motion, and joint motion-music generations.
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Appendices
MoMu-Diffusion: On Learning Long-Term Motion-Music

Synchronization and Correspondence

A Implementation Details of BiCoR-VAE

A.1 Model Configurations

For BiCoR-VAE, we use an encoder-decoder architecture, in which the 1D convolutional network
and spatial transformer are used. The input is downsampled by a Conv1d downsampling layer and
then forwarded to the middle block, finally upsampled by a Conv1d upsampling layer. The detailed
hyper-parameters of BiCoR-VAE are listed in Table 8.

A.2 Model Training

We use a two-stage training strategy for BiCoR-VAE. Firstly, we train the mel-spectrogram VAE with
three loss functions: reconstruction loss Lrecon, KL loss LKL and a GAN loss LGAN to prevent
over-smoothed mel-spectrogram:

Lstage1 = Lrecon + λ1LKL + λ2LGAN , (10)
where λ1 is set to 1e-5 and λ2 is set to 0.5. Note that the GAN loss contains two steps: it first
updates the generator part (mel-spectrogram VAE) with Lstage1, and then updates the additional
discriminator. After training mel-spectrogram VAE, we freeze it, and train the motion VAE with the
proposed contrastive rhythmic learning loss defined in Eq (4) in stage 2:

Lstage2 = Lrecon + λ3LKL + λ4Lcontrast, (11)
where λ3 is set to 1e-5 and λ4 is set to 1. For training BiCoR-VAE, we use the AdamW optimizer with
a learning rate of 2e-4 and training epochs of 300. We use 8 NVIDIA 4090 GPUs and it takes about
12 hours to finish. To decode the mel-spectrogram into high-fidelity music, we use the BigvGAN
model [28] pretrained on the AudioSet dataset [14].

B Implementation Details of Cross-Modal Generation

B.1 Dataset

For motion-to-music, we evaluate our method on the latest LORIS benchmark [49], which contains
86.43 hours of video samples with paired music. This benchmark incorporates three challenging
scenarios: dancing, floor exercise, and figure skating. For dancing, 1,881 25-second videos are
collected from AIST++ [30], a fine-annotated subset of the dancing dataset AIST [44]. For floor
exercise, 1,950 25-second and 660 50-second videos are collected from the Ginegym dataset [42].
For figure skating, 8,585 25-second and 4,147 50-second videos are collected from the FisV [47] and
FS1000 [46] datasets.

For music-to-motion, we use two datasets: AIST++ Dance [30] and BHS Dance. About 71 hours
BHS Dance videos are collected from [26], which contains three dancing types: “Ballet”, “Zumba”,
and “Hip-Hop”. In our experiments, each dataset is randomly split with a 90%/5%/5% proportion for
training, validation, and testing.

Note that only the AIST++ Dance dataset is used for both motion-to-music and music-to-motion
generations. This is because the Floor Exercise and Figure Skating datasets involved too heavy
motion variation, which makes it hard for the pose extraction algorithm to extract the high-accuracy
motion sequences. As for the BHS Dance dataset, it only provides the MFCC audio features without
raw audio. Therefore, we can not conduct motion-to-music experiments on it.

B.2 Data Processing

We use mel-spectrogram as audio feature representation, We first resample the audio to 16kHz. We
use 80 filters with fft set to 1024 and hop length set to 256 while processing the mel spectrogram
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Hyper-Parameters BiCoR-VAE

Hidden channels 20
Residual blocks 2

Channel multiplier [1,2,4]
Spatial attention layers 3

Downsampling rate 2
Kernel size of Conv1d 5

Total Params 213M
Table 8: Hyper-parameters of the BiCoR-VAE model.

Hyper-Parameters MoMu-Diffusion

Dimension of conditional embedding 1024
Input channels 20

Dimension of Hidden representation 576
Number of attention heads 8

Number of Transformer blocks 4
Kernel size of Conv1d projection network 5

Padding of Conv1d projection network 3
Diffusion Steps 1000

Total Params 158M
Table 9: Hyper-parameters of the FFT model.

using Hann window with a window size of 1024. For human motions, OpenPose [3] is applied to
extract 2D body keypoints, and can process a video at 60 fps. We use the pre-trained Body-25 model
to extract 25 key points of the human body, but some key points are difficult to extract consistently
and some are less relevant to actions. As implemented by [26], we finally choose the 14 most relevant
keypoints to represent the poses, i.e., nose, neck, left and right shoulders, elbows, wrists, hips, knees,
and ankles. We interpolate the missing detected keypoints from the neighboring frames so that there
are no missing keypoints in all extracted clips.

B.3 Model Configurations

For the denoising part, we use the Transformer backbone rather than the U-Net. The hyper-parameters
of our FFT model are listed in Table 9. The FFT diffusion model is trained by the AdamW opti-
mizer [23] with a learning rate of 1.6e-5 and a lambda linear scheduler with a warmup step of 10000.
We train the diffusion model with 200 epochs for each task. It takes about 2 days for 8 NVIDIA 4090
GPUs. For the Figure Skating dataset, it takes about 4 days since this dataset is large.

B.4 Evaluation Metrics: Motion-to-Music

To evaluate whether the synthesized music is aligned with the given motion, we use the improved
Beats Coverage Scores (BCS) and Beat Hit Scores (BHS) to validate the rhythm correspondence
and cross-modal alignment of synthesized music. The improved BCS and BHS are first proposed
by [4, 26], then used for rhythmic dance-to-music validation [53, 52], and improved by [49] for
long-term rhythmic music validation. Also, we report Coverage Standard Deviation(CSD) and
Hit Standard Deviation(CSD) to evaluate the robustness of generative models. Finally, the F1
scores of improved BCS and BHS are also reported as an overall assessment. BCS and BHS are
designed by computing matching degrees of the rhythm points from synthesized music and ground-
truth music. Let Ns be the rhythm point number of synthesized music, Nt be the rhythm point
number of ground-truth music, and Nm be the number of matched rhythm points, the BCS is defined
as BCS = Nm/Ns and the BHS is defined as BHS = Nm/Nt, respectively. However, these
metrics are not suitable for long-term music evaluations since 1) the second-wise rhythm detection
algorithm leads to an extremely sparse vector and 2) BHS can easily exceed 1 if the rhythm points of
generated music are more than ground truth. Therefore we use an improved audio onset detection
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Algorithm 1: Pseudo code for cross-modal (motion-to-music) sampling.
Input: The latent mel-spectrogram representation za, latent motion representation zm, the

pre-trained denoiser θa for motion-to-music, and the decoder Da for mel-spectrogram.
t← T ,
za(t)← N (0, I)
while t > 0 do

za(t)← sample from pθa(za(t−∆t)|za(t), t, zm)
t← t−∆t

end
return Da(ẑa)

algorithm to avoid sparse rhythm vectors. Here is the Python code based on the Librosa library:
librosa.onset.onset_detect(y=audio, sr=sampling_rate, wait=1, delta=0.2, pre_avg=3, post_avg=3,
pre_max=3, post_max=3, units=’time’).

For validating the quality of synthesized music, we use the Fréchet Audio Distance (FAD) and the
Diveristy score. We use the pre-trained VGGish model from https://github.com/gudgud96/
frechet-audio-distance to compute the FAD scores. Based on the feature extractor VGGish, we
compute the Diversity score by using the average feature distance for paired samples. Specifically, the
Diversity score contains inter-diversity and intra-diversity. Inter-diversity is obtained by computing
the average feature distance between 200 combinations of 50 pieces of music from different motions
and the intra-diversity is obtained by computing the average feature distance between all combinations
of 5 pieces of music from the same motion input.

B.5 Evaluation Metrics: Music-to-Motion

To evaluate whether the synthesized motion is aligned with the reference music, we also use these
five beat-matching metrics. However, since the number of musical beats is always more than the
number of kinematic beats in real-world products, we use the musical beats as the reference for
evaluation, which is also consistent with previous works [26]. Concretely, Let Ns be the kinematic
point number of synthesized motion, Nt be the rhythm point number of ground-truth music, and Nm

be the number of matched points, the BCS is defined as BCS = Nm/Ns and the BHS is defined
as BHS = Nm/Nt, respectively. For kinematic beat extraction, we use the bin-wise directrogram
difference (defined in Eq (2)) as the indicator [4].

For validating the quality of synthesized motion, we use the Fréchet Inception Distance (FID) and the
Diveristy score. To compute the FID score, we follow the design of [26] and train a motion classifier
on the BHS Dance dataset with three classification categories: “Ballet”, “Zumba”, and “Hip-Hop”.
The motion classifier consists of a MotionBert encoder [51] and a classification head. The motion
classifier is trained by an Adam optimizer with a learning rate of 1e-4 and 100 epochs. Then, we use
the trained MotionBert encoder as the feature extractor for computing the FID and Diversity scores.
The definition of Diversity score here is the same as Appendix B.4.

C Pseudo Codes

We provide the pseudo-codes of cross-modal generation and multi-modal joint generation in Al-
gorithm 1 and 2, respectively. For the cross-modal generation, we take the motion-to-music as an
example while the implementations of music-to-motion are symmetrical.

D The Choice of Tc in Joint Generation

We propose a simple cross-guidance sampling strategy to combine multiple cross-modal generative
models for joint generation. In this process, there is a hyper-parameter Tc that controls the modality
fusion timestep. In Table 10, we study five variants: Tc begins from 0.9T to 0.1T with an interval
of 0.2T . From these results, we can observe that employing the cross-guidance strategy in the
early sampling steps is not feasible since the predicted latent representation contains too many
noises. However, we can find that MoMu-Diffusion (Tc = 0.7T ) obtains an acceptable performance,
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Algorithm 2: Pseudo code for multi-modal joint sampling.
Input: The latent mel-spectrogram representation za, latent motion representation zm, the

pre-trained denoisers θa and θm, the decoders Da and Dm, the cross-guidance scale γ,
the pre-defined schedule α1, ..., αT and αt =

∏t
i=1 αi.

t← T ,
Tc ← γT
za(t)← N (0, I)
zm(t)← N (0, I)
while T ≥ t > Tc do

za(t−∆t)← sample from pθa(za(t−∆t)|za(t), t, ∅)
zm(t−∆t)← sample from pθm(zm(t−∆t)|zm(t), t, ∅)
t← t−∆t

end
while Tc ≥ t > 0 do

ẑa = za(t)√
αt
−

√
1−αt√
αt

ϵθa(za(t), t, ∅)
ẑm = zm(t)√

αt
−

√
1−αt√
αt

ϵθm(zm(t), t, ∅)
za(t−∆t)← sample from pθa(za(t−∆t)|za(t), t, ẑm)
zm(t−∆t)← sample from pθm(zm(t−∆t)|zm(t), t, ẑa)
t← t−∆t

end
return Da(ẑa), Dm(ẑm)

Method Joint Generation Music Metrics Motion Metrics
FAD ↓ F1 ↑ FID ↓ F1↑

MoMu-Diffusion (Tc = 0.9T ) ✓ 14.8 82.4 17.3 25.8
MoMu-Diffusion (Tc = 0.7T ) ✓ 10.9 95.9 9.7 37.8
MoMu-Diffusion (Tc = 0.5T ) ✓ 8.1 96.5 8.8 45.4
MoMu-Diffusion (Tc = 0.3T ) ✓ 7.5 90.4 9.0 42.1
MoMu-Diffusion (Tc = 0.1T ) ✓ 8.0 85.5 9.5 32.6
Table 10: Ablation study of the cross-guidance step Tc on the AIST++ Dance dataset.

indicating that the denoising process is coarse-to-fine. Using fewer cross-guidance sampling steps
(like Tc = 0.1T ) can ensure the quality of generated samples, but the cross-modal alignment is
omitted, leading to a low F1 score. Therefore, we use Tc = 0.5T in our paper to trade off the
sampling quality and cross-modal alignment in joint generation.

E Failure Cases

Since our method predicts pose points, the deviation between points can cause abnormal length of
human skeleton. Three sets of examples are shown in Figure 7, with anomalous frames on the left
and the corrected frames on the right.

We first calculated the average bone length between each pair of keypoints in the dataset, after which
we post-processed the predicted keypoints. We specify a threshold (which we specify as 1.3 times the
mean bone length) and correct the predicted bone lengths to the mean bone length once they exceed
the threshold, an approach that significantly enhances model generation. It is worth noticing that the
post-processing can not fully address this issue but alleviate it.

F More Qualitative Results

We provide more qualitative results in Figure 8, 9, 10, and 11

17



Figure 7: Three failure cases and the corrected results.

G Used Resources and Licenses

In this paper, we use several open resources, including https://github.com/
OpenGVLab/LORIS(All Rights Reserved), https://github.com/NVlabs/Dancing2Music
(NVIDIA Source Code License, 1-Way Commercial), https://github.com/gudgud96/
frechet-audio-distance (All Rights Reserved), https://github.com/Walter0807/
MotionBERT (All Rights Reserved), and https://github.com/Text-to-Audio/
Make-An-Audio (All Rights Reserved). We use these resources for research purpose only.

H Limitations and Boarder Impact

Due to the limited motion-music data and computing resources, the scaling law of our model is not
testified in a super large dataset. Besides, our model depends on some data pre-processing methods
like mel-spectrogram extraction and keypoints extraction by OpenPose, which may lead to error
accumulations.

MoMu-Diifusion promotes both neural motion and music synthesis, so it may help expand any impact
that generative systems have on the broader world like copyright conflicts. We will add constraints
and licenses when open-resourcing our code and pre-trained models.
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Figure 8: Example of beat matching on the AIST++ Dance (motion-to-music). The red dashes
indicate the extracted musical beats. The red arrow points to the video frame at that particular
moment.
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Figure 9: Example of beat matching on the Floor Exercise (motion-to-music). The red dashes indicate
the extracted musical beats. The red arrow points to the video frame at that particular moment.
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Figure 10: Example of beat matching on the Figure Skating (motion-to-music). The red dashes
indicate the extracted musical beats. The red arrow points to the video frame at that particular
moment.

21



Motion

Frames (Ours)

Kinematic

Beats (Ours)

Musical 

Beats (ref)

Motion

Frames (Ours)

Kinematic

Beats (Ours)

Musical 

Beats (ref)

Motion

Frames (Ours)

Kinematic

Beats (Ours)

Musical 

Beats (ref)

Motion

Frames (Ours)

Kinematic

Beats (Ours)

Musical 

Beats (ref)

Motion

Frames (Ours)

Kinematic

Beats (Ours)

Musical 

Beats (ref)

Figure 11: Example of beat matching on the AIST++ Dance (music-to-motion). The red dashes
indicate the extracted kinematic beats of the synthesized motion. The red arrow points to the frame
of the synthesized motion sequence at that particular moment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The Abstract and Section 1 accurately reflects the paper’s scope: motion-music
generation and contributions: 1) BiCoR-VAE and FFT model for multi-modal generation,
and 2) extensive experimental evaluations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of our work in Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all experimental details in Section 5, Appendix A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We cannot upload our code in the peer-reviewing process due to copyright
constraints. We will open-source our code and data upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details in Section 5, Appendix A
and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have suitably reported error bars in our main results. See the CSD and
HSD metrics in Table 2, 3, 4, 5 and the error bars in Figure 3, 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Ap-
pendix A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed the broader impacts of our work in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have described safeguards in Appendix H.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly listed the licenses of the resources we used in Appendix G.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We have included the full text of instructions given to the participants in
Section 5.3.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: In Section 5.3, we have mentioned that we just conduct human evaluations
to compare different synthesized samples. The synthesized samples only include human
motions and musical audios, which have no potential risks.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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