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ABSTRACT

Evaluating Video Language Models (VLMs) is crucial for improving their capa-
bilities in understanding video content. Existing evaluation methods depend on
single models, which may be unreliable or biased due to models’ incapability
of understanding content or inherent bias, ultimately compromising reliability of
evaluation. A straightforward way is to apply the principle of collective thoughts,
aggregating reviews from multiple VLMs to enhance reliability. This study inves-
tigates the efficacy of collective thought approaches in VLM evaluation, particu-
larly when the pool of judges includes both reliable and unreliable models. Our
findings reveal that incorporating collective judgments from a mix of reliable and
unreliable VLMs does not necessarily enhance the accuracy of the final evaluation
outcomes. The inclusion of less reliable judges could introduce noise and poten-
tially lead to less reliable evaluations. To explore the factors of improving reliabil-
ity of judges, we fine-tuned the underperformed VLM judge, Video-LLaVA, and
observed that to make VLM judges serve as reliable evaluators, good understand-
ing ability alone is not sufficient. These findings stress the limitations of collective
thoughts approaches in VLM evaluation and highlight the need for more advanced
methods that can account for reliability of individual models. Our study promote
the development of more reliable evaluation for VLMs.

1 INTRODUCTION

With the rapid proliferation of digital video content on a wide range of platforms, including social
media, the need for robust and scalable methods of evaluation has significantly increased. Traditional
approaches to evaluation in these areas are generally performed by human experts, whose subjective
judgments may be inconsistent and lack easy scalability. This limitation has recently sparked interest
in the automation of the evaluation process through advanced machine learning models.

Recent advancements have led to the development of Video Language Models (VLMs) that can gen-
erate descriptions and analyses from video inputs, potentially automating the evaluation of video.
However, depending on a single VLM for evaluation presents challenges. As illustrated in Figure 1,
the evaluation results from the VLM are inconsistent with those produced by multi-agent debate. In-
dividual models can exhibit biased outcomes influenced by their training data and architectural con-
straints, and are susceptible to hallucinations—generating plausible but incorrect information (Tong
et al., 2024; Gervi et al., 2024). These challenges compromise the reliability of employing a single
VLMs as effective evaluators, particularly in complex video understanding tasks.

VLM Candidate
Question:

Give a
description

of the
video

Response: ......

Reference
Response: ......

Rating: 5

Rating: 1

Inconsistence

Video Frames

  VLM Judge

LLM Agent Debate

Figure 1: By contrasting reviewing results from one VLM with multiple LLM agent debate, we find
that current VLM is far from being able to give reliable review.
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An intuitive solution is to employ ensemble methods or principles from collective intelligence, ag-
gregating judgments from multiple models to enhance reliability. The concept of Collective In-
telligence suggests that integrating diverse thoughts could improve decision accuracy and mitigate
individual biases Malone et al. (2009).

This gap in effective evaluation methodologies motivates our research, leading us to ask:

• Are current VLMs reliable for evaluation tasks, especially in complex video understanding
tasks? Can we use weak VLM to judge stronger VLM?

• Does incorporating collective thought through multiple VLMs enhance the reliability of
evaluations?

• What are the limitations of collective thought approaches in the context of VLM evaluation,
and how can we address them?

We address these questions by exploring the effectiveness of collective thought approaches to the
evaluation of VLMs. Specifically, we investigate whether pooling judgments across multiple VLMs
improves evaluation reliability when the pool of judges includes both reliable and unreliable models.
In this work we demonstrate that a pool of judges that comprises both reliable and unreliable judges
does not necessarily improve the results of the evaluation in a collective thought approach. Adding
less reliable models injects noise into the results that can easily swamp any aggregation benefits.
These observations highlight limitations of collective thought approaches when indiscriminately
aggregating evaluations from models of varying reliability.

The main contributions of our work are as follows:

• We assess the reliability of current VLMs in evaluation tasks, highlighting their limitations
due to incapability of understanding and inherent bias.

• We found that using weaker VLMs to judge stronger models leads to unreliable evaluations,
as the weaker models lack the necessary understanding and critical reasoning abilities.

• We demonstrate that collective thought approaches, which aggregate judgments from multi-
ple VLMs without considering individual reliability, do not necessarily enhance evaluation
reliability when unreliable judges are involved.

• We analyze the limitations of collective thought in the context of VLM evaluation and
discuss potential strategies to address these challenges, such as selective judge inclusion
based on reliability metrics.

Our work offers insights for the design of evaluation frameworks, promoting the development of
more reliable model. By addressing the challenges identified, we could pave the way for improved
methodologies that can effectively evaluate VLMs in handling real-world video content.

2 RELATED WORK

Video Language models Video language model (Lin et al., 2023; Li et al., 2023c; Zhang et al.,
2023) represent advanced model capable of handling a variety of video understanding tasks, in-
cluding comprehension and captioning, question-answering. These models process both video and
textual inputs to generate text-based outputs. Architecturally, Video-LMMs typically integrate pre-
trained vision backbones (Radford et al., 2021; Fang et al., 2023; Wang et al., 2022) with large
language models (Touvron et al., 2023; Zheng et al., 2023) through connector modules such as
MLP adapters, Q-former (Dai et al., 2023), and gated attention mechanisms (Alayrac et al., 2022).
Early studies, such as VideoChat (Li et al., 2023b) and VideoChat-GPT (Li et al., 2023c), utilized
a two-stage training approach focused on alignment and adherence to video-related instructions.
Recently, the development of more advanced VLM has progressed, with some models enhancing
architectural frameworks (Li et al., 2023c), expanding to new application areas (Munasinghe et al.,
2023), and supporting longer video (Song et al., 2023; Ren et al., 2023).

Model Evaluating VLMs are traditionally evaluated using metrics tailored to each specific task.
For example, in image captioning, common metrics include BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004), and CIDER (Vedantam et al., 2015), which
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measure the similarity between generated captions and reference captions. Similarly, Visual Ques-
tion Answering (VQA) tasks are evaluated using accuracy metrics that directly compare the model’s
responses to those provided by human annotators (Agrawal et al., 2023; Mañas et al., 2023). How-
ever, these traditional metrics often fail to capture the nuanced details and subtleties in the responses
produced by models, particularly in complex or subjective cases. In order to achieve a more com-
prehensive evaluation, human assessments are employed to account for contextual and creative ele-
ments that automated metrics might overlook. Nonetheless, the high costs make human evaluations
not scalable. Recent studies have developed methods that leverage models to evaluate models. For
instance, numerous researches have utilized language models to assess outputs from language mod-
els Zhu et al. (2023); Li et al. (2023a); Kocmi & Federmann (2023); Chiang & Lee (2023). With the
advancement of multimodal language models, recent studies have focused on using visual language
models to evaluate responses from visual language models Kim et al. (2023). Our study is the first
systematic work to evaluate VLMs by using VLMs.

Collective Decision-Making Drawing from interdisciplinary theories, our methodology is under-
pinned by principles from collective intelligence and social psychology. Collective intelligence
theory suggests that groups can achieve higher levels of intelligence and problem-solving capability
than isolated individuals (Malone et al., 2009). This is complemented by the ”Wisdom of Crowds”
principle, which argues that diverse groups can make better decisions than even the most capable in-
dividuals within them (Surowiecki, 2005). Additionally, social constructionist perspectives provide
insights into how collective assessments evolve from the integration of multiple cognitive processes,
reflecting broader sociocultural contexts (Burns & Engdahl, 1998). These theories inform our ap-
proach to synthesizing assessments from multiple VLM into a comprehensive evaluation.

3 METHODOLOGY

In this section, we begin by detailing the data collection process, where video question-answering
pairs are gathered to serve as evaluation inputs for subsequent steps. Following this, we describe
our approach for comparing individual reviews generated by VLMs with those produced through
multi-LLM Agent-Debates, aiming to assess the reliability of each VLM. Subsequently, we detail
our evaluation methodology for VLMs, which employs a structured three-step process. Each phase
is designed to evaluate the models’ ability to interpret and respond to complex video content, thereby
enhancing the reliability of VLMs as evaluative judges.
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Figure 2: Diagram illustrating the multi-stage evaluation process involving multiple initial reviews
and a reliability selection gate in the middle, a final comprehensive review by an advanced model.

3.1 VLM CANDIDATES GENERATE RESPONSE

A video-question pair is defined as (v, t), where v represents a video sequence and t is the corre-
sponding textual instruction or query. There are two phased in the data collection.

Phase 1: Video-question Pair Collection The Complex Video Reasoning and Robustness Eval-
uation Suite (CVRR-ES) (Khattak et al., 2024) is a dataset that comprehensively assesses VLLM
across 11 diverse real-world visual dimensions Vd(see Table 2), such as interpretation of social con-
text. From this dataset, we collect a set of video-question pairs D = {(v1, t1), (v2, t2), ..., (vn, tn)},
where each pair represents a unique video-instruction combination. (see Figure 6 for an example).
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Phase 2: VLM Response Generation For each video-question pair (vi, ti), we generate re-
sponses using a set of VLMs M = {M1,M2, ...,Mm}. The response of model Mj to pair (vi, ti) is
denoted as rij . The responses are then collected and cataloged, providing a rich source of data for
subsequent analysis. We ensure that each response adheres to our predefined criteria for relevance
and completeness, excluding any that do not meet the standards. (see Figure 6 for an example).

3.2 INDIVIDUAL VLM JUDGE REVIEWS CANDIDATE RESPONSE

Review by individual VLM As shown in Figure 2, we employ a set of VLMs MJ to generate
initial reviews R = {R1, R2, ..., Rq} for each video-question-answer pair rij from previous section.
Each model offers a unique perspective, influenced by its training and inherent capability. These re-
views are expected to provide varied interpretations and assessments, reflecting the models’ different
ways to understanding and analyzing visual information. (see Figure 6 for an example).

Review by LLM Agents Debate(Reference-guided grading) As shown in Figure 1, we engage
a set of LLM agents to conduct discussions and generate initial reviews. The LLM agents receive
both the VLM-generated response and reference responses provided by CVRR-ES (Khattak et al.,
2024) for consideration. Through multiple rounds of interaction and debate, the LLM agents col-
laboratively refine their assessments. Ultimately, another LLM agent consolidates the insights and
finds a consensus on the rating (see Figure 6 for an example).

Contrasting Reviews from LLM Agent-Debate and VLM We assume that reviews generated
through LLM Agent-Debates are the most reliable, as the inclusion of referenced responses enhances
the validity of the judgments made during these debates. To evaluate the agreement between LLM
debates and VLM-generated reviews, we employ Weighted Cohen’s Kappa (Cohen, 1960; Artstein
& Poesio, 2008), a statistical measure of inter-judge agreement for categorical data. Unlike the
unweighted version, which treats all disagreements equally, the weighted variant accounts for the
extent of disagreement by assigning different weights to each category. This approach is particularly
effective for ordinal categories, as it allows for partial credit in cases of minor disagreements:

κ = 1−
∑

α,β wαβOαβ∑
α,β wαβEαβ

where Oαβ is the observed frequency in which judge 1 assigned rating α and judge 2 assigned rating
β, Eαβ is the expected frequency for such assignments under the assumption of independent ratings,
and wαβ is the weight assigned to the disagreement between categories α and β, which is typically
calculated based on the squared or linear difference between categories. For the weighting function,
we employ a quadratic weighting scheme defined as

wαβ = 1−
(
α− β

k − 1

)2

,

where k represents the number of possible ratings, i.e., 5, and α and β are integers between 1 and 5.

3.3 COLLECTIVE VLM JUDGE REVIEWS CANDIDATE RESPONSE

The evaluation process with collective thought is designed to harness the collective insights of multi-
ple VLMs, followed by a comprehensive review using a more sophisticated model. This approach is
inspired by the “wisdom of crowds” concept in collective intelligence, aiming to harness the diverse
strengths of various models to achieve a more accurate and nuanced assessment. By pooling the
insights from different models, we leverage a form of crowdsourced thought to enhance decision-
making precision in evaluating video content.

Collective Thought Judge We utilize an advanced model, Ma, which takes the video question-
answering content and corresponding reviews from VLMs to generate a final assessment A:

A = Ma(ri,j , R1, R2, . . . , Rq)

Figure 2 shows the overall pipeline. After collecting the initial reviews, the advanced video lan-
guage model aggregates these reviews along with the video question-answering data to produce a
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consolidated final assessment. This model is designed to process and integrate multiple sources of
information, enabling it to evaluate the initial reviews and determine the most accurate and coherent
response. TThe advanced judge considers the video-question-answering pair along with the initial
judge’s evaluations as references. Using all the available information, the advanced judge provides
a final review, potentially reducing individual biases and improving the overall quality of the judg-
ment. Notably, the adavanced judge employed in this process is GPT-4o, which achieved the highest
agreement with the LLM Agent-Debate.

Mixture of Judges To further enhance the accuracy of the evaluation process, as shown reliabil-
ity selection gate in Figure 2, we implement a Mixture of Judges strategy that leverages Weighted
Cohen’s Kappa to select the most reliable subset of VLMs MJ′ ⊆ MJ for each visual dimension
Vd. The Weighted Cohen’s Kappa quantifies the agreement between model Me and the LLM Agent-
Debate within the visual dimension Vd. The reliability scores κd,e reflect the consistency with which
each model aligns with the LLM debate within the given visual dimension.

For each visual dimension Vd, we select the subset MJ′
of models Me where κd,e exceeds a prede-

fined threshold θ:
MJ′

= {Me | κd,e ≥ θ}

Alternatively, we may select the top k models with the highest reliability scores for each visual
dimension Vd:

MJ′
= {Me | κd,e is among the top k scores for visual dimension Vd}

By dynamically selecting models based on their reliability scores at the visual dimension level, we
ensure that only the most reliable and consistent models contribute to the final assessment.

4 EXPERIMENTAL SETUP

This section details the experimental setups used to evaluate the performance of VLMs judge. We
adopt an ”Analyze-then-Judge” framework tailored to the video domain, where evaluators first ex-
amine the video content and then provide their assessments.

4.1 MODEL

Candidates Video-LLaVA, LLaMA-VID, GPT-4o mini, Video-ChatGPT, mPLUG-Owl-Video
Judges (VLM) Video-LLaVA, LLaMA-VID, GPT-4o mini, InternVL2, GPT-4o
Judges (LLM) GPT-3.5, Agents-Debate (GPT-4o text input only, GPT-3.5)
Final Judge GPT-4o

Table 1: List of candidate and judge models

Table 1 lists the candidate models and judges employed in our study. We deploy several ad-
vanced VLMs to assess their judging capabilities. During the data collection phase, the can-
didate models—Video-LLaVA, LLaMA-VID, GPT-4o mini, Video-ChatGPT, and mPLUG-Owl-
Video—are utilized to generate video question-answer pairs denoted as rij .

In the subsequent evaluation stage, we employ both VLMs and LLMs as judges. The LLM GPT-3.5
has no access to the video content, but was provided with reference answers. For LLM debates,
we utilize GPT-3.5 and GPT-4o models without visual input. They are also provided with reference
answers and engage in debates to assess the video-question-answering pair. For VLM judging, we
select advanced models as listed under the Judges (VLM) category in Table 1. We then compare
the review results obtained from individual VLMs with those derived from LLM or LLM debates
to evaluate consistency and reliability. In the final stage, the advanced model GPT-4o review the
video-question-answer pairs rij along with the reviews from the VLMs to produce a consolidated
final assessment.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.2 DATASET

The CVRR-ES (Khattak et al., 2024) dataset encompasses a variety of visual dimensions Vd that
cover diverse video categories pertinent to real-world scenarios. These visual dimensions range from
context-dependent areas, such as social and emotional contexts, to video types commonly encoun-
tered, including unusual activities (Khattak et al., 2024). The dataset comprises 2,400 high-quality
open-ended question-answer (QA) pairs derived from 217 meticulously curated videos. The videos
have an average duration of 22.3 seconds, with lengths varying from a minimum of 2 seconds to a
maximum of 183 seconds (Khattak et al., 2024). Some samples of this dataset are listed in Table 3.

4.3 JUDGMENT CRITERIA AND METRICS

The judgments of VLMs is through a Scoring Evaluation approach. Each judgment for a video-
question-answering pair is assigned a score that reflects its accuracy and relevance. In our experi-
ments, models are required to provide a rating on a scale from 1 to 5, where 1 represents the poorest
performance and 5 indicates perfect accuracy. For additional metrics, such as Pair Comparison, we
can simply utilize the scores from the Scoring Evaluation. For example, when performing a pairwise
comparison between two models, the model with the higher rating score is deemed superior.

5 EXPERIMENTAL RESULTS

5.1 INDIVIDUAL VLM JUDGE REVIEWS CANDIDATE RESPONSE

Figure 3: Score of candidates given by judges on various visual dimensions.

Figure 3 and Table 4 presents the evaluation scores assigned by different judge models to the can-
didate VLMs across various visual dimensions(see Table 2). Analyzing the results, we observe that
some VLMs consistently assign high scores to the candidate models across all visual dimensions.
For instance, when judged by Video-LLaVA, the candidate models receive scores close to 4.00
across nearly all dimensions. Similarly, LLaMA-VID as a judge also assigns high scores, typically
above 3.70. This trend suggests that some VLMs tend to evaluate candidate models favorably.

In contrast, the LLM judges and the Agent-Debate method assign significantly lower scores. The
Agent-Debate method, which involves multiple LLM agents engaging in discussion and reaching
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a consensus, consistently gives the lowest scores among all judges. For example, in the case of
LLaMA-VID as the candidate model, the Agent-Debate scores range from 1.46 to 1.94 across dif-
ferent dimensions. This indicates a more critical assessment compared to the VLM judges.

The disparity between the VLM and LLM judges highlights potential issues with the reliability
of VLMs as evaluators. VLMs may be prone to overestimating the performance of candidate
models due to their incapability to understand the content or inherent bias. See some output samples
from various VLM judges in Appendix A. This overestimation can lead to inflated scores that do not
accurately reflect the true capabilities of the candidate models. On the other hand, the Agent-Debate
method appears to provide a more stringent and possibly more accurate evaluation. By engaging
multiple LLM agents in a debate with referenced answer provided and reaching a consensus, this
method reduces individual biases. However, the reference answers are required for LLM Agent-
Debate method.

Additionally, certain visual dimensions consistently receive lower scores across all judges. For
example, the dimensions of Non-exist (E) and Non-exist (NE) often have lower scores, indicating
that candidate models struggle with detecting non-existent entities or events in video content. This
highlights specific areas where VLMs require improvement to handle complex video understanding
tasks effectively.

Among the various VLMs, GPT-4o and the Agent-Debate method have the most similar eval-
uation patterns. They assign consistently lower scores to candidate models across most visual
dimensions, reflecting a more stringent and critical assessment. For instance, when evaluating the
LLaMA-VID candidate model, GPT-4o assigns scores ranging from 1.77 to 2.48, and Agent-Debate
assigns scores from 1.11 to 1.94. This similarity suggests that GPT-4o and the Agent-Debate method
exhibit similar levels of rigor in assessing the performance of candidate models, potentially offering
more reliable and unbiased evaluations compared to other judge models.

Besides, the left chart in Figure 4 illustrates the statistics of ratings from all judges. Video-LLaVA
and LLaMA-VID show a significant concentration of ratings at 4. In contrast, GPT-4o and Agent-
debate have higher counts at lower ratings. InternVL2 and GPT-4o mini display a more balanced
distribution across ratings.

5.2 CONTRASTING REVIEWS FROM VLM AND LLM AGENT-DEBATE

Figure 4: Left: Ratings Distributions. Right: Weighted Cohen’s Kappa of Judges.

The right chart in Figure 4 and Table 5 display the average agreement scores in percentage between
various VLMs and the Agent-Debate method across visual dimensions. The agreement is quan-
tified using the Weighted Cohen’s Kappa (Cohen, 1960; Artstein & Poesio, 2008), where higher
values indicate greater agreement. It is generally accepted that values less than or close to 0 indi-
cate no agreement, while values between 0 and 0.20 are considered to represent slight agreement,
0.21–0.40 as fair agreement, 0.41–0.60 as moderate agreement, 0.61–0.80 as substantial agreement,
and 0.81–1.00 as indicating almost perfect agreement (Cohen, 1960; Artstein & Poesio, 2008).
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From the chart, we observe that VLMs such as Video-LLaVA and LLaMA-VID have relatively low
agreement scores with the Agent-Debate method, often including negative values. For instance,
Video-LLaVA shows agreement scores ranging from −1.83 to 2.81, and LLaMA-VID ranges from
−4.15 to 3.70. In contrast, InternVL2, GPT-4o mini and particularly GPT-4o exhibit significantly
higher agreement scores, indicating substantial agreement with the Agent-Debate evaluations. GPT-
4o, for example, shows agreement scores exceeding 50 in several dimensions, such as 60.38 for
Social Context and 55.18 for Visual Context. More details are elaborated in Table 5.

The results suggest that GPT-4o is more aligned with the Agent-Debate evaluations, potentially
due to their multimodal capabilities allowing better understanding of video content. On the
other hand, the significant disagreement for other VLMs, such as Video-LLaMA, raises concerns
about the reliability of using them as judges, possibly due to incapability of understanding content.
The Agent-Debate method with referenced response provided, involving multiple LLM agents en-
gaging in discussion and reaching a consensus, appears to provide a more reliable evaluation by
mitigating individual misjudgment. The collaborative nature of the Agent-Debate reduces the im-
pact of any single agent’s misjudgment.

5.3 COLLECTIVE VLM JUDGE REVIEWS CANDIDATE RESPONSE

Figure 5: Left: Weighted Cohen’s Kappa of GPT-4o judge across various candidate models; Mid-
dle: Weighted Cohen’s Kappa of Collective thought judge across various candidate models; Right:
Weighted Cohen’s Kappa of Mixture judge across various candidate models

Collective Thought Judge Middle chart in Figure 5 and Table 6 presents the agreement scores
between the collective evaluations of all judges and the Agent-Debate method across various visual
dimensions. The judges encompass both reliable models (high agreement score) and models with
known reliability issues (low agreement score). The initial judges include LLaMA-VID, Video-
ChatGPT, Video-LLaVA, GPT-4o mini. The final judge is GPT-4o.

From the data, it is evident that including both more reliable and less reliable judges in the col-
lective reviewing process does not enhance the reliability of the ratings. The average agreement
scores with the Agent-Debate method remain moderate to low, and in some cases, the agreement is
lower than using only GPT-4o as judge. For instance, under the collective evaluation, the average
agreement scores across dimensions range from 2.72 to 42.53, with the highest scores observed in
dimensions like Social Context and Visual Context as shown in Table 6. These scores are lower
than those scores achieved by individual GPT-4o judges. The inclusion of less reliable judges intro-
duces noise and biases into the collective assessment. As a result, the collective ratings do not align
closely with the base line established by the Agent-Debate. This phenomenon highlights the chal-
lenges of aggregating evaluations from heterogeneous judges without proper weighting or selection
mechanisms.

These findings indicate that unreliable models can adversely affect the outcomes of ensemble
methods. In the context of VLM evaluation, where hallucinations and biases are prevalentTong
et al. (2024), the negative impact is pronounced.
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Mixture of Judge Right chart in Figure 5 and Table 7 illustrates the agreement scores when employ-
ing a mixture of judges, selected based on their visual dimension level reliability scores (Weighted
Cohen’s Kappa). The selection of judges is dynamic, as outlined in section 3.3. For instance, for
the fine action visual dimension, the selected judges include InternVL2, GPT-4o mini, with GPT-4o
serving as the final judge. The goal of this strategy is to enhance evaluation reliability by including
only the most reliable judges for each visual dimension.

Despite this selective approach, the results indicate that the mixture of judges does not substan-
tially improve the agreement with the Agent-Debate method. The average agreement scores are
comparable to those observed in the collective thought approach with all judges, and no significant
enhancement is observed. For example, the average agreement scores range from 2.72% to 56.23%
across different dimensions. Even though the judges were selected for higher reliability in specific
categories, overall improvement in evaluation accuracy lower than the score achieved by GPT-4o.

One reason could be that the reliability scores used for judge selection may not fully capture
the judges’ ability to evaluate complex video content. As a result, the selected judges might
still exhibit biases or hallucinations. These findings suggest that simply selecting judges based
on past performance metrics does not guarantee improved evaluation outcomes. The intricacies
of multimodal evaluation require more advanced methods that can effectively integrate judgments
while mitigating individual model misjudgment.

6 DISCUSSION

Reliability of Indivisual VLM as Judges Our results indicate that VLMs, including Video-LLaVA,
are always overestimating the scores of candidate models. The reason for such overestimation
may be their failure to comprehend the content or inherent biases in the training Data. For
example, if the data is representative of more positive feedback, then the model would be
naturally prone to giving higher ratings. GPT-4o is the only VLM that exhibited significant
agreement with the Agent-Debate method and can be considered more reliable as a judge.

We compared the judges’ Weighted Cohen’s Kappa scores with performance scores from (Khattak
et al., 2024) and observed a consistent trend: the better the judges performed on the benchmark, the
higher their Weighted Cohen’s Kappa. This finding suggests that a judge can be reliable only if it
demonstrates a strong understanding of the content itself. To improve reliability, we fine-tuned the
underperformed VLM model Video-LLaVA. As shown in Figure 14, despite fine-tuning, Video-
LLaVA’s rating distribution remained skewed towards higher ratings, and its Weighted Cohen’s
Kappa, reliability as a judge, improved only slightly. The agreement scores with the benchmark
did not approach those of GPT-4o. These findings indicate that simply improving a model’s com-
prehension ability is insufficient to enhance its reliability as a judge. Figure 15 illustrates that a
reliable judge must possess both strong comprehension skills and specific capabilities in as-
sessment and critical analysis.

Weak to Strong Evaluation The results in Table 4 and Table 5 indicate that the weaker VLMs, such
as Videl-LLaVA,judging stronger models, such as GPT-4o mini, result in unreliable evaluations
since these weaker models lack the requisite understanding and critical reasoning abilities. This
accords with recent research into weak-to-strong generalization in language models, which proves
that if one naively fine-tunes strong models with labels from weaker supervisors, not all of the
capabilities of the stronger models are being tapped into (Burns et al., 2023). Equally important is
our finding that much stronger models cannot be reliably evaluated by weak VLMs alone. This
calls for the development of more sophisticated method for evaluation that to ensure the reliable
alignment and performance in such advanced VLMs.

Limitations of Collective Thought Approaches Our experiments with collective thought ap-
proaches did not yield significant improvements in evaluation reliability. The inclusion of both reli-
able and unreliable judges introduced noise. Even when selecting judges based on reliability scores,
the mixture of judges did not substantially enhance agreement with the Agent-Debate method. No-
tably, we found that GPT-4o, when used as a sole judge, outperformed its performance when paired
with a group of less reliable judges. This indicates that GPT-4o is affected by the presence of incor-
rect or unreliable opinions within the collective, highlighting its vulnerability to noise introduced by
less reliable judges.

9
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Implications and Future Work The results underscore the importance of employing reliable and
robust evaluation frameworks for VLMs. Relying solely on individual VLMs for evaluation is in-
adequate due to their incapability in content understanding or critical analysis. The Agent-Debate
method, leveraging collaborative reasoning among multiple agents, provides a more accurate assess-
ment of VLM performance. In future work, we will study the effectiveness of an iterative collective
thought approach, exploring how multi-round discussions among VLM agents can further enhance
evaluation reliability and mitigate the limitations observed with current aggregation method.

7 CONCLUSION AND LIMITATIONS

In this paper, we conducted a comprehensive evaluation of Video Language Models using a multi-
stage methodology that included individual assessments by VLMs and a collaborative Agent-Debate
approach. Our study aimed to determine the most reliable model for evaluating VLMs on complex
video understanding tasks.

Our findings highlight several key insights:

• Reliability of VLMs as Judges Some VLMs judge tend to overestimate the performance of
candidate VLMs, likely due to their inherent bias or incapability in understanding content.
GPT-4o is only model that exhibit significant reliability as judge.

• Towards Improving VLM Reliability as Judge: A reliable judge must possess not only
strong comprehension skills but also advanced capabilities in assessment, critical analysis.
To improve reliability, we can incorporate specialized training to improve both understand-
ing and evaluation skills and to reduce biases and hallucinations.

• Limitations of Collective Thought Approaches: Collective evaluation methods that ag-
gregate judgments from both reliable and unreliable models do not necessarily enhance
evaluation accuracy. The inclusion of less reliable judges introduces noise and biases, di-
minishing the overall reliability of the assessment. Even when employing a mixture of
judges selected based on reliability scores, significant improvements were not observed.

While our study provides valuable insights, several limitations should be acknowledged:

• Dependence on Specific Datasets and Models: Due to limited resources, our experiments
are based on the CVRR-ES (Khattak et al., 2024) dataset and a selected set of VLMs and
LLMs. The generalizability of our findings to other datasets and models may be limited.

• Scope of Evaluation Methods: We focused on the Agent-Debate method and collective
thought approaches involving VLMs and LLMs. Other evaluation strategies, such as human
expert assessments or alternative ensemble methods, were not explored in this study.

• Quantitative Metrics: The reliance on agreement scores Weighted Cohen’s Kappa pro-
vides a quantitative measure of agreement but may not fully capture the qualitative aspects
of model evaluations. Subtle nuances in judgments might not be reflected in these metrics.

• Computational Resources and Costs: The use of advanced models such as GPT-4o in-
curs significant computational costs. This may limit the practicality of deploying such
evaluation methods at scale or in resource-constrained environments.
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APPENDIX

• Qualitative Samples
• Dataset Details
• Details on Ratings
• Details on Agreement
• Compare GPT-4o, collective thought, mixture judge
• Ablation Study on finetuning Video-LLaVA

A SAMPLES

Question: What is happening in the video?

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

video_llava llama_vid gpt4o-miniinternvl2 GPT3.5gpt4o
LLM

Agent
Debate

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."
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Figure 6: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the judges. Due to space constraints, only the rating numbers are displayed. In our setup,
each judge provides both reasoning and a rating number. We have limited the selection of judges to
the models listed, as other models demonstrate poor instruction-following abilities and tend to only
provide a rating number.
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"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation
Method:\n\nYou will receive a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring
rubric for evaluating the quality of responses from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query
effectively. It shows a lack of relevance, accuracy, and comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses
the user's instruction partially, with evident shortcomings in relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a
superficial understanding of the user's inquiry.\nAverage (3): The response adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and
comprehensiveness. It reflects a basic level of creativity and granularity but may lack sophistication or depth in fully capturing the user's inquiry.\nGood (4): The
response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response perfectly adheres to the user's instruction,
excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer, indicating a deep and nuanced
understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is the input:\n\n[The
Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n

[The Start of Assistant’s Answer]\n
The video features a man dressed in a suit and tie, performing a unique dance routine on a spinning, upside-down, red umbrella. He is spinning around and maintaining
his balance while performing the dance.\n
[The End of Assistant’s Answer]

\nRatings from other judges may be used as additional information:\n
[The Start of Judge A’s rating]\n```json\n{\n   \"rating\": \"[[4]]\",\n   \"reason\": \"The response effectively describes the main action in the video, highlighting the man's
unique dance routine and his balance on the umbrella. It is relevant and accurate, providing a good level of detail. However, it could benefit from additional context or
description of the environment or audience reactions to enhance comprehensiveness.\"\n}\n```\n
[The End of Judge A’s rating]\n

[The Start of Judge B’s rating]\n{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy, and
comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.'}}\n
[The End of Judge B’s rating]\n

[The Start of Judge C’s rating]\n{{'rating': 4, 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy, and
comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.'}}\n
[The End of Judge C’s rating]\n\n

Your reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'"

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

collective

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"{{'rating': '3', 'reason': 'The response adequately describes the main action in the video, mentioning the
man dancing and interacting with people while spinning an umbrella. However, it lacks detail about the
context, emotions, or any specific interactions that could enhance the understanding of the scene. The
description could benefit from more granularity and creativity to fully capture the essence of the
video.'}}"

"```json\n{\n  \"rating\": \"4\",\n  \"reason\": \"The response effectively describes the main action in the
video, highlighting the man's unique dance routine and his balance on the umbrella. It is relevant and
accurate, providing a good level of detail. However, it could benefit from additional context or
description of the environment or audience reactions to enhance comprehensiveness.\"\n}\n```"

"```json\n{\n  \"rating\": \"1\",\n  \"reason\": \"The response does not accurately describe the content of the
video. It mentions a man performing tricks on a skateboard, which is not relevant to the video shown. The
video features a man in a suit with an umbrella, not a skateboard, and the actions described do not match
what is happening in the video. Overall, the response lacks relevance, accuracy, and
comprehensiveness.\"\n}\n```"

"{{'rating': '2', 'reason': 'The response partially addresses the user\\'s instruction by mentioning a man
with an umbrella, but it lacks detail and context about the situation in the video. It does not capture the
dynamic action or the humorous elements present, which are crucial for a comprehensive
understanding of what is happening.'}}"

 "{{'rating': '4', 'reason': 'The response effectively captures the main actions and the humorous nature of
the video. It accurately describes the man struggling to balance with the red umbrella and folder, and the
involvement of a woman who helps him. The description of the lively atmosphere and the man regaining
his composure adds to the context. However, the response could be improved with more details about
the setting and the reactions of the bystanders to provide a more comprehensive and nuanced
understanding of the scene.'}}"

Figure 7: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the collective judges.
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"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation
Method:\n\nYou will receive a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring
rubric for evaluating the quality of responses from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the
query effectively. It shows a lack of relevance, accuracy, and comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response
addresses the user's instruction partially, with evident shortcomings in relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity,
indicating a superficial understanding of the user's inquiry.\nAverage (3): The response adequately addresses the user's instruction, showing a fair level of relevance,
accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack sophistication or depth in fully capturing the user's inquiry.\nGood
(4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a
nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response perfectly adheres to the user's
instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer, indicating a deep
and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is the
input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n

[The Start of Assistant’s Answer]\n
The video features a man dressed in a suit and tie, performing a unique dance routine on a spinning, upside-down, red umbrella. He is spinning around and maintaining
his balance while performing the dance.\n
[The End of Assistant’s Answer]

\nRatings from other judges may be used as additional information:\n
[The Start of Judge A’s rating]\n{{'rating': '3', 'reason': 'The response adequately addresses the user\\'s instruction by describing the main action in the video, which is a
man dancing and spinning an umbrella. However, it lacks depth and detail, such as the man\\'s unique pose and the interaction with the environment, which would have
provided a more comprehensive and nuanced understanding of the video.'}}\n
[The End of Judge A’s rating]

Your reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'"

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

collective

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"```json\n{\n  \"rating\": \"3\",\n  \"reason\": \"The response adequately addresses the user's instruction
by describing the main action in the video, which is a man dancing and spinning an umbrella. However,
it lacks depth and detail, such as the man's unique pose and the interaction with the environment, which
would have provided a more comprehensive and nuanced understanding of the video.\"\n}\n```"

 "{{'rating': '2', 'reason': 'The response partially addresses the user\\'s instruction by mentioning a man
performing a unique dance routine. However, it inaccurately describes the man as dancing on a
spinning, upside-down, red umbrella, which is not evident in the video. The response lacks depth and
granularity, failing to capture the full context and details of the scene.'}}"

"{{'rating': '1', 'reason': 'The response significantly deviates from the user\\'s instruction. The video does
not show a man performing a trick on a skateboard or jumping over a person, dog, or car. Instead, it
shows a man seemingly floating in mid-air while holding an umbrella and a book, which is not mentioned
at all in the response. The response lacks relevance, accuracy, and comprehensiveness.'}}"

 "```json\n{\n  \"rating\": \"2\",\n  \"reason\": \"The response partially addresses the user's instruction by
mentioning a man holding an umbrella. However, it lacks accuracy and comprehensiveness as it fails to
describe the unusual and notable aspect of the video, which is the man appearing to float or levitate in
the air. The response lacks depth and does not capture the unique and creative element of the
video.\"\n}\n```"

 "```json\n{\n  \"rating\": \"4\",\n  \"reason\": \"The response is well-aligned with the user's instruction,
providing a detailed and accurate description of the video. It captures the main events and the comedic
nature of the scene. However, it could have included more specific details about the actions and
interactions to achieve a perfect score.\"\n}\n```"

Figure 8: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the mixed judges.
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Under review as a conference paper at ICLR 2025

"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation Method:\n\nYou will receive
a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating the quality of responses
from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and
comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses the user's instruction partially, with evident shortcomings in
relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a superficial understanding of the user's inquiry.\nAverage (3): The response
adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack
sophistication or depth in fully capturing the user's inquiry.\nGood (4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy,
and comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response
perfectly adheres to the user's instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer,
indicating a deep and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is
the input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n[The Start of Assistant’s Answer]\nIn the video, a man is seen dancing
and spinning an umbrella around while walking down the street. He continues to dance and spin the umbrella around while walking around and interacting with people.\n[The End of
Assistant’s Answer]\nYour reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'",

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

gpt4o

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"{{'rating': '3', 'reason': 'The response adequately addresses the user\\'s instruction by describing the
main action in the video, which is a man dancing and spinning an umbrella. However, it lacks depth and
detail, such as the man\\'s unique pose and the interaction with the environment, which would have
provided a more comprehensive and nuanced understanding of the video.'}}",

"{{'rating': '2', 'reason': 'The response partially addresses the user\\'s instruction by mentioning a man
performing a unique dance routine. However, it inaccurately describes the man as dancing on a
spinning, upside-down, red umbrella, which is not evident in the video. The response lacks depth and
granularity, failing to capture the full context and details of the scene.'}}",

"{{'rating': '1', 'reason': 'The response significantly deviates from the user\\'s instruction. The video does
not show a man performing a trick on a skateboard or jumping over a person, dog, or car. Instead, it
shows a man seemingly floating in mid-air while holding an umbrella and a book, which is not mentioned
at all in the response. The response lacks relevance, accuracy, and comprehensiveness.'}}",

"{\n  \"rating\": \"2\",\n  \"reason\": \"The response partially addresses the user's instruction by
mentioning a man holding an umbrella. However, it lacks accuracy and comprehensiveness as it fails to
describe the unusual and notable aspect of the video, which is the man appearing to float or levitate in
the air. The response lacks depth and does not capture the unique and creative element of the
video.\"\n}",

"{{'rating': '4', 'reason': 'The response is well-aligned with the user\\'s instruction, providing a detailed and
accurate description of the video. It captures the main events and the comedic nature of the scene.
However, it could have included more specific details about the actions and interactions to achieve a
perfect score.'}}"

Figure 9: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the GPT-4o judges.
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Under review as a conference paper at ICLR 2025

"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation Method:\n\nYou will receive
a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating the quality of responses
from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and
comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses the user's instruction partially, with evident shortcomings in
relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a superficial understanding of the user's inquiry.\nAverage (3): The response
adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack
sophistication or depth in fully capturing the user's inquiry.\nGood (4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy,
and comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response
perfectly adheres to the user's instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer,
indicating a deep and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is
the input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n[The Start of Assistant’s Answer]\nIn the video, a man is seen dancing
and spinning an umbrella around while walking down the street. He continues to dance and spin the umbrella around while walking around and interacting with people.\n[The End of
Assistant’s Answer]\nYour reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'",

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

gpt4o-mini

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"```json\n{\n  \"rating\": \"[[3]]\",\n  \"reason\": \"The response adequately describes the main action in the
video, mentioning the man dancing and interacting with people while spinning an umbrella. However, it
lacks detail about the context, emotions, or any specific interactions that could enhance the
understanding of the scene. The description could benefit from more granularity and creativity to fully
capture the essence of the video.\"\n}\n```",

"```json\n{\n  \"rating\": \"[[4]]\",\n  \"reason\": \"The response effectively describes the main action in the
video, highlighting the man's unique dance routine and his balance on the umbrella. It is relevant and
accurate, providing a good level of detail. However, it could benefit from additional context or
description of the environment or audience reactions to enhance comprehensiveness.\"\n}\n```",

"```json\n{\n  \"rating\": \"[[1]]\",\n  \"reason\": \"The response does not accurately describe the content of
the video. It mentions a man performing tricks on a skateboard, which is not relevant to the video shown.
The video features a man in a suit with an umbrella, not a skateboard, and the actions described do not
match what is happening in the video. Overall, the response lacks relevance, accuracy, and
comprehensiveness.\"\n}\n```",

"```json\n{\n  \"rating\": \"2\",\n  \"reason\": \"The response partially addresses the user's instruction by
mentioning a man with an umbrella, but it lacks detail and context about the situation in the video. It
does not capture the dynamic action or the humorous elements present, which are crucial for a
comprehensive understanding of what is happening.\"\n}\n```",

"```json\n{\n  \"rating\": \"[[4]]\",\n  \"reason\": \"The response effectively describes the humorous
scenario in the video, capturing the main actions and the lighthearted atmosphere. It provides a good
level of detail about the man's struggle and the involvement of the woman, which adds to the overall
context. However, it could benefit from a bit more depth or nuance regarding the setting or the reactions
of the bystanders to achieve an excellent rating.\"\n}\n```"

Figure 10: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the GPT-4o mini judges.
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Under review as a conference paper at ICLR 2025

"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation Method:\n\nYou will receive
a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating the quality of responses
from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and
comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses the user's instruction partially, with evident shortcomings in
relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a superficial understanding of the user's inquiry.\nAverage (3): The response
adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack
sophistication or depth in fully capturing the user's inquiry.\nGood (4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy,
and comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response
perfectly adheres to the user's instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer,
indicating a deep and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is
the input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n[The Start of Assistant’s Answer]\nIn the video, a man is seen dancing
and spinning an umbrella around while walking down the street. He continues to dance and spin the umbrella around while walking around and interacting with people.\n[The End of
Assistant’s Answer]\nYour reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'",

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

Internvl-2

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"```json\n{\n  'rating': '4',\n 'reason': 'The assistant's response is well-aligned with the user's instruction,
demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a
nuanced understanding of the video content, with detailed granularity that enhances the response
quality. However, the response could be improved by providing more specific details about the man's
actions and interactions with people in the video.'\n}\n```",

"```json\n{\n  'rating': '4',\n 'reason': 'The assistant's response is well-aligned with the user's instruction,
demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a
nuanced understanding of the video content, providing a detailed description of the man's actions and
the setting. However, the response could be improved by mentioning the presence of other people in the
background, which adds context to the scene.'\n}\n```",

"```json\n{\n  'rating': '1',\n 'reason': 'The assistant's response is incorrect and does not accurately
describe the video. The video shows a man performing a trick on a skateboard, not jumping over people
and a dog or a car. The assistant's response is misleading and does not address the user's instruction
effectively.'\n}\n```",

"```json\n{\n  'rating': '3',\n 'reason': 'The response is somewhat relevant and accurate, but it lacks depth
and detail. The assistant mentions the man walking down the street and holding an umbrella, but it does
not describe the man's attire, the presence of other people, or the overall scene. The response could be
improved by providing a more comprehensive description of the video content.'\n}\n```",

"```json\n{\n  'rating': '4',\n 'reason': 'The assistant's response is well-aligned with the user's instruction,
demonstrating a high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a
nuanced understanding of the video content, with detailed granularity that enhances the response
quality. However, the assistant could have provided more specific details about the man's actions and the
reactions of the people around him to further enrich the description.'\n}\n```"

Figure 11: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the InternVL2 judge.
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Under review as a conference paper at ICLR 2025

"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation Method:\n\nYou will receive
a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating the quality of responses
from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and
comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses the user's instruction partially, with evident shortcomings in
relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a superficial understanding of the user's inquiry.\nAverage (3): The response
adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack
sophistication or depth in fully capturing the user's inquiry.\nGood (4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy,
and comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response
perfectly adheres to the user's instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer,
indicating a deep and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is
the input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n[The Start of Assistant’s Answer]\nIn the video, a man is seen dancing
and spinning an umbrella around while walking down the street. He continues to dance and spin the umbrella around while walking around and interacting with people.\n[The End of
Assistant’s Answer]\nYour reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'",

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

video_llava

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced understanding
of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': '4', 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced understanding
of the topic, with detailed granularity that enhances the response quality.'}}"

Figure 12: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the Video-LLaVA judges.
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Under review as a conference paper at ICLR 2025

"Please serve as an unbiased judge in assessing the quality of the responses from AI assistants regarding the user's instruction and a video. \nEvaluation Method:\n\nYou will receive
a single response from the AI assistant to user's instruction. Use scores to show the quality of the response. Here is the detailed scoring rubric for evaluating the quality of responses
from AI assistants:\nPoor (1): The response significantly deviates from the user's instruction and fails to address the query effectively. It shows a lack of relevance, accuracy, and
comprehensiveness. Creativity and granularity are absent or poorly executed.\nFair (2): The response addresses the user's instruction partially, with evident shortcomings in
relevance, accuracy, or comprehensiveness. It lacks depth in creativity and granularity, indicating a superficial understanding of the user's inquiry.\nAverage (3): The response
adequately addresses the user's instruction, showing a fair level of relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but may lack
sophistication or depth in fully capturing the user's inquiry.\nGood (4): The response is well-aligned with the user's instruction, demonstrating a high degree of relevance, accuracy,
and comprehensiveness. It shows creativity and a nuanced understanding of the topic, with detailed granularity that enhances the response quality.\nExcellent (5): The response
perfectly adheres to the user's instruction, excelling in relevance, accuracy, comprehensiveness, creativity, and granularity. It provides an insightful, detailed, and thorough answer,
indicating a deep and nuanced understanding of the user's inquiry.\n\nUse \"[[1]]\", \"[[2]]\", \"[[3]]\", \"[[4]]\", \"[[5]]\" to indicate your evaluate score in the key 'Judgement'.\n\nHere is
the input:\n\n[The Start of User Instruction]\nWhat is happening in the video?\n[The End of User Instruction]\n[The Start of Assistant’s Answer]\nIn the video, a man is seen dancing
and spinning an umbrella around while walking down the street. He continues to dance and spin the umbrella around while walking around and interacting with people.\n[The End of
Assistant’s Answer]\nYour reply should be in JSON format: {{'rating': 'your rating number', 'reason': 'your reasoning'}}'",

mplug_owl_Video: The video features a
man dressed in a suit and tie, performing a
unique dance routine on a spinning, upside-down,
red umbrella. He is spinning around and
maintaining his balance while performing the
dance.

llama_vid: In the video, a man is seen
dancing and spinning an umbrella around while
walking down the street. He continues to dance
and spin the umbrella around while walking
around and interacting with people.

Candidate

Judge

video_chatgpt: In the video, a man is seen
performing a trick on a skateboard, possibly in a
public area. He is seen jumping over a person
and a dog, and he is also seen jumping over a
person and a car. The video ends with the man
jumping over a person and a dog on a
skateboard.

          video_llava: In the video, a man is seen
walking down the street while holding an
umbrella.

gpt4o-mini: In the video, a man dressed in a
suit is humorously attempting to balance while
holding a red umbrella and a folder. He appears to
be slipping or losing his balance, creating a
comedic effect. As he struggles, a woman runs in
to help him, and the scene continues with various
people walking by, adding to the lively
atmosphere. Eventually, he regains ......

llama-vid

Reference: "A man in a suit appears to
fall backward, but not moving.

Spectators watch, and a woman drops
money in his hat. When he stands up,
revealing the box that helped him stay
in that position, he smiles, picks it up,

and walks away. The video showcases
a clever street performance using

optical illusion."

"{\n\"rating\": 4,\n\"reason\": \"The response is well-aligned with the user's instruction, demonstrating a
high degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.\"\n}",

"{{'rating': 4, 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced
understanding of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': 4, 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced understanding
of the topic, with detailed granularity that enhances the response quality.'}}",

"{{'rating': 3, 'reason': 'The response adequately addresses the user's instruction, showing a fair level of
relevance, accuracy, and comprehensiveness. It reflects a basic level of creativity and granularity but
may lack sophistication or depth in fully capturing the user's inquiry.'}}",

"{{'rating': 4, 'reason': 'The response is well-aligned with the user's instruction, demonstrating a high
degree of relevance, accuracy, and comprehensiveness. It shows creativity and a nuanced understanding
of the topic, with detailed granularity that enhances the response quality.'}}"

Figure 13: An example from the CVRR dataset, with candidate responses and corresponding ratings
from the LLaMA-VID judges.

B DATASET DETAILS
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Visual Dimension Definition
1) Multiple actions in a single video
(Multi Actions)

This category includes videos with 2-4 ac-
tivities, mostly featuring humans performing
multiple actions. It tests the model’s ability
to reason about and understand interrelations
between different actions.

2) Fine-grained action understanding
(Fine Action)

Focuses on subtle human activities like push-
ing, opening, closing, etc. Challenges the
model’s comprehension of fine-grained ac-
tions through carefully crafted questions.

3) Partial actions
(Partial Actions)

Features videos with actions likely to be fol-
lowed by subsequent actions, but not exe-
cuted. Tests the model’s ability to avoid gen-
erating contextually relevant but non-existent
content.

4) Time order understanding
(Time Order)

Assesses the model’s ability to recognize
temporal sequences of activities, crucial for
distinguishing between atomic actions like
pushing and pulling.

5) Non-existent actions with existent scene depictions
(Non-exist (E))

Examines the model’s robustness in scenarios
with introduced non-existent activities with-
out altering the physical and spatial scenes.

6) Non-existent actions with non-existent scene depictions
(Non-exist (NE))

Evaluates the model’s reliability in handling
questions with both non-existent activities
and scene comprehension, testing its ability
to avoid generating imaginary content.

7) Continuity and object instance count
(Cont. & Obj.)

Tests the model’s ability to accurately recog-
nize and count object instances, and distin-
guish between existing and newly introduced
objects in a scene.

8) Unusual and physically anomalous activities
(Unusual Activities)

Assesses the model’s ability to understand
unconventional activities that seem to defy
physics, testing generalization to out-of-
distribution scenarios.

9) Interpretation of social context
(Social Context)

Evaluates the model’s ability to infer the ra-
tionale behind actions based on social con-
text, using diverse videos with challenging
questions.

10) Understanding of emotional context
(Emotional Context)

Tests the model’s capacity to interpret actions
considering emotional context, using videos
and questions focused on recognizing action
nature based solely on emotional cues.

11) Interpretation of visual context
(Visual Context)

Focuses on the model’s ability to recognize
actions using overall visual contextual cues,
requiring reasoning based on visual elements
like shadows.

Table 2: Definitions of Visual Dimensions for Video Understanding (Khattak et al., 2024).
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Table 3: Examples of question-answer pairs in the CVRR-ES benchmark for various complex video
evaluation dimensions. The content is collected from previous work (Khattak et al., 2024).

Visual Dimension Sample Question-Answer Pairs

1. Multiple actions in a single
video

Q: Does the person stand up to welcome the cat or remain seated?

A: The person remains seated throughout their interaction with the cat.
Q: What is the next action after using the laptop?
A: Placing a bag in the refrigerator.

2. Fine-grained action
understanding

Q: Does the man use the thread to sew fabric?

A: No, he uses it to create loops and demonstrate tying a knot.
Q: What action is performed by the person’s hands?
A: Plugging a black USB charging cable into the charging port.

3. Partial actions Q: What is happening in the video?
A: The video shows a red car door and a hand reaching for the handle.
Q: Is the snack replaced to its original position?
A: No, the video only shows moving the snack from right to left.

4. Time order understanding Q: Is liquid being taken out of the soda can?
A: No, the video doesn’t show this activity.
Q: In which direction is the person running on the track?
A: The person is running anticlockwise.

5. Non-existent actions with
existent scene depictions

Q: Does the person clean around the sink after going through the bag?

A: No, the person does not clean the area around the sink.
Q: How does the audience react to the keynote speaker?
A: The scene does not include a keynote speaker delivering a speech.

6. Non-existent actions with
non-existent scene depictions

Q: How do children interact with the flowers?

A: There are no children or flowers depicted in the video.
Q: How does the child react when the dog runs past?
A: There is no child or dog in the video.

7. Continuity and Object
Instance Count

Q: How many unique sunglasses appear in the video?

A: There are 4 unique sunglasses, one for each person in the car.
Q: Did the men’s attire change when they re-entered the frame?
A: Yes, their attire changed upon re-entering the frame.

8. Unusual and Physically
Anomalous activities

Q: How does the person reach an elevated position?

A: They ascended and floated in the air, not by walking or running.
Q: How is the person able to fly over the water?
A: They are using a flyboard system attached to their shoes.

9. Interpretation of social
context

Q: How did the crowd respond to the girl landing the water bottle?

A: The crowd applauded to show appreciation for her success.
Q: Why does the boy touch ashes before touching the goat?
A: He uses the ashes to warm the goat, showing care.

10. Understanding of
emotional context

Q: Is the emotional context of the video negative?

A: No, it is overwhelmingly positive.
Q: What is the nature of the interaction between the two individuals?
A: The interaction is friendly, evidenced by a warm hug and handshake.

11. Interpretation of visual
context

Q: Does the person undergo a real physical transformation?

A: No, they remove a rubber mask, revealing they are a woman.
Q: What unusual behavior is shown between a predator and prey?
A: A cat plays and sleeps with chicks instead of hunting them.
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C DETAILS ON RATINGS
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LLaMA-VID
Video-LLaVA 3.95 3.98 4.00 4.00 3.98 3.96 3.96 3.99 4.00 4.00 3.98
LLaMA-VID 3.81 3.83 3.92 3.90 3.76 3.94 3.81 3.85 3.84 3.85 3.76
GPT-4o mini 2.51 3.07 2.50 2.64 2.60 2.53 2.27 2.93 3.18 2.74 2.33
InternVL2 3.12 3.63 3.31 3.36 3.55 3.46 3.12 3.63 3.56 3.34 3.09
GPT-4o 2.18 2.48 1.77 2.36 2.20 1.82 1.92 2.16 2.70 2.34 2.09
GPT-3.5 2.31 2.30 1.85 2.05 2.01 1.06 1.17 1.73 2.24 1.90 1.95
Agent-Debate 1.94 1.93 1.53 1.75 1.73 1.11 1.17 1.46 1.89 1.58 1.54
GPT-4o mini
Video-LLaVA 3.86 3.88 3.85 3.86 3.73 3.57 3.69 3.84 3.91 3.87 3.93
LLaMA-VID 3.71 3.79 3.73 3.75 3.54 3.46 3.43 3.67 3.82 3.67 3.79
GPT-4o mini 2.81 3.43 3.29 3.20 2.93 2.83 2.63 3.20 3.55 3.15 3.12
InternVL2 3.14 3.59 3.57 3.57 3.39 3.33 3.20 3.43 3.60 3.47 3.64
GPT-4o 2.93 3.60 3.51 3.78 3.28 3.53 3.01 3.39 3.41 3.32 3.42
GPT-3.5 3.41 3.90 3.95 3.73 3.21 3.80 3.74 3.73 3.93 3.20 3.49
Agent-Debate 2.47 3.08 3.09 2.98 2.34 2.86 2.79 2.81 2.40 2.29 2.66
Video-ChatGPT
Video-LLaVA 3.99 4.00 3.99 4.00 4.00 3.98 4.00 3.99 3.99 3.99 3.99
LLaMA-VID 3.83 3.87 3.93 3.92 3.82 3.90 3.83 3.82 3.80 3.87 3.83
GPT-4o mini 2.17 2.86 2.52 2.50 2.43 2.37 2.40 2.62 2.92 2.70 2.29
InternVL2 3.02 3.42 3.25 3.21 3.37 3.33 3.03 3.41 3.53 3.21 3.07
GPT-4o 2.20 2.43 2.30 2.62 2.44 2.25 2.07 2.26 2.49 2.27 2.04
GPT-3.5 2.66 2.34 2.60 2.53 2.48 1.75 1.62 2.17 2.34 2.05 1.96
Agent-Debate 2.14 1.97 2.17 2.17 2.07 1.76 1.56 1.82 1.93 1.69 1.54
mPLUG-Owl-Video
Video-LLaVA 4.00 3.99 4.00 2.07 4.00 4.00 4.00 4.00 4.00 4.00 4.00
LLaMA-VID 3.90 3.93 3.95 3.94 3.86 4.03 3.94 3.92 3.91 3.95 3.97
GPT-4o mini 2.44 3.03 2.64 2.84 2.46 2.60 2.40 2.77 3.15 2.82 2.43
InternVL2 3.22 3.64 3.44 3.49 3.49 3.53 3.16 3.54 3.70 3.44 3.46
GPT-4o 2.32 2.72 2.53 2.54 2.23 2.03 2.03 2.36 2.75 2.35 2.16
GPT-3.5 2.27 2.46 2.35 2.34 2.02 1.11 1.19 1.73 2.27 1.95 1.57
Agent-Debate 1.85 2.07 2.00 2.07 1.65 1.30 1.19 1.73 1.94 1.62 1.57
Video-LLaVA
Video-LLaVA 3.98 3.99 4.00 4.00 4.00 3.99 3.97 4.00 4.00 3.99 4.00
LLaMA-VID 3.87 3.84 3.91 3.95 3.78 3.97 3.83 3.82 3.84 3.86 3.85
GPT-4o mini 2.38 2.91 2.35 2.45 2.39 2.46 2.17 2.60 2.91 2.57 2.09
InternVL2 3.28 3.65 3.39 3.36 3.43 3.38 3.17 3.67 3.59 3.29 3.10
GPT-4o 2.33 2.65 1.95 2.45 2.24 2.21 2.08 2.26 2.64 2.21 2.08
GPT-3.5 2.31 2.30 1.85 2.05 2.01 1.06 1.17 1.73 2.24 1.90 1.95
Agent-Debate 1.97 2.07 1.89 1.94 1.70 1.22 1.31 1.63 1.95 1.57 1.53

Table 4: Scores of candidate models given by judge models across various visual dimensions.
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D DETAILS ON AGREEMENT

Judge visual dimensions
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Video-LLaVA
Video-LLaVA -0.02 0.64 0.00 0.00 0.00 0.04 -0.13 0.09 0.00 0.01 0.00
LLaMA-VID 0.93 -0.35 0.00 -0.03 0.07 0.09 -1.02 -0.61 0.00 -0.14 0.09
GPT-4o mini 5.34 2.01 10.69 14.09 4.91 -8.05 -5.77 3.20 3.41 1.53 2.18
Video-ChatGPT 0.48 0.14 0.05 0.00 0.00 -1.24 0.00 -0.32 -0.01 -0.17 -0.44
mPLUG-Owl-Video 0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.06 0.00
Average 1.35 0.52 2.15 2.81 1.00 -1.83 -1.38 0.47 0.68 0.23 0.37
LLaMA-VID
Video-LLaVA 0.66 1.42 -1.42 0.27 0.11 -0.55 -0.67 0.59 2.64 -0.12 0.39
LLaMA-VID 2.26 -0.27 -0.03 -1.16 -1.11 -0.02 -2.63 -0.81 2.31 -0.03 0.21
GPT-4o mini 10.62 9.06 7.46 16.13 5.64 -17.09 -14.94 9.04 5.99 3.88 -0.53
Video-ChatGPT 3.72 -0.01 0.62 0.40 3.58 -3.42 -1.91 0.38 1.68 -0.65 -1.21
mPLUG-Owl-Video 1.24 -0.15 -1.41 -0.25 -1.28 0.32 -0.08 0.81 2.31 -0.76 -0.09
Average 3.70 2.01 1.04 3.08 1.39 -4.15 -4.04 2.00 2.99 0.23 0.37
GPT-4o mini
Video-LLaVA 11.72 23.37 19.88 25.00 18.66 4.39 -1.96 -4.02 5.75 17.65 15.14
LLaMA-VID 11.72 23.37 19.88 25.00 18.66 4.39 -1.96 -4.02 5.75 17.65 15.14
GPT-4o mini 28.59 19.43 23.18 20.10 26.19 -5.55 -28.86 16.54 6.85 3.08 -8.32
Video-ChatGPT 10.58 18.04 21.01 17.99 9.20 -15.19 -18.65 -7.23 0.68 5.91 6.75
mPLUG-Owl-Video 9.87 22.94 21.96 23.31 14.94 3.84 -3.31 -1.56 14.86 16.27 7.66
Average 14.50 21.43 21.18 22.28 17.53 -1.62 -1.09 1.94 6.78 12.11 7.27
InternVL2
Video-LLaVA 6.57 8.48 6.74 10.23 4.30 1.09 0.52 2.99 2.60 6.94 5.90
LLaMA-VID 22.68 22.34 22.44 32.12 20.03 5.65 10.46 15.93 19.29 11.86 8.40
GPT-4o mini 8.75 14.78 9.82 16.79 11.80 -1.98 -0.63 -1.78 6.57 3.06 6.43
Video-ChatGPT 8.75 14.78 9.82 16.79 11.80 -1.98 -0.63 -1.78 6.57 3.06 6.43
mPLUG-Owl-Video 6.15 9.43 11.24 13.73 6.36 2.89 0.63 -1.26 8.29 7.24 2.97
Video-LLaVA 9.31 12.30 10.15 10.70 5.11 3.24 4.52 0.20 9.89 8.40 6.78
Average 10.69 13.47 12.08 16.71 9.52 2.18 3.10 3.21 9.33 7.50 6.10
GPT-4o
Video-LLaVA 25.16 58.85 66.35 59.28 43.14 27.01 34.00 48.85 33.57 37.80 31.75
LLaMA-VID 33.66 54.43 60.79 43.13 43.08 16.74 6.99 31.50 26.41 32.23 30.87
GPT-4o mini 42.58 39.71 42.07 50.45 37.04 35.67 21.15 50.29 36.87 24.59 25.22
Video-ChatGPT 41.44 61.71 69.39 58.41 56.87 61.53 29.74 46.53 36.29 31.45 35.47
mPLUG-Owl-Video 22.73 57.36 63.28 64.64 41.08 34.49 23.56 49.32 38.89 35.09 29.93
Average 33.11 54.41 60.38 55.18 44.24 35.09 23.09 45.30 34.40 32.23 30.65

Table 5: Agreement scores across various visual dimensions between VLMs and LLM Agent-
Debate
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E COMPARE GPT-4O, COLLECTIVE THOUGHT, MIXTURE JUDGE

Judge visual dimensions
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Collective thought
LLaMA-VID 14.76 28.37 37.42 28.59 23.23 7.62 2.72 14.11 12.75 16.20 16.52
GPT-4o 40.17 26.42 34.67 33.35 35.19 9.66 -13.23 33.61 26.46 13.81 7.29
Video-ChatGPT 28.34 34.51 55.19 37.17 36.14 20.21 13.35 17.03 26.19 15.43 18.97
mPLUG-Owl-Video 10.58 37.69 50.54 42.02 29.43 19.55 4.78 25.48 22.51 18.98 25.86
Video-LLaVA 14.18 40.36 34.82 28.71 32.62 10.23 5.99 19.27 20.28 17.14 18.98
Average 21.61 33.47 42.53 33.97 31.32 13.46 2.72 21.90 21.64 16.31 17.52

Table 6: Agreement scores across various visual dimensions between Agent-Debate and collective
thought.

Judge visual dimensions
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Mixture Judge
LLaMA-VID 29.91 48.34 54.59 29.17 37.50 7.62 2.72 14.11 23.36 12.75 16.52
GPT-4o mini 41.42 33.08 45.14 40.03 37.99 9.66 -13.23 33.61 37.17 13.81 7.29
Video-ChatGPT 38.89 60.70 61.94 41.18 44.01 20.21 13.35 17.03 35.14 15.43 18.97
mPLUG-Owl-Video 25.16 52.21 59.43 50.16 37.94 19.55 4.78 25.48 39.16 18.98 25.86
Video-LLaVA 30.29 57.66 60.05 38.08 37.92 10.23 5.99 19.27 35.64 17.14 18.98
Average 33.13 50.40 56.23 39.72 39.07 13.46 2.72 21.90 34.09 16.31 17.52

Table 7: Agreement scores across various visual dimensions between Agent-Debate and mixture
judges.

F ABLATION STUDY ON FINETUNING VIDEO-LLAVA
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Figure 14: Rating distribution(left) and agreement score(right)

VLM Judge

VLM Judge

VLM Judge

Good Understanding Ability Good Judgement Ability

Reliable Judge

Figure 15: Good understanding ability is not sufficient to become a reliable judge.
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