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ABSTRACT

We present VEnhancer, a generative space-time enhancement method that can im-
prove the existing AI-generated videos spatially and temporally through one video
diffusion model. Given a generated low-quality video, our approach can increase
its spatial and temporal resolution simultaneously with arbitrary up-sampling space
and time scales by adding more details in spatial domain and synthesize detailed
motion in temporal domain. Furthermore, VEnhancer is able to remove generated
spatial artifacts and temporal flickering of generated videos. To achieve this, bas-
ing on a pretrained generative video prior, we train a Space-Time Controller and
inject it to the prior as a condition on low-frame-rate and low-resolution videos.
To effectively train this ST-Controller, we design space-time data augmentation
to create diversified video training pairs as well as video-aware conditioning for
realizing different augmentation parameters in both spatial and temporal dimen-
sions. Benefiting from the above designs, VEnhancer can be end-to-end trained to
enable multi-function in one single model. Extensive experiments show that VEn-
hancer surpasses existing state-of-the-art video super-resolution and space-time
super-resolution methods in enhancing AI-generated videos. Moreover, VEn-
hancer is able to greatly improve the performance of open-source state-of-the-art
text-to-video methods on video generation benchmark, VBench.

Input I2VGen-XL (refiner) LaVie-SR Ours

Figure 1: The enhanced screenshots for AI-generated videos (from Kling). Prompt: Einstein plays
guitar. I2VGen-XL (refiner) (Zhang et al., 2023b) has successfully refined the video by removing
distortions/artifacts, but suffers from severe identity change (e.g., facial attributes) and blurry results.
LaVie-SR (Wang et al., 2023b) could produce high-fidelity results but lacks generative ability in
modifying and regenerating video content (e.g., correcting the guitar strings). In contrast, our method
could achieve effective refinement and output high-resolution videos with realistic texture details and
good identity preservation. Zoom in for best view.

1 INTRODUCTION

With the advances of text-to-image generation (Rombach et al., 2022; Podell et al., 2023; Chen et al.,
2023b; Gao et al., 2024) and large-scale video datasets with text description (Bain et al., 2021), there
is fast development of text-to-video generative models (Guo et al., 2023; Chen et al., 2023c; Ho
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et al., 2022; Blattmann et al., 2023b; Wang et al., 2023b;a; Chen et al., 2023a; 2024a; Gupta et al.,
2023; Wu et al., 2023b). These developments enable users to generate compelling videos through
textual descriptions of the desired content. One common solution (Ho et al., 2022; Blattmann et al.,
2023b; Wang et al., 2023b; Blattmann et al., 2023a; Gupta et al., 2023) to obtain high-quality videos
is to adopt cascaded pipelines, which stacks several video diffusion models, including text-to-video,
temporal super-resolution and spatial super-resolution (S-SR) diffusion. These pipeline significantly
reduce computation cost when generating high-resolution and high-frame-rate videos, but also pose
several issues. First, using two different models for spatial and temporal enhancement separately is
redundant, as they are strongly correlated. Also, the proposed diffusion-based spatial or temporal
super-resolution (Blattmann et al., 2023b; Ho et al., 2022; Blattmann et al., 2023a; Wang et al.,
2023b; Lin et al., 2024) have a limited flexibility, as they can only handle fixed interpolation ratio
(i.e., predicting three frames between two consecutive frames) or fixed upscaling factors (i.e., 4×).
Second, directly training diffusion models on synthesized video pairs may limit its generalization
ability, as these models tailored on classic super-resolution task hallucinate high-frequency details,
but cannot semantically improve the visual quality of input videos, such as eliminating distortions,
artifacts, or recreating new contents (see LaVie-SR’s results in Figure 1).

Another common approach is training another diffusion model to remove artifacts and to refine
distorted content in the generated videos (Henschel et al., 2024; Zhang et al., 2023b). One example is
I2VGen-XL (Zhang et al., 2023b), which follows the idea of image generation model SDXL (Podell
et al., 2023)– it first upscales videos to higher resolutions using bilinear interpolation, and trains
another diffusion refinement model, which will be used for video regeneration through a noising-
denoising process (Meng et al., 2021). However, this method usually produces over-smoothed videos
without realistic texture details (see Figure 1, I2VGen-XL), since the adopted bilinear upsampling
cannot generate more spatial details. More importantly, the noising-denoising process (i.e., starting
from t = 600) will substantially change the original video content, which cannot always be acceptable
in practical applications.

In short, current generative video enhancement methods face several challenges. First, sequentially
applying temporal and spatial super-resolution is redundant, as they are independently trained, but
using similar training datasets. Thus, such design is both sub-optimal and inefficient during the
inference. Second, existing refinement methods struggle in balancing between video quality and
fidelity to the original content. More importantly, they cannot perform effective super-resolution for
increasing spatial and temporal details, which limits their practicality. Third, previous generative
video enhancement methods lack the flexibility in dealing with different upscaling factors and
refinement strengths for spatial or temporal super-resolution and video refinement.

To this end, we propose VEnhancer, a generative space-time enhancement method that supports both
spatial and temporal super-resolution with flexible space and time up-sampling scales, as well as
has the ability to remove visual artifacts and flickering with good maintenance of video content. It
is built upon a pretrained and fixed generative video prior (Zhang et al., 2023b), which supplies the
generative ability for video enhancement. To condition the video generation on low-frame-rate and
low-resolution videos, we design Space-Time Controller (ST-Controller) for effective conditioning in
both spatial and time dimensions. Furthermore, to handle different up-sampling scales and reduce
artifacts or flickering with different degrees, we propose a space-time data augmentation algorithm
to construct the training data. In particular, at the training stage, we sample different step sizes for
skipping frames, downscaling factors, and noise levels to synthesize diversified condition videos. To
ensure the proposed ST-Controller be aware of the associated data augmentation applied to each input
video, we propose the video-aware conditioning. In particular, for key frame, the condition latent,
the embeddings of the associated downscaling factor s and noise level σ by noise augmentation are
incorporated into ST-Controller through video-aware conditioning.

With these designs, VEnhancer is a single end-to-end trainable network that can handle both spatial
and temporal super-resolution, as well as video refinement. Moreover, it also supports arbitrary
space and time up-sampling scales, and also supports flexible control on refinement strength and
generative strength as user may prefer. Extensive experiments have demonstrated VEnhancer’s
ability in enhancing generated videos (see Figure 1). In these experiments, it outperforms state-
of-the-art real-world and generative video super-resolution methods for spatial super-resolution
only. In the space-time super-resolution, VEnhancer also surpasses state-of-the-art methods as well
as cascaded spatial and temporal diffusion super-resolution models. At last, on the public video
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generation benchmark, VBench (Huang et al., 2023), VEnhancer can significantly improve the overall
performance of existing text-to-video algorithms.

Our contributions can be summarized as below:

1. We propose VEnhancer, a generative space-time enhancement method that can achieve
generative spatial and temporal super-resolution for different upsampling factors, as well as
controllable video refinement in one video diffusion model for the first time.

2. To achieve the unified generative space-time enhancement, we devise ST-Controller for
effective multi-frame condition injection based on a pretrained and fixed generative video
prior. Besides, space-time data augmentation and the associated video-aware conditioning
are proposed for training ST-Controller in an end-to-end manner.

3. VEnhancer surpasses existng state-of-the-art video super-resolution methods and space-
time super-resolution methods in enhancing generated videos. Also, it could improve the
performance of open-source text-to-video methods on public video generation benchmark.

2 RELATED WORK

2.1 VIDEO GENERATION

Recently, there have been substantial efforts in training large-scale T2V (Wang et al., 2024; Ho
et al., 2022; Guo et al., 2023; Chen et al., 2023c; Gupta et al., 2023; Blattmann et al., 2023b; Wang
et al., 2023b;a) models on large scale datasets. Some works (Blattmann et al., 2023b; Wang et al.,
2023b;a) inflate a pre-trained text-to-image (T2I) model by inserting temporal layers and fine-tuning
them or all parameters on video data, or adopts a joint image-video training strategy. In order to
achieve high-quality video generation, (Ho et al., 2022; Wang et al., 2023b; Blattmann et al., 2023b)
adopts multi-stage pipelines. In particular, cascaded video diffusion models are designed: One T2V
base model that is followed by one or more frame interpolation and video super-resolution models.
VideoLDM (Blattmann et al., 2023b), LaVie (Wang et al., 2023b), and Upscale-A-Video (Zhou et al.,
2023) all develop the video super-resolution model based on 4× sd (StableDiffusion (Rombach et al.,
2022)) upscaler, which has an additional downsampled image for conditioning the generation. One
drawback of this base model is losing quite a lot generative ability compared with T2I base models.
On the contrary, I2VGEN-XL follows SDXL (Podell et al., 2023) and uses noising-denoising process
(Meng et al., 2021) to refine the generated artifacts. However, this strategy could improve stability
but cannot increase the space-time resolution. VEnhancer is based on a generative video prior, and
could address temporal/spatial super-resolution and refinement in a unified model.

2.2 VIDEO ENHANCEMENT

Video Super-Resolution. Video Super-Resolution (VSR) is proposed to enhance video quality
by upsampling low-resolution (LR) frames into high-resolution (HR) ones. Traditional VSR ap-
proaches(Cao et al., 2021; Chan et al., 2021; 2022a; Isobe et al., 2020a;b;c; Liang et al., 2024; 2022;
Wang et al., 2019; Xue et al., 2019) often rely on fixed degradation models to synthesize training
data pairs, which leads to a noticeable performance drop in real-world scenarios. To bridge this
gap, recent advances(Chan et al., 2022b; Xie et al., 2023) in VSR have embraced more diversified
degradation models to better simulate real-world low-resolution videos. To achieve photo-realistic
reconstruction, Upscale-A-Video(Zhou et al., 2023) integrates diffusion prior to produce detailed
textures, upgrading VSR performance into next level. Space-Time Super-Resolution. Space Time
Video Super-Resolution (STVSR) aims to simultaneously increase the resolutions of video frames
in both spatial and temporal dimensions. Deep-learning based approaches(Haris et al., 2020; Kim
et al., 2020; Xiang et al., 2020; Chen et al., 2022) have achieved remarkable results on STVSR.
STARNet(Haris et al., 2020) increases the spatial resolution and frame rate by leveraging the mutual
information between space and time. FISR(Kim et al., 2020) propose a joint framework with a multi-
scale temporal loss to upscale the spatial-temporal resolution of videos. (Xiang et al., 2020) proposes
a one-stage STVSR framework, which incorporates different sub-modules for LR frame features
interpolation, temporal information aggregation and HR reconstruction. VideoINR(Chen et al., 2022)
utilize the continuous video representation to achieve STVSR at arbitrary spatial resolution and
frame rate. Although these methods obtain smooth and high-resolution output videos, but they fail in
generating realistic texture details.
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Figure 2: The overall framework. It consists of space-time data augmentation for constructing
training data, and the associated video-aware conditioning for realizing diversified conditions across
frames, as well as ST-Controller for multi-frame condition injection based on generative video prior.

3 PRELIMINARIES: VIDEO DIFFUSION MODELS

Our method is built on a pretrained video diffusion model (Zhang et al., 2023b), which is developed
based on Stable Diffusion 2.1. Given an video x ∈ RF×H×W×3, the encoder E first encodes it
into latent representation z = E(x) frame-by-frame, where z ∈ RF×H′×W ′×C . Then, the forward
diffusion and reverse denoising are conducted in the latent space. In the forward process, the noise is
gradually added to the latent vector z in total T steps. And for each time-step t, the diffusion process
is formulated as follows:

zt = αtz + σtϵ, (1)
where ϵ ∈ N (0, I), and αt, σt specify the noise schedule in which the corresponding log signal-to-
noise-ratio (log[α2

t /σ
2
t ]) decreases monotonically with t. And at time-step T , q(zT ) = N (0, I). As

for backward pass, a diffusion model is used for iteratively denoising under the guidance of the text
prompt ctext. By adopting v-prediction parameterization (Salimans & Ho, 2022), the U-Net denoiser
fθ learns to make predictions of vt ≡ αtϵ− σtz. The optimization objective is simply formulated as:

LLDM = Ez,ctext,ϵ∼N (0,I),t

[
∥v − fθ(zt, t, ctext)∥22

]
. (2)

At the end, the generated videos are obtained through the VAE decoder: x̂ = D(z).

4 METHODOLOGY

In this section, we introduce the main components of our method. The overall framework is illustrated
in Figure 2. First, we present our architecture design in Section 4.1. Then we elaborate on the
proposed space-time data augmentation in Section 4.2. In Section 4.3, we give a detailed description
on our designed video-aware conditioning.

4.1 ARCHITECTURE DESIGN

The architecture is designed based on a pretrained video diffusion model. This video diffusion
model is able to generate temporal-coherent content and high-quality texture details through iterative
denoising. To upsample and refine a low-frame-rate and low-resolution videos in both spatial and
temporal dimensions, the visual information should be incorporated into the video diffusion model
carefully in order to obtain high-quality results with good fidelity to the input videos. High-quality
generated videos stem from powerful generative models, while fidelity requires the algorithm to
preserve the visual information of the input. Inspired by (Zhang et al., 2023a), we keep the pretrained
video diffusion model untouched for preserving generative capability, and create a Space-Time
Controller (ST-Controller) to obtain effective multi-frame condition injection for generative video
enhancement. The architecture is illustrated in Figure 3.

The pretrained video diffusion model follows the design of stacking a sequence of interleaved spatial
and temporal layers within the 3D-UNet (Blattmann et al., 2023b) architecture (gray blocks in
Figure 3). Specifically, each spatial convolution layer (or attention layer) is followed by a temporal
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convolution layer (or attention layer). The spatial layers are the same as those in Stable Diffusion 2.1,
including ResBlocks (He et al., 2016), self-attention (Vaswani et al., 2017) layers, and cross-attention
layers. The temporal convolution and attention layers are incorporated with their output layers
initialized to zero and finetuned with video datasets. Specifically, the temporal convolution is one-
dimensional convolution layer with a kernel size of 3, and the temporal attention is one-dimensional
attention layer (Wang et al., 2023a). In this 3D-UNet, the video features that aligned by temporal
layers in encoder will be skipped to the decoder, in which concatenation operation will be performed
to combine skipped features with decoder features.

Figure 3: The architecture of VEnhancer.

To build our proposed ST-Controller, we make
a copy (both the architectures and weights) of
the multi-frame encoder and middle block in
3D-UNet (orange blocks in Fig. 3) as the train-
able condition network. This condition network
takes low-frame-rate and low-resolution condi-
tion latents as well as full frames of noisy latents
as inputs. Specifically, the condition latents and
the associated augmentation parameters are in-
corporated into the condition network through
our proposed video-aware conditioning. The
output multi-scale temporal-coherent video fea-
tures will be injected into the original 3D-UNet
through newly added zero convolutions (yellow
blocks in Fig. 3). The output features of the mid-
dle block in condition network will be added
back to the features of the middle block in 3D-UNet. While for output features of encoder blocks in
condition network, their features will be added to the skipped video features in 3D-UNet, which are
also produced by encoder blocks. The copied condition network, video-aware conditioning, and the
newly added zero convolutions are trained simultaneously.

4.2 SPACE-TIME DATA AUGMENTATION

In this section, we discuss about how to achieve unified space-time super-resolution with arbitrary
up-sampling space and time scales, as well as refinement with varying degrees. To this end, we
propose a novel data augmentation strategy for both space and time axes. Details are discussed below.

Time axis. Given a sequence of high-frame-rate and high-resolution video frames I1:f =
[I1, I2, ..., If ] with frame length f , we use a sliding window across time axis to select frames.
The frame sliding window size m is randomly sampled from a predefined set, ranging from 1 to
8. This corresponds to time scales from 1× to 8×. Note that 1× time scale requires no frame
interpolation, thus the multi-task problem downgrades to video super-resolution. After the frame
skipping, we obtain a sequence of key frames I1:m:f = [I1, I1+m, I1+2×m, ..., If ].

Space axis. Then, we perform spatial downsampling for these obtained key frames. Specifically,
the downscaling factor s is randomly sampled from [1, 8], which represents 1× ∼ 8× space super-
resolution. When s = 1, there is no need to perform spatial super-resolution. All frames in one
sequence are downsampled with the same downscaling factor s. Thus, we arrive at low-frame-rate
and low-resolution video frames: I1:m:f

↓s . In practice, we should upsample them back to the original
spatial sizes by bilinear interpolation before being passed to the networks, so we obtain I1:m:f

↓s,↑s . Note
that each space or time scale corresponds to different difficulty level, and thus the sampling is not
uniform. Particularly, we set sampling probabilities of scales 4× and 8× based on a ratio of 1 : 2,
which is determined by their associated scale values.

Then, we use the encoder part of a pretrained variational autoencoder (VAE) E to project the input
sequence to the latent space frame-wisely:

z1:m:f
s = [E(I1↓s,↑s), E(I1+m

↓s,↑s), E(I
1+2×m
↓s,↑s ), ..., E(If↓s,↑s)]. (3)

Noise augmentation in latent space. At this stage, we conduct noise augmentation to noise the latent
condition information in varying degrees in order to achieve controllable refinement. This noise
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augmentation process is the same as the diffusion process equation 1 used in the video diffusion
model. Specifically, the condition latent sequence is corrupted by:

z1:m:f
s,t′ = αt′z

1:m:f
s + σt′ϵ

1:m:f , (4)

where αt′ , σt′ determine the signal-to-noise-ratio at time-step t′, and t′ ∈ {1, ..., T ′}. Note that the
pretrained video diffusion model adopts 1,000 steps (T = 1000 in equation 1). While the noise
augmentation only needs to corrupt the low-level information, T ′ is set to 300 empirically. For more
intuitive denotation, we use σ instead of t′. Finally, we arrive at z1:m:f

s,σ = E(I↓s,↑s)1:m:f
σ .

The whole process of space-time data augmentation is summarized as follows:

I1:f → I1:m:f → I1:m:f
↓s → I1:m:f

↓s,↑s → E(I↓s,↑s)1:m:f → E(I↓s,↑s)1:m:f
σ . (5)

4.3 VIDEO-AWARE CONDITIONING

Linearzero

Sinusoidal Encoding

t σ s

MLP
MLPzero

Timestep

Noise aug

Downscaling

Conv

Convzero

SL+

+ +

…

Conv …
t

SL

SL SL

Key frame

Predicted
frame

Newly added
module

Original module

SL Spatial Layer

𝑧!
𝑧",$

𝑧!

Figure 4: Video-aware conditioning. For
frame that has condition image as input (key
frame), we add the condition latent to the
noisy latent after one convolution layer. Be-
sides, the embeddings of noise level σ and
downscaling factor s are added to the existing
t embedding, which will be broadcast to all
spatial layers.

Besides data augmentation, the corresponding condi-
tioning mechanism should also be designed in order
to influence the model training and avoid averaging
performance for different space or time scales and
noise augmentation. In practice, the condition latent
sequence z1:m:f

s,σ , the corresponding downscaling fac-
tor s, and augmented noises σ are all considered as
for conditioning. Please refer to Figure. 4 for more
intuitive demonstration.

Given the synthesized condition latent sequence
z1:m:f
s,σ , we use one convolution with zero-

initialization –Convzero for connecting it to the con-
dition network. Specifically, we have:

f1:f
out = Conv(z1:ft ), (6)

f1:m:f
out = Conv(z1:m:f

t ) + Convzero(z
1:m:f
s,σ ), (7)

where Conv is the first convolution in the condition
network, z1:ft and z1:m:f

t denote the full frames and
key frames of noisy latents at timestep t, respectively.
Note that Conv and Convzero share the same hyper-
parameter configuration (i.e., kernel size, padding,
et.al.), As it is shown, only key-frame features in
condition network will be added with the condition
features, while others remain unchanged. This strat-
egy enables progressive condition injection as the
weights of Convzero grows from zero starting point.

For conditioning regarding downscaling factor s and noise augmentation σ, we incorporate them
to the existing time embedding in the condition network. Specifically, for timestep t, sinusoidal
encoding (Ho et al., 2020; Rombach et al., 2022; Vaswani et al., 2017) is used to provide the model
with a positional encoding for time. Then, one MLP (two linear layers with a SiLU (Elfwing et al.,
2018) activation layer in between) is applied. Specifically, we have:

temb = MLPt(Sinusoidal(t)), t1:femb = Repeat(temb, f), (8)

where t1:femb is obtained by Repeat temb by f times in the frame axis. This time embedding sequence
will be broadcast to all ResBlocks in the condition network for timestep injection.

Also, we elucidate the conditioning for noise augmentation. As mentioned in equation 4, noise
augmentation shares the same way as diffusion process, but with much smaller maximum timestep
(i.e., T ′ = 300). Thus, we reuse the encoding and mapping for timestep t in diffusion process. After
this, we add a linear layer with zero initialization (denoted as Linearzero). To conclude, we have:

σemb = Linearzero,σ(MLPt(Sinusoidal(σ)). (9)
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To achieve video-aware conditioning, we add σemb only to the key frames. We repeat σemb by k
times to obtain σ1:k

emb, where k is the number of key frames. The video-aware controlling is presented
as follows:

t1:m:f
emb = t1:m:f

emb + σ1:k
emb, (10)

where the addition operation is performed frame-wisely.

Regarding downscaling factor s, the corresponding encoding, mapping and controlling are similar as
above. In particular, we newly introduce one MLPzero, in which the output layer is zero-initialized.
The video-aware conditioning is performed as:

semb = MLPzero,s(Sinusoidal(s)), s1:kemb = Repeat(semb, k), (11)

t1:m:f
emb = t1:m:f

emb + s1:kemb. (12)

With our proposed space-time data augmentation and video-aware conditioning, VEnhancer can be
well-trained in an end-to-end manner, and yields great performance in handling diversified conditions
for generative enhancement. Here we provide a demonstration in Figure 5. For 4× video super-
resolution, we modify the input downscaling factor s to produce different results. It is shown that
more texture details are generated as s grows (from smooth to sharp). This indicates that s can
determine how many details are generated through our proposed video-aware conditioning.

Input, x4 s = 1 s = 4 s = 6 s = 8

Figure 5: The effectiveness of video-aware conditioning. For video super-resolution (4×), we modify
the input downscaling factor from s = 1 to s = 8, and more texture details are generated. Zoom in
for best view.

5 EXPERIMENTS

Datasets. We collect around 350k high-quality and high-resolution video clips from Panda-70M
(Chen et al., 2024b) dataset and the Internet to constitute our training set. We train VEnhancer on
resolution 1280 × 720 with center cropping, and the target FPS is fixed to 24 by frame skipping.
Regarding test dataset, we collect generated videos from state-of-the-art text-to-video methods.
Practically, we select videos with large motions and diverse contents. This test dataset is denoted
as AIGC2023, which is used to evaluate VEnhancer and baselines for video super-resolution and
space-time super-resolution tasks. For evaluation on VBench, all generated videos based on the
provided prompt suite are considered, resulting in around 5k videos.

Implementation Details. The batch size is set to 256. AdamW (Loshchilov & Hutter, 2017) is
used as the optimizer, and the learning rate is set to 10−5. During training, we dropout the text
prompt with a probability of 10%. The training process lasts about four days with 16 NVIDIA A100
GPUs. During inference, we use DPM-Solver (Lu et al., 2022) and perform 15 sampling steps with
classifier-free guidance (cfg) (Ho & Salimans, 2022).

Metrics. Regarding evaluation for video super-resolution and space-time super-resolution on
AIGC2023 test dataset, we use both image quality assessment (IQA) and video quality assess-
ment (VQA) metrics. Specifically, MUSIQ (Ke et al., 2021) and DOVER (Wu et al., 2023a) are
adopted. Moreover, we refer to video generation benchmark, VBench (Huang et al., 2023), for more
comprehensive evaluation. Specifically, we choose Dynamic Degree (i.e., whether it contains large
motions), Motion smoothness (i.e., how smooth the video is), and Aesthetic Quality for evaluation.
Regarding evaluation for video generation, we consider all 16 evaluation dimensions from VBench.

7
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5.1 COMPARISON WITH VIDEO SUPER-RESOLUTION METHODS

For video super-resolution, VEnhancer is compared with the state-of-the-art real-world video super-
resolution method, RealBasicVSR (Chan et al., 2022b), and the state-of-the-art generative video
super-resolution method, LaVie-SR (Wang et al., 2023b) (super-resolution). For more comprehensive
comparison, we also include I2VGen-XL’ (Zhang et al., 2023b) refinement model as our baseline.

Table 1: Quantitative comparison for video super-resolution (4×) on AIGC2023 test dataset. Red
and blue indicate the best and second best performance. The top 3 results are marked as gray .

DOVER↑ MUSIQ↑ Aesthetic
Quality

Dynamic
Degree

Motion
Smoothness

LaVie-SR Wang et al. (2023b) 0.8427 55.8428 0.6692 0.525 0.9710
I2VGen-XL(refiner) Zhang et al. (2023b) 0.5603 25.5988 0.6439 0.475 0.9835

RealBasicVSR Chan et al. (2021) 0.8252 50.5978 0.6622 0.550 0.9729
Ours 0.8586 59.4474 0.6671 0.550 0.9781

Ours

RealBasicVSR

Input

LaVie-SR

I2VGen-XL
(refiner)

Figure 6: Visual comparison for video super-resolution (4×) on AIGC2023 test dataset. Input
resolution: 512× 312; output resolution: 2048× 1280. Prompt: Iron Man flying in the sky.

As shown in Table 1, VEnhancer outperforms both generative video super-resolution method (LaVie-
SR), real-world video super-resolution method (RealBasicVSR), and generative video refinment
method (I2VGen-XL, refiner) in most metrics, suggesting its outstanding enhancement ability for
videos. Note that LaVie-SR surpasses RealBasicVSR in image/video quality (MUSIQ, DOVER,
and Aesthetic Quality), as diffusion-based methods are better at generating sharp details. But
LaVie-SR achieves the worst Motion Smoothness, indicating its insufficient capability in balancing
video smoothness and video quality. I2VGen-XL’s refiner could obtain the highest score in Motion
Smoothness, but sacrifices the magnitude of motion significantly (worst Dynamic Degree). Moreover,
it achieves very unsatisfactory results in metrics evaluating image and video quality. Because it
uses bilinear interpolation for ×4 upsampling, which produces very blurry results. Nevertheless,
VEnhancer achieves overall best results with good balance among image/video quality, motion
smoothness, and motion magnitude.
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The visual comparison is presented in Figure. 6. The prompt is “Iron man flying in the sky". The input
video is already consistent with the prompt, but lacks details on the iron man suit. RealBasicVSR
could remove some noises or artifacts of the generated videos as it incorporates complex degradation
for model training. However, it fails in generating realistic details but produces over-smoothed results,
since its generative ability is limited. On the other hand, the results of LaVie-SR contains more
artifacts than input. Without successfully removing artifacts, the generative super-resolution model
will enlarge the existing defects. The refiner of I2VGen-XL could achieve successful refinement but
produces over-smoothed results. In contrast, VEnhancer could first remove unpleasing artifacts and
refine the distorted content (e.g., head region), and then generate faithfuls details (e.g., helmet and
armor) that are consistent with the text prompt.

5.2 COMPARISON WITH SPACE-TIME SUPER-RESOLUTION METHODS

For space-time super-resolution task, we compare two state-of-the-art space-time super-resolution
methods: VideoINR (Chen et al., 2022) and Zooming-Slow-Mo (Xiang et al., 2020) (Zoom for
short). We also consider LaVie’s cascaded T-SR and S-SR DM-based pipeline: LaVie-FI (frame
interpolation) + LaVie-SR (super-resolution) for more thorough comparison.

Table 2: Quantitative comparison for space-time super-resolution (4×) on AIGC2023 test dataset.
Red and blue indicate the best and second best performance. The top 3 results are marked as gray .

DOVER↑ MUSIQ↑ Aesthetic
Quality

Dynamic
Degree

Motion
Smoothness

LaVie-FI + LaVie-SR Wang et al. (2023b) 0.8159 53.2128 0.6566 0.60 0.9857
VideoINR Chen et al. (2022) 0.7608 34.1060 0.6624 0.60 0.9933

Zooming Slow-Mo Xiang et al. (2020) 0.7328 33.8470 0.6624 0.55 0.9908
Ours 0.8609 51.2940 0.6710 0.60 0.9937

As shown in Table 2, we observe that our method surpasses all baselines in DOVER and Aesthetic
Quality, showing its superior capability in generating sharp and realistic video content. Besides,
it obtains highest scores in Motion Smoothness and Dynamic Degree, indicating VEnhancer’s
excellent ability in synthesizing stable temporal details. The cascaded T-SR and S-SR approach
(LaVie-FI + LaVie-SR) obtains good scores in DOVER and MUSIQ, demonstrating DM-based
methods’ advantage in generation. However, its performance in temporal aspect is unsatisfactory
due to its inferior capability in temporal refinement. We notice that state-of-the-art space-time
super-resolution methods (VideoINR and Zooming Slow-Mo) behave well in Motion Smoothness.
As both of them are optimized with reconstruction loss, the produced results are very smooth across
frames. At a cost, they perform poorly in metrics regarding quality, such as DOVER and MUSIQ.

The visual comparison is illustrated in Figure. 7. The first and third columns present the low-resolution
key frames. Note that the input frames are not consistent especially in the region of guitar strings.
The cascaded T-SR and S-SR approach, LaVie-FI + LaVie-SR, can produce very sharp results for all
frames (key and predicted ones). However, it generates messy contents which are not semantically
aligned with prompt. Moreover, the generated details are changing across time, indicating severe
flickering. For reconstruction-based methods (VideoINR and Zoom), the produced results are similar:
lacking details and failing in improving the consistency of the original input frames. On the contrary,
VEnhancer is not only able to achieve unified space-time super-resolution, but can also improve the
temporal consistency of the generated videos by refinement (i.e., guitar strings and raccoon hands).

5.3 EVALUATION ON IMPROVING VIDEO GENERATION

Here we evaluate VEnhancer’s ability in improving state-of-the-art T2V methods. The baselines
includes open-source T2V methods–VideoCrafter-2 (Chen et al., 2024a) (VC-2 for short), Lavie
(Wang et al., 2023b), Open-Sora, CogVideoX (Yang et al., 2024), and professional video generation
products–Pika and Gen-2. In particular, we enhance T2V results of CogVideoX-5B and VC-2.

The quantitative results are organized in Table 3. Before enhancement, CogVideoX-5B and VC-2
achieve the best and second best in Semantic compared with other baselines, demonstrating their
superiority in generating video contents that are highly consistent to the VBench’s prompt suite.
Regarding Quality, they lag behind Pika. But with VEnhancer, VC-2 and CogVideoX-5B are able to
achieve the highest and second highest scores in Quality. Besides, their scores regarding Semantic
improves a lot, especially VC-2’ (3.31% increase). This indicates that VEnhancer can improve the
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Table 3: VBench Evaluation Results. This table compares the performance of open-source T2V
methods and professional video generation products regarding two aspects (Quality and Semantic). A
higher score indicates better performance. Red and blue indicate the best and second best performance.
The top 3 results are marked as gray .

LaVie Open-Sora Pika Gen-2 CogVideoX-5B VC-2 CogVideoX-5B VC-2
Wang et al. (2023b) Yang et al. (2024) Chen et al. (2024a) +Venhancer +VEnhancer

Quality 78.78% 80.71% 82.92% 82.47% 82.75% 82.20% 82.99% 83.28%
Semantic 70.31% 73.30% 71.77% 73.03% 77.04% 73.42% 77.52% 76.73%
Overall 77.08% 79.23% 80.69% 80.58% 81.61% 80.44% 81.90% 81.97%

semantic content and video quality at the same time, showing a powerful generative enhancement
ability. More importantly, the advantage of adopting a two-stage pipeline is observed: the first T2V
model focuses on generating semantic content and motions with good fidelity to the prompts, while
the following enhancement model can improve the semantic in low-level and image quality, as well
as temporal consistency. For visual results, please see the video demonstration in supp.

5.4 ABLATION STUDIES

The Effectiveness of Noise Augmentation. During training, the noise level regarding noise augmen-
tation is randomly sampled within a predefined range. While during inference, one can change the
noise level to achieve refinement with different strengths. In general, higher noise corresponds to
stronger refinement and regeneration. We present the visual comparison among different noise levels
in Figure 8. The first frame of one AI-generated video is presented in the left. It is of low-resolution
and lacks details. Also, the original video has very obvious flickering. If we set σ = 0, VEnhancer
will generate unpleasing noises in the background. As there is domain mismatch between the training
data and testing data, the enhancement fails in handling unseen and challenging scenarios. Fortunately,
we can mitigate this by adding noise in the condition latents for corrupting the noisy and unknown
low-level details. As we increase the noise level, the artifacts are gradually vanishing. When σ = 250,
the result is noise-clean, and has abundant semantic details.

Arbitrary Up-sampling Scales for Spatial Super-Resolution. Here we show that VEnhancer is able
to up-sample videos with arbitrary scales. From Figure 9, we observe that VEnhancer could produce
satisfactory results on different scales (2.5×, 3×, 3.5×, 4×, and 4.5×), suggesting its flexibility and
generalization in adapting to different tasks. In particular, given one frame of the generated video
(312× 512), VEnhancer could improve the generated details when the up-sampling scale grows up.
When s = 2.5 ∼ 3.5, the panda’s hand is less realistic. But it becomes better when s = 4 or s = 4.5.
It is also noticed that the panda’ fur is becoming more realistic as s grows.

Arbitrary Up-sampling Scales for Temporal Super-Resolution. In this part, we show VEnhancer
is able to achieve arbitrary up-sampling in time axis. Given two low-resolution key frames, we aim to
up-sample them to high-resolution ones, and also interpolate several frames (ranging from 2 to 4)
between them. As shown in Figure 10, the results are consistent across frames, showing not flicking
or distortions. Besides, the spatial quality has also been significantly improved. As shown in the
last row, 5× frame interpolation yields smooth frames with generated contents: the shadow in the
right leg is changing, showing a very natural transition. This indicates that diffusion-based frame
interpolation has great capability in both motion and content generation.

6 CONCLUSION AND LIMITATION

In this work, we propose a generative space-time enhancement method – VEnhancer for video
generation. It can achieve spatial super-resolution, temporal super-resolution and video refinement
in one video diffusion model. We base on a pretrained generative video prior and build a Space-
Time Controller (ST-Controller) for effective condition injection. Space-time data augmentation and
video-aware conditioning are proposed to train ST-Controller in an end-to-end manner. Extensive
experiments have demonstrated our superiority over state-of-the-art video super-resolution and space-
time super-resolution methods in enhancing AI-generated videos. However, our work has several
limitations. First, as it is based on diffusion models, the inference takes more time than one-step
methods. Second, it may face challenges in handling AI-generated long videos, since the long-term
(over 10s) consistency has not been addressed in this work.
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A APPENDIX

A.1 COMPARISON WITH SPACE-TIME SUPER-RESOLUTION METHODS

Key frame

LaVie-FI+
LaVie-SR

VideoINR

Zoom

Ours

Key frameInput

Figure 7: Visual comparison for space-time super-resolution on AIGC2023 test dataset. Prompt: A
cute raccoon playing guitar in a boat on the ocean. Zoom in for best view.

A.2 ABLATION STUDIES

Comparison with Space-Time Super-Resolution Methods

input σ = 0 σ = 150 σ = 250

Figure 8: Visual comparison of setting different noise levels in noise augmentation during testing.

Arbitrary Up-sampling Scales for Spatial Super-Resolution.
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2.5 x

Input

3 x

4 x

3.5 x

4.5 x

Figure 9: Visual results of different up-sampling scales (2.5×, 3×, 3.5×, 4×, and 4.5×) for spatial
super-resolution during testing.

Arbitrary Up-sampling Scales for Temporal Super-Resolution.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Key frame Key frame

3 x

4 x

5 x

Figure 10: Visual results of different up-sampling scales (3×, 4×, and 5×) for temporal super-
resolution during testing.
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