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ABSTRACT

Accurate Subseasonal-to-Seasonal (S2S) climate forecasting is pivotal for
decision-making including agriculture planning and disaster preparedness but is
known to be challenging due to its chaotic nature. Although recent data-driven
models have shown promising results, their performance is limited by inadequate
consideration of geometric inductive biases. Usually, they treat the spherical
weather data as planar images, resulting in an inaccurate representation of lo-
cations and spatial relations. In this work, we propose the geometric-inspired
Circular Transformer (CirT) to model the cyclic characteristic of the graticule,
consisting of two key designs: (1) Decomposing the weather data by latitude
into circular patches that serve as input tokens to the Transformer; (2) Leveraging
Fourier transform in self-attention to capture the global information and model the
spatial periodicity. Extensive experiments on the Earth Reanalysis 5 (ERA5) re-
analysis dataset demonstrate our model yields a significant improvement over the
advanced data-driven models, including PanguWeather and GraphCast, as well as
skillful ECMWF systems. Additionally, we empirically show the effectiveness of
our model designs and high-quality prediction over spatial and temporal dimen-
sions. The code link is: https://github.com/compasszzn/CirT.

1 INTRODUCTION

Subseasonal-to-seasonal (S2S) forecasting, which predicts meteorological variables 2 to 6 weeks
in advance, is crucial for agriculture, resource allocation, and disaster preparedness (e.g., heatwaves
and droughts) (Mouatadid et al., 2024). Despite its high socioeconomic benefits, such a task has long
been considered a “predictability desert” (Vitart et al., 2012) due to the chaotic nature of the atmo-
sphere. Compared with medium-range (up to 15 days) and seasonal predictions (3-6 months) (Vitart
et al., 2017), the S2S timescale is long enough to lose much of the memory of atmospheric initial
conditions, while it is too short for slowly evolving earth system components such as the ocean that
strongly influence the atmosphere (Black et al., 2017; Phakula et al., 2024). The existing S2S near-
real-time forecasting models rely on physics-based Numerical Weather Prediction (NWP) models
that discretize governing equations of thermodynamics, fluid flow, etc (Nathaniel et al., 2024). How-
ever, these models generally suffer considerable biases (Mouatadid et al., 2023) and require mas-
sive computational resources to perform numerical integration at fine-grained resolutions (Schneider
et al., 2023).

Multiple studies utilize the potential of data-driven models to mitigate the above weakness, in which
most works (Hwang et al., 2019; He et al., 2022; Mouatadid et al., 2024) focus on regional fore-
casting. However, the regional weather is often influenced by conditions in other areas on the S2S
timescale, indicating the insufficiency of relying solely on regional inputs for S2S forecasting (Vitart
et al., 2012; Lau & Waliser, 2011; Robertson et al., 2015). With the development of the high-quality
Earth Reanalysis 5 (ERA5) dataset (Hersbach et al., 2020) and weather foundation models (Pathak
et al., 2022; Lam et al., 2022; Bi et al., 2023), a few studies (Chen et al., 2024; Nguyen et al., 2023;
Weyn et al., 2021) have proposed global data-driven S2S forecasting models and achieved promis-
ing results. Specifically, they treat weather parameter values on the latitude-longitude grid (i.e.,
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graticule) as image data, represented as 3-dimensional tensors, and employ the Transformer (Doso-
vitskiy, 2020) to forecast the future weather parameter values as an image generation task. Despite
the promising results, the inconsistency between the planar and sphere geometry leads to signifi-
cant distortions in learning dynamics, resulting in incorrect spatial relations. Figure 1 depicts the
example of this heavy distortion in planar projection.

Planar View (2 meter temperature)

Spherical View

Patch 2

Patch 1

Figure 1: Planar and the spherical view
of 2-metre temperature. Treating it as
an image results in distortion.

Therefore, we re-investigate the transformer design for
graticule by considering two geometric inductive biases.
First, existing methods decompose the planar latitude-
longitude image into the fixed-degree patch, such as
3◦ × 3◦, ignoring that parallels have unequal geometric
lengths. For example in Figure 1, although the patch
size is the same in the planar view, the area of Patch
2 is significantly larger than that of Patch 1. Thus, the
generated patches are of varying sizes and shapes in the
sphere, especially in high-altitude regions, leading to an
uneven distribution of information across patches. Sec-
ond, the graticule demonstrates latitudinal spatial period-
icity. Overlooking such an inductive bias results in inac-
curate spatial relation modeling. As shown in Figure 1,
the left and right boundaries of the planar view are con-
nected while appear separated.

In this work, we propose a Circular Transformer (CirT)
that implements an equidistant circular patching strategy and self-attention incorporating spatial
periodicity. To construct undistorted spatial relations among patches, CirT partitions the graticule
uniformly by latitude, treating weather variables distributed on each parallel as a patch. Thus, the
generated patches are in the same shape with geometric lengths determined by latitudes. Meanwhile,
the adjacent patches are equidistant. Considering the weather signals are spatially periodic on the
circular patch, we treat it as a spatial signal of 2π periodicity and leverage the Fourier transform
to extract the global features and perform self-attention to mix patches on the frequency domain.
The frequencies are inversely transformed into the spatial domain to make the final forecasting.
Finally, instead of learning autoregressive models like previous works (Chen et al., 2024; Nguyen
et al., 2023; Weyn et al., 2021), we directly train CirT to predict in S2S timescale, which avoids the
large accumulation errors and learns the connections between the initial and target states. Through
extensive experiments on the ERA5 dataset, we find that

• Remarkably, CirT outperforms skillful numerical S2S systems including UKMO, NCEP, CMA,
and ECMWF, as well as state-of-the-art data-driven models including ClimaX, FourCastNetV2,
PanguWeather, and GraphCast on S2S forecasting.

• Most methods, including data-driven and numerical models, achieve a larger bias in high-latitude
areas. In contrast, we show that CirT produces more structurally consistent results with ground
truth and performs better in these areas.

• Ablation studies show that the proposed two simple designs, circular patching and patch mixing
in the frequency domain, significantly enhance the model performance.

2 PRELIMINARY

Problem Definition We study the bi-weekly forecasting of K weather parameters at the latitude-
longitude grid G ∈ RH×W×2. H and W are the height and width of the grid that depends on the
resolution of latitude and longitude, and Gh,w,: = (λh, ϕw) ∈ Ω = [−90◦, 90◦] × [−180◦, 180◦].
At day t, the state of global weather is represented by a 3-dimensional tensor X t ∈ RH×W×K .
Following previous works (Chen et al., 2024; Mouatadid et al., 2023; Nguyen et al., 2023), given
the initial condition (G,X t1), our objective is to learn a neural network to predict the average value
of weather variables over weeks 3-4 and weeks 5-6, as shown in the following:

(X̂ t15:t28 , X̂ t29:t42) = fΘ(G,X t1), (1)

where Θ denotes the parameters of neural networks. X̂ t15:t28 and X̂ t29:t42 are predicted average
value over weeks 3-4 (from day 15 to day 28) and weeks 5-6 (from day 29 to day 42). Distinct from
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Figure 2: CirT architecture and circular patching examples. The input tensors are first decomposed
by latitudes, resulting in a set of circular patches. Then they are fed into a series of Transformer
blocks where DFT and IDFT are applied in each block to transform information between frequency
and spatial domain. Finally, the output head maps the representation to biweekly predictions.

data-driven medium-range models that iteratively produce the results, we aim to learn a model that
directly predicts these two values.

Fourier Transform and Inversion Fourier Transform is known to be an effective tool to extract
features from periodic signals. Consider a sequence of N grid-based real-valued observations of a
function, denoted by s = (s1, ..., sN ) ∈ RN . The Discrete Fourier Transform (DFT), represented
by F , converts this sequence into the frequency domain with a periodicity of 2π as follows:

Sk =

N∑
n=1

sn cos
(
2π

k

N
n
)
− i

N∑
n=1

sn sin
(
2π

k

N
n
)
= Ak −Bki, (2)

where S = F(s) = (S1, ..., SN ) ∈ RN and i is the imaginary unit. Ak and Bk are the real
and imaginary parts of the complex number Sk in the frequency domain, respectively. The inverse
transformation, which reconstructs the original sequence from the frequency domain, is given by:

sn =
1

N

N∑
k=1

Sk

(
cos

(
2π

n

N
k
)
+ i sin

(
2π

n

N
k
))

, (3)

or equivalently by substituting Sk = Ak −Bki ,

sn =
1

N

N∑
k=1

(
Ak cos

(
2π

n

N
k
)
−Bk sin

(
2π

n

N
k
))

, (4)

where the imaginary unit is canceled out. We express the inverse transform as s = F−1(S) for
symmetry.

3 CIRT MODEL

Our CirT architecture is illustrated in Figure 2. The input X t1 is split to H embedded circular
patches and then fed into the Transformer encoder to predict the Weeks 3-4 and Weeks 5-6 results.
In the following, we elaborate on the model structure including circular patching and transformer
encoder.
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Circular Patching CirT first divides the input X t1 into H latitudinal non-overlapping patches
{X(h)}Hh=1 where X(h) ∈ RW×K and its w-th row X

(h)
w ∈ RK denotes the K weather values at

the coordinate (λh, ϕw). Thus, the geometric distance of adjacent patches X(h)
w and X

(h)
w+1 is fixed

to R∆ϕ where ∆ϕ is the longitude resolution and R is the earth radius. Meanwhile, the geometric
length of the patch X(h) can be determined by 2πR cos(λh). These patches are then flattened
and stacked into a matrix XF ∈ RH×(W ·K), which is subsequently projected into latent space to
generate initial embedding E ∈ RH×D as follows:

E = XFWp +Wpos, (5)

where Wp ∈ R(W ·K)×D and Wpos ∈ RH×D denote the learnable projection matrix and additive
position embedding, respectively. Subsequently, the initial embedding is fed into the Transformer
encoder for further processing.

CirT Transformer Encoder Considering the circular patch satisfies Xw = Xw+W . Therefore,
instead of directly inputting X into the transformer, we consider its Fourier transform, composed
of coefficients from a series of periodic basis functions. The Fourier Transform offers insights into
the wave frequencies present in the periodic signals, which aligns well with data with inherent pe-
riodicities (Zhou et al., 2022; Wu et al., 2023). Our approach aims to incorporate such an inductive
bias into the learning process by operating in the frequency domain. Specifically, at the l-th trans-
former block, we begin by applying DFT to each row of input embedding E(l) ∈ RH×D, where
E

(l)
h = (E

(l)
h,1, ..., E

(l)
h,D) ∈ RD corresponds to the embedding of the h-th patch. According to

Eqn. 2,

S
(l)
h,k =

D∑
n=1

E
(l)
h,n cos

(
2π

k

N
n
)
− i

D∑
n=1

E
(l)
h,n sin

(
2π

k

N
n
)
= A

(l)
h,k −B

(l)
h,ki, (6)

where S
(l)
h = F(E

(l)
h ) ∈ RD represents the complex frequency embedding, and A

(l)
h = Re(S(l)

h )

and B
(l)
h = Im(S

(l)
h ) represent its real and imaginary parts, respectively. These components of all

patches are then stacked into matrices A(l) ∈ RN×D and B(l) ∈ RN×D, which are then jointly fed
to the multi-head attention to consider their correlation.

For the m-th attention head, we compute the query, key, and value matrices of C(l) = [A(l),B(l)] ∈
RH×2D following standard attention operations:

Q(l,m) = C(l)WQ
m , K(l,m) = C(l)WK

m , V (l,m) = C(l)W V
m , (7)

where W
Q/K/V
m ∈ R2D×2D are learned projection matrices. The attention output Ã(l,m) and

B̃(l,m) are then computed using scaled production:

C̃(l,m) = [Ã(l,m), B̃(l,m)] = softmax(
Q(l,m)K(l,m)

√
D

)V (l,m), (8)

where Ã(l,m) consists of the first D columns of the output C̃(l,m) while B̃(l,m) corresponds to
the rest. For the h-th patch, the processed frequency-domain representation is then rearranged as
S̃

(l,m)
h = Ã

(l,m)
h − B̃

(l,m)
h i. This representation is then converted back to the original domain by

applying the inverse DFT following Eqn. 4:

Ẽ
(l,m)
h,n =

1

D

D∑
k=1

(
Ã

(l,m)
h,k cos

(
2π

n

N
k
)
− B̃

(l,m)
h,k sin

(
2π

n

N
k
))

, (9)

where Ẽ
(l,m)
h = F−1(S̃

(l,m)
h ) is the inverse-transformed representation of the patch. By stacking

these transformed representations, we obtain the reconstructed embedding Ẽ(l,m). Finally, a feed-
forward network is used to generate the output embedding E(l+1) by passing the reconstructed
embeddings from all heads:

E(l+1) = MLP([Ẽ(l,1), · · · , Ẽ(l,M)]). (10)

For brevity, we omit the LayerNorm layers in the forward process of the Transformer block, as
shown in Figure 2.
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Training Given the output representation of the Transformer encoder, a flattened MLP is used
to obtain the prediction results of weeks 3-4 and weeks 5-6. The model is trained to minimize
the discrepancy between the prediction and ground truth. The loss in each variable and location is
gathered and averaged over weeks 3-4 and 5-6 to calculate the overall objective loss:

L =
1

2×K ×H ×W
(||X̂ t15:t28 −X t15:t28 ||22 + ||X̂ t29:t42 −X t29:t42 ||22), (11)

where X t15:t28 and X t29:t42 are the ground truth.

4 EXPERIMENTS

Dataset We evaluate the effectiveness of CirT on the ERA5 reanalysis dataset (Hersbach et al.,
2020) which provides the comprehensive pressure and single levels climate variables. The resolu-
tion is set to 1.5◦, resulting in a 121×240 latitude-longitude grid. We use 6 pressure level variables,
including geopotential (z), specific humidity (q), temperature (t), u component of wind (u), v com-
ponent of wind (v), and vertical velocity (w) at 10 pressure levels: 10, 50, 100, 200, 300, 500, 700,
850, 925 and 1000 hPa. Besides, we integrate 3 more single levels variables: 2m temperature (t2m),
10m u component of wind (10u), 10m v component of wind (10v), totaling 63 variables. We use the
1979–2016 (38 years of) data for training, the 2017 data for validation, and the 2018 for testing.

Metric Following existing works (Rasp et al., 2024; Nathaniel et al., 2024), we adopt latitude-
weighted RMSE and Anomaly Correlation Coefficient (ACC) to evaluate the model performance
with K = 1, which are defined as follows:

RMSE =

√
1

HW

∑
h,w

α(h)(X̂h,w −Xh,w)2, ACC =

∑
h,w α(h)X̂ ′

h,wX
′
h,w√∑

h,w α(h)X̂
′2
h,w

∑
h,w α(h)X

′2
h,w

, (12)

where α(h) = cos(λh)/
1
H

∑
h′ cos(λh′) is the latitude weighting factor. X = X t,:,:,1 ∈ RH×W is

the ground truth for specific day t with its prediction X̂ . X ′
h,w = Xh,w−C and X̂ ′

h,w = X̂h,w−C,
where C is the observational climatology (i.e., empirical mean of observational data).

Data-driven baselines Following the existing S2S benchmark (Nathaniel et al., 2024), we com-
pare CirT with state-of-the-art data-driven models, including FourCastNetV2 (Pathak et al., 2022),
PanguWeather (Bi et al., 2023), GraphCast (Lam et al., 2022) and ClimaX (Nguyen et al., 2023).
Among them, FourCastNetV2, PanguWeather, and ClimaX follow a ViT process, while GraphCast
is a graph neural network.

Physics-based baselines To further evaluate the model performance of CirT, we compare it with
various advanced physics-based models, including UK Meteorological Office (UKMO) (Williams
et al., 2015), National Centers for Environmental Prediction (NCEP) (Saha et al., 2014), China Me-
teorological Administration (CMA) (Wu et al., 2019), European Centre for Medium-Range Weather
Forecasts (ECMWF) (Molteni et al., 1996). Among them, ECMWF is recognized as the most skill-
ful S2S modeling system (Chen et al., 2024; Domeisen et al., 2022). More details are shown in the
Appendix.

Implementation details We use the following hyper-parameters for all direct training baselines:
Batch size 16, the hidden dimension 256, and the attention head 16. All models are set to 8 layers
and the learning rate is 0.01. All models are trained for 20 epochs. All models are implemented
based on Pytorch Lightning, trained on 8 GeForce RTX 4090 GPU. We train ClimaX the same as
CirT and download trained FourCastNetV2, PanguWeather, and GraphCast through API1 provided
by ECMWF. We perform the inference of Download models in NVIDIA A800 80G GPU. We use the
download parameters and do not finetune them to the S2S timescale due to the limited computational
resources. Note that although FourCastNetV2 and PanguWeather report the 2-meter predictions, the
retrieved model in ECMWF does not include its inference and GraphCast is out-of-memory when
performing inference for Weeks 5-6.

1https://github.com/ecmwf-lab/ai-models
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Table 1: Global S2S forecasting results of data-driven models. The lower RMSE and higher ACC
indicate better results.

Metric RMSE (↓) ACC (↑)
FourCastNetV2 GraphCast PanguWeather ClimaX CirT FourCastNetV2 GraphCast PanguWeather ClimaX CirT

W
ee

ks
3-

4

z500 (m2/s2) 615 618 649 602 477 0.947 0.973 0.963 0.977 0.984
z850 (m2/s2) 402 411 416 372 304 0.896 0.931 0.926 0.949 0.963

t500 (K) 2.093 2.176 2.271 2.186 1.687 0.966 0.979 0.966 0.981 0.988
t850 (K) 2.390 2.370 2.569 2.618 1.903 0.957 0.982 0.963 0.981 0.988
t2m (K) – 2.158 – 2.998 2.007 – 0.991 – 0.985 0.993

u10 (m/s) 2.328 – 2.431 2.334 1.806 0.830 – 0.812 0.817 0.896
v10 (m/s) 1.896 – 1.984 1.906 1.511 0.712 – 0.686 0.667 0.811

W
ee

ks
5-

6

z500 (m2/s2) 652 – 754 619 471 0.943 – 0.956 0.976 0.985
z850 (m2/s2) 426 – 461 375 301 0.889 – 0.911 0.948 0.964

t500 (K) 2.250 – 2.829 2.254 1.672 0.963 – 0.958 0.980 0.988
t850 (K) 2.567 – 2.998 2.741 1.933 0.953 – 0.957 0.980 0.989
t2m (K) – – – 3.168 2.026 – – – 0.984 0.992

u10 (m/s) 2.479 – 2.679 2.355 1.809 0.812 – 0.783 0.814 0.895
v10 (m/s) 1.980 – 2.104 1.939 1.512 0.691 – 0.655 0.659 0.812

4.1 OVERALL PERFORMANCE

Compared with data-driven models We display the model performance in 7 target variables:
geopotential at 500hPa (z500), geopotential at 850hPa (z850), temperature at 500hPa (t500), tem-
perature at 850hPa (t850), 2m temperature (t2m), 10 metre U wind component (u10) and 10 metre
V wind component (v10) in Table 1. Based on these results, we have the following observations:

• CirT consistently outperforms all baselines in all cases. Specifically, compared to the best base-
line, the average RMSE improvement on geopotential (m2/s2) and temperature (K) over Weeks
3-4 and Weeks 5-6 is 96.5, 0.369, and 111, 0.843, demonstrating significant improvement.

• CirT achieves larger improvement over Weeks 5-6 than Weeks 3-4 predictions. The iterative mod-
els (i.e., FourCastNetV2 and PanguWeath) accumulate errors in each step, leading to inaccurate
predictions when the iterative step is large. In contrast, the direct prediction models aim to capture
the relations between initial and subseasonal states, resulting in lower performance drops.

• Compared with ViT-based iterative models, GraphCast achieves relatively better performance in
Weeks 3-4 predictions. The reason can be attributed to that it employs mesh to model the sphere
geometry, leading to lower accumulated errors.

• We can find that wind forecasting is more challenging than other comparing variables. For exam-
ple, Weeks 3-4 t850 ACC of FourCastNetV2 is 0.957 while u10 ACC is 0.830. Under such cases,
CirT still performs the best, further verifying its effectiveness.

In addition, we provide a relative RMSE comparison in Figure 3. We can observe that CirT generally
achieves lower errors across all pressure levels. When the lead time increases from Weeks 3-4 to
5-6, the performance of baselines significantly reduces, especially in Temperature. In contrast, CirT
maintains relatively low errors.

Compared with numerical models To better investigate the performance of CirT, we compare it
and numerical models in Figure 3, where lighter colors indicate lower RMSE. The ACC results are
shown in the Appendix. From the results, we can find that:

• CirT remarkably outperforms numerical models in almost all cases, demonstrating the effective-
ness of direct data-driven models. In addition, numerical methods underperform at low-pressure
levels, especially at the 10 hPa level, while CirT still performs better.

• Compared with the results of Weeks 3-4 and 5-6, we can observe that similar to iterative data-
driven models, the performance of numerical models decreases when the lead time increases but
the performance drop is smaller than data-driven models. Such results show that physics-based
models are more stable than iterative data-driven models. Overall, CirT which directly predicts
the biweekly states maintains the best performance.
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Figure 3: RMSE comparison between CirT and data-driven and numerical methods on geopoten-
tial z, temperature t, wind u, and v of different pressure levels. FCN, GC, and PW are short for
FourCastNetV2, GraphCast, and PanguWeather. A lighter color indicates better results: CirT con-
sistently outperforms all models.

4.2 ABLATION STUDY

To validate the effect of each model design on the overall model performance, we compare CirT with
several invariants based on whether they use grid or circular patching as well as Fourier transform.
The results are shown in Table 2, where we can observe that:

• Fourier transform is a strong inductive bias and directly applying it does not always enhance model
performance. From the table, we can observe that employing FT for grid patches increases the
z850 and t2m errors in Weeks 3-4 as well as z850, t850, and t2m errors in Weeks 5-6, indicating
the necessity of designing suitable patching approaches.

• Employing the circular patching strategy improves model performance, especially when the model
uses the FT. For example, when no FT, employing circular patching reduces z500 Weeks 3-4/5-6
RMSE from 516/501 to 502/498. In contrast, in the case of the FT, employing circular patching
significantly reduces z500 Weeks 3-4/5-6 RMSE from 497/494 to 477/471. Such results not only
suggest the effectiveness of our model designs but also validate the effectiveness of utilizing the
FT to extract the spatial periodic signal from circular patches.
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Table 2: Ablation studies of patching strategies and Fourier transform.

Patch Fourier RMSE (↓) ACC (↑)
Transform z500 z850 t500 t850 t2m u10 v10 z500 z850 t500 t850 t2m u10 v10

W
ee

ks
3-

4 Grid × 516 319 1.910 2.168 2.554 1.946 1.616 0.983 0.959 0.986 0.987 0.990 0.877 0.782
Circular × 502 313 1.74 2.077 2.000 1.827 1.503 0.983 0.961 0.987 0.988 0.993 0.893 0.811

Grid ✓ 497 324 1.733 2.050 2.583 1.970 1.614 0.983 0.958 0.988 0.988 0.990 0.875 0.782
Circular ✓ 477 304 1.687 1.903 2.007 1.806 1.511 0.984 0.963 0.988 0.988 0.993 0.896 0.811

W
ee

ks
5-

6 Grid × 501 319 1.808 2.113 2.578 1.932 1.614 0.983 0.959 0.987 0.987 0.989 0.879 0.783
Circular × 498 311 1.707 2.008 2.178 1.812 1.515 0.984 0.962 0.987 0.989 0.992 0.895 0.810

Grid ✓ 494 320 1.737 2.112 2.650 1.963 1.621 0.983 0.960 0.988 0.988 0.989 0.877 0.781
Circular ✓ 471 301 1.672 1.933 2.026 1.809 1.512 0.985 0.964 0.988 0.989 0.993 0.895 0.812

Table 3: RMSE comparison w.r.t. latitude. CirT generally achieves the best performance and has a
higher relative improvement in mid-/high-latitude areas.

Variable Weeks 3-4 Weeks 5-6
FourCastNetV2 GraphCast PanguWeather ClimaX CirT FourCastNetV2 GraphCast PanguWeather ClimaX CirT

L
ow

-L
at

.

z500 200 229 293 234 206 223 – 468 242 185
z850 134 150 168 159 112 153 – 236 158 107
t500 1.090 1.357 1.490 1.321 1.076 1.199 – 2.278 1.364 1.008
t850 1.403 1.488 1.762 1.902 1.310 1.564 – 2.332 2.002 1.290
t2m – 1.363 – 2.044 1.308 – – – 2.156 1.264
u10 1.789 – 1.953 2.119 1.459 1.986 – 2.295 2.165 1.467
v10 1.399 – 1.494 1.713 1.165 1.503 – 1.679 1.779 1.177

M
id

-L
at

.

z500 799 809 842 837 632 852 – 936 860 633
z850 521 539 541 506 404 552 – 584 511 406
t500 2.591 2.630 2.749 2.832 2.082 2.819 – 3.226 2.932 2.072
t850 2.750 2.787 2.984 3.093 2.217 2.950 – 3.349 3.249 2.260
t2m – 2.212 – 3.276 2.031 – – – 3.496 2.071
u10 2.895 – 2.967 2.481 2.154 3.004 – 3.122 2.474 2.150
v10 2.327 – 2.422 2.015 1.829 2.388 – 2.492 2.014 1.824

H
ig

h-
L

at
.

z500 1804 1019 1238 861 756 1856 – 1299 880 743
z850 1050 689 715 566 514 1074 – 772 569 498
t500 5.249 3.297 4.667 2.833 2.414 5.465 – 4.857 2.879 2.497
t850 7.927 3.832 6.265 3.560 2.833 8.244 – 6.459 3.678 2.955
t2m – 4.153 – 4.874 3.601 – – – 5.086 3.674
u10 2.559 – 2.567 2.641 1.918 2.414 – 2.453 2.377 1.765
v10 2.625 – 2.661 2.657 1.927 2.457 – 2.493 2.392 1.755

4.3 EMPIRICAL ANALYSIS

Latitudinal forecasting To investigate the model performance w.r.t. the latitude, we compare their
results at low-latitude (0◦-30◦), mid-latitude (30◦-60◦), and high-latitude (60◦-90◦) areas. The re-
sults are displayed in Table 3. From them, we can discover that CirT generally outperforms baselines
in all areas. Moreover, CirT achieves larger relative improvement in mid-latitude and high-latitude
areas. For example, in the t500 Weeks 3-4 prediction, CirT has a 1.2% relative improvement in
low-latitude areas over the best baseline and 19.6%/16.2% in mid-/high-latitude areas. Such im-
provement can be attributed to the consideration of geometric inductive bias.

Global visualization To provide a global view of model predictions, we visualize the Weeks 3-4
RMSE distribution in Figure 4. More visualizations such as Weeks 5-6 predictions and different
variables can be found in the Appendix. As shown in the figure, all models achieve the best re-
sults in the equatorial region. Higher RMSE values are primarily concentrated in south polar areas
and the continents of the Northern Hemisphere, especially in North America and the Bering Strait.
Among these methods, CirT demonstrates significantly lower errors, even in the above areas, further
validating our framework of incorporating geometric information.

Performance w.r.t. month We further compare the model performance over different months,
which is shown in Figure 5. The results of other variables can be found in the Appendix. CirT
has superior predictive capabilities in forecasting at all times, outperforming all competing methods
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Figure 4: The global RMSE distribution of t850 with lead times weeks 3-4 in testing set: CirT
demonstrates significant performance across different areas.
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Figure 5: The monthly RMSE of t500 in testing set: CirT outperforms baselines across all months.

at all months. In particular, it has the largest improvement in June for both Weeks 3-4 and 5-6
predictions.

5 RELATED WORK

The advances in numerical weather prediction have dominated weather and climate modeling over
the last century. They model the complex Earth dynamics as coupled physical systems such as
earth system models (ESM) (Hurrell et al., 2013), integrating the simulations of the atmosphere,
cryosphere, land, and ocean processes. With the development of machine learning models (Ho
et al., 2019; Guibas et al., 2021) and the accessibility of high-quality weather data, various data-
driven models have been proposed to mitigate the weaknesses of NWP such as high computational
demands and sensitivity to initial conditions. Early studies target regional forecasting on specific
variables, such as precipitation nowcasting in Hong Kong (Shi et al., 2015), wind prediction in
Stuttgart (Harbola & Coors, 2019), and air temperature prediction in Australia (Deo, 2016). A
notable progress is the publication of the ECMWF reanalysis v5 (ERA5) dataset (Hersbach et al.,
2020), which combines historical observations with results from a high-fidelity integrated Forecast-
ing System (IFS) (Wedi et al., 2015). Based on such a dataset, pioneer works (Scher, 2018; Weyn
et al., 2019; 2020; Rasp et al., 2020; Rasp & Thuerey, 2021) study the global forecasting of specific
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variables such as 500 hPa Geopotential and 300 hPa zonal wind, but at relatively coarser resolu-
tions (Verma et al., 2024).

Recently, the development of foundation models has significantly advanced data-driven weather and
climate forecasting. They are trained on large-scale high-resolution global data and target various
weather variables. FourCastNet (Pathak et al., 2022) and a follow-up work SFNO (Bonev et al.,
2023) are built on the framework of the Fourier Neural Operator (Li et al., 2020; Guibas et al.,
2021). Graph-based models (Lam et al., 2022; Keisler, 2022) such as GraphCast (Keisler, 2022)
first create a mesh grid on the spherical surface and perform message passing (Liu et al., 2024;
Zheng et al., 2024; Liu et al., 2022) on it. Besides these studies, a series of works are based on
Transformer (Vaswani, 2017; Dosovitskiy, 2020). Pangu-Weather (Bi et al., 2023) leverages sliding
window attention to model spatial relations. Based on a similar backbone, Fuxi (Chen et al., 2023b)
and FengWu (Chen et al., 2023a) improve training strategies to reduce accumulation errors and
incorporate multi-model/task perspectives respectively. Climax (Nguyen et al., 2023) demonstrates
its ability for various weather and climate tasks and CaFA (Li et al., 2024) considers the spherical
geometry.

Despite the progress of current foundation models, S2S forecasting receives less attention due to
its difficulty. Hwang et al. (Hwang et al., 2019) and He et al. (He et al., 2022) study regional
S2S forecasting via traditional machine learning models such as AutoKNN and XGBoost (Chen &
Guestrin, 2016). Weyn et al. (Weyn et al., 2021) designs an ensemble system based on convolution
neural networks to predict six atmospheric variables. It’s only been recently that Climax (Nguyen
et al., 2023) and Fuxi-S2S (Chen et al., 2024) have been developed to try to tackle these issues based
on pre-trained foundation models. Therefore, how to build an effective data-driven S2S forecasting
model is still an open problem. In this work, we propose CirT and study the performance of the
direct prediction model and show that it outperforms current iterative models. Moreover, existing
S2S models generally treat global data as planar which introduces geometric inconsistency while we
leverage spherical inductive bias in model designs to alleviate such problems.

Although both GraphCast (Lam et al., 2022) and CirT leverage geometric inductive biases, Graph-
Cast focuses on local state aggregation and relies on message passing (Liu et al., 2023) to aggregate
local information without explicitly accounting for spatial periodicity. In contrast, CirT employs
circular patching to normalize patch geometry and leverages its Fourier representation, consisting of
coefficients of periodic basis functions, as inputs to the transformer encoders. Compared with Four-
castNet (Pathak et al., 2022) which aims to design an efficient token mixer for Vision Transformers
that can effectively handle high-resolution inputs, CirT performs multi-head attention in the fre-
quency domain to model the interactions among weather patches across various latitudes. Moreover,
FourcastNet employs regular grid patching while CirT introduces circular patching to standardize
patch geometry. Pangu Weather also designs an earth-specific positional bias to integrate spherical
information, encoding relative coordinates with learnable parameters into the attention weight com-
putation. Nevertheless, they still employ cube patching and implicitly learn the geometric bias from
data, while CirT explicitly leverages spherical bias in the patching strategy.

6 CONCLUSION AND FUTURE WORK

In this work, we highlight the geometric inductive bias in Transformer designs for S2S forecasting
and introduce CirT, consisting of a circular patching strategy and latitudinal spatial periodicity mod-
eling. It learns to mix patch embeddings in frequency domains and inverse transform to the spatial
domain. Finally, it is trained to predict the future states in the S2S timescale. Extensive experiments
on the ERA5 dataset demonstrate that CirT not only outperforms advanced data-driven models but
also skillful numerical methods. Ablation studies have further substantiated the effectiveness of
model designs and additional empirical analysis illustrates the superior performance in spatial and
time dimensions. In the future, we are interested in incorporating slowly evolving earth system
components including ocean, land, and sea ice in the proposed framework. In addition, CirT is a 2D
transformer that encodes the inputs of different pressure levels into a single embedding. Neverthe-
less, failure to incorporate the vertical inductive biases may result in incomplete cross-pressure level
interaction. We plan to generalize the 2D CirT to the 3D transformer to incorporate such inductive
biases.
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A APPENDIX

A.1 ADDITIONAL EXPERIMENTAL DETAILS

A.1.1 BASELINE

• UKMO The UK Meteorological Office uses the Global Seasonal forecast system version 6
(GloSea6) model to generate daily control forecasts for 60-day lead time.

• NCEP The National Centers for Environmental Prediction uses the Climate Forecast System 2
(CFSv2) model to generate daily control forecasts for 45-day lead time.

• CMA The China Meteorological Administration uses the Beijing Climate Center (BCC) fully-
coupled BCC-CSM2-HR model to generate control forecasts each Monday and Thursday for 60-
day lead time.

• ECMWF The European Centre for Medium-Range Weather Forecasts uses the operational In-
tegrated Forecasting System (IFS) to generate control forecasts each Monday and Thursday for
46-day lead time. We use the CY48R1 version to forcast.

• FourCastNetV2 Iterative data-driven model built upon Vision Transformer. FourCastNetV2
patches all the variables and uses the Adaptive Fourier Neural Operator to mix the spatial patches.
We use the API https://github.com/ecmwf-lab/ai-models to perform inference.
Due to the data loss in October 2018, we utilized the available data from the remaining 11 months.

• GraphCast Iterative data-driven model built upon Graph Neural Network. It use multi-mesh
method to construct the graph to learn the complex dynamics. We use the API https:
//github.com/ecmwf-lab/ai-models to perform inference. The GPU’s memory only
allows us to perform inference on data spanning a maximum of 4 weeks. Therefore, we only
present the results for weeks 3-4.

• PanguWeather Iterative data-driven model built upon Vision Transformer. We use the API
https://github.com/ecmwf-lab/ai-models to perform inference. PanguWeather
patches the pressure level and single-level data separately and merge them in the transformer.
Using hierarchical temporal aggregation method to train the mdoel.

• ClimaX Direct training data-driven model built upon Vision Transformer. Each variable is inde-
pendently tokenized and aggregated by variable aggregation.

A.1.2 DATASET

For all data-driven models, we utilize the same approach to transform 0.25◦ × 0.25◦ grid to
1.5◦ × 1.5◦ grid, including obtaining the prediction of FourCastNetV2, Graphcast, and Pan-
guWeather as well as the training grid data of CirT. Specifically, we first obtain the results of
0.25◦ × 0.25◦ models (e.g., PanguWeather), which are represented on a 721× 1440 grid. This grid
corresponds to the coordinates (λ, ϕ) within the domain Ω = [−90◦,−89.75◦, . . . , 89.75◦, 90◦] ×
[−180◦,−179.75◦, . . . , 179.75◦, 180◦], where λ denotes longitude and ϕ denotes latitude. Sub-
sequently, we retrieve the results of coordinates (λ, ϕ) that correspond to the 1.5◦ × 1.5◦ grid,
which is represented on a 121× 240 grid within the domain Ω = [−90◦,−88.5◦, . . . , 88.5◦, 90◦]×
[−180◦,−178.5◦, . . . , 178.5◦, 180◦].

A.2 ADDITIONAL RESULTS

Acc results ACC comparison between CirT and numerical models at all pressure levels are shown
in Figure 6 and ACC comparison w.r.t. latitudes are displayed in Table 9.

Regional forecasting We additionally evaluate models in regional forecasting, constrained to the
bounding boxes of North America and Europe. The results are shown in Table 7. We can observe
that CirT outperforms baselines in all cases.

Additional visualization The global visualization of t850 Weeks 5-6 predictions and other vari-
ables including t500, z500, and z850 are shown in Figure 7-13.
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Table 4: Computation complexity and model size comparison.
Model GraphCast PanguWeather CirT
FLOPs 110 T 168 T 2.2 G
Params 37M 256M 16M

Table 5: Ablation study of autoregressive prediction vs directly predicting all the future values.

Model RMSE (↓) ACC (↑)
z500 z850 t500 t850 t2m u10 v10 z500 z850 t500 t850 t2m u10 v10

3-
4 Autoregressive 781 453 3.406 4.014 4.584 2.806 2.267 0.962 0.922 0.956 0.957 0.968 0.763 0.610

Direct 477 304 1.687 1.903 2.007 1.806 1.511 0.984 0.963 0.988 0.988 0.993 0.896 0.811

5-
6 Autoregressive 813 455 3.636 4.357 5.047 2.855 2.324 0.960 0.923 0.950 0.949 0.960 0.758 0.599

Direct 471 301 1.672 1.933 2.026 1.809 1.512 0.985 0.964 0.988 0.989 0.993 0.895 0.812

Additional results w.r.t month Additional results of variables t850, z500, and z850 are shown in
Figure 14-16.

Comparison of model computation complexity/size We compare CirT’s Floating point opera-
tions (FLOPs) and parameters with two representative models, Graphcast and PanguWeather. The
results are shown in Table 4. We can observe that CirT achieves better S2S predictivity with less
computation and smaller model size, verifying our model designs.

Comparison of autoregressive and direct prediction We adapted CirT’s output head to forecast
next-day weather variables based on the input date for autoregressive prediction. For inference, it
iteratively predicts next-day weather variables up to the S2S timescale. The results are shown in
Table 5. From the results, we can observe that the direct method performs better. The autoregressive
CirT still accumulates errors, resulting in inaccurate S2S predictions.

Additional results on fine-tuning CirT. We further evaluate the performance of fine-tuning the
trained autoregressive CirT. We freeze the transformer encoder and replace the embedding layers
and output head with newly initialized networks to forecast weather variables for Weeks 3-4 and
5-6. The results are in Table 6. From the result, we can observe that direct training still performs
best in most cases. Meanwhile, we find that fine-tuned embedding layer and decoder improve the
performance in several variables such as t850.

Multi-scale structural similarity Following the previous work (Nathaniel et al., 2024), we also
compare the Multi-Scale Structural Similarity (Wang et al., 2003) of the data-driven models. The
result are shown in Table 8. CirT achieves the best performance. GraphCast is the best baseline for
Weeks 3-4 predictions. The reason can be attributed to that it employs mesh to model the sphere
geometry, consistent with the observations in Table 1.
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Figure 6: The ACC comparison between numerical models and CirT.
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Table 6: Ablation study of fine-tuning CirT model.

Model RMSE (↓)
z500 z850 t500 t850 t2m u10 v10

3-
4 Fine-tuning embedding and decoder 480 315 1.660 1.870 1.983 1.842 1.530

Fine-tuning Decoder 540 346 1.885 2.327 2.715 2.013 1.619
Direct Training 477 304 1.687 1.903 2.007 1.806 1.511

5-
6 Fine-tuning embedding and decoder 485 312 1.679 1.923 2.032 1.847 1.535

Fine-tuning Decoder 588 354 2.190 2.702 3.145 2.043 1.650
Direct Training 471 301 1.672 1.933 2.026 1.809 1.512

Table 7: RMSE comparison w.r.t. regions. CirT generally achieves the best performance and has a
higher relative improvement in mid-/high-latitude areas. N-America is short for North America

Variable Weeks 3-4 Week 5-6
FourCastNetV2 GraphCast PanguWeather ClimaX CirT FourCastNetV2 GraphCast PanguWeather ClimaX CirT

N
-A

m
er

ic
a z500 1017 1014 996 879 801 1037 – 1063 916 774

z850 709 714 690 606 552 715 – 744 634 538
t500 2.770 2.704 2.793 2.392 2.128 2.858 – 3.221 2.431 2.136
t850 3.012 2.962 3.041 2.802 2.333 3.110 – 3.454 2.826 2.347
t2m – 3.184 – 3.618 2.556 – – – 3.669 2.617

E
ur

op
e

z500 892 905 909 855 651 953 – 995 854 640
z850 606 617 620 551 427 636 – 675 555 415
t500 2.862 2.828 2.869 2.573 2.111 3.094 – 3.282 2.516 2.163
t850 2.848 2.910 3.035 2.827 2.083 3.078 – 3.382 2.828 2.139
t2m – 2.972 – 3.561 2.334 – – – 3.619 2.396

Table 8: Multi-scale structural similarity of data-driven models.

Variable Week 3-4 Week 5-6
FourCastNetV2 GraphCast PanguWeather ClimaX CirT FourCastNetV2 GraphCast PanguWeather ClimaX CirT

z500 0.814 0.872 0.865 0.862 0.909 0.808 – 0.846 0.854 0.909
z850 0.799 0.811 0.802 0.794 0.874 0.786 – 0.772 0.789 0.874
t500 0.866 0.889 0.882 0.875 0.925 0.857 – 0.860 0.869 0.924
t850 0.882 0.919 0.913 0.893 0.942 0.876 – 0.901 0.885 0.942
t2m – 0.966 – 0.928 0.969 – – – 0.921 0.968

Table 9: ACC comparison w.r.t. latitude. CirT generally achieves the best performance and has a
higher relative improvement in mid-/high-latitude areas.

Variable Weeks 3-4 Week 5-6
FourCastNetV2 GraphCast PanguWeather ClimaX CirT FourCastNetV2 GraphCast PanguWeather ClimaX CirT

L
ow

-L
at

. z500 0.998 0.998 0.998 0.997 0.999 0.998 – 0.997 0.997 0.999
z850 0.993 0.991 0.990 0.991 0.995 0.991 – 0.983 0.991 0.996
t500 0.997 0.996 0.996 0.995 0.998 0.996 – 0.994 0.995 0.997
t850 0.995 0.995 0.995 0.993 0.997 0.995 – 0.993 0.992 0.996
t2m – 0.997 – 0.994 0.998 – – – 0.994 0.998

M
id

-L
at

. z500 0.932 0.927 0.921 0.920 0.955 0.923 – 0.902 0.915 0.954
z850 0.888 0.878 0.874 0.887 0.929 0.876 – 0.852 0.886 0.929
t500 0.943 0.937 0.932 0.923 0.959 0.932 – 0.907 0.917 0.959
t850 0.951 0.947 0.939 0.931 0.965 0.942 – 0.922 0.923 0.963
t2m – 0.976 – 0.944 0.978 – – – 0.936 0.978

H
ig

h-
L

at
. z500 0.927 0.969 0.952 0.978 0.983 0.923 – 0.948 0.977 0.984

z850 0.870 0.925 0.918 0.952 0.961 0.863 – 0.904 0.951 0.963
t500 0.951 0.978 0.952 0.982 0.987 0.948 – 0.952 0.981 0.988
t850 0.942 0.982 0.946 0.983 0.989 0.938 – 0.944 0.982 0.989
t2m – 0.990 – 0.986 0.992 – – – 0.984 0.992
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Figure 7: The global RMSE maps of t850 with lead times weeks 5-6 in 2018.
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Figure 8: The global RMSE maps of t500 with lead times weeks 3-4 in 2018.
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Figure 9: The global RMSE maps of t500 with lead times weeks 5-6 in 2018.

CirT PanguWeather NCEP

ECMWFGraphCast

UKMO CMA

ClimaX

RMSE

0

200

400

600

800

1000

1200

1400

1600

FourCastNetV2

Figure 10: The global RMSE maps of z500 with lead times weeks 3-4 in 2018.
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Figure 11: The global RMSE maps of z500 with lead times weeks 5-6 in 2018.
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Figure 12: The global RMSE maps of z850 with lead times weeks 3-4 in 2018.
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Figure 13: The global RMSE maps of z850 with lead times weeks 5-6 in 2018.
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Figure 14: The monthly RMSE of t850 in testing set: CirT outperforms other models across all
months.
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Figure 15: The monthly RMSE of z500 in testing set: CirT outperforms other models across all
months.
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Figure 16: The monthly RMSE of z850 in testing set: CirT outperforms other models across all
months.
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