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Abstract

Knowledge Graph Question Answering001
(KGQA) aims to answer natural language002
questions based on knowledge graphs. Recent003
approaches apply the Retrieval-Augmented004
Generation (RAG) paradigm to incorporate005
Large Language Models (LLMs) to this task,006
where a retriever selects a question-related007
subgraph and an LLM-based generator is008
then adopted to predict answers based on the009
retrieved subgraph. However, the subgraph010
selection process is non-differentiable, prevent-011
ing end-to-end training of the retriever and the012
generator in these approaches, which leads to013
sub-optimal performance. To overcome this014
limitation, this paper proposes a Differentiable015
RAG (D-RAG) approach that jointly optimizes016
the retriever and the generator for KGQA.017
Firstly, D-RAG reformulates the optimization018
objective as an expectation over a subgraph019
distribution with respect to answer generation020
likelihood, making the joint optimization021
feasible. Secondly, it designs a differentiable022
subgraph sampling and prompting module023
based on Gumbel-Softmax reparameterization,024
which achieves end-to-end optimization and025
allows the retriever to discover latent graph026
patterns that actively facilitate the generator’s027
reasoning process. Experimental results028
on WebQSP and CWQ show that D-RAG029
outperforms the state-of-the-art approaches by030
2.3% and 3.4% on the F1 scores, respectively,031
demonstrating its effectiveness.032

1 Introduction033

Knowledge Graph Question Answering (KGQA)034

aims to automatically answer natural language035

questions via well-structured fact information036

stored in Knowledge Graphs (KGs). It is an es-037

sential task in Natural Language Processing (NLP)038

and is vital in various applications such as infor-039

mation retrieval and intelligent assistance (Potdar040

et al., 2025; Liang et al., 2024). However, KGQA041
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Figure 1: Comparison between the current RAG-based
KGQA approaches and the proposed D-RAG approach.
The red arrows highlight the end-to-end gradient flow.

poses challenges to existing approaches, as it re- 042

quires a deep understanding of natural language 043

questions and the ability to perform complex rea- 044

soning over KGs. Considering that Large Lan- 045

guage Models (LLMs) (DeepSeek, 2025; OpenAI, 046

2024; Meta, 2024) have shown strong capabilities 047

in natural language understanding and reasoning, 048

some recent approaches (Peng et al., 2024; Luo 049

et al., 2024; He et al., 2024) incorporate LLMs into 050

KGQA via the Retrieval-Augmented Generation 051

(RAG) paradigm (Lewis et al., 2020). Specifically, 052

they adopt a retriever to select a question-relevant 053

subgraph from the KG. Then, they serialize the 054

subgraph into the prompt and adopt LLMs as the 055

generator to reason for answers. 056

Despite the promising performance of these 057

RAG-based KGQA approaches, significant chal- 058

lenges remain in optimizing both the retriever and 059

the generator. As illustrated in Figure 1, the core 060

challenge stems from the non-differentiable nature 061

of discrete subgraph selection, which prevents di- 062

rect gradient flow from the generator to the retriever. 063

While current approaches (Luo et al., 2024; Mavro- 064

matis and Karypis, 2024) typically adopt a sequen- 065

tial optimization paradigm, where the retriever is 066
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trained using heuristic supervision signals, and the067

generator is subsequently optimized with the re-068

triever frozen, this optimization paradigm has the069

following limitations: 1) The isolated optimization070

of individual modules leads to sub-optimal perfor-071

mance of the complete system rather than joint opti-072

mization; 2) The heuristic supervision signals used073

for training the retriever may not align well with074

the actual requirements of the generation task; 3)075

The system fails to leverage the generator’s seman-076

tic understanding capabilities to enhance retriever077

performance.078

To address these limitations in the existing079

RAG-based KGQA approaches, we propose the080

Differentiable Retrieval-Augmented Generation081

(D-RAG) for KGQA. Our approach introduces sev-082

eral innovations. First, we reformulate the opti-083

mization objective as a tractable expectation over084

a subgraph distribution with respect to answer085

generation likelihood, making the joint optimiza-086

tion mathematically feasible. Second, we design087

a differentiable subgraph sampling and prompt-088

ing module that operates in two steps. The first089

step transforms discrete subgraph selection into dif-090

ferentiable fact-level sampling using the Gumbel-091

Softmax reparameterization trick (Jang et al., 2017;092

Maddison et al., 2017). The second step converts093

the sampled facts into LLM-compatible prompts094

while maintaining proper gradient flow throughout095

the entire pipeline. The combination of these inno-096

vations enables end-to-end optimization between097

the retriever and the generator, allowing the whole098

system to leverage the generator’s semantic under-099

standing to guide retrieval. Experimental results on100

WebQSP and CWQ show that D-RAG outperforms101

the state-of-the-art approaches by 2.4% and 1.0%102

on Hits@1, and by 2.3% and 3.4% on the F1 scores,103

respectively.104

The main contributions of this work are as fol-105

lows:106

• We propose D-RAG, the first differentiable107

RAG-based KGQA approach, to the best of108

our knowledge, that enables end-to-end opti-109

mization with gradient flow from the genera-110

tor to the retriever.111

• We reformulate the objective as a tractable112

expectation over a subgraph distribution and113

design a differentiable subgraph sampling and114

prompting module based on Gumbel-Softmax115

reparameterization, achieving end-to-end joint116

optimization of the KGQA system.117

• Comprehensive experiments on two widely 118

used benchmark datasets, i.e., WebQSP and 119

CWQ, demonstrate that D-RAG outperforms 120

state-of-the-art performance, validating the 121

effectiveness of our differentiable approach. 122

2 Related Works 123

2.1 Knowledge Graph Question Answering 124

KGQA approaches can be broadly categorized 125

into Semantic Parsing-based (SP-based) and In- 126

formation Retrieval-based (IR-based) ones (Lan 127

et al., 2023). Since this work belongs to the IR- 128

based category, we focus on IR-based approaches 129

that retrieve question-specific subgraphs and ei- 130

ther rank candidate answers or directly generate 131

answers (Sun et al., 2018; He et al., 2021; Zhang 132

et al., 2022). 133

With the powerful reasoning capabilities of 134

LLMs, directly generating answers with text de- 135

coder in IR-based approaches has become increas- 136

ingly promising, leading to RAG-based approaches. 137

These approaches can be further divided into two 138

groups based on how they retrieve question-specific 139

subgraphs: graph-LLM approaches that leverage 140

specialized graph-based techniques (e.g. GNNs) 141

during subgraph retrieval (He et al., 2024; Li et al., 142

2025; Mavromatis and Karypis, 2024; Liu et al., 143

2024a), and LLM reasoning methods that primarily 144

rely on LLMs to understand and reason over graph 145

structure (Luo et al., 2024; Jiang et al., 2023a; Sun 146

et al., 2024; Ma et al., 2024). 147

Current RAG-based KGQA approaches lack end- 148

to-end training capabilities. Although SR (Zhang 149

et al., 2022) achieves end-to-end KGQA by con- 150

structing tree-structured subgraphs from multi-hop 151

paths, their posterior approximation requires com- 152

puting answer generation probability for each top-k 153

path independently, which would incur prohibitive 154

computational costs when LLMs serve as the gen- 155

erator. 156

2.2 End-to-End Training in RAG 157

Most RAG systems follow a pipeline 158

paradigm (Gao et al., 2023), where separate 159

modules for retrieval, prompting, and generation 160

are optimized separately. Several works have 161

explored end-to-end trainable approaches for text 162

retrieval, including REALM (Guu et al., 2020), 163

EMDR2 (Sachan et al., 2021), VOD (Liévin 164

et al., 2023), and StochasticRAG (Zamani and 165

Bendersky, 2024). However, these text-centric 166
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methods cannot be directly applied to KGQA due167

to the structured nature of graph data and the need168

for specialized graph retrieval mechanisms.169

StochasticRAG (Zamani and Bendersky, 2024)170

is the most similar one to D-RAG, as both meth-171

ods leverage Gumbel tricks for discrete sampling,172

whether for documents or subgraphs. However, D-173

RAG differs in two key aspects: (1) StochasticRAG174

retrieves a fixed number of documents, which is175

not suitable for KGQA. In contrast, our approach176

transforms subgraph sampling into independent177

sampling of facts, allowing for flexible subgraph178

sizes; (2) Unlike documents that can be directly fed179

to LLMs, we employ a differentiable prompting180

step to bridge the gap between graph structures and181

LLM reasoning.182

3 Preliminary183

Knowledge Graph Question Answering. In this184

paper, the knowledge graph is composed of multi-185

ple facts, where each fact τ = (h, r, t) represents186

a triple consisting of a head entity h, a relation r,187

and a tail entity t. Formally, the KG can be repre-188

sented as G = {(h, r, t)|h, t ∈ E , r ∈ R}, where189

E denotes the set of all entities and R represents190

the set of all relation types, with each entity and191

relation type typically corresponding to a natural192

language form. Given a knowledge graph G, the193

KGQA task takes a natural language question q194

as input and outputs an answer a corresponding195

to one or more entities in G. The ultimate goal is196

to maximize the likelihood of the correct answer,197

which can be formulated as E(q, a) [log p(a|q,G)] .198

RAG-based KGQA. The RAG paradigm in199

KGQA involves two independent modules: a re-200

triever Rβ that identifies the question-relevant sub-201

graph gsub with probability pβ(gsub|G, q), and a202

generator Gγ that generates the answer a with prob-203

ability pγ(a|gsub, q).204

The overall answer generation probability can205

be formulated as:206

pθ(a|q,G) =
∑

gsub⊆G
pγ(a|q, gsub)pβ(gsub|q,G),

(1)207

where β and γ denote the parameters of the re-208

triever and the generator, respectively. θ denotes209

all parameters in the above two modules.210

Current RAG-based KGQA approaches face a211

fundamental challenge in joint optimization - the212

discrete nature of subgraph retrieval creates a non-213

differentiable barrier between the retriever and the214

generator. Existing approaches circumvent this by 215

separately training the retriever (using heuristic sub- 216

graph labels) and freezing it during generator train- 217

ing. The decoupled paradigm inevitably causes 218

error propagation and suboptimal performance. 219

4 The Proposed D-RAG Approach 220

This section presents Differentiable Retrieval- 221

Augmented-Generation (D-RAG), as illustrated in 222

Figure 2. Our approach integrates a GNN-based 223

retriever and an LLM-based generator through a 224

differentiable subgraph sampling and prompting 225

module, enabling end-to-end training. Below, we 226

detail these modules and the training strategy. 227

4.1 GNN-based Retriever 228

The graph retriever in D-RAG employs fact-wise 229

probability factorization to model subgraph selec- 230

tion through independent fact selections. This trans- 231

forms the complex subgraph probability into a prod- 232

uct of simple binary selection probabilities for all 233

facts: 234

p(gsub) =
∏

τi∈gsub

p(τi)
∏

τj /∈gsub

(1− p(τj)), (2) 235

where each τi represents a fact with corresponding 236

selection probability p(τi). A detailed derivation 237

of this factorization is given in Appendix A. 238

To compute the selection probability, we de- 239

sign a triplet scoring mechanism that combines 240

entity representations from ReaRev’s GNN archi- 241

tecture (Mavromatis and Karypis, 2022) with a 242

relation encoder through feature concatenation: 243

p(τi) = σ(MLP(fe(hi) || fr(ri) || fe(ti))), (3) 244

where fe(·) is the entity encoder, fr(·) is the re- 245

lation encoder, and σ(·) denotes the sigmoid ac- 246

tivation. Detailed specifications are provided in 247

Appendix B. 248

4.2 LLM-based Generator 249

The LLM-based generator predicts answers 250

through autoregressive decoding: 251

pγ(a|gsub, q) =
La∏
i=1

pγ(ai|a<i, gsub, q) (4) 252

where La is the length of the ground-truth an- 253

swer, and the subgraph and question are formatted 254

through a structured prompt template: 255

3



Differentiable Subgraph Sampling and Prompting

Generator Prompt

Question  : 
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Figure 2: The overall approach of DRAG. 1) The GNN-based Retriever Rβ processes the input knowledge graph
G and assigns a selection probability to each fact with respect to the given question. 2) To enable a differentiable
subgraph retrieval and prompting process, the approach first employs Gumbel-Softmax reparameterization to sample
facts, forming a subgraph. This subgraph is then transformed into fact embeddings, which serve as prompts. 3) The
LLM-based Generator Gγ processes the subgraph information, task setting, and question to infer the final answer.

Answer the question based256

on the provided facts.257

Question: <question>258

Provided facts: <fact1><fact2> ...259

Answer:260

The ground-truth answer is repre-261

sented as a list separated by vertical bars:262

<Ans1>|<Ans2>|...|<AnsN>. During inference,263

the generator produces answers in the same264

format, which can be easily parsed to obtain the265

final answer set. Complete prompt examples are266

detailed in Appendix C.267

4.3 Differentiable Subgraph Sampling and268

Prompting269

Our key innovation lies in constructing differen-270

tiable bridges across the retriever-generator inter-271

face through a differentiable formulation of the op-272

timization objective and a novel subgraph sampling273

and prompting module. This end-to-end optimiza-274

tion enables the retriever to discover latent graph275

patterns that actively facilitate the generator’s rea-276

soning process.277

4.3.1 Differentiable Formulation278

The optimization objective of maximizing Equa-279

tion 1 involves a summation problem with combi-280

natorial complexity, which is generally intractable.281

To address this, we can alternatively optimize its282

evidence lower bound (ELBO) (Hoffman et al.,283

2013), formulated as:284

log pθ(a|q,G) = Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]
+ DKL(r(gsub) || pθ(gsub|a, q,G))

≥ Egsub∼r

[
log

pθ(a, gsub|q,G)
r(gsub)

]
,

(5)285

where r(gsub) represents the variational distribu- 286

tion of the subgraph, and the inequality holds 287

because the Kullback-Leibler divergence is non- 288

negative. We specify the variational distribution 289

r(gsub) as the retriever’s distribution pβ(gsub|q,G). 290

The ELBO can be simplified as: 291

log pθ(a|q,G) ≥ Egsub∼pβ

[
log

pθ(a, gsub|q,G)
pβ(gsub|q,G)

]
= Egsub∼pβ

[
log

pγ(a|gsub, q)pβ(gsub|q,G)
pβ(gsub|q,G)

]
= Egsub∼pβ [log pγ(a|gsub, q)] ,

(6) 292

where pβ is modeled by the GNN-based retriever 293

and pγ is modeled by the LLM-based generator. 294

This choice not only simplifies the optimization 295

objective but also ensures the retriever operates 296

without access to the answer information. 297

The optimization objective of our approach is 298

formulated as the ELBO in Equation 6. When 299

the subgraph distribution pβ(gsub|q,G) retrieved 300

by the retriever closely approximates the poste- 301

rior distribution pθ(gsub|q, a,G), the inequality in 302

Equation 6 approaches equality, thereby tighten- 303

ing the bound to the original objective. Since the 304

GNN-based retriever is jointly learned during train- 305

ing, this bound can theoretically achieve equality. 306

The computation of this objective can be decom- 307

posed into two steps: subgraph sampling via pβ 308

and prompt-based generation via pγ . The follow- 309

ing two sections present the refinements to make 310

these steps differentiable. 311

4.3.2 Differentiable Subgraph Sampling 312

This section focuses on the differentiability of sub- 313

graph sampling. To enable gradient computation, 314

we adopt the Gumbel-Softmax reparameterization 315

trick (Jang et al., 2017; Maddison et al., 2017), 316
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which approximates discrete sampling with a con-317

tinuous relaxation. For the i-th fact in the KG, the318

retriever outputs a Bernoulli parameter pi = pβ(τi),319

representing the probability of selecting this fact.320

To make the discrete Bernoulli sampling differen-321

tiable, we apply the Gumbel-Softmax trick:322

zsoft
i = softmax

(
(log pi + ηi1) / t

(log(1− pi) + ηi2) / t

)T

,

(7)323

where ηi1, ηi2 are independent samples from Gum-324

bel(0,1)1 and t is the temperature coefficient. Here,325

zsoft
i ∈ R1×2 represents the relaxed selection prob-326

ability for fact τi.327

The final binary selection indicator zi is obtained328

through:329

zi = onehot(argmax(zsoft
i )) + zsoft

i − SG(zsoft
i ),

(8)330

where SG denotes the stop-gradient operation. This331

formulation maintains differentiability while pro-332

ducing discrete one-hot vectors during forward333

propagation.334

Let Z = fβ(H) =
[
z1; z2; . . . ; zNf

]
∈335

{0, 1}Nf×2 denote the complete subgraph selec-336

tion matrix, where Nf is the total number of facts337

and H represents Gumbel noise samples. The se-338

lected subgraph can be equivalently represented339

as gsub = {τi|zi = [1, 0]}. The training objective340

becomes:341

EH∼p(H) [log pγ(a|fβ(H), q)] , (9)342

where fβ denotes the complete sampling process343

parameterized by β. This reparameterization not344

only allows gradients to flow through the sampling345

process, but also transforms the expectation from a346

complex parameterized distribution pβ to a simple347

fixed distribution, making the optimization more348

tractable.349

4.3.3 Differentiable Prompt Construction350

After obtaining the parameterized subgraph rep-351

resentation fβ(H), where the first column of the352

output matrix encodes the selection probabilities,353

the subgraph needs to be transformed into LLM-354

compatible inputs while maintaining differentiabil-355

ity.356

To construct differentiable prompts, we first con-357

vert each fact into its textual representation fol-358

lowing the template <head name>, <relation359

1The cumulative distribution function of Gumbel(0,1) is
F (x) = exp(− exp(−x)).

name>, <tail name>. These textual forms are 360

then encoded into token embeddings Vi ∈ RLi×d, 361

where Li is the token length and dis the embedding 362

dimension of the LLM-based generator. 363

The binary selection indicator Zi1 (the first ele- 364

ment of the i-th row in Z determines whether fact 365

τi is selected. We multiply each embedding Vi 366

with its corresponding Zi1. When Zi1 = 0, the 367

corresponding embedding is completely masked 368

out. All weighted embeddings are concatenated 369

to form the neural prompt Vf , allowing gradients 370

from the LLM-based generator to propagate back 371

to the GNN-based retriever parameters β through 372

the chain: 373

∂L

∂β
=

∂L

∂Vf

∂Vf

∂Z

∂Z

∂β
, (10) 374

where L is the autoregressive loss of the LLM. 375

For multi-hop reasoning in KGQA, where re- 376

trieved facts should form structured reasoning 377

paths, we arrange facts in ascending order of their 378

selection probabilities to preserve the logical de- 379

pendencies in the linearized prompt sequence. 380

4.4 Training Strategy 381

With the differentiable subgraph sampling and 382

prompting module proposed above, D-RAG sup- 383

ports end-to-end training in principle. However, 384

directly optimizing the full model from random ini- 385

tialization often leads to poor convergence, as the 386

retriever might retrieve an irrelevant subgraph that 387

misleads the generator. To address this, we adopt a 388

two-phase training strategy. 389

In the first phase, the GNN-based retriever is pre- 390

trained using heuristically constructed subgraphs 391

gheur to establish a reasonable initialization, pre- 392

venting the retriever from retrieving irrelevant sub- 393

graphs. The pre-training loss is defined as: 394

L1 = DKL(pheur(gsub) || pβ(gsub)), (11) 395

where pheur represents the heuristic subgraph dis- 396

tribution (typically in one-hot form), and pβ is the 397

retriever’s predicted distribution. 398

In the second phase, both the retriever and the 399

generator are trained jointly. Following Equation 9, 400

the generation loss is defined as: 401

L2 = −EH∼p(H) [log pγ(a|fβ(H), q)] . (12) 402

The overall joint loss combines the retriever pre- 403

training objective and the generation loss: 404

Ljoint = λL1 + (1− λ)L2, (13) 405
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where the hyperparameter λ balances the retriever’s406

adherence to heuristic subgraphs and its ability to407

predict answers.408

5 Experiments409

In our experiments, we aim to answer the following410

three research questions: RQ1. What is the overall411

performance of the proposed approach? RQ2. Is412

the end-to-end optimization of the retriever and the413

generator effective? RQ3. How do the various de-414

sign details within the proposed approach influence415

the outcomes?416

5.1 Experiment Settings417

Datasets. The experimental evaluation was con-418

ducted on two benchmark datasets: WebQSP (Yih419

et al., 2016) and CWQ (Talmor and Berant, 2018),420

both built upon the Freebase (Bollacker et al., 2008)421

knowledge graph. These datasets represent clas-422

sical benchmarks for complex logical reasoning423

in KGQA. WebQSP contains relatively straightfor-424

ward questions that typically require 1-2 hop rea-425

soning chains, while CWQ presents more challeng-426

ing scenarios involving 3-4 hop reasoning chains.427

Detailed specifications of the datasets are provided428

in Appendix D.429

Baselines. D-RAG is compared with 15 baselines430

across three categories: 1) Graph reasoning meth-431

ods that leverage graph structure for scoring-based432

answer inference; 2) LLM reasoning methods that433

perform reasoning with LLMs while not utiliz-434

ing graph structure during retrieval; and 3) Graph-435

LLM methods that maintain dedicated graph-based436

retrieval while leveraging LLMs for reasoning.437

The details of each baseline are described in Ap-438

pendix E.439

Evaluation Metrics. Following previous440

works (Luo et al., 2024; Sun et al., 2024), D-RAG441

employs Hits@1 and F1 metrics for evaluation442

on WebQSP and CWQ. The evaluation process443

first parses LLM-generated answers into a list for444

comparison with the ground truth answers. The445

Hits@1 metric (also commonly denoted as Hit446

in LLM-based methods) measures whether any447

correct answer appears in the model’s response,448

while F1 provides a balanced measure of precision449

and recall for comprehensive quality assessment.450

A detailed discussion of the evaluation metrics is451

provided in Appendix F.452

Implementations. D-RAG employs the 453

ReaRev (Mavromatis and Karypis, 2022) model 454

with a fact prediction head as the GNN and utilizes 455

the Llama3-8B-Instruct (Meta, 2024) as the LLM. 456

Consistent with prior work (Mavromatis and 457

Karypis, 2022; Luo et al., 2024), we assume that 458

the entities mentioned in the questions (referred to 459

as topic entities) have already been linked to the 460

knowledge graph through entity linking (Yih et al., 461

2015). Based on these linked entities, heuristic 462

subgraphs are extracted via two methods: shortest 463

path between topic and answer entities, and 464

SPARQL query parsing. We limit the maximum 465

number of retrieved facts to 50 to fit the LLM’s 466

context window. Full implementation details are in 467

Appendix G. 468

5.2 Main Results 469

To evaluate the overall effectiveness of D-RAG 470

(RQ1), we compare it with state-of-the-art base- 471

lines on KGQA tasks. Table 1 presents the results, 472

where "-" indicates the corresponding method does 473

not report results for that metric. The D-RAG ap- 474

proach achieves state-of-the-art performance across 475

both datasets. Specifically, on the WebQSP dataset, 476

D-RAG achieves a 2.4% improvement in Hits@1 477

over the best-performing baseline SubgraphRAG, 478

and outperforms DECAF by 2.3% in the F1 score. 479

While some baselines like RoG achieve competitive 480

Hits@1 (85.7%), their F1 scores (70.8%) lag sub- 481

stantially behind, suggesting they may achieve high 482

recall at the cost of precision. For the more com- 483

plex CWQ dataset, the proposed approach demon- 484

strates a 1.0% advantage in Hits@1 compared to 485

the state-of-the-art ToG approach, while surpass- 486

ing GNN-RAG by 3.4% in the F1 score. Notably, 487

methods like SubgraphRAG suffer from a signifi- 488

cant performance drop on CWQ (F1 decreases from 489

70.6% to 47.2%). In contrast, D-RAG maintains 490

robust performance across both datasets, demon- 491

strating its superior generalization capability and 492

balanced precision-recall trade-off. 493

Among other approaches, graph reasoning ap- 494

proaches (without LLM integration) underperform 495

due to lacking advanced reasoning capabilities. 496

While LLM reasoning methods leverage genera- 497

tive power for knowledge exploration, they suffer 498

from hallucination and structural misinterpretation. 499

Graph-LLM approaches demonstrate superior per- 500

formance by integrating structural patterns with 501

LLM inference. This empirically validates two 502

observations: (1) LLM integration fundamentally 503
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Type Method WebQSP CWQ

Hits@1 F1 Hits@1 F1

Graph Reasoning

Graftnet (Sun et al., 2018) 66.4 - 32.8 -
NSM (He et al., 2021) 68.7 62.8 47.6 42.4
SR+NSM (Zhang et al., 2022) 68.9 64.1 50.2 47.1
ReaRev (Mavromatis and Karypis, 2022) 76.4 70.9 52.9 -
UniKGQA (Jiang et al., 2023b) 75.1 70.2 50.7 48.0
NuTrea (Choi et al., 2023) 77.4 72.7 53.6 49.5

LLM Reasoning

LLama3-8B (Meta, 2024) 59.8 45.7 30.8 27.6
StructGPT (Jiang et al., 2023a) 72.6 - - -
DECAF (DPR + FiD-large) (Yu et al., 2023) 80.7 77.1 67.0 -
ToG (GPT4) (Sun et al., 2024) 82.6 - 68.5 -
RoG (joint) (Luo et al., 2024) 85.7 70.8 62.6 56.2

Graph-LLM

G-Retriever (He et al., 2024) 70.1 - - -
EtD (ChatGPT) (Liu et al., 2024a) 82.5 - 62.0 -
GNN-RAG (Mavromatis and Karypis, 2024) 85.7 71.3 66.8 59.4
SubgraphRAG (Llama3.1-8B) (Li et al., 2025) 86.6 70.6 57.0 47.2
D-RAG 89.0 79.4 69.5 62.8

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

enhances reasoning capacity, and (2) structural-504

semantic synergy produces superior outcomes com-505

pared to isolated approaches.506

5.3 Ablation Study507

Training
Method

WebQSP CWQ

Hits@1 F1 Hits@1 F1

D-RAG 88.0 78.6 69.5 62.8
REINFORCE 84.5 69.5 62.6 56.2

D-RAG w/o e2e

Dynamic Cascade 86.9 76.7 69.0 62.0
Static Cascade 87.1 77.0 67.7 61.1
Isolation 85.3 73.1 63.9 28.1

Table 2: Ablation studies of different training methods.

To answer RQ2 regarding the effectiveness of508

end-to-end optimization between the retriever and509

the generator, we conduct an ablation study with510

four variants: 1) REINFORCE, which optimizes511

both modules jointly using the REINFORCE algo-512

rithm (Williams, 1992) with variance reduction; 2)513

Dynamic Cascade, where both modules are trained514

simultaneously with the generator using real-time515

retriever outputs, but without gradient backpropa-516

gation; 3) Static Cascade, where we train the re-517

triever first and then optimize the generator with 518

the frozen retriever; 4) Isolation, where both mod- 519

ules are trained independently with the generator 520

using only heuristic subgraphs. 521

The experimental results are presented in Table 2. 522

From the results, three key observations emerge. 523

First, D-RAG outperforms all baseline approaches, 524

demonstrating the superiority of end-to-end joint 525

training. Second, in Dynamic Cascade where gra- 526

dient flow from the generator to the retriever is 527

disabled, we observe approximately 1% degrada- 528

tion in Hits@1 and F1 across both datasets. This 529

indicates that our end-to-end design enables direct 530

supervision of the retriever using ground-truth an- 531

swer signals, effectively mitigating noise inherent 532

in heuristic subgraphs. Third, both REINFORCE 533

and Isolation show significant performance drops, 534

but for different reasons. REINFORCE suffers 535

from the inherent instability of policy gradient, 536

while Isolation demonstrates the necessity of mod- 537

ule interaction. In contrast, D-RAG enables stable 538

and efficient end-to-end optimization. Detailed 539

analyses of module interaction patterns, training 540

dynamics, qualitative case studies, and training ef- 541

ficiency analysis can be found in Appendices H, I, 542

J, and K, respectively. 543
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Figure 3: The impact of the number of retrieved facts
(K) on D-RAG on the WebQSP dataset.

5.4 Detail Analysis544

To better understand how different design choices545

affect our approach’s effectiveness (RQ3), we con-546

duct a series of analyses on three critical factors:547

the number of retrieved facts, variations in heuristic548

subgraphs, and the order of facts.549

Number of Retrieved Facts. The number of re-550

trieved facts (K) serves as a crucial hyperparame-551

ter. Figure 3 shows how K affects both the overall552

performance (Hits@1 & F1) and the retriever’s met-553

rics (recall & precision). As K increases, recall554

improves steadily (reaching 97.6%) while preci-555

sion declines (to 7.63%). The overall performance556

metrics show substantial gains from K = 10 to557

K = 50, but plateau beyond K = 50, suggesting558

that retrieving 50 facts achieves a good balance559

between coverage and efficiency.560

D-RAG

Dynamic Cascade
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or
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Figure 4: Performance comparison of different training
methods under two heuristic subgraph acquisition ap-
proaches on the WebQSP dataset.

Different Heuristic Subgraphs. To analyze the561

impact of different heuristic subgraph supervision562

signals, we compare two methods for generating563

them: SPARQL and Shortest Path. As shown in 564

Figure 4, D-RAG consistently outperforms all vari- 565

ants under both supervision signals, achieving the 566

highest scores in both Hits@1 and F1. The minimal 567

performance gap between SPARQL and Shortest 568

Path methods further demonstrates D-RAG’s ro- 569

bustness to different types of supervision signals. 570

Fact Order Hits@1 F1

ascent 89.0 79.4
descent 88.0 78.6
default 88.0 77.3
random 86.7 76.6

Table 3: The impact of fact ordering on D-RAG on the
WebQSP dataset.

Fact Ordering. Since the order of input facts can 571

influence LLM generation (Liu et al., 2024b), we 572

compare four ordering strategies: 1) Ascent: Facts 573

are arranged in ascending order of retrieval prob- 574

abilities; 2) Descent: The reverse of ascent, with 575

facts ordered from high to low probabilities; 3) De- 576

fault: Facts are arranged in a fixed order, regardless 577

of their probabilities; 4) Random: Facts are shuffled 578

randomly during both training and inference. 579

As shown in Table 3, ascending order performs 580

best, while random ordering yields the poorest re- 581

sults. This suggests that deliberately structuring 582

facts is more effective than pursuing order-agnostic 583

generation, though more sophisticated ordering 584

strategies remain to be explored in future work. 585

Conclusion 586

In this paper, we presented D-RAG, a novel dif- 587

ferentiable approach for KGQA that enables end- 588

to-end optimization between the retriever and the 589

generator. By reformulating the optimization ob- 590

jective as a tractable expectation over a subgraph 591

distribution and designing a differentiable subgraph 592

sampling and prompting module based on Gumbel- 593

Softmax reparameterization, D-RAG achieves su- 594

perior performance on standard KGQA bench- 595

marks. Experimental results on WebQSP and CWQ 596

demonstrated that our approach outperforms state- 597

of-the-art methods with substantial improvements, 598

validating the effectiveness of end-to-end optimiza- 599

tion in RAG-based KGQA systems. 600
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Limitations601

Despite the effectiveness of D-RAG, we acknowl-602

edge several limitations of our current approach.603

First, our approach relies on entity linking results604

without considering potential errors in this prepro-605

cessing step. Second, our end-to-end optimization606

approach is limited to open-source language mod-607

els and cannot be directly applied to closed-source608

API-based models.609
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A Probability Factorization Analysis838

In this section, we first prove the validity of Equa-839

tion 2, followed by a discussion on the rationale840

behind fact-wise factorization.841

The factorization of subgraph probability repre-842

sents an approximation of the complex probability843

distribution, with an underlying assumption that844

the selection of each fact is independent. Consider845

a knowledge graph with Nf facts, where each fact846

has two possible states (selected or not selected),847

resulting in 2Nf possible subgraphs. The sum of848

probabilities over all possible subgraphs can be849

expressed as:850 ∑
gsub

p(gsub)851

=
∑
gsub

∏
τi∈gsub

p(τi)
∏

τj /∈gsub

(1− p(τj))852

=
∑
τ1

∑
τ2

· · ·
∑
τNf

Nf∏
i=1

p(τi)
I(τi)(1− p(τi))

1−I(τi)853

=

Nf∏
i=1

∑
I(τi)∈{0,1}

p(τi)
I(τi)(1− p(τi))

1−I(τi)854

=

Nf∏
i=1

(p(τi) + (1− p(τi))) = 1855

where the third row follows from the fact that sum-856

ming over all subgraphs is equivalent to consid-857

ering both possibilities (selected or not selected)858

for each fact independently. I(τi) is an indicator859

function that equals 1 when fact τi is included in860

the subgraph and 0 otherwise. The final result of 1 861

validates the probability formulation in Equation 2. 862

Beyond fact-wise factorization, node-level and 863

path-wise granularities are also common choices 864

for probability decomposition. Path-wise granu- 865

larities, however, face combinatorial complexity 866

challenges, which explains why direct modeling of 867

subgraph probability is computationally intractable. 868

Node-wise granularity, on the other hand, disre- 869

gards relation information between entities and 870

fails to handle multi-edge scenarios. These limita- 871

tions motivate our choice of fact-wise factorization. 872

To address the potential dependencies between fact 873

selections that may be overlooked by the indepen- 874

dence assumption implicit in factorization, we em- 875

ploy a GNN-based retriever. The inherent capabil- 876

ity of GNNs to capture graph structural information 877

helps mitigate the independence assumption, as the 878

internal parameters of GNN can effectively encode 879

the correlations between facts. 880

B Specific design of GNN-based Retriever 881

B.1 Module 882

For the GNN-based retriever, D-RAG adopts 883

ReaRev (Mavromatis and Karypis, 2022) as the 884

core architecture, which consists of three primary 885

modules: 886

• The Instruction Module employs Sentence- 887

BERT (Reimers and Gurevych, 2019) as its 888

Language Model (LM) encoder to transform 889

queries into instructions; 890

• The Graph Reasoning Module initializes and 891

updates node representations through message 892

passing, considering the relationship between 893

instructions and nodes; 894

• The Instruction Update Module refines in- 895

structions based on the node representations 896

and predicted terminal node distributions. 897

In our implementation, the node encoder corre- 898

sponds to the output of the Graph Reasoning Mod- 899

ule, while the relation encoder refers to the LM 900

encoder and MLP projection components used in 901

the node initialization process. 902

B.2 Loss design of graph neural network 903

As shown in Equation 11 of the main text, the loss 904

function L1 for training the GNN-based retriever 905

is formulated as: 906
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DKL(pheur(gsub)|pβ(gsub))

= −
∑

τ∈gsub

log pβ(τ) = LBCE
(14)907

This can be implemented using PyTorch’s BCE908

(Binary Cross Entropy) weighted loss 2. Inspired909

by the work of (Lin et al., 2024), to address the910

sparsity of positive examples in knowledge graph911

link classification tasks, we further incorporate a912

rank loss:913

Lrank = − 1

N+N−

N+∑
i=1

N−∑
j=1

log σ(p(τi)− p(τj)),

(15)914

where N+ and N− denote the number of positive915

and negative examples, respectively, τi represents a916

positive example, τj represents a negative example,917

and σ(·) is the sigmoid function. This ranking loss918

generates larger gradients on sparse samples, effec-919

tively complementing the BCE loss and enhancing920

the model’s classification capability.921

The total loss of the GNN-based retriever is a922

weighted combination of these two losses:923

L1 = ρLBCE + (1− ρ)LRank, (16)924

where we empirically set ρ = 0.7 to balance be-925

tween the BCE loss and the ranking loss.926

C Prompts927

Figure 5 illustrates the full input prompt received928

by the LLM-based generator, which consists of929

three components: task configuration, question,930

and subgraph. The task configuration and ques-931

tion components are presented in natural language932

text format, while the subgraph is represented in933

embedding form, corresponding to the neural fact934

prompt in D-RAG.935

D Datasets936

D-RAG evaluates on two benchmark KGQA937

datasets: WebQuestionSP (WebQSP) (Yih et al.,938

2016) and Complex WebQuestions (CWQ) (Tal-939

mor and Berant, 2018). Following previous940

works (Luo et al., 2024; He et al., 2021), the same941

train and test splits are adopted for fair comparison.942

The datasets are analyzed from two perspectives:943

basic statistics and reasoning complexity.944

2https://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

The overall statistics of both datasets are summa- 945

rized in Table 4, including the number of samples 946

in training, validation and test sets. 947

Table 5 shows the distribution of reasoning 948

hops required for answering questions, indicat- 949

ing the logical complexity of questions in each 950

dataset. The hop counting method analyzes the 951

path length from topic entities to answer entities 952

in SPARQL queries. For WebQSP, hop counts 953

are determined precisely as most questions involve 954

single topic entities with equal path lengths from 955

topic to answer entities. For CWQ, we compute 956

fuzzy hop counts due to frequent multi-topic scenar- 957

ios. When SPARQL queries represent constrained 958

graphs rather than simple chains, we take the maxi- 959

mum path length among all topic-to-answer paths 960

as the final hop count. 961

Datasets #Train #Validate #Test
WebQSP 2826 246 1,628
CWQ 27,639 3519 3531

Table 4: Statistics of the datasets.

Datasets 1-hop 2-hop 3-hop ≥4-hop
WebQSP 2906 1776 8 8
CWQ 6743 19408 5911 2627

Table 5: Statistics of reasoning hop distribution in We-
bQSP and CWQ.

E Baselines 962

The D-RAG approach is compared with the 15 963

baselines grouped into three categories: 1) Graph 964

reasoning methods; 2) LLM reasoning methods; 965

and 3) Graph-LLM methods. The details of each 966

baseline are described as follows: 967

Graph Reasoning Methods. 968

• Graftnet (Sun et al., 2018) performs question 969

answering by propagating features through 970

a heterogeneous graph that fuses knowledge 971

bases and text documents. 972

• NSM (He et al., 2021) leverages language 973

models’ bidirectional reasoning capabilities 974

for multi-hop question answering. 975

• SR+NSM (Zhang et al., 2022) introduces a 976

trainable path-wise subgraph retriever that de- 977

couples retrieval from reasoning. 978
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Complete Generator Prompt

Answer the question based on the provided facts.
Question: what does jamaican people speak
Provided facts:
Jamaica, location.country.official_language, Jamaican English
Jamaica, location.country.languages_spoken, Jamaican English
Jamaica, location.country.languages_spoken, Jamaican Creole English Language
Jamaica, location.country.currency_used, Jamaican dollar
Jamaica, location.country.form_of_government, Democracy
Jamaica, location.country.form_of_government, Parliamentary system
Jamaica, base.locations.countries.continent, North America
Jamaica, location.country.form_of_government, Constitutional monarchy
Grenada, location.country.official_language, English Language
Bermuda, location.country.official_language, English Language
Belize, location.country.official_language, English Language
Turks and Caicos Islands, location.country.official_language, English Language
Bahamas, location.country.official_language, English Language
Cayman Islands, location.country.official_language, English Language
Puerto Rico, location.country.official_language, English Language
Grenada, location.country.languages_spoken, English Language
Bermuda, location.country.languages_spoken, English Language
Costa Rica, location.country.languages_spoken, Jamaican Creole English Language
Belize, location.country.languages_spoken, English Language
Turks and Caicos Islands, location.country.languages_spoken, English Language
Answer:

Figure 5: The complete input prompt for the LLM-based generator, incorporating 20 facts.

• ReaRev (Mavromatis and Karypis, 2022)979

adaptively refines reasoning instructions using980

knowledge graph context and executes them981

through a BFS-guided neural network.982

• UniKGQA (Jiang et al., 2023b) unifies re-983

trieval and reasoning stages in KGQA through984

a shared PLM-based architecture and joint pre-985

training strategy.986

• NuTrea (Choi et al., 2023) utilizes tree search-987

based message passing to explore future paths988

with RF-IEF node embeddings that capture989

global KG context.990

LLM Reasoning Methods.991

• LLama3-8B (Meta, 2024) performs direct rea-992

soning without fact retrieval by leveraging its993

pre-trained knowledge.994

• StructGPT (Jiang et al., 2023a) enhances995

LLM reasoning by iteratively collecting ev-996

idence from structured data through special-997

ized interfaces before performing reasoning998

steps.999

• DECAF (DPR + FiD-large) (Yu et al., 2023)1000

improves KB question answering by combin-1001

ing logical form generation with direct an-1002

swer prediction, while simplifying the process 1003

through text-based retrieval. 1004

• ToG (GPT4) (Sun et al., 2024) enables LLMs 1005

to perform traceable reasoning by iteratively 1006

exploring knowledge graphs through beam 1007

search. 1008

• RoG (joint) (Luo et al., 2024) enhances 1009

LLM reasoning by leveraging KG structure 1010

to generate faithful reasoning paths through a 1011

planning-retrieval-reasoning framework. 1012

Graph-LLM Methods. 1013

• G-Retriever (He et al., 2024) enables conversa- 1014

tional graph interaction by combining GNNs, 1015

LLMs, and RAG through Prize-Collecting 1016

Steiner Tree optimization. 1017

• EtD (ChatGPT) (Liu et al., 2024a) combines 1018

GNNs for efficient knowledge exploration 1019

with frozen LLMs for final answer determina- 1020

tion, creating a resource-efficient framework 1021

for KGQA. 1022

• GNN-RAG (Mavromatis and Karypis, 2024) 1023

combines GNNs for subgraph reasoning and 1024

path extraction with LLMs for natural lan- 1025

guage understanding in a RAG framework. 1026
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• SubgraphRAG (Llama3.1-8B) (Li et al., 2025)1027

enhances KG-based RAG by implementing1028

efficient subgraph retrieval with flexible size1029

control and directional structural encoding.1030

F Discussion on Evaluation Metrics1031

The evaluation procedure varies across different1032

methods. While node prediction and graph query1033

approaches produce direct answers requiring no1034

additional processing, LLM-based methods often1035

generate responses containing multiple predicted1036

answers. This characteristic of LLMs explains why1037

many recent works prefer the term Hit over Hits@1,1038

as the evaluation focuses on the presence of correct1039

answers within the complete generated response1040

rather than strictly the first position.1041

G Implementation Details1042

We train separate models for CWQ and WebQSP1043

datasets. The training process consists of two1044

stages: GNN pre-training and joint training. For1045

the GNN pre-training stage, we train the model for1046

20 epochs and select the checkpoint with the lowest1047

validation loss. In the joint training stage, we train1048

for 18 epochs and select the final model based on1049

the highest Hits@1 score on the validation set.1050

For model optimization, we apply different1051

strategies to the GNN and LLM. The GNN un-1052

dergoes full parameter fine-tuning with a learning1053

rate of 5e-5, while the LLM is fine-tuned using1054

LoRA with a learning rate of 1e-5. The LoRA hy-1055

perparameters are set as: lora_r=8, lora_alpha=16,1056

and dropout=0.05, targeting the q_proj and v_proj1057

modules. We use AdamW optimizer with weight1058

decay of 0.001. Other training hyperparameters in-1059

clude a batch size of 16, one warmup epoch, and a1060

cosine learning rate scheduler. In the joint training1061

objective, we set both the loss weight λ and the1062

Gumbel-Softmax temperature to 0.5.1063

During inference, we restrict the maximum num-1064

ber of retrieved facts to 50. The model selects the1065

top-K facts with probabilities higher than 0.5, ar-1066

ranging them in ascending order of probability for1067

LLM generation. The maximum length for LLM-1068

generated responses is limited to 128 tokens.1069

All experiments are conducted on two NVIDIA1070

A100-80GB GPUs. During each training epoch, we1071

process the entire training set for WebQSP, while1072

for CWQ we randomly sample 5,000 examples1073

from its training set. The joint training stage takes1074

approximately 16.5 hours for CWQ and 9.5 hours1075

Pretrained In Training Converged

Pretrained

In Training

Converged

82.7 86.3 87.5

84.3 87.1 87.8

83.2 86.6 88.0

Hits@1 Performance

Pretrained In Training Converged

Pretrained

In Training

Converged

72.9 75.8 77.3

72.6 76.8 78.4

71.5 76.3 78.6

F1 Performance

83

84

85

86

87

88

72

73

74

75

76

77

78

Figure 6: Performance comparison of different retriever-
generator checkpoint combinations on the WebQSP test
set. The x-axis represents LLM-based generator check-
points and y-axis represents GNN-based retriever check-
points. "Pretrained" indicates the initial state (pretrained
GNN and base LLM), "In Training" represents check-
points at epoch 8, and "Converged" represents the final
checkpoints at epoch 18.

for WebQSP. 1076

H Collaborative Performance of 1077

Retriever and Reasoner Under 1078

Different Checkpoints 1079

Figure 6 shows how the retriever and the gen- 1080

erator work together at different training stages, 1081

with all results measured on the WebQSP test set. 1082

The performance consistently improves through- 1083

out the training process, with Hits@1 increasing 1084

from 82.7% to 88.0% and F1 from 72.9% to 78.6%, 1085

demonstrating the effectiveness of end-to-end train- 1086

ing. The converged generator (epoch 18) demon- 1087

strates remarkable robustness across different re- 1088

triever checkpoints, which we attribute to its expo- 1089

sure to varied retrieval results during end-to-end 1090

training. Additionally, we observe that each gener- 1091
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ator checkpoint achieves its optimal performance1092

when paired with its corresponding retriever check-1093

point, indicating the development of complemen-1094

tary capabilities between the two modules. Fur-1095

thermore, the results suggest that the generator1096

plays a more crucial role in the overall performance:1097

improvements in the generator checkpoint lead to1098

more substantial gains compared to retriever im-1099

provements, while maintaining good performance1100

even with less optimal retrieval results.1101

I Dynamics of Performance Metrics1102

During Training Iterations1103

Figure 7 illustrates the training dynamics of dif-1104

ferent training methods on the WebQSP validation1105

set. The Isolation method achieves the highest1106

performance due to its use of high-quality heuris-1107

tic supervision signals with minimal noise. While1108

theoretically the GNN-based retriever could sur-1109

pass these heuristic subgraphs, current GNN-based1110

module inevitably introduces more noise compared1111

to the carefully constructed heuristic supervision,1112

making the Isolation performance reflect a practical1113

upper bound for D-RAG’s achievable performance.1114

In contrast, REINFORCE exhibits significant insta-1115

bility, a common challenge of policy gradient meth-1116

ods. This instability is particularly pronounced1117

in the early stages where the generator’s limited1118

capabilities exacerbate the issue, and although the1119

performance improves in later epochs as the genera-1120

tor becomes more capable, the overall convergence1121

remains slower than other training methods. This1122

highlights the inherent challenges of reinforcement1123

learning in such scenarios. Among the remain-1124

ing training methods, D-RAG demonstrates both1125

stability and superior performance compared to1126

cascade variants, reaching higher final scores than1127

Dynamic Cascade and Static Cascade. This ad-1128

vantage can be attributed to two factors: first, the1129

end-to-end training allows the retriever to lever-1130

age the LLM’s semantic understanding for more1131

generation-friendly pattern retrieval; second, com-1132

pared to Static Cascade, the dynamic nature of both1133

D-RAG and Dynamic Cascade enables the genera-1134

tor to adapt to varied retrieval qualities during train-1135

ing, enhancing its robustness. These results collec-1136

tively demonstrate that D-RAG successfully com-1137

bines training stability with strong performance.1138

J Case Studies 1139

Table 6 further demonstrates the specific retrieval 1140

and generation results of a 2-hop question under dif- 1141

ferent experimental settings. We conduct compar- 1142

ative analyses across five configurations: D-RAG, 1143

D-RAG w/o e2e, Cascade, Isolation, and LLM- 1144

only (direct LLM generation). 1145

All configurations except LLM-only retrieve 1146

facts from the KG, with the table presenting the 1147

top-8 facts with highest selection probabilities in 1148

descending order. The D-RAG configuration suc- 1149

cessfully retrieves all relevant facts and generates 1150

correct answers through its generation process. In 1151

contrast, D-RAG w/o e2e only captures partial facts 1152

(specifically second-hop facts), resulting in an in- 1153

complete answer. Both Cascade and Isolation ap- 1154

proaches completely fail to retrieve pertinent facts. 1155

Interestingly, we observe that D-RAG’s retrieval 1156

results group together the corresponding 1-hop 1157

and 2-hop facts, suggesting that D-RAG can ef- 1158

fectively identify subgraph patterns that facilitate 1159

LLM-based generation. This structural organiza- 1160

tion in the retrieved evidence appears crucial for 1161

successful multi-hop reasoning. 1162

K Training Efficiency Analysis 1163

The time complexity analysis illustrated in Table 7 1164

shows that D-RAG requires approximately 52 min- 1165

utes per epoch, which is about 13-14% more time 1166

than both cascade training methods and the sum 1167

of isolated training times (all around 45-46 min- 1168

utes). This moderate increase in computational cost 1169

is primarily attributed to the additional overhead 1170

of maintaining end-to-end gradient flow between 1171

the retriever and the generator modules. The sim- 1172

ilar time requirements between cascade variants 1173

and combined isolated training suggest that the 1174

primary computational bottleneck lies in the basic 1175

operations of both modules, rather than in their 1176

interaction patterns. 1177
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Figure 7: Training dynamics comparison of different training methods on WebQSP validation set.
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Question Which of the following does australia export the most?
True Answers Energy industry | Agriculture

True Inference Chain
location.statistical_region.major_exports ->
location.imports_exports_by_industry.industry

D-RAG

Provided facts:
m.0cnqyp5, location.imports_exports_by_industry.industry, Energy industry
m.0cnqyp9, location.imports_exports_by_industry.industry, Agriculture
Australia, location.statistical_region.major_exports, m.0cnqyp5
Australia, location.statistical_region.major_exports, m.0cnqyp9

m.04c6slk, location.imports_and_exports.exported_to, Kiribati
m.04bcv6n, location.imports_and_exports.exported_to, Tuvalu
Australia, location.statistical_region.places_exported_to, m.04bcv6n
Australia, location.statistical_region.places_exported_to, m.04c6slk
Answer: Agriculture | Energy industry

D-RAG w/o e2e

Provided facts:
Australia, location.country.currency_used, Australian dollar
m.0cnqyp5, location.imports_exports_by_industry.industry, Energy industry
m.0cnqyp9, location.imports_exports_by_industry.industry, Agriculture

m.04c6slk, location.imports_and_exports.exported_to, Kiribati
m.04bcv6n, location.imports_and_exports.exported_to, Tuvalu
Australia, location.statistical_region.religions, m.02_75rz
Australia, location.statistical_region.religions, m.02_75sg
Australia, location.statistical_region.religions, m.02_75rb
Answer: Agriculture

Cascade

Provided facts:
m.02n_b7n, location.adjoining_relationship.adjoins, Timor-Leste
m.02n_b76, location.adjoining_relationship.adjoins, New Caledonia
m.02n_b6b, location.adjoining_relationship.adjoins, Vanuatu
m.02n_b6s, location.adjoining_relationship.adjoins, Papua New & Guinea
m.02n_b7f, location.adjoining_relationship.adjoins, Indonesia
m.02n_b6k, location.adjoining_relationship.adjoins, Solomon Islands
m.02n_b6_, location.adjoining_relationship.adjoins, New Zealand
Australia, location.country.currency_used, Australian dollar
Answer: Papua New Guinea

Isolation
The provided facts are exactly the same as cascade scenario
Answer: Agriculture

LLM-only

According to the Australian Bureau of Statistics (ABS),
in 2020-21, Australia’s top exports by value were:
1. Iron ore: $63.4 billion
2. Coal: $24.4 billion
3. Gold: $14.4 billion
4. Liquefied natural gas (LNG): $12.4 billion
5. Refined petroleum products: $6.4 billion
So, Australia exports the most iron ore.

Table 6: The Comparison of results from different training methods. For each method, we show both the retrieved
facts and the final answer. The answers are highlighted in red background. In the retrieved facts, we use color coding
to indicate the facts that align with the correct reasoning path: green for the first hop and yellow for the second hop.
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Training Method Time (minutes)
D-RAG 52.1 ± 5.6
Dynamic Cascade 46.1 ± 3.4
Static Cascade 44:9 ± 2.2
Isolation (retriever) 27.0 ± 0.9
Isolation (generator) 19.0 ± 1.2

Table 7: Training time per epoch on CWQ with 5,000
random samples. Time variations (±) indicate the ob-
served ranges across multiple epochs.
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