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Abstract

Knowledge Graph Question Answering
(KGQA) aims to answer natural language
questions based on knowledge graphs. Recent
approaches apply the Retrieval-Augmented
Generation (RAG) paradigm to incorporate
Large Language Models (LLMs) to this task,
where a retriever selects a question-related
subgraph and an LLM-based generator is
then adopted to predict answers based on the
retrieved subgraph. However, the subgraph
selection process is non-differentiable, prevent-
ing end-to-end training of the retriever and the
generator in these approaches, which leads to
sub-optimal performance. To overcome this
limitation, this paper proposes a Differentiable
RAG (D-RAG) approach that jointly optimizes
the retriever and the generator for KGQA.
Firstly, D-RAG reformulates the optimization
objective as an expectation over a subgraph
distribution with respect to answer generation
likelihood, making the joint optimization
feasible. Secondly, it designs a differentiable
subgraph sampling and prompting module
based on Gumbel-Softmax reparameterization,
which achieves end-to-end optimization and
allows the retriever to discover latent graph
patterns that actively facilitate the generator’s
reasoning process.  Experimental results
on WebQSP and CWQ show that D-RAG
outperforms the state-of-the-art approaches by
2.3% and 3.4% on the F1 scores, respectively,
demonstrating its effectiveness.

1 Introduction

Knowledge Graph Question Answering (KGQA)
aims to automatically answer natural language
questions via well-structured fact information
stored in Knowledge Graphs (KGs). It is an es-
sential task in Natural Language Processing (NLP)
and is vital in various applications such as infor-
mation retrieval and intelligent assistance (Potdar
et al., 2025; Liang et al., 2024). However, KGQA
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Figure 1: Comparison between the current RAG-based
KGQA approaches and the proposed D-RAG approach.
The red arrows highlight the end-to-end gradient flow.

poses challenges to existing approaches, as it re-
quires a deep understanding of natural language
questions and the ability to perform complex rea-
soning over KGs. Considering that Large Lan-
guage Models (LLMs) (DeepSeek, 2025; OpenAl,
2024; Meta, 2024) have shown strong capabilities
in natural language understanding and reasoning,
some recent approaches (Peng et al., 2024; Luo
et al., 2024; He et al., 2024) incorporate LLMs into
KGQA via the Retrieval-Augmented Generation
(RAG) paradigm (Lewis et al., 2020). Specifically,
they adopt a retriever to select a question-relevant
subgraph from the KG. Then, they serialize the
subgraph into the prompt and adopt LLMs as the
generator to reason for answers.

Despite the promising performance of these
RAG-based KGQA approaches, significant chal-
lenges remain in optimizing both the retriever and
the generator. As illustrated in Figure 1, the core
challenge stems from the non-differentiable nature
of discrete subgraph selection, which prevents di-
rect gradient flow from the generator to the retriever.
While current approaches (Luo et al., 2024; Mavro-
matis and Karypis, 2024) typically adopt a sequen-
tial optimization paradigm, where the retriever is



trained using heuristic supervision signals, and the
generator is subsequently optimized with the re-
triever frozen, this optimization paradigm has the
following limitations: 1) The isolated optimization
of individual modules leads to sub-optimal perfor-
mance of the complete system rather than joint opti-
mization; 2) The heuristic supervision signals used
for training the retriever may not align well with
the actual requirements of the generation task; 3)
The system fails to leverage the generator’s seman-
tic understanding capabilities to enhance retriever
performance.

To address these limitations in the existing
RAG-based KGQA approaches, we propose the
Differentiable Retrieval-Augmented Generation
(D-RAG) for KGQA. Our approach introduces sev-
eral innovations. First, we reformulate the opti-
mization objective as a tractable expectation over
a subgraph distribution with respect to answer
generation likelihood, making the joint optimiza-
tion mathematically feasible. Second, we design
a differentiable subgraph sampling and prompt-
ing module that operates in two steps. The first
step transforms discrete subgraph selection into dif-
ferentiable fact-level sampling using the Gumbel-
Softmax reparameterization trick (Jang et al., 2017;
Maddison et al., 2017). The second step converts
the sampled facts into LLM-compatible prompts
while maintaining proper gradient flow throughout
the entire pipeline. The combination of these inno-
vations enables end-to-end optimization between
the retriever and the generator, allowing the whole
system to leverage the generator’s semantic under-
standing to guide retrieval. Experimental results on
WebQSP and CWQ show that D-RAG outperforms
the state-of-the-art approaches by 2.4% and 1.0%
on Hits@1, and by 2.3% and 3.4% on the F1 scores,
respectively.

The main contributions of this work are as fol-
lows:

* We propose D-RAG, the first differentiable
RAG-based KGQA approach, to the best of
our knowledge, that enables end-to-end opti-
mization with gradient flow from the genera-
tor to the retriever.

* We reformulate the objective as a tractable
expectation over a subgraph distribution and
design a differentiable subgraph sampling and
prompting module based on Gumbel-Softmax
reparameterization, achieving end-to-end joint
optimization of the KGQA system.

* Comprehensive experiments on two widely
used benchmark datasets, i.e., WebQSP and
CWQ, demonstrate that D-RAG outperforms
state-of-the-art performance, validating the
effectiveness of our differentiable approach.

2 Related Works

2.1 Knowledge Graph Question Answering

KGQA approaches can be broadly categorized
into Semantic Parsing-based (SP-based) and In-
formation Retrieval-based (IR-based) ones (Lan
et al., 2023). Since this work belongs to the IR-
based category, we focus on IR-based approaches
that retrieve question-specific subgraphs and ei-
ther rank candidate answers or directly generate
answers (Sun et al., 2018; He et al., 2021; Zhang
et al., 2022).

With the powerful reasoning capabilities of
LLMs, directly generating answers with text de-
coder in IR-based approaches has become increas-
ingly promising, leading to RAG-based approaches.
These approaches can be further divided into two
groups based on how they retrieve question-specific
subgraphs: graph-LLM approaches that leverage
specialized graph-based techniques (e.g. GNNs)
during subgraph retrieval (He et al., 2024; Li et al.,
2025; Mavromatis and Karypis, 2024; Liu et al.,
2024a), and LLM reasoning methods that primarily
rely on LLMs to understand and reason over graph
structure (Luo et al., 2024; Jiang et al., 2023a; Sun
et al., 2024; Ma et al., 2024).

Current RAG-based KGQA approaches lack end-
to-end training capabilities. Although SR (Zhang
et al., 2022) achieves end-to-end KGQA by con-
structing tree-structured subgraphs from multi-hop
paths, their posterior approximation requires com-
puting answer generation probability for each top-k
path independently, which would incur prohibitive
computational costs when LLMs serve as the gen-
erator.

2.2 End-to-End Training in RAG

Most RAG systems follow a pipeline
paradigm (Gao et al., 2023), where separate
modules for retrieval, prompting, and generation
are optimized separately. Several works have
explored end-to-end trainable approaches for text
retrieval, including REALM (Guu et al., 2020),
EMDR? (Sachan et al., 2021), VOD (Liévin
et al., 2023), and StochasticRAG (Zamani and
Bendersky, 2024). However, these text-centric



methods cannot be directly applied to KGQA due
to the structured nature of graph data and the need
for specialized graph retrieval mechanisms.

StochasticRAG (Zamani and Bendersky, 2024)
is the most similar one to D-RAG, as both meth-
ods leverage Gumbel tricks for discrete sampling,
whether for documents or subgraphs. However, D-
RAG differs in two key aspects: (1) StochasticRAG
retrieves a fixed number of documents, which is
not suitable for KGQA. In contrast, our approach
transforms subgraph sampling into independent
sampling of facts, allowing for flexible subgraph
sizes; (2) Unlike documents that can be directly fed
to LLMs, we employ a differentiable prompting
step to bridge the gap between graph structures and
LLM reasoning.

3 Preliminary

Knowledge Graph Question Answering. In this
paper, the knowledge graph is composed of multi-
ple facts, where each fact 7 = (h, r, t) represents
a triple consisting of a head entity h, a relation r,
and a tail entity ¢. Formally, the KG can be repre-
sented as G = {(h,r,t)|h,t € &, € R}, where
& denotes the set of all entities and R represents
the set of all relation types, with each entity and
relation type typically corresponding to a natural
language form. Given a knowledge graph G, the
KGQA task takes a natural language question g
as input and outputs an answer a corresponding
to one or more entities in G. The ultimate goal is
to maximize the likelihood of the correct answer,
which can be formulated as E(, ) [log p(alq, G)] .

RAG-based KGQA. The RAG paradigm in
KGQA involves two independent modules: a re-
triever I that identifies the question-relevant sub-
graph g, with probability pg(gsus|G,¢q), and a
generator GG that generates the answer a with prob-
ability p(algsup, q)-

The overall answer generation probability can
be formulated as:

Z p’y(a‘% gsub)pﬂ (gsub|Q7 g),
gsubgg
(1)

where 3 and « denote the parameters of the re-
triever and the generator, respectively. 6 denotes
all parameters in the above two modules.

Current RAG-based KGQA approaches face a
fundamental challenge in joint optimization - the
discrete nature of subgraph retrieval creates a non-
differentiable barrier between the retriever and the

po(alg,G) =

generator. Existing approaches circumvent this by
separately training the retriever (using heuristic sub-
graph labels) and freezing it during generator train-
ing. The decoupled paradigm inevitably causes
error propagation and suboptimal performance.

4 The Proposed D-RAG Approach

This section presents Differentiable Retrieval-
Augmented-Generation (D-RAG), as illustrated in
Figure 2. Our approach integrates a GNN-based
retriever and an LLM-based generator through a
differentiable subgraph sampling and prompting
module, enabling end-to-end training. Below, we
detail these modules and the training strategy.

4.1 GNN-based Retriever

The graph retriever in D-RAG employs fact-wise
probability factorization to model subgraph selec-
tion through independent fact selections. This trans-
forms the complex subgraph probability into a prod-
uct of simple binary selection probabilities for all
facts:

plgsw) = [ p=) T (1 =p(), @

Ti€9sub Tj ¢gsub

where each 7; represents a fact with corresponding
selection probability p(7;). A detailed derivation
of this factorization is given in Appendix A.

To compute the selection probability, we de-
sign a triplet scoring mechanism that combines
entity representations from ReaRev’s GNN archi-
tecture (Mavromatis and Karypis, 2022) with a
relation encoder through feature concatenation:

p(7i) = o (MLP(fe(hi) [| fr(ri) || fe(t:))), ()

where f.(-) is the entity encoder, f,(-) is the re-
lation encoder, and o(-) denotes the sigmoid ac-
tivation. Detailed specifications are provided in
Appendix B.

4.2 LLM-based Generator

The LLM-based generator predicts answers
through autoregressive decoding:

La
py(algsun: @) = [ [ P (ailaci, gourr ) (4)

=1

where L, is the length of the ground-truth an-
swer, and the subgraph and question are formatted
through a structured prompt template:
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Figure 2: The overall approach of DRAG. 1) The GNN-based Retriever Rg processes the input knowledge graph
G and assigns a selection probability to each fact with respect to the given question. 2) To enable a differentiable
subgraph retrieval and prompting process, the approach first employs Gumbel-Softmax reparameterization to sample
facts, forming a subgraph. This subgraph is then transformed into fact embeddings, which serve as prompts. 3) The
LLM-based Generator G, processes the subgraph information, task setting, and question to infer the final answer.

Answer the question based

on the provided facts.

Question: <question>

Provided facts: <factl1><fact2> ...
Answer:

The  ground-truth  answer is  repre-
sented as a list separated by vertical bars:
<Ans1>|<Ans2>|...|<AnsN>. During inference,
the generator produces answers in the same
format, which can be easily parsed to obtain the
final answer set. Complete prompt examples are
detailed in Appendix C.

4.3 Differentiable Subgraph Sampling and
Prompting

Our key innovation lies in constructing differen-
tiable bridges across the retriever-generator inter-
face through a differentiable formulation of the op-
timization objective and a novel subgraph sampling
and prompting module. This end-to-end optimiza-
tion enables the retriever to discover latent graph
patterns that actively facilitate the generator’s rea-
soning process.

4.3.1 Differentiable Formulation

The optimization objective of maximizing Equa-
tion 1 involves a summation problem with combi-
natorial complexity, which is generally intractable.
To address this, we can alternatively optimize its
evidence lower bound (ELBO) (Hoffman et al.,
2013), formulated as:

a, 7g
10gp9(a|q, g) = EgsubNT’ |:10g Ije(.gs’Ub’q):|
r(gsub)

+ DKL(T(gsub) H p@(gsub|a7Q7 g))

a7 b g
> Bgypor [mg Po(@: subd: ) T(g;“"b‘;l )]
SU

where 7(gsyp) represents the variational distribu-
tion of the subgraph, and the inequality holds
because the Kullback-Leibler divergence is non-
negative. We specify the variational distribution
7(gsub) as the retriever’s distribution pg(gsuv|q, G).
The ELBO can be simplified as:

bo\a, q, g
log pp(alq, G) > By, ;s {bg (gsub’)}

p3(gsuvla: G)
= Eqopps [log Py(algsub, ©)P8(gsublg, g)]
ps(gsubla, G)

= Egsub"‘pﬁ [1ng'y(a|gsub’ Q)] 9

(0)
where pg is modeled by the GNN-based retriever
and p, is modeled by the LLM-based generator.
This choice not only simplifies the optimization
objective but also ensures the retriever operates
without access to the answer information.

The optimization objective of our approach is
formulated as the ELBO in Equation 6. When
the subgraph distribution pg(gsup|q, G) retrieved
by the retriever closely approximates the poste-
rior distribution pg(gsup|q, a, G), the inequality in
Equation 6 approaches equality, thereby tighten-
ing the bound to the original objective. Since the
GNN-based retriever is jointly learned during train-
ing, this bound can theoretically achieve equality.
The computation of this objective can be decom-
posed into two steps: subgraph sampling via pg
and prompt-based generation via p,. The follow-
ing two sections present the refinements to make
these steps differentiable.

4.3.2 Differentiable Subgraph Sampling

This section focuses on the differentiability of sub-
graph sampling. To enable gradient computation,
we adopt the Gumbel-Softmax reparameterization
trick (Jang et al., 2017; Maddison et al., 2017),



which approximates discrete sampling with a con-
tinuous relaxation. For the ¢-th fact in the KG, the
retriever outputs a Bernoulli parameter p; = pg(7;),
representing the probability of selecting this fact.
To make the discrete Bernoulli sampling differen-
tiable, we apply the Gumbel-Softmax trick:

)

2 _ <oftmax ( (logpi +mi1) / t >T7
(log(1 —pi) +mi2) / t

(7N

where 7);1, 1;2 are independent samples from Gum-

bel(0,1)! and ¢ is the temperature coefficient. Here,

2ot € R represents the relaxed selection prob-
ability for fact 7.

The final binary selection indicator z; is obtained

through:

z; = onchot(argmax(z5°")) + z°" — SG(z°"),

®)
where SG denotes the stop-gradient operation. This
formulation maintains differentiability while pro-
ducing discrete one-hot vectors during forward
propagation.

Let Z = fg(H) = [zl; 79 ...} sz] €
{0,1}77%2 denote the complete subgraph selec-
tion matrix, where Ny is the total number of facts
and H represents Gumbel noise samples. The se-
lected subgraph can be equivalently represented
as gsup = {7i|zi = [1,0]}. The training objective
becomes:

EHNP(H) [IOg 2% (a’fﬂ (H)7 Q)] ) &)

where f3 denotes the complete sampling process
parameterized by 3. This reparameterization not
only allows gradients to flow through the sampling
process, but also transforms the expectation from a
complex parameterized distribution pg to a simple
fixed distribution, making the optimization more
tractable.

4.3.3 Differentiable Prompt Construction

After obtaining the parameterized subgraph rep-
resentation fg(H), where the first column of the
output matrix encodes the selection probabilities,
the subgraph needs to be transformed into LLM-
compatible inputs while maintaining differentiabil-
ity.

To construct differentiable prompts, we first con-
vert each fact into its textual representation fol-
lowing the template <head name>, <relation

!"The cumulative distribution function of Gumbel(0,1) is
F(z) = exp(—exp(—x)).

name>, <tail name>. These textual forms are
then encoded into token embeddings V; € RL:*¢,
where L; is the token length and dis the embedding
dimension of the LLM-based generator.

The binary selection indicator Z;; (the first ele-
ment of the ¢-th row in Z determines whether fact
7; is selected. We multiply each embedding V;
with its corresponding Z;;. When Z;; = 0, the
corresponding embedding is completely masked
out. All weighted embeddings are concatenated
to form the neural prompt V¢, allowing gradients
from the LLM-based generator to propagate back
to the GNN-based retriever parameters 3 through
the chain:

OL 0L OV;oZ

B~ OV 9Z 9B’ (10

where L is the autoregressive loss of the LLM.
For multi-hop reasoning in KGQA, where re-
trieved facts should form structured reasoning
paths, we arrange facts in ascending order of their
selection probabilities to preserve the logical de-
pendencies in the linearized prompt sequence.

4.4 Training Strategy

With the differentiable subgraph sampling and
prompting module proposed above, D-RAG sup-
ports end-to-end training in principle. However,
directly optimizing the full model from random ini-
tialization often leads to poor convergence, as the
retriever might retrieve an irrelevant subgraph that
misleads the generator. To address this, we adopt a
two-phase training strategy.

In the first phase, the GNN-based retriever is pre-
trained using heuristically constructed subgraphs
Gheur 10 establish a reasonable initialization, pre-
venting the retriever from retrieving irrelevant sub-
graphs. The pre-training loss is defined as:

(11)

where pp.q represents the heuristic subgraph dis-
tribution (typically in one-hot form), and pg is the
retriever’s predicted distribution.

In the second phase, both the retriever and the
generator are trained jointly. Following Equation 9,
the generation loss is defined as:

Ly = —Egpm) [log py(alfs(H),q)].

The overall joint loss combines the retriever pre-
training objective and the generation loss:

Ll == DKL(pheur(gsub) H pﬁ(gsub))v

(12)

Ljoint =AL1 + (1 - )\)L27 (13)



where the hyperparameter A balances the retriever’s
adherence to heuristic subgraphs and its ability to
predict answers.

5 Experiments

In our experiments, we aim to answer the following
three research questions: RQ1. What is the overall
performance of the proposed approach? RQ2. Is
the end-to-end optimization of the retriever and the
generator effective? RQ3. How do the various de-
sign details within the proposed approach influence
the outcomes?

5.1 Experiment Settings

Datasets. The experimental evaluation was con-
ducted on two benchmark datasets: WebQSP (Yih
et al., 2016) and CWQ (Talmor and Berant, 2018),
both built upon the Freebase (Bollacker et al., 2008)
knowledge graph. These datasets represent clas-
sical benchmarks for complex logical reasoning
in KGQA. WebQSP contains relatively straightfor-
ward questions that typically require 1-2 hop rea-
soning chains, while CWQ presents more challeng-
ing scenarios involving 3-4 hop reasoning chains.
Detailed specifications of the datasets are provided
in Appendix D.

Baselines. D-RAG is compared with 15 baselines
across three categories: 1) Graph reasoning meth-
ods that leverage graph structure for scoring-based
answer inference; 2) LLM reasoning methods that
perform reasoning with LLMs while not utiliz-
ing graph structure during retrieval; and 3) Graph-
LLM methods that maintain dedicated graph-based
retrieval while leveraging LLMs for reasoning.
The details of each baseline are described in Ap-
pendix E.

Evaluation  Metrics. Following previous
works (Luo et al., 2024; Sun et al., 2024), D-RAG
employs Hits@1 and F1 metrics for evaluation
on WebQSP and CWQ. The evaluation process
first parses LLM-generated answers into a list for
comparison with the ground truth answers. The
Hits@1 metric (also commonly denoted as Hit
in LL.M-based methods) measures whether any
correct answer appears in the model’s response,
while F1 provides a balanced measure of precision
and recall for comprehensive quality assessment.
A detailed discussion of the evaluation metrics is
provided in Appendix F.

Implementations. D-RAG  employs  the
ReaRev (Mavromatis and Karypis, 2022) model
with a fact prediction head as the GNN and utilizes
the Llama3-8B-Instruct (Meta, 2024) as the LLM.
Consistent with prior work (Mavromatis and
Karypis, 2022; Luo et al., 2024), we assume that
the entities mentioned in the questions (referred to
as topic entities) have already been linked to the
knowledge graph through entity linking (Yih et al.,
2015). Based on these linked entities, heuristic
subgraphs are extracted via two methods: shortest
path between topic and answer entities, and
SPARQL query parsing. We limit the maximum
number of retrieved facts to 50 to fit the LLM’s
context window. Full implementation details are in
Appendix G.

5.2 Main Results

To evaluate the overall effectiveness of D-RAG
(RQ1), we compare it with state-of-the-art base-
lines on KGQA tasks. Table 1 presents the results,
where "-" indicates the corresponding method does
not report results for that metric. The D-RAG ap-
proach achieves state-of-the-art performance across
both datasets. Specifically, on the WebQSP dataset,
D-RAG achieves a 2.4% improvement in Hits@ 1
over the best-performing baseline SubgraphRAG,
and outperforms DECAF by 2.3% in the F1 score.
While some baselines like RoG achieve competitive
Hits@1 (85.7%), their F1 scores (70.8%) lag sub-
stantially behind, suggesting they may achieve high
recall at the cost of precision. For the more com-
plex CWQ dataset, the proposed approach demon-
strates a 1.0% advantage in Hits@1 compared to
the state-of-the-art ToG approach, while surpass-
ing GNN-RAG by 3.4% in the F1 score. Notably,
methods like SubgraphRAG suffer from a signifi-
cant performance drop on CWQ (F1 decreases from
70.6% to 47.2%). In contrast, D-RAG maintains
robust performance across both datasets, demon-
strating its superior generalization capability and
balanced precision-recall trade-off.

Among other approaches, graph reasoning ap-
proaches (without LLM integration) underperform
due to lacking advanced reasoning capabilities.
While LLM reasoning methods leverage genera-
tive power for knowledge exploration, they suffer
from hallucination and structural misinterpretation.
Graph-LLM approaches demonstrate superior per-
formance by integrating structural patterns with
LLM inference. This empirically validates two
observations: (1) LLM integration fundamentally



Type | Method | WebQSP | CWQ
| |Hits@l F1 |Hits@1 F1
Graftnet (Sun et al., 2018) 66.4 - 32.8 -
NSM (He et al., 2021) 68.7 62.8| 47.6 424
Graph Reasoning SR+NSM (Zhang et al., 2022) 68.9 64.1| 502 47.1
ReaRev (Mavromatis and Karypis, 2022) 764 709 | 529 -
UniKGQA (Jiang et al., 2023b) 75.1 702 50.7 48.0
NuTrea (Choi et al., 2023) 774 727| 53.6 495
LLama3-8B (Meta, 2024) 59.8 457] 30.8 27.6
StructGPT (Jiang et al., 2023a) 72.6 - - -
LLM Reasoning | DECAF (DPR + FiD-large) (Yu et al., 2023) 80.7 77.1| 67.0 -
ToG (GPT4) (Sun et al., 2024) 82.6 - 68.5 -
RoG (joint) (Luo et al., 2024) 857 70.8| 62.6 562
G-Retriever (He et al., 2024) 70.1 - - -
EtD (ChatGPT) (Liu et al., 2024a) 82.5 - 62.0 -
Graph-LLM GNN-RAG (Mavromatis and Karypis, 2024) 85.7 713| 66.8 594
SubgraphRAG (Llama3.1-8B) (Li et al., 2025) | 86.6 70.6| 57.0 47.2
D-RAG 89.0 794 | 695 628

Table 1: Performance comparison with different baselines on WebQSP and CWQ.

enhances reasoning capacity, and (2) structural-
semantic synergy produces superior outcomes com-
pared to isolated approaches.

5.3 Ablation Study

Training | WebQSP | CWQ
Method |Hits@1 Fl |His@l FI
D-RAG 88.0 78.6, 69.5 628
REINFORCE 845 695| 62.6 56.2
D-RAG w/o e2e

Dynamic Cascade | 86.9 76.7| 69.0 62.0
Static Cascade 87.1 77.0| 67.7 61.1
Isolation 853 73.1| 639 28.1

Table 2: Ablation studies of different training methods.

To answer RQ2 regarding the effectiveness of
end-to-end optimization between the retriever and
the generator, we conduct an ablation study with
four variants: 1) REINFORCE, which optimizes
both modules jointly using the REINFORCE algo-
rithm (Williams, 1992) with variance reduction; 2)
Dynamic Cascade, where both modules are trained
simultaneously with the generator using real-time
retriever outputs, but without gradient backpropa-
gation; 3) Stratic Cascade, where we train the re-

triever first and then optimize the generator with
the frozen retriever; 4) Isolation, where both mod-
ules are trained independently with the generator
using only heuristic subgraphs.

The experimental results are presented in Table 2.
From the results, three key observations emerge.
First, D-RAG outperforms all baseline approaches,
demonstrating the superiority of end-to-end joint
training. Second, in Dynamic Cascade where gra-
dient flow from the generator to the retriever is
disabled, we observe approximately 1% degrada-
tion in Hits@1 and F1 across both datasets. This
indicates that our end-to-end design enables direct
supervision of the retriever using ground-truth an-
swer signals, effectively mitigating noise inherent
in heuristic subgraphs. Third, both REINFORCE
and Isolation show significant performance drops,
but for different reasons. REINFORCE suffers
from the inherent instability of policy gradient,
while Isolation demonstrates the necessity of mod-
ule interaction. In contrast, D-RAG enables stable
and efficient end-to-end optimization. Detailed
analyses of module interaction patterns, training
dynamics, qualitative case studies, and training ef-
ficiency analysis can be found in Appendices H, I,
J, and K, respectively.
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Figure 3: The impact of the number of retrieved facts
(K) on D-RAG on the WebQSP dataset.

5.4 Detail Analysis

To better understand how different design choices
affect our approach’s effectiveness (RQ3), we con-
duct a series of analyses on three critical factors:
the number of retrieved facts, variations in heuristic
subgraphs, and the order of facts.

Number of Retrieved Facts. The number of re-
trieved facts (/) serves as a crucial hyperparame-
ter. Figure 3 shows how K affects both the overall
performance (Hits@1 & F1) and the retriever’s met-
rics (recall & precision). As K increases, recall
improves steadily (reaching 97.6%) while preci-
sion declines (to 7.63%). The overall performance
metrics show substantial gains from K = 10 to
K = 50, but plateau beyond K = 50, suggesting
that retrieving 50 facts achieves a good balance
between coverage and efficiency.

SPARQL - Hits@1 wz SPARQL - F1
Shortest Path - Hits@1 ## Shortest Path - F1
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80 78.6
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Figure 4: Performance comparison of different training
methods under two heuristic subgraph acquisition ap-
proaches on the WebQSP dataset.

Different Heuristic Subgraphs. To analyze the
impact of different heuristic subgraph supervision
signals, we compare two methods for generating

them: SPARQL and Shortest Path. As shown in
Figure 4, D-RAG consistently outperforms all vari-
ants under both supervision signals, achieving the
highest scores in both Hits@1 and F1. The minimal
performance gap between SPARQL and Shortest
Path methods further demonstrates D-RAG’s ro-
bustness to different types of supervision signals.

Fact Order | Hits@1 F1

ascent 89.0 79.4
descent 88.0 78.6
default 88.0 77.3
random 86.7 76.6

Table 3: The impact of fact ordering on D-RAG on the
WebQSP dataset.

Fact Ordering. Since the order of input facts can
influence LLM generation (Liu et al., 2024b), we
compare four ordering strategies: 1) Ascent: Facts
are arranged in ascending order of retrieval prob-
abilities; 2) Descent: The reverse of ascent, with
facts ordered from high to low probabilities; 3) De-
fault: Facts are arranged in a fixed order, regardless
of their probabilities; 4) Random: Facts are shuffled
randomly during both training and inference.

As shown in Table 3, ascending order performs
best, while random ordering yields the poorest re-
sults. This suggests that deliberately structuring
facts is more effective than pursuing order-agnostic
generation, though more sophisticated ordering
strategies remain to be explored in future work.

Conclusion

In this paper, we presented D-RAG, a novel dif-
ferentiable approach for KGQA that enables end-
to-end optimization between the retriever and the
generator. By reformulating the optimization ob-
jective as a tractable expectation over a subgraph
distribution and designing a differentiable subgraph
sampling and prompting module based on Gumbel-
Softmax reparameterization, D-RAG achieves su-
perior performance on standard KGQA bench-
marks. Experimental results on WebQSP and CWQ
demonstrated that our approach outperforms state-
of-the-art methods with substantial improvements,
validating the effectiveness of end-to-end optimiza-
tion in RAG-based KGQA systems.



Limitations

Despite the effectiveness of D-RAG, we acknowl-
edge several limitations of our current approach.
First, our approach relies on entity linking results
without considering potential errors in this prepro-
cessing step. Second, our end-to-end optimization
approach is limited to open-source language mod-
els and cannot be directly applied to closed-source
API-based models.
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A Probability Factorization Analysis

In this section, we first prove the validity of Equa-
tion 2, followed by a discussion on the rationale
behind fact-wise factorization.

The factorization of subgraph probability repre-
sents an approximation of the complex probability
distribution, with an underlying assumption that
the selection of each fact is independent. Consider
a knowledge graph with Ny facts, where each fact
has two possible states (selected or not selected),
resulting in 2™¢ possible subgraphs. The sum of
probabilities over all possible subgraphs can be
expressed as:

Z p(.gsub)

9sub

=> 1 e=) II =)

Gsub Ti€Gsub Tj ggsub

Ny
= Z Z . Z Hp(Ti)H(”)(l — p(m;))t 1)

TN =1

Ny
I > p" ™1 = p(r))

1=11(r;)€{0,1}

(p(mi) + (1 =p(ri))) =1
=1

where the third row follows from the fact that sum-
ming over all subgraphs is equivalent to consid-
ering both possibilities (selected or not selected)
for each fact independently. I(7;) is an indicator
function that equals 1 when fact 7; is included in
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the subgraph and O otherwise. The final result of 1
validates the probability formulation in Equation 2.

Beyond fact-wise factorization, node-level and
path-wise granularities are also common choices
for probability decomposition. Path-wise granu-
larities, however, face combinatorial complexity
challenges, which explains why direct modeling of
subgraph probability is computationally intractable.
Node-wise granularity, on the other hand, disre-
gards relation information between entities and
fails to handle multi-edge scenarios. These limita-
tions motivate our choice of fact-wise factorization.
To address the potential dependencies between fact
selections that may be overlooked by the indepen-
dence assumption implicit in factorization, we em-
ploy a GNN-based retriever. The inherent capabil-
ity of GNNs to capture graph structural information
helps mitigate the independence assumption, as the
internal parameters of GNN can effectively encode
the correlations between facts.

B Specific design of GNN-based Retriever

B.1 Module

For the GNN-based retriever, D-RAG adopts
ReaRev (Mavromatis and Karypis, 2022) as the
core architecture, which consists of three primary
modules:

* The Instruction Module employs Sentence-
BERT (Reimers and Gurevych, 2019) as its
Language Model (LM) encoder to transform
queries into instructions;

* The Graph Reasoning Module initializes and
updates node representations through message
passing, considering the relationship between
instructions and nodes;

e The Instruction Update Module refines in-
structions based on the node representations
and predicted terminal node distributions.

In our implementation, the node encoder corre-
sponds to the output of the Graph Reasoning Mod-
ule, while the relation encoder refers to the LM
encoder and MLP projection components used in
the node initialization process.

B.2 Loss design of graph neural network

As shown in Equation 11 of the main text, the loss
function L; for training the GNN-based retriever
is formulated as:
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DKL(pheur(gsub)‘pﬁ (gsub))
=— > logps(r) = Lece

TEGsub

(14)

This can be implemented using PyTorch’s BCE
(Binary Cross Entropy) weighted loss 2. Inspired
by the work of (Lin et al., 2024), to address the
sparsity of positive examples in knowledge graph
link classification tasks, we further incorporate a
rank loss:

| NN
NN Z Z log o (p(m:) — p(75)),

i=1 j=1
15)
where N, and N_ denote the number of positive
and negative examples, respectively, 7; represents a
positive example, 7; represents a negative example,
and o (-) is the sigmoid function. This ranking loss
generates larger gradients on sparse samples, effec-
tively complementing the BCE loss and enhancing
the model’s classification capability.
The total loss of the GNN-based retriever is a
weighted combination of these two losses:

Lrank =

L1 = pLpce + (1 — p) Lrank, (16)
where we empirically set p = 0.7 to balance be-
tween the BCE loss and the ranking loss.

C Prompts

Figure 5 illustrates the full input prompt received
by the LLM-based generator, which consists of
three components: task configuration, question,
and subgraph. The task configuration and ques-
tion components are presented in natural language
text format, while the subgraph is represented in
embedding form, corresponding to the neural fact
prompt in D-RAG.

D Datasets

D-RAG evaluates on two benchmark KGQA
datasets: WebQuestionSP (WebQSP) (Yih et al.,
2016) and Complex WebQuestions (CWQ) (Tal-
mor and Berant, 2018). Following previous
works (Luo et al., 2024; He et al., 2021), the same
train and test splits are adopted for fair comparison.
The datasets are analyzed from two perspectives:
basic statistics and reasoning complexity.

2h'ctps ://pytorch.org/docs/stable/generated/
torch.nn.BCEWithLogitsLoss.html

The overall statistics of both datasets are summa-
rized in Table 4, including the number of samples
in training, validation and test sets.

Table 5 shows the distribution of reasoning
hops required for answering questions, indicat-
ing the logical complexity of questions in each
dataset. The hop counting method analyzes the
path length from topic entities to answer entities
in SPARQL queries. For WebQSP, hop counts
are determined precisely as most questions involve
single topic entities with equal path lengths from
topic to answer entities. For CWQ, we compute
fuzzy hop counts due to frequent multi-topic scenar-
i0s. When SPARQL queries represent constrained
graphs rather than simple chains, we take the maxi-
mum path length among all topic-to-answer paths
as the final hop count.

Datasets | #Train #Validate #Test
WebQSP | 2826 246 1,628
CWQ 27,639 3519 3531

Table 4: Statistics of the datasets.

Datasets | 1-hop 2-hop 3-hop >4-hop
WebQSP | 2906 1776 8 8
CWQ 6743 19408 5911 2627

Table 5: Statistics of reasoning hop distribution in We-
bQSP and CWQ.

E Baselines

The D-RAG approach is compared with the 15
baselines grouped into three categories: 1) Graph
reasoning methods; 2) LLM reasoning methods;
and 3) Graph-LLM methods. The details of each
baseline are described as follows:

Graph Reasoning Methods.

* Graftnet (Sun et al., 2018) performs question
answering by propagating features through
a heterogeneous graph that fuses knowledge
bases and text documents.

* NSM (He et al., 2021) leverages language
models’ bidirectional reasoning capabilities
for multi-hop question answering.

* SR+NSM (Zhang et al., 2022) introduces a
trainable path-wise subgraph retriever that de-
couples retrieval from reasoning.
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Complete Generator Prompt

Answer the question based on the provided facts.

Question: what does jamaican people speak

Provided facts:

Jamaica, location.country.official_language, Jamaican English

Jamaica, location.country.languages_spoken, Jamaican English

Jamaica, location.country.languages_spoken, Jamaican Creole English Language
Jamaica, location.country.currency_used, Jamaican dollar

Jamaica, location.country.form_of_government, Democracy

Jamaica, location.country.form_of_government, Parliamentary system

Jamaica, base.locations.countries.continent, North America

Jamaica, location.country.form_of government, Constitutional monarchy
Grenada, location.country.official_language, English Language

Bermuda, location.country.official_language, English Language

Belize, location.country.official_language, English Language

Turks and Caicos Islands, location.country.official_language, English Language
Bahamas, location.country.official_language, English Language

Cayman Islands, location.country.official_language, English Language

Puerto Rico, location.country.official_language, English Language

Grenada, location.country.languages_spoken, English Language

Bermuda, location.country.languages_spoken, English Language

Costa Rica, location.country.languages_spoken, Jamaican Creole English Language
Belize, location.country.languages_spoken, English Language

.

Turks and Caicos Islands, location.country.languages_spoken, English Language
Answer:

Figure 5: The complete input prompt for the LLM-based generator, incorporating 20 facts.

* ReaRev (Mavromatis and Karypis, 2022)
adaptively refines reasoning instructions using
knowledge graph context and executes them
through a BFS-guided neural network.

* UniKGQA (Jiang et al., 2023b) unifies re-
trieval and reasoning stages in KGQA through
a shared PLM-based architecture and joint pre-
training strategy.

¢ NuTrea (Choi et al., 2023) utilizes tree search-
based message passing to explore future paths
with RF-IEF node embeddings that capture
global KG context.

LLM Reasoning Methods.

* LLama3-8B (Meta, 2024) performs direct rea-
soning without fact retrieval by leveraging its
pre-trained knowledge.

e StructGPT (Jiang et al., 2023a) enhances

LLM reasoning by iteratively collecting ev-
idence from structured data through special-
ized interfaces before performing reasoning
steps.

* DECAF (DPR + FiD-large) (Yu et al., 2023)

improves KB question answering by combin-
ing logical form generation with direct an-
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swer prediction, while simplifying the process
through text-based retrieval.

* ToG (GPT4) (Sun et al., 2024) enables LLMs
to perform traceable reasoning by iteratively
exploring knowledge graphs through beam
search.

* RoG (joint) (Luo et al., 2024) enhances
LLM reasoning by leveraging KG structure
to generate faithful reasoning paths through a
planning-retrieval-reasoning framework.

Graph-LLM Methods.

¢ G-Retriever (He et al., 2024) enables conversa-
tional graph interaction by combining GNNs,
LLMs, and RAG through Prize-Collecting
Steiner Tree optimization.

e EtD (ChatGPT) (Liu et al., 2024a) combines
GNNss for efficient knowledge exploration
with frozen LLMs for final answer determina-

tion, creating a resource-efficient framework
for KGQA.

* GNN-RAG (Mavromatis and Karypis, 2024)
combines GNNs for subgraph reasoning and
path extraction with LLMs for natural lan-
guage understanding in a RAG framework.



* SubgraphRAG (Llama3.1-8B) (Li et al., 2025)
enhances KG-based RAG by implementing
efficient subgraph retrieval with flexible size
control and directional structural encoding.

F Discussion on Evaluation Metrics

The evaluation procedure varies across different
methods. While node prediction and graph query
approaches produce direct answers requiring no
additional processing, LLM-based methods often
generate responses containing multiple predicted
answers. This characteristic of LLMs explains why
many recent works prefer the term Hit over Hits@1,
as the evaluation focuses on the presence of correct
answers within the complete generated response
rather than strictly the first position.

G Implementation Details

We train separate models for CWQ and WebQSP
datasets. The training process consists of two
stages: GNN pre-training and joint training. For
the GNN pre-training stage, we train the model for
20 epochs and select the checkpoint with the lowest
validation loss. In the joint training stage, we train
for 18 epochs and select the final model based on
the highest Hits@1 score on the validation set.

For model optimization, we apply different
strategies to the GNN and LLM. The GNN un-
dergoes full parameter fine-tuning with a learning
rate of 5e-5, while the LLM is fine-tuned using
LoRA with a learning rate of 1e-5. The LoRA hy-
perparameters are set as: lora_r=8, lora_alpha=16,
and dropout=0.05, targeting the q_proj and v_proj
modules. We use AdamW optimizer with weight
decay of 0.001. Other training hyperparameters in-
clude a batch size of 16, one warmup epoch, and a
cosine learning rate scheduler. In the joint training
objective, we set both the loss weight \ and the
Gumbel-Softmax temperature to 0.5.

During inference, we restrict the maximum num-
ber of retrieved facts to 50. The model selects the
top-K facts with probabilities higher than 0.5, ar-
ranging them in ascending order of probability for
LLM generation. The maximum length for LLM-
generated responses is limited to 128 tokens.

All experiments are conducted on two NVIDIA
A100-80GB GPUs. During each training epoch, we
process the entire training set for WebQSP, while
for CWQ we randomly sample 5,000 examples
from its training set. The joint training stage takes
approximately 16.5 hours for CWQ and 9.5 hours
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Figure 6: Performance comparison of different retriever-
generator checkpoint combinations on the WebQSP test
set. The x-axis represents LLM-based generator check-
points and y-axis represents GNN-based retriever check-
points. "Pretrained” indicates the initial state (pretrained
GNN and base LLM), "In Training" represents check-
points at epoch 8, and "Converged" represents the final
checkpoints at epoch 18.

for WebQSP.

H Collaborative Performance of
Retriever and Reasoner Under
Different Checkpoints

Figure 6 shows how the retriever and the gen-
erator work together at different training stages,
with all results measured on the WebQSP test set.
The performance consistently improves through-
out the training process, with Hits@1 increasing
from 82.7% to 88.0% and F1 from 72.9% to 78.6%,
demonstrating the effectiveness of end-to-end train-
ing. The converged generator (epoch 18) demon-
strates remarkable robustness across different re-
triever checkpoints, which we attribute to its expo-
sure to varied retrieval results during end-to-end
training. Additionally, we observe that each gener-



ator checkpoint achieves its optimal performance
when paired with its corresponding retriever check-
point, indicating the development of complemen-
tary capabilities between the two modules. Fur-
thermore, the results suggest that the generator
plays a more crucial role in the overall performance:
improvements in the generator checkpoint lead to
more substantial gains compared to retriever im-
provements, while maintaining good performance
even with less optimal retrieval results.

I Dynamics of Performance Metrics
During Training Iterations

Figure 7 illustrates the training dynamics of dif-
ferent training methods on the WebQSP validation
set. The Isolation method achieves the highest
performance due to its use of high-quality heuris-
tic supervision signals with minimal noise. While
theoretically the GNN-based retriever could sur-
pass these heuristic subgraphs, current GNN-based
module inevitably introduces more noise compared
to the carefully constructed heuristic supervision,
making the Isolation performance reflect a practical
upper bound for D-RAG’s achievable performance.
In contrast, REINFORCE exhibits significant insta-
bility, a common challenge of policy gradient meth-
ods. This instability is particularly pronounced
in the early stages where the generator’s limited
capabilities exacerbate the issue, and although the
performance improves in later epochs as the genera-
tor becomes more capable, the overall convergence
remains slower than other training methods. This
highlights the inherent challenges of reinforcement
learning in such scenarios. Among the remain-
ing training methods, D-RAG demonstrates both
stability and superior performance compared to
cascade variants, reaching higher final scores than
Dynamic Cascade and Static Cascade. This ad-
vantage can be attributed to two factors: first, the
end-to-end training allows the retriever to lever-
age the LLM’s semantic understanding for more
generation-friendly pattern retrieval; second, com-
pared to Static Cascade, the dynamic nature of both
D-RAG and Dynamic Cascade enables the genera-
tor to adapt to varied retrieval qualities during train-
ing, enhancing its robustness. These results collec-
tively demonstrate that D-RAG successfully com-
bines training stability with strong performance.
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J Case Studies

Table 6 further demonstrates the specific retrieval
and generation results of a 2-hop question under dif-
ferent experimental settings. We conduct compar-
ative analyses across five configurations: D-RAG,
D-RAG w/o e2e, Cascade, Isolation, and LLM-
only (direct LLM generation).

All configurations except LLM-only retrieve
facts from the KG, with the table presenting the
top-8 facts with highest selection probabilities in
descending order. The D-RAG configuration suc-
cessfully retrieves all relevant facts and generates
correct answers through its generation process. In
contrast, D-RAG w/o e2e only captures partial facts
(specifically second-hop facts), resulting in an in-
complete answer. Both Cascade and Isolation ap-
proaches completely fail to retrieve pertinent facts.

Interestingly, we observe that D-RAG’s retrieval
results group together the corresponding 1-hop
and 2-hop facts, suggesting that D-RAG can ef-
fectively identify subgraph patterns that facilitate
LLM-based generation. This structural organiza-
tion in the retrieved evidence appears crucial for
successful multi-hop reasoning.

K Training Efficiency Analysis

The time complexity analysis illustrated in Table 7
shows that D-RAG requires approximately 52 min-
utes per epoch, which is about 13-14% more time
than both cascade training methods and the sum
of isolated training times (all around 45-46 min-
utes). This moderate increase in computational cost
is primarily attributed to the additional overhead
of maintaining end-to-end gradient flow between
the retriever and the generator modules. The sim-
ilar time requirements between cascade variants
and combined isolated training suggest that the
primary computational bottleneck lies in the basic
operations of both modules, rather than in their
interaction patterns.
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Figure 7: Training dynamics comparison of different training methods on WebQSP validation set.
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Question Which of the following does australia export the most?
True Answers Energy industry | Agriculture

location.statistical_region.major_exports ->
location.imports_exports_by_industry.industry

Provided facts:

m.Ocnqyp$5, location.imports_exports_by_industry.industry, Energy industry

True Inference Chain

m.Ocnqyp9, location.imports_exports_by_industry.industry, Agriculture
Australia, location.statistical_region.major_exports, m.Ocnqyp5S
D-RAG Australia, location.statistical_region.major_exports, m.Ocnqyp9
m.04c6slk, location.imports_and_exports.exported_to, Kiribati
m.04bcv6n, location.imports_and_exports.exported_to, Tuvalu
Australia, location.statistical_region.places_exported_to, m.04bcvén
Australia, location.statistical_region.places_exported_to, m.04c6slk
Answer: Agriculture | Energy industry

Provided facts:

Australia, location.country.currency_used, Australian dollar

m.Ocnqyp5, location.imports_exports_by_industry.industry, Energy industry
m.Ocnqyp9, location.imports_exports_by_industry.industry, Agriculture
D-RAG w/o e2e | m.04c6slk, location.imports_and_exports.exported_to, Kiribati
m.04bcv6n, location.imports_and_exports.exported_to, Tuvalu

Australia, location.statistical_region.religions, m.02_75rz

Australia, location.statistical_region.religions, m.02_75sg

Australia, location.statistical_region.religions, m.02_75rb

Answer: Agriculture

Provided facts:

m.02n_b7n, location.adjoining_relationship.adjoins, Timor-Leste
m.02n_b76, location.adjoining_relationship.adjoins, New Caledonia
m.02n_b6b, location.adjoining_relationship.adjoins, Vanuatu

m.02n_b6s, location.adjoining_relationship.adjoins, Papua New & Guinea
m.02n_b7f, location.adjoining_relationship.adjoins, Indonesia
m.02n_b6k, location.adjoining_relationship.adjoins, Solomon Islands
m.02n_b6_, location.adjoining_relationship.adjoins, New Zealand
Australia, location.country.currency_used, Australian dollar

Cascade

Answer: Papua New Guinea

. The provided facts are exactly the same as cascade scenario
Isolation .
Answer: Agriculture

According to the Australian Bureau of Statistics (ABS),
in 2020-21, Australia’s top exports by value were:

1. Iron ore: $63.4 billion

2. Coal: $24.4 billion

3. Gold: $14.4 billion

4. Liquefied natural gas (LNG): $12.4 billion

5. Refined petroleum products: $6.4 billion

So, Australia exports the most iron ore.

LLM-only

Table 6: The Comparison of results from different training methods. For each method, we show both the retrieved
facts and the final answer. The answers are highlighted in red background. In the retrieved facts, we use color coding
to indicate the facts that align with the correct reasoning path: green for the first hop and yellow for the second hop.
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Training Method Time (minutes)

D-RAG 52.1+£5.6
Dynamic Cascade 46.1 3.4
Static Cascade 44:9 +£2.2

Isolation (retriever) 27.0+ 0.9
Isolation (generator) 190+ 1.2

Table 7: Training time per epoch on CWQ with 5,000
random samples. Time variations (&) indicate the ob-
served ranges across multiple epochs.
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