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Abstract

Retrieval-augmented Large Language Models
(RaLLMs) are reshaping knowledge acquisi-
tion, offering long-form, knowledge-grounded
answers through advanced reasoning and
generation capabilities. Despite the emer-
gence of impactful systems like WebGPT and
New Bing, the reliability of RaL.LMs, espe-
cially in complex situations, is under scrutiny.
Our study tackles this concern by evaluating
RaLLMs’ question-answering performance us-
ing a novel benchmark focusing on Correctness
and Groundedness. Correctness measures the
logical soundness of the responses, and Ground-
edness checks for support by relevant refer-
ences. We introduce an automated model-based
evaluation pipeline for multi-hop question-
answering tasks, revealing RaLLMs’ prone-
ness to generating inaccuracies when dealing
with flawed or partial knowledge. To improve
accuracy, we introduce two reasoning strate-
gies, Self-Reflection” and Self-Completion,” en-
abling RaLLLMs to identify and fill knowledge
gaps, significantly improving answer quality
without extensive model retraining.

1 Introduction

Over the last few decades, search engines have
played a pivotal role in how people find infor-
mation online (Croft et al., 2010), typically pro-
viding a ranked list of web pages in response to
queries. However, the advent of open-domain ques-
tion answering systems has shifted this paradigm
by enabling direct answer generation from web con-
tent. Initially, these systems relied on passage re-
trieval and machine reading comprehension(Chen
et al., 2017; Karpukhin et al., 2020) to identify
relevant passages and extract answers. This ap-
proach has evolved into retrieval-augmented gen-
eration (RAG) (Lewis et al., 2020; Izacard and
Grave, 2020), which utilizes language models to
synthesize answers from multiple passages. The
integration of RAG with large language models,

leading to the development of retrieval-augmented
large language models (RaLLMs) (Borgeaud et al.,
2022; Izacard et al., 2022; Thoppilan et al., 2022),
has significantly advanced the field. RaLLMs are
well-received in the community, leading to the de-
velopment of influential prototypes, such as We-
bGPT (Nakano et al., 2021) and New Bing. The
new systems have demonstrated remarkable poten-
tial in various cases, whose generated answers are
praised for two new characters. Firstly, people may
get long-form answers in contrast to the previous
short-form ones, where semantic-rich elaborations
are presented to facilitate people’s comprehension.
Secondly, the generated answer can be grounded on
the retrieved references, which makes the answer
traceable and variable. It is commonly believed
that the answers from RalLLMs are not only lin-
guistically plausible, but also generally credible.
In this work, we challenge this common belief
by arguing that RaLLMs’ answer quality is open
to debate, , especially in complex scenarios such
as multi-hop question answering (MHQA) (Yang
et al., 2018; Welbl et al., 2018). We propose exam-
ining answer quality through two lenses: correct-
ness and groundedness. Correctness evaluates if a
question is accurately resolved with logical reason-
ing, while groundedness checks if the answers are
well-supported by appropriate references. Tradi-
tionally, evaluations for these perspectives heavily
rely on human labelers (Nakano et al., 2021; Qin
et al., 2023), which can be hard to scale up. To mit-
igate this problem, we propose a model-based ap-
proach for automatic evaluation. For correctness,
our approach assesses if the RalLLMs’ answers and
their reasoning processes align with the ground-
truth. Different from traditional methods which
only emphasize short answer matches. we suggest
a new benchmark that evaluates answers based on
key-facts, highlighting the crucial reasoning steps
essential for deriving an answer. For groundedness,
except for the citation completeness of all ground-



truth references, we further examine whether each
statement within RaLLLMs’s generated answer can
be supported by its cited references.

Our research delves into the factors affecting
the performance of RaLLMs, revealing that answer
quality is influenced not just by the models’ inher-
ent capabilities and the way prompts are crafted,
but crucially by the condition of retrieved knowl-
edge. Particularly, there are two critical factors of
the answer quality regarding the retrieved knowl-
edge: knowledge recall and knowledge precision.
Knowledge recall assesses whether all necessary
information for a question has been retrieved, while
knowledge precision evaluates the relevance of the
retrieved information to the question. Our find-
ings indicate that enhancing knowledge comple-
tion (high recall) and relevance (high precision)
invariably improves answer quality. Conversely,
we observe that RaLLMs tend to **generate false
statements** when faced with incomplete (miss-
ing crucial information) or noisy (containing ir-
relevant information) knowledge. Although these
fabrications may appear plausible, they often rely
on non-existent facts or bear no relevance to cited
references Such a tendency can be regarded as a
form of hallucination by RaLLLMs, which is a major
threat in actual usage.

Building on our empirical insights into the limi-
tations of RaLLMs, we focus on enhancing answer
generation to counter the propensity for fabricat-
ing false statements due to incomplete or irrele-
vant knowledge. We introduce a novel pipeline
that incorporates two reasoning strategies: self-
reflection and self-completion.Drawing inspira-
tion from reasoning-reflection models like Re-
Act (Yao et al., 2022), which promote internal vali-
dation of outputs through CoT-like reasoning (Wei
et al., 2022), our approach encourages RalLLMs to
internally evaluate the accuracy of their responses
(self-reflection) and actively seek out missing in-
formation by generating subsequent search queries
(self-completion). This pipeline, designed to be
simple and not reliant on adjusting the extensive
parameters of RalLLLMs, significantly enhances an-
swer quality by reducing the likelihood of fabrica-
tions and increasing the relevance and complete-
ness of the information provided.

2 Related Work

In this section, we discuss the related works from
two aspects: retrieval augmented large language

models, and question answering.

Retrieval-augmented LLLMs. RalLLMs have
emerged to address LLMs’ limitations in handling
complex questions due to their finite parameter ca-
pacity (Zhou et al., 2021; Maynez et al., 2020).
By integrating external knowledge, RaLLMs aim
to overcome these limitations, with research span-
ning architecture, training, and application. Key
developments of architecture development include
the REALM framework for external knowledge re-
trieval (Guu et al., 2020), in-context retrieval meth-
ods Ram et al. (2023), generic retrieval-augmented
pipeline Jiang et al. (2023b) and REPLUG for
black-box models Shi et al. (2023). Training in-
novations feature memory augmentation Zhong
et al. (2022), contrastive learning Izacard et al.
(2022) and self-retrieval methods Rubin and Be-
rant (2023), with models like WebGPT (Nakano
etal.,2021) and WebCPM (Qin et al., 2023) demon-
strating RaLLMSs’ potential in web scenarios. Our
study introduces a benchmark focused on evaluat-
ing RaLLMs based on answer quality, particularly
looking at correctness and groundedness, to pro-
mote automated evaluation methods that reduce the
reliance on human judgment.

Multi-hop Question Answering. MHQA repre-
sents a significant NLP challenge, requiring the syn-
thesis of multiple evidence pieces for accurate an-
swers. Initiatives like the HotpotQA dataset (Yang
et al., 2018) have spurred diverse approaches, in-
cluding graph-based models (Cao et al., 2019;
Dong et al., 2023; Jiang et al., 2023a; Qiao et al.,
2022) that construct knowledge graphs for evidence
linking and decomposition-based models (Talmor
and Berant, 2018; Press et al., 2022; Khattab et al.,
2022) that simplify questions into manageable
parts. Recent advancements leverage LL.Ms for
complex QA tasks, with strategies like REACT’s
thought-action-observation loop (Yao et al., 2022)
and Reflexion’s introspective reasoning (Shinn
et al., 2023). Our work evaluates RaLLMs’ an-
swer generation capabilities and proposes the self-
reflection and self-completion mechanisms to im-
prove response accuracy.

3 Benchmarking

The question answering task is defined as gen-
erating a long-form answer with citations for a
given question g and its associated reference list
C = {cf,cl,..} from a corpus. We focus on
MHQA tasks due to their complexity, which effec-
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Figure 1: The task setup of our benchmark. Dashed lines depict the key-facts construction process of the benchmark,
while solid lines represent the model inference and evaluation process.

tively tests LLMs’ answering capabilities. MHQA
requires integrating multiple knowledge sources
and performing multi-step reasoning, making it an
ideal benchmark for evaluating LLMs.

Dataset. HotpotQA (Yang et al., 2018) is cel-
ebrated as the benchmark dataset for evaluating
MHQA. Each dataset entry comprises a question,
10 Wikipedia-sourced references (with all golden
passages), and an answer. It requires analysis
and synthesis across several documents to derive
an answer, making it ideal for assessing LLMs’
knowledge-grounding ability.

However, HotpotQA dataset only offers short
answers, which we believe are inadequate for thor-
oughly evaluating LLMs’ reasoning capabilities, as
models might skip essential reasoning steps. Rec-
ognizing the importance of each step in multi-hop
reasoning, we propose a more rigorous evaluation
method using Key-facts, to detail the essential rea-
soning steps needed for answering questions, as
illustrated in Figure 1. This method allows for a
more comprehensive evaluation of LLM outputs by
focusing on their ability to support key-facts.

Key-facts Construction. We employ the most
advanced GPT-4 model to assist us in constructing
key-facts more efficiently. The key-facts generated
by LLMs are then verified by human annotators.
Due to the costs of API usage, we randomly sample
500 questions from the dataset for experiments.
The construction of key-facts involves three steps:

* Step Reasoning: Given a question, a set of refer-
ences, and the validated answer, we utilize GPT-4
to decipher the intermediate steps from the query
to the answer based on the supplied references.
Specifically, we provide demonstrations and em-
ploy the following prompt to generate reason-
ing steps: “/Question], [References], [Answer].

Please figure out the reasoning process towards
the answer step-by-step without other content.”

* Key-facts Extraction: A high-quality assem-
bly of key-facts should embody two core charac-
teristics: (1) Necessity, implying that each key
fact is a crucial intermediate step to answer the
posed question. (2) Independence, meaning that
each key fact should neither duplicate nor over-
lap redundantly with others, as they should inde-
pendently stand as factual pieces of information.
To achieve this, we further engage GPT-4 to ex-
tract several key-facts from the reasoning steps
with the prompt: “/Question], [Reasoning steps],
[Answer]. Please identify 2 to 4 non-redundant
key-facts within the reasoning steps which are
necessary to derive the final answer.”

e Human Filtering: To ensure the accuracy and
relevance of the extracted key-facts, we introduce
a manual human filtering phase, where human
annotators evaluate and remove redundant or un-
reasonable key facts, thereby creating a reliable
base for evaluating LLMs’ performance.

In conclusion, our benchmark dataset is struc-
tured with four main components: question, ref-
erences, key-facts, and answer. In the subsequent
section, we detail how this benchmark can be uti-
lized to evaluate the outputs generated by LLMs.

4 Automatic Evaluation

In the domain of MHQA tasks, our benchmark
evaluates model outputs based on: (1) Correctness,
assessing the model’s accuracy and logic in answer-
ing questions; and (2) Groundedness,examining
how answers are supported by pertinent and sub-
stantiated references. Below, we delve into the
specific evaluation metrics for each.
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Figure 2: The improvement of Ral.LLMs. The improved method unleashes LLMs’ capability on self-reflection and
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4.1 Correctness

Correctness in question answering hinges on accu-
rately resolving questions via multi-hop reasoning.
Traditional methods like exact match to ground
truth and human evaluations face challenges: exact
matches may not fully capture LLMs’ reasoning
depth, while human evaluations are impractical for
large-scale testing. Addressing these issues, we
introduce an automatic evaluation method specif-
ically designed for LLM outputs, leveraging two
metrics based on predefined key-facts.

» Key-facts Recall: This metric evaluates the de-
gree to which an LLM’s response encompasses
the necessary key-facts. Given a set of essential
key-facts, K9 = {k{, ki, .-}, for a question ¢,
the model’s response is analyzed for coverage
of these key-facts. The emphasis is on identify-
ing whether the model’s response, S9, entails all
elements of K9. In this place, we introduce an
oracle function f(-) to determine the entailment
between the model’s output and each key-fact:

1
Ryey = 7] Zf(sq, k?), where k! € K1,

where “ f(premise, hypothesis)” returns 1 if the
premise entails the hypothesis, and O otherwise.
We employ TRUE (Honovich et al., 2022), a
widely-recognized NLI (natural language infer-
ence) method, as our oracle function. It is empir-
ically verified that this oracle function provides a
close alignment with human judgment.

* Key-facts Precision: Beyond assessing the re-
call of key-facts, it’s vital to measure the pre-
cision with which these key-facts are presented
in the response. This stems from the observa-
tion that certain models might generate extremely
long responses, leading to superficially high re-
call. However, such answers could be diluted

with unnecessary or irrelevant information. To
gauge the precision, each sentence s! within the
model’s response is evaluated against the key-
facts to determine its relevance:

1
Pkey = ’57(” Zf(sgv aHY(kZI))

By integrating recall and precision metrics for
key-facts, this benchmark effectively and compre-
hensively evaluates the accuracy of LLM outputs,
offering a more accurate assessment of its multi-
hop reasoning abilities in complex QA tasks.

4.2 Groundedness

In assessing Groundedness, we aim to verify
whether LLM-generated answers are supported by
references and the accuracy of those citations. For
MHQA tasks, responses often incorporate infor-
mation from various sources for a complete an-
swer. To investigate if the generated answers are
well-referenced, we evaluate the groundedness of
answers across the following dimensions.

* Citation Recall & Precision: This metric evalu-
ates the alignment between the model’s citations
and the required references for answering a ques-
tion, using the provided golden reference IDs for
precise assessment. Citation precision and recall
are calculated as follows:

Reie = |CnNCy|/|Cyl, Peir = [Crn N Cy /| Crml,

where C,, is the set of model’s references, Cj,
the set of ground-truth references, N denotes set
intersection, and | - | the set size.

* Self-Consistency: This aspect evaluates a
model’s self-consistency, which involves check-
ing the consistency between the model’s re-
sponses and its cited sources. It focuses on the



model’s capability to not only produce accurate
responses but also to accurately associate them
with the correct references. Specifically, we first
segment the model’s response .S into individual
sentences and then evaluate the consistency be-
tween these sentences and the cited references.
For each sentence in the answer paired with
its associated citations, denoted as s;, C;, self-
consistency is determined by:

SC = 7122 f (Concat(C;), s;) ,

where f epresents the same NLI model as men-
tioned above, n signifies the total number of such
statements, and Concat(C;) denotes the concate-
nation of all references within C;.

In conclusion, the correctness and groundedness
metrics provide a comprehensive assessment of
large-scale model outputs, revealing their profi-
ciency in utilizing external knowledge. Our ex-
periments in Section 6.3 demonstrate that LLMs
are highly responsive to the quality of retrieved
knowledge. To enhance the capabilities of these
LLMs, we propose self-improvement strategies to
refine their answer generation process.

5 Model Improvement

Our empirical studies on a benchmark reveal that
RaLLLMs tend to generate false statements when
reference knowledge is noisy or incomplete. To ad-
dress this issue, we introduce an enhanced answer
generation pipeline enriched by two advanced built-
in capabilities, self-reflection and self-completion
(see Figure 2). The self-reflection is employed to
assess the logical soundness and knowledge com-
pleteness. While the self-completion is to improve
the current answer by proactively querying for the
missing knowledge.

5.1 Self-reflection

Drawing from recent developments in reasoning-
reflection frameworks (Yao et al., 2022; Shinn et al.,
2023), it has been observed that LLMs possess
the ability for self-reflection, i.e. an introspective
assessment of the reliability of their own reasoning
processes. As we venture into the improvement of
RalLLLMs, a fundamental question arises:

¢ Q1: Can the model ascertain whether the cur-

rent knowledge base adequately addresses the
questions in MHQA scenarios?

Compared to general LLMs, models endowed
with self-reflection capabilities are more able to
evaluate the completeness and relevance of the in-
formation contained within these references con-
cerning the posed question. Thus, we attempt to
leverage RalLLLMs ability of self-reflection through
the following prompt:

¢ Prompt-reflection: [Question], [References].
Please write a high-quality answer ... If the ref-
erences are insufficient to answer the question,
respond with "I'm sorry, I cannot answer the
question based on the provided references".

This self-reflective step is crucial as it gauges the
model’s ability to identify gaps or insufficiencies in
knowledge, prompting abstention from answering
if uncertain. The subsequent section explores the
"self-completion reasoning mechanism" activated
upon identifying a knowledge gap.

5.2 Self-Completion

Even if the model is aware that the existing knowl-
edge is inadequate to answer a question, it doesn’t
necessarily indicate that it knows what knowledge
is missing. In this section, we aim to explore this
capability of the model with the following question:

¢ Q2: In MHQA scenarios, can the model discern
what knowledge is missing in references to accu-
rately answer a question?

Triggered by identifying knowledge inadequacies,
the self-completion mechanism aims to bridge such
gaps by generating additional search queries to
fetch the missing information. This advanced rea-
soning phase requires the model to be aware not
only of its limitations but also of the necessary
steps to fill these gaps to produce an answer.

When encountering inadequately supported
queries, the LLM is asked to generate additional
search queries, as illustrated below:

* Prompt-completion: [Question], [References].
Given the insufficiency of the current references,
please start your query with "I further need to ask
the search engine:" to gather more information.

Once the model generates these supplementary
search queries, they are executed to fetch more
information from a search engine. The newly re-
trieved references are added into the previous refer-
ence list for LLMs to formulate a new response.
This iterative process continues until the LLM
believes that it possesses a comprehensive set of
knowledge to provide an answer to the question.



Correctness Groundedness Correctness
Model Model
Prec. Rec. F1 SC. Prec. Rec. Prec. Rec. EMRec. HPrec. HRec.
Foundation LLMs ChatGLM2¢g 66.8 48.0 62.2 60.8 57.0
llamasg 6.12 2296 954 3642 194 30  icunam 47.0459 616 3.0 435
Vicunajsg 53.0 48.6 68.4 64.0 50.5
llama;sp 545 1633 8.17 5198 3.63 6.2
1 5 570 1012 760 6274 617 76 llama2-ci3p 57.1 479 69.8 65.1 41.5
Amas1sp : : : : : : ChatGPT 854 565 79.4 784  70.0
Instruction-tuned LLMs Pearson 087 088 0.54 j j
ChatGLM2¢g 66.85 48.06 55.45 48.99 3.36 2.4 Table 2: H luation f ¢ ..
Vicunas 4704 4506 4648 6145 1199 114 able 2: Human evaluation for correc ness' on'precmon
Vicuna, g 53.00 48.69 50.78 68.66 2177 257 (HPrec.) and recall (HRec.). Pearson indicates the
llama2-c3p 57.13 47.97 5223 62.61 19.79 15.3 correlation between automatic and human assessments.
ChatGPT 85.40 56.55 68.22 68.68 90.99 64.6

Table 1: Comparison of different LLMs on our bench-
mark. 5 passages (including all golden passages) are
provided for each question for fair comparison.

6 Experimental Analysis

In this section, we evaluate various LLMs’ multi-
hop reasoning abilities using our benchmark,
including foundation models like llama;g/13B
and llama2;3g (Touvron et al., 2023), along
with instruction-tuned variants such as Chat-
GPT, Vicuna7g/13B (Zheng et al., 2023), and
llama2-cy3ghat (llama2-c;3g). We then analyze the
correlation between automatic evaluations and hu-
man judgments. Subsequently, we explore the per-
formance of LLMs with different retrieved knowl-
edge conditions. Finally, we discuss enhancements
to the question answering pipeline.

6.1 Comparisons among Different LLMs

Table 1 presents our benchmark results, adopting a
default of 5 references (including all golden refer-
ences) per question to accommodate input length
limits for all LLMs. The comparison reveals:

(1) Instruction-tuned LLMs vs. Foundation
LLMs. Instruction-tuned LLMs significantly out-
perform foundational models, which often rely on
simplistic strategies, such as copying sentences
from sources or avoiding source referencing. How-
ever, once instruction tuning is performed, we ob-
serve a marked improvement in the quality of an-
swers in terms of both correctness and grounded-
ness. This highlights the potency of instruction
tuning in logical reasoning capabilities of LLMs.

(2) Comparison of different model families. In
evaluating instruction-tuned models—ChatGLM,
Vicuna, and ChatGPT—we observe distinct behav-
iors. ChatGLM excels in correctness but some-
times falls short in groundedness compared to non-
instruction-tuned models. Vicuna presents a bal-

anced performance in both areas, while ChatGPT
stands out for its proficiency in correctness and
groundedness. These findings reveal that varying
pre-training and fine-tuning settings lead to dis-
parities in performance, particularly in terms of
correctness and groundedness.

(3) Correctness vs. Groundedness. The results
suggest a complex link between correctness and
groundedness. A high degree of groundedness typ-
ically suggests that the model excels at utilizing
correct knowledge, thereby potentially improving
the correctness of its responses. However, the Chat-
GLM2 model, despite generating correct responses,
it struggles to cite the references adequately as the
metrics of groundedness are very low. This high-
lights groundedness as a more demanding criterion
than correctness. ChatGPT excels in both correct-
ness and relevance, showcasing its superiority.

6.2 Comparisons between Model-based and
Human Evaluation

To assess the alignment between our automatic
evaluation and human judgment, we perform a hu-
man evaluation on 50 randomly chosen question,
with 10 experts rating answer correctness based on
precision and recall, their scores averaged. Preci-
sion and recall are evaluated with (1) the proportion
of sentences within the answer that are helpful in
answering the given question (0 not useful, 1 help-
ful), and (2) answer completeness ([0, 0.25, 0.5,
0.75, 1] from inadequate to fully adequate). For
comparison, we present the metric of "EM recall",
which assesses the correctness by determining the
presence of the correct short answer within them.
Table 2 shows that our NLI model-based au-
tomatic evaluation metrics for key-facts strongly
align with human judgments. While there’s only a
moderate correlation of 0.54 between human eval-
uations and the "EM recall" metric, our key-facts-
focused evaluation method shows a much more
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Figure 3: The performance of different LLMs on cor-
rectness under different knowledge precision.

consistent alignment with human feedback, with
coefficients exceeding 0.87 for precision and 0.88
for recall. This suggests that our method can accu-
rately measure the correctness of LLMs’ outputs.

6.3 Impact of Knowledge Conditions

To thoroughly examine how models utilize exter-
nal knowledge, we modify the retrieval conditions
across two aspects: noise and completeness. For
noise, we manually adjust the knowledge preci-
sion to investigate the impact of the signal-to-noise
ratio of references on LLM. For completeness, we
control the knowledge recall by providing no, par-
tial, and complete references respectively, and ob-
serve their influence on LLM outputs.

Knowledge Precision. Knowledge precision de-
scribes the accuracy and relevancy of information
retrieved from references for specific queries. It es-
sentially measures the signal-to-noise ratio within
the sourced references. To assess this, we varied
the number of references (including two golden
references) and evaluated how models performed
with differing levels of knowledge precision. The
performance trends of various models in terms of
recall (correctness) can be seen in Figure 3.

It’s clear that as noise levels in references in-
creased, all models showed a decrease in perfor-
mance, highlighting their sensitivity to knowledge
precision. This drop in accuracy becomes more ev-
ident when the amount of non-relevant references
increases, likely because the models struggle to fil-
ter out noise when approaching their input length
limit. Notably, ChatGPT and ChatGLM exhibited
resilience, with only a minor decrease in recall rates
(4.3% and 14.3% respectively) when references
doubled from 5 to 10. In contrast, models like
LLaMA and Vicuna saw a significant 30% plunge
in recall, underscoring the comparative robustness
of ChatGPT and ChatGLM against noise.

Knowledge Recall. We examined the impact

Closebook Partial Complete
Model
Prec. Rec. Prec. Rec. Prec. Rec.

ChatGLM2¢g 17.59 13.72 3998 25.87 66.85 48.06
Vicunasg 12.20 15.51 31.57 3495 47.04 4596
Vicunaisp 19.48 21.58 5196 44.80 53.00 48.69
llama2-c3p 18.23 26.83 4439 3437 57.13 4797
ChatGPT 21.44 39.17 6137 3534 8540 56.55

Table 3: The performance of different LLMs on correct-
ness under different knowledge recall.

of knowledge completeness on the LLM outputs
in MHQA scenarios. For a query to be answered
correctly in such tasks, it’s essential to draw infor-
mation from at least two separate references. By
intentionally omitting parts of the necessary refer-
ences, we assessed how knowledge recall variabil-
ity affects LLM responses. We compared scenarios
ranging from no references (Closebook) to partial
and complete ground-truth references.

Our findings, as shown in Table 3 reveal that
knowledge completeness significantly influences
LLM performance, particularly highlighting the
importance of retrieval quality. Notably, ChatGPT
exhibits higher adaptability to variations in knowl-
edge recall, leveraging its built-in knowledge to
fill reference gaps. Conversely, less robust models
require comprehensive external references, under-
scoring their reliance on extensive knowledge recall
to compensate for their intrinsic shortcomings.

Summary. Our experiments reveal notable fluc-
tuations in RaLLMs’ performance as knowledge
conditions vary, with key observations including:

* RalLLLLMs are highly sensitive to the signal-to-
noise ratio in retrieved knowledge; a lower ratio
leads to decreased accuracy.

* The completeness of knowledge significantly im-
pacts RaLLMs’ efficacy on complex QA tasks.

6.4 Impact of Model Improvements

As illustrated above, RalLLLMs tend to make mis-
takes when the retrieved knowledge is incomplete
and noisy. These findings motivate the improve-
ment of the answer generation from two aspects:
self-reflection and self-completion.
Self-reflection. The goal of self-reflection is to
evaluate knowledge completeness before respond-
ing. This process, viewed as binary classification,
depends on the model’s ability to judge informa-
tion quality. We categorize questions into groups
with either complete or partial knowledge, main-
taining equal numbers in both. Model performance



Model No Improvement Self-improvement Self-Reflection Model Capability
ode

Prec.  Rec. F1 Prec.  Rec. F1 Acc. F1 Reasoning Reflection Completion
Foundation LLMs
llamayg 381 1083 5585 351 1053 536 51.2 11.3 — —
llamaysg 463 15.00 7.11 442 1573 6.81 51.8 20.7 —
llama2;3g 7.17 13.83  9.53 554 1217  7.68 50.0 8.9
Instruction-tuned LLMs
ChatGLM2¢g 29.33 2293 25.84 3447 27.07 3041 57.6 61.2 v v
Vicunasg 10.73 1333 1192 13.66 1337 13,51 514 44.5 v -
Vicunasg 27.89 1933 23.08 2252 2003 21.19 552 61.0 v v
llama2-c35 33.86 2433 2845 3267 2121 2576 60.2 67.1 v v
ChatGPT 509 36.65 4266 57.65 4127 4818 702 772 v v

Table 4: The results of improved RaLLMs with BM25 retriever. Reasoning, Reflection, and Completion correspond
to three model capabilities in solving MHQA tasks. v” signifies that the model possesses this capability.

is assessed by accuracy and F1 score metrics.

As shown in Table 4, llama-based models strug-
gle in self-reflection, often answering without fully
evaluating knowledge completeness. Vicunasg ex-
hibits some potential in identifying knowledge
gaps, though its accuracy still remains low. As the
models become more powerful, their self-reflection
capability seems to improve. ChatGPT stands as
the most advanced LLM in these models, under-
scoring the advantages of utilizing more substantial
models to enhance their self-reflection capability
during multi-hop question answering.

Self-completion. Self-completion evaluates the
model’s enhanced cognitive abilities, which include
not only the recognition of problems but also the ca-
pacity to pinpoint possible solutions. In our study,
Wikipedia serves as our primary corpus, and we
utilize BM25 (Robertson and Zaragoza, 2009) as
the retriever to source relevant references. To dis-
tinguish between basic and advanced reasoning tac-
tics, we categorize them as single-hop (standard)
and multi-hop (improved) self-completed retrievals.
To ensure a balanced comparison, irrespective of
the number of retrievals, we maintain a consistent
number of references retrieved, always capped at
10. If the self-completion strategy can notably in-
crease the quality of answers, it indicates that the
model possesses the capability of self-completion.

The self-improvement results in Table 4 re-
veal that for models like ChatGPT and ChatGLM,
the improved question-answering pipeline substan-
tially improves the accuracy of the responses. How-
ever, this trend is not consistently observed across
all models. While Vicunasg and llama2-c 35 are
equipped with self-reflection features, they may
encounter difficulties in autonomously generating
subsequent queries. Low-quality queries might in-

troduce more noise, making them less effective
than utilizing the original queries directly. In sum-
mary, our exploration delved into three tiers of
model capabilities. Foundation LLMs, like the
llama series, exhibit general reasoning prowess suit-
able for straightforward tasks. Instruction-tuned
LLMs display advanced self-reflection, enabling
them to identify their own limitations. Meanwhile,
models such as ChatGPT and ChatGLM demon-
strate a higher capability of self-completion, driv-
ing themselves toward continuous improvement.
Summary. TThe experiments demonstrate that
RalLLMs’ performance varies with the enhanced
reasoning strategy. Key observations include:

¢ Instruction-tuned models exhibit multi-hop rea-
soning and self-reflection abilities.

* Models enhanced with techniques like RLHF
show self-completion capabilities, allowing them
to benefit from the improved pipeline.

7 Conclusion

In conclusion, this paper delves into the nuanced
evaluation of answer quality in RaLLMs with the
exploration of multi-hop question answering tasks.
We propose a novel experiment framework to au-
tomatically assess two critical factors: correctness
and groundedness. Our empirical investigation un-
covers the propensity of RaLLMs to generate false
statements in the presence of incomplete or noisy
retrieved knowledge. To counter this, we propose
a novel answer generation pipeline that incorpo-
rates self-reflection and self-completion reasoning
strategies, significantly enhancing answer reliabil-
ity. This groundwork paves the way for broader
future research, aiming for a deeper insight into the
strengths and weaknesses of RaLLMs.



Limitations

Despite the advancements presented in our study
with RaLLMs, there are inherent limitations to con-
sider. First, the model-based approach for auto-
matic evaluation of answer quality, while scalable,
might not fully capture the nuanced judgment a hu-
man evaluator could provide. This could potentially
overlook subtle errors or inaccuracies that human
assessment would catch. Additionally, our method-
ology assumes the availability of accurate and com-
prehensive information within the retrieved knowl-
edge, which might not always be the case, partic-
ularly in rapidly evolving knowledge domains or
niche topics. Moreover, our proposed reasoning
strategies, self-reflection, and self-completion, al-
though effective in theory, depend heavily on the
models’ capacity to critically evaluate their outputs
and identify information gaps, a capability that
might vary across different RalLLMs. Lastly, our
approach, designed to mitigate the fabrication of
false statements, cannot guarantee the elimination
of all incorrect information generation, highlight-
ing a persistent challenge in ensuring the reliability
of LLM-generated content in practical applications.
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