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Abstract

Retrieval-augmented Large Language Models001
(RaLLMs) are reshaping knowledge acquisi-002
tion, offering long-form, knowledge-grounded003
answers through advanced reasoning and004
generation capabilities. Despite the emer-005
gence of impactful systems like WebGPT and006
New Bing, the reliability of RaLLMs, espe-007
cially in complex situations, is under scrutiny.008
Our study tackles this concern by evaluating009
RaLLMs’ question-answering performance us-010
ing a novel benchmark focusing on Correctness011
and Groundedness. Correctness measures the012
logical soundness of the responses, and Ground-013
edness checks for support by relevant refer-014
ences. We introduce an automated model-based015
evaluation pipeline for multi-hop question-016
answering tasks, revealing RaLLMs’ prone-017
ness to generating inaccuracies when dealing018
with flawed or partial knowledge. To improve019
accuracy, we introduce two reasoning strate-020
gies, Self-Reflection’ and Self-Completion,’ en-021
abling RaLLMs to identify and fill knowledge022
gaps, significantly improving answer quality023
without extensive model retraining.024

1 Introduction025

Over the last few decades, search engines have026

played a pivotal role in how people find infor-027

mation online (Croft et al., 2010), typically pro-028

viding a ranked list of web pages in response to029

queries. However, the advent of open-domain ques-030

tion answering systems has shifted this paradigm031

by enabling direct answer generation from web con-032

tent. Initially, these systems relied on passage re-033

trieval and machine reading comprehension(Chen034

et al., 2017; Karpukhin et al., 2020) to identify035

relevant passages and extract answers. This ap-036

proach has evolved into retrieval-augmented gen-037

eration (RAG) (Lewis et al., 2020; Izacard and038

Grave, 2020), which utilizes language models to039

synthesize answers from multiple passages. The040

integration of RAG with large language models,041

leading to the development of retrieval-augmented 042

large language models (RaLLMs) (Borgeaud et al., 043

2022; Izacard et al., 2022; Thoppilan et al., 2022), 044

has significantly advanced the field. RaLLMs are 045

well-received in the community, leading to the de- 046

velopment of influential prototypes, such as We- 047

bGPT (Nakano et al., 2021) and New Bing. The 048

new systems have demonstrated remarkable poten- 049

tial in various cases, whose generated answers are 050

praised for two new characters. Firstly, people may 051

get long-form answers in contrast to the previous 052

short-form ones, where semantic-rich elaborations 053

are presented to facilitate people’s comprehension. 054

Secondly, the generated answer can be grounded on 055

the retrieved references, which makes the answer 056

traceable and variable. It is commonly believed 057

that the answers from RaLLMs are not only lin- 058

guistically plausible, but also generally credible. 059

In this work, we challenge this common belief 060

by arguing that RaLLMs’ answer quality is open 061

to debate, , especially in complex scenarios such 062

as multi-hop question answering (MHQA) (Yang 063

et al., 2018; Welbl et al., 2018). We propose exam- 064

ining answer quality through two lenses: correct- 065

ness and groundedness. Correctness evaluates if a 066

question is accurately resolved with logical reason- 067

ing, while groundedness checks if the answers are 068

well-supported by appropriate references. Tradi- 069

tionally, evaluations for these perspectives heavily 070

rely on human labelers (Nakano et al., 2021; Qin 071

et al., 2023), which can be hard to scale up. To mit- 072

igate this problem, we propose a model-based ap- 073

proach for automatic evaluation. For correctness, 074

our approach assesses if the RaLLMs’ answers and 075

their reasoning processes align with the ground- 076

truth. Different from traditional methods which 077

only emphasize short answer matches. we suggest 078

a new benchmark that evaluates answers based on 079

key-facts, highlighting the crucial reasoning steps 080

essential for deriving an answer. For groundedness, 081

except for the citation completeness of all ground- 082

1



truth references, we further examine whether each083

statement within RaLLMs’s generated answer can084

be supported by its cited references.085

Our research delves into the factors affecting086

the performance of RaLLMs, revealing that answer087

quality is influenced not just by the models’ inher-088

ent capabilities and the way prompts are crafted,089

but crucially by the condition of retrieved knowl-090

edge. Particularly, there are two critical factors of091

the answer quality regarding the retrieved knowl-092

edge: knowledge recall and knowledge precision.093

Knowledge recall assesses whether all necessary094

information for a question has been retrieved, while095

knowledge precision evaluates the relevance of the096

retrieved information to the question. Our find-097

ings indicate that enhancing knowledge comple-098

tion (high recall) and relevance (high precision)099

invariably improves answer quality. Conversely,100

we observe that RaLLMs tend to **generate false101

statements** when faced with incomplete (miss-102

ing crucial information) or noisy (containing ir-103

relevant information) knowledge. Although these104

fabrications may appear plausible, they often rely105

on non-existent facts or bear no relevance to cited106

references Such a tendency can be regarded as a107

form of hallucination by RaLLMs, which is a major108

threat in actual usage.109

Building on our empirical insights into the limi-110

tations of RaLLMs, we focus on enhancing answer111

generation to counter the propensity for fabricat-112

ing false statements due to incomplete or irrele-113

vant knowledge. We introduce a novel pipeline114

that incorporates two reasoning strategies: self-115

reflection and self-completion.Drawing inspira-116

tion from reasoning-reflection models like Re-117

Act (Yao et al., 2022), which promote internal vali-118

dation of outputs through CoT-like reasoning (Wei119

et al., 2022), our approach encourages RaLLMs to120

internally evaluate the accuracy of their responses121

(self-reflection) and actively seek out missing in-122

formation by generating subsequent search queries123

(self-completion). This pipeline, designed to be124

simple and not reliant on adjusting the extensive125

parameters of RaLLMs, significantly enhances an-126

swer quality by reducing the likelihood of fabrica-127

tions and increasing the relevance and complete-128

ness of the information provided.129

2 Related Work130

In this section, we discuss the related works from131

two aspects: retrieval augmented large language132

models, and question answering. 133

Retrieval-augmented LLMs. RaLLMs have 134

emerged to address LLMs’ limitations in handling 135

complex questions due to their finite parameter ca- 136

pacity (Zhou et al., 2021; Maynez et al., 2020). 137

By integrating external knowledge, RaLLMs aim 138

to overcome these limitations, with research span- 139

ning architecture, training, and application. Key 140

developments of architecture development include 141

the REALM framework for external knowledge re- 142

trieval (Guu et al., 2020), in-context retrieval meth- 143

ods Ram et al. (2023), generic retrieval-augmented 144

pipeline Jiang et al. (2023b) and REPLUG for 145

black-box models Shi et al. (2023). Training in- 146

novations feature memory augmentation Zhong 147

et al. (2022), contrastive learning Izacard et al. 148

(2022) and self-retrieval methods Rubin and Be- 149

rant (2023), with models like WebGPT (Nakano 150

et al., 2021) and WebCPM (Qin et al., 2023) demon- 151

strating RaLLMs’ potential in web scenarios. Our 152

study introduces a benchmark focused on evaluat- 153

ing RaLLMs based on answer quality, particularly 154

looking at correctness and groundedness, to pro- 155

mote automated evaluation methods that reduce the 156

reliance on human judgment. 157

Multi-hop Question Answering. MHQA repre- 158

sents a significant NLP challenge, requiring the syn- 159

thesis of multiple evidence pieces for accurate an- 160

swers. Initiatives like the HotpotQA dataset (Yang 161

et al., 2018) have spurred diverse approaches, in- 162

cluding graph-based models (Cao et al., 2019; 163

Dong et al., 2023; Jiang et al., 2023a; Qiao et al., 164

2022) that construct knowledge graphs for evidence 165

linking and decomposition-based models (Talmor 166

and Berant, 2018; Press et al., 2022; Khattab et al., 167

2022) that simplify questions into manageable 168

parts. Recent advancements leverage LLMs for 169

complex QA tasks, with strategies like REACT’s 170

thought-action-observation loop (Yao et al., 2022) 171

and Reflexion’s introspective reasoning (Shinn 172

et al., 2023). Our work evaluates RaLLMs’ an- 173

swer generation capabilities and proposes the self- 174

reflection and self-completion mechanisms to im- 175

prove response accuracy. 176

3 Benchmarking 177

The question answering task is defined as gen- 178

erating a long-form answer with citations for a 179

given question q and its associated reference list 180

C = {cq1, c
q
2, ...} from a corpus. We focus on 181

MHQA tasks due to their complexity, which effec- 182
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Were Scott Derrickson and Ed Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Ed Wood. Edward 
Davis Wood Jr. was an 
American filmmaker, 
actor, writer, producer, 
and director …

[3] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

No, Scott Derrickson and Ed Wood were not of the same nationality. Ed Wood 
was an American filmmaker, actor, writer, producer, and director, born in 
Woodson, Arkansas in Pulaski County, Arkansas [2]. Scott Derrickson is an 
American director, screenwriter, and producer, born in Los Angeles, 
California [1].

- Scott Derrickson is an American. √
- Ed Wood is an American. √
- Scott Derrickson and Ed Wood are of the same nationality. ×
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Support or not?

Question

References

Model output

Golden answer

Yes

Key-facts

GPT4

Step reasoning

Key-facts extraction

Human 
filtering

LLMs

Step 1: Scott Derrickson 
is an American director, 
screenwriter and producer
Step 2: Similarly, Ed Wood 
is an American filmmaker, 
actor, writer, producer, 
and director.
Step 3: both Scott 
Derrickson and Ed Wood are 
American.
Step 4: They are of the 
same nationality.

Key-facts construction

Inference & Evaluation

Question ---> Golden answer
Intermediate steps

Figure 1: The task setup of our benchmark. Dashed lines depict the key-facts construction process of the benchmark,
while solid lines represent the model inference and evaluation process.

tively tests LLMs’ answering capabilities. MHQA183

requires integrating multiple knowledge sources184

and performing multi-step reasoning, making it an185

ideal benchmark for evaluating LLMs.186

Dataset. HotpotQA (Yang et al., 2018) is cel-187

ebrated as the benchmark dataset for evaluating188

MHQA. Each dataset entry comprises a question,189

10 Wikipedia-sourced references (with all golden190

passages), and an answer. It requires analysis191

and synthesis across several documents to derive192

an answer, making it ideal for assessing LLMs’193

knowledge-grounding ability.194

However, HotpotQA dataset only offers short195

answers, which we believe are inadequate for thor-196

oughly evaluating LLMs’ reasoning capabilities, as197

models might skip essential reasoning steps. Rec-198

ognizing the importance of each step in multi-hop199

reasoning, we propose a more rigorous evaluation200

method using Key-facts, to detail the essential rea-201

soning steps needed for answering questions, as202

illustrated in Figure 1. This method allows for a203

more comprehensive evaluation of LLM outputs by204

focusing on their ability to support key-facts.205

Key-facts Construction. We employ the most206

advanced GPT-4 model to assist us in constructing207

key-facts more efficiently. The key-facts generated208

by LLMs are then verified by human annotators.209

Due to the costs of API usage, we randomly sample210

500 questions from the dataset for experiments.211

The construction of key-facts involves three steps:212

• Step Reasoning: Given a question, a set of refer-213

ences, and the validated answer, we utilize GPT-4214

to decipher the intermediate steps from the query215

to the answer based on the supplied references.216

Specifically, we provide demonstrations and em-217

ploy the following prompt to generate reason-218

ing steps: “[Question], [References], [Answer].219

Please figure out the reasoning process towards 220

the answer step-by-step without other content.” 221

• Key-facts Extraction: A high-quality assem- 222

bly of key-facts should embody two core charac- 223

teristics: (1) Necessity, implying that each key 224

fact is a crucial intermediate step to answer the 225

posed question. (2) Independence, meaning that 226

each key fact should neither duplicate nor over- 227

lap redundantly with others, as they should inde- 228

pendently stand as factual pieces of information. 229

To achieve this, we further engage GPT-4 to ex- 230

tract several key-facts from the reasoning steps 231

with the prompt: “[Question], [Reasoning steps], 232

[Answer]. Please identify 2 to 4 non-redundant 233

key-facts within the reasoning steps which are 234

necessary to derive the final answer.” 235

• Human Filtering: To ensure the accuracy and 236

relevance of the extracted key-facts, we introduce 237

a manual human filtering phase, where human 238

annotators evaluate and remove redundant or un- 239

reasonable key facts, thereby creating a reliable 240

base for evaluating LLMs’ performance. 241

In conclusion, our benchmark dataset is struc- 242

tured with four main components: question, ref- 243

erences, key-facts, and answer. In the subsequent 244

section, we detail how this benchmark can be uti- 245

lized to evaluate the outputs generated by LLMs. 246

4 Automatic Evaluation 247

In the domain of MHQA tasks, our benchmark 248

evaluates model outputs based on: (1) Correctness, 249

assessing the model’s accuracy and logic in answer- 250

ing questions; and (2) Groundedness,examining 251

how answers are supported by pertinent and sub- 252

stantiated references. Below, we delve into the 253

specific evaluation metrics for each. 254
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Were Scott Derrickson and Ed 
Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

I’m sorry. I cannot answer 
the question based on the 
provided references

I need to know 
the nationality 
of Ed Wood

No, they are from 
different nationalities

False statement

[3] Ed Wood. Edward 
Davis Wood Jr. was an 
American filmmaker, 
actor, writer, producer, 
and director …

Were Scott Derrickson and Ed 
Wood of the same nationality?

[1] Scott Derrickson. 
Scott Derrickson is an 
American director, 
screenwriter and 
producer …

[2] Tyler Bates. Tyler 
Bates is an American 
musician, music 
producer, and composer 
for films, television …

Self-reflection

Self-completion

(a) Standard RaLLMs (b) Improved RaLLMs

References

References

Question Question

Knowledge is 
incomplete Direct answer

Self-reflection

Can answer

Cannot answer

Please answer the question based on the 
provided references. If you cannot answer, 
return "I'm sorry, I cannot answer the 
question based on the provided references".

Self-completion

Cannot 
answer

The provided references is not enough to 
answer the question. To answer the question, 
please return starts with "I further need to 
ask the search engine:"

Figure 2: The improvement of RaLLMs. The improved method unleashes LLMs’ capability on self-reflection and
self-completion, to examine the completeness of knowledge and missing knowledge in references respectively.

4.1 Correctness255

Correctness in question answering hinges on accu-256

rately resolving questions via multi-hop reasoning.257

Traditional methods like exact match to ground258

truth and human evaluations face challenges: exact259

matches may not fully capture LLMs’ reasoning260

depth, while human evaluations are impractical for261

large-scale testing. Addressing these issues, we262

introduce an automatic evaluation method specif-263

ically designed for LLM outputs, leveraging two264

metrics based on predefined key-facts.265

• Key-facts Recall: This metric evaluates the de-266

gree to which an LLM’s response encompasses267

the necessary key-facts. Given a set of essential268

key-facts, Kq = {kq1, k
q
2, · · · }, for a question q,269

the model’s response is analyzed for coverage270

of these key-facts. The emphasis is on identify-271

ing whether the model’s response, Sq, entails all272

elements of Kq. In this place, we introduce an273

oracle function f(·) to determine the entailment274

between the model’s output and each key-fact:275

Rkey =
1

|Kq|
∑
i

f(Sq, kqi ),where kqi ∈ Kq,276

where “f (premise, hypothesis)” returns 1 if the277

premise entails the hypothesis, and 0 otherwise.278

We employ TRUE (Honovich et al., 2022), a279

widely-recognized NLI (natural language infer-280

ence) method, as our oracle function. It is empir-281

ically verified that this oracle function provides a282

close alignment with human judgment.283

• Key-facts Precision: Beyond assessing the re-284

call of key-facts, it’s vital to measure the pre-285

cision with which these key-facts are presented286

in the response. This stems from the observa-287

tion that certain models might generate extremely288

long responses, leading to superficially high re-289

call. However, such answers could be diluted290

with unnecessary or irrelevant information. To 291

gauge the precision, each sentence sqi within the 292

model’s response is evaluated against the key- 293

facts to determine its relevance: 294

Pkey =
1

|Sq|
∑
i

f(sqi , any(kqi )). 295

By integrating recall and precision metrics for 296

key-facts, this benchmark effectively and compre- 297

hensively evaluates the accuracy of LLM outputs, 298

offering a more accurate assessment of its multi- 299

hop reasoning abilities in complex QA tasks. 300

4.2 Groundedness 301

In assessing Groundedness, we aim to verify 302

whether LLM-generated answers are supported by 303

references and the accuracy of those citations. For 304

MHQA tasks, responses often incorporate infor- 305

mation from various sources for a complete an- 306

swer. To investigate if the generated answers are 307

well-referenced, we evaluate the groundedness of 308

answers across the following dimensions. 309

• Citation Recall & Precision: This metric evalu- 310

ates the alignment between the model’s citations 311

and the required references for answering a ques- 312

tion, using the provided golden reference IDs for 313

precise assessment. Citation precision and recall 314

are calculated as follows: 315

Rcit = |Cm∩Cg|/|Cg|, Pcit = |Cm∩Cg|/|Cm|, 316

where Cm is the set of model’s references, Cg 317

the set of ground-truth references, ∩ denotes set 318

intersection, and | · | the set size. 319

• Self-Consistency: This aspect evaluates a 320

model’s self-consistency, which involves check- 321

ing the consistency between the model’s re- 322

sponses and its cited sources. It focuses on the 323
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model’s capability to not only produce accurate324

responses but also to accurately associate them325

with the correct references. Specifically, we first326

segment the model’s response S into individual327

sentences and then evaluate the consistency be-328

tween these sentences and the cited references.329

For each sentence in the answer paired with330

its associated citations, denoted as si, Ci, self-331

consistency is determined by:332

SC =
1

n

∑
i

f (Concat(Ci), si) ,333

where f epresents the same NLI model as men-334

tioned above, n signifies the total number of such335

statements, and Concat(Ci) denotes the concate-336

nation of all references within Ci.337

In conclusion, the correctness and groundedness338

metrics provide a comprehensive assessment of339

large-scale model outputs, revealing their profi-340

ciency in utilizing external knowledge. Our ex-341

periments in Section 6.3 demonstrate that LLMs342

are highly responsive to the quality of retrieved343

knowledge. To enhance the capabilities of these344

LLMs, we propose self-improvement strategies to345

refine their answer generation process.346

5 Model Improvement347

Our empirical studies on a benchmark reveal that348

RaLLMs tend to generate false statements when349

reference knowledge is noisy or incomplete. To ad-350

dress this issue, we introduce an enhanced answer351

generation pipeline enriched by two advanced built-352

in capabilities, self-reflection and self-completion353

(see Figure 2). The self-reflection is employed to354

assess the logical soundness and knowledge com-355

pleteness. While the self-completion is to improve356

the current answer by proactively querying for the357

missing knowledge.358

5.1 Self-reflection359

Drawing from recent developments in reasoning-360

reflection frameworks (Yao et al., 2022; Shinn et al.,361

2023), it has been observed that LLMs possess362

the ability for self-reflection, i.e. an introspective363

assessment of the reliability of their own reasoning364

processes. As we venture into the improvement of365

RaLLMs, a fundamental question arises:366

• Q1: Can the model ascertain whether the cur-367

rent knowledge base adequately addresses the368

questions in MHQA scenarios?369

Compared to general LLMs, models endowed 370

with self-reflection capabilities are more able to 371

evaluate the completeness and relevance of the in- 372

formation contained within these references con- 373

cerning the posed question. Thus, we attempt to 374

leverage RaLLMs ability of self-reflection through 375

the following prompt: 376

• Prompt-reflection: [Question], [References]. 377

Please write a high-quality answer ... If the ref- 378

erences are insufficient to answer the question, 379

respond with "I’m sorry, I cannot answer the 380

question based on the provided references". 381

This self-reflective step is crucial as it gauges the 382

model’s ability to identify gaps or insufficiencies in 383

knowledge, prompting abstention from answering 384

if uncertain. The subsequent section explores the 385

"self-completion reasoning mechanism" activated 386

upon identifying a knowledge gap. 387

5.2 Self-Completion 388

Even if the model is aware that the existing knowl- 389

edge is inadequate to answer a question, it doesn’t 390

necessarily indicate that it knows what knowledge 391

is missing. In this section, we aim to explore this 392

capability of the model with the following question: 393

• Q2: In MHQA scenarios, can the model discern 394

what knowledge is missing in references to accu- 395

rately answer a question? 396

Triggered by identifying knowledge inadequacies, 397

the self-completion mechanism aims to bridge such 398

gaps by generating additional search queries to 399

fetch the missing information. This advanced rea- 400

soning phase requires the model to be aware not 401

only of its limitations but also of the necessary 402

steps to fill these gaps to produce an answer. 403

When encountering inadequately supported 404

queries, the LLM is asked to generate additional 405

search queries, as illustrated below: 406

• Prompt-completion: [Question], [References]. 407

Given the insufficiency of the current references, 408

please start your query with "I further need to ask 409

the search engine:" to gather more information. 410

Once the model generates these supplementary 411

search queries, they are executed to fetch more 412

information from a search engine. The newly re- 413

trieved references are added into the previous refer- 414

ence list for LLMs to formulate a new response. 415

This iterative process continues until the LLM 416

believes that it possesses a comprehensive set of 417

knowledge to provide an answer to the question. 418
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Model
Correctness Groundedness

Prec. Rec. F1 SC. Prec. Rec.

Foundation LLMs

llama7B 6.12 22.96 9.54 36.42 1.94 3.0
llama13B 5.45 16.33 8.17 51.98 3.63 6.2
llama213B 5.70 10.12 7.60 62.74 6.17 7.6

Instruction-tuned LLMs

ChatGLM26B 66.85 48.06 55.45 48.99 3.36 2.4
Vicuna7B 47.04 45.96 46.48 61.45 11.99 11.4
Vicuna13B 53.00 48.69 50.78 68.66 21.77 25.7
llama2-c13B 57.13 47.97 52.23 62.61 19.79 15.3
ChatGPT 85.40 56.55 68.22 68.68 90.99 64.6

Table 1: Comparison of different LLMs on our bench-
mark. 5 passages (including all golden passages) are
provided for each question for fair comparison.

6 Experimental Analysis419

In this section, we evaluate various LLMs’ multi-420

hop reasoning abilities using our benchmark,421

including foundation models like llama7B/13B422

and llama213B (Touvron et al., 2023), along423

with instruction-tuned variants such as Chat-424

GPT, Vicuna7B/13B (Zheng et al., 2023), and425

llama2-c13Bhat (llama2-c13B). We then analyze the426

correlation between automatic evaluations and hu-427

man judgments. Subsequently, we explore the per-428

formance of LLMs with different retrieved knowl-429

edge conditions. Finally, we discuss enhancements430

to the question answering pipeline.431

6.1 Comparisons among Different LLMs432

Table 1 presents our benchmark results, adopting a433

default of 5 references (including all golden refer-434

ences) per question to accommodate input length435

limits for all LLMs. The comparison reveals:436

(1) Instruction-tuned LLMs vs. Foundation437

LLMs. Instruction-tuned LLMs significantly out-438

perform foundational models, which often rely on439

simplistic strategies, such as copying sentences440

from sources or avoiding source referencing. How-441

ever, once instruction tuning is performed, we ob-442

serve a marked improvement in the quality of an-443

swers in terms of both correctness and grounded-444

ness. This highlights the potency of instruction445

tuning in logical reasoning capabilities of LLMs.446

(2) Comparison of different model families. In447

evaluating instruction-tuned models—ChatGLM,448

Vicuna, and ChatGPT—we observe distinct behav-449

iors. ChatGLM excels in correctness but some-450

times falls short in groundedness compared to non-451

instruction-tuned models. Vicuna presents a bal-452

Model
Correctness

Prec. Rec. EM Rec. HPrec. HRec.

ChatGLM26B 66.8 48.0 62.2 60.8 57.0
Vicuna7B 47.0 45.9 67.6 55.0 43.5
Vicuna13B 53.0 48.6 68.4 64.0 50.5
llama2-c13B 57.1 47.9 69.8 65.1 41.5
ChatGPT 85.4 56.5 79.4 78.4 70.0

Pearson 0.87 0.88 0.54 - -

Table 2: Human evaluation for correctness on precision
(HPrec.) and recall (HRec.). Pearson indicates the
correlation between automatic and human assessments.

anced performance in both areas, while ChatGPT 453

stands out for its proficiency in correctness and 454

groundedness. These findings reveal that varying 455

pre-training and fine-tuning settings lead to dis- 456

parities in performance, particularly in terms of 457

correctness and groundedness. 458

(3) Correctness vs. Groundedness. The results 459

suggest a complex link between correctness and 460

groundedness. A high degree of groundedness typ- 461

ically suggests that the model excels at utilizing 462

correct knowledge, thereby potentially improving 463

the correctness of its responses. However, the Chat- 464

GLM2 model, despite generating correct responses, 465

it struggles to cite the references adequately as the 466

metrics of groundedness are very low. This high- 467

lights groundedness as a more demanding criterion 468

than correctness. ChatGPT excels in both correct- 469

ness and relevance, showcasing its superiority. 470

6.2 Comparisons between Model-based and 471

Human Evaluation 472

To assess the alignment between our automatic 473

evaluation and human judgment, we perform a hu- 474

man evaluation on 50 randomly chosen question, 475

with 10 experts rating answer correctness based on 476

precision and recall, their scores averaged. Preci- 477

sion and recall are evaluated with (1) the proportion 478

of sentences within the answer that are helpful in 479

answering the given question (0 not useful, 1 help- 480

ful), and (2) answer completeness ([0, 0.25, 0.5, 481

0.75, 1] from inadequate to fully adequate). For 482

comparison, we present the metric of "EM recall", 483

which assesses the correctness by determining the 484

presence of the correct short answer within them. 485

Table 2 shows that our NLI model-based au- 486

tomatic evaluation metrics for key-facts strongly 487

align with human judgments. While there’s only a 488

moderate correlation of 0.54 between human eval- 489

uations and the "EM recall" metric, our key-facts- 490

focused evaluation method shows a much more 491
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Figure 3: The performance of different LLMs on cor-
rectness under different knowledge precision.

consistent alignment with human feedback, with492

coefficients exceeding 0.87 for precision and 0.88493

for recall. This suggests that our method can accu-494

rately measure the correctness of LLMs’ outputs.495

6.3 Impact of Knowledge Conditions496

To thoroughly examine how models utilize exter-497

nal knowledge, we modify the retrieval conditions498

across two aspects: noise and completeness. For499

noise, we manually adjust the knowledge preci-500

sion to investigate the impact of the signal-to-noise501

ratio of references on LLM. For completeness, we502

control the knowledge recall by providing no, par-503

tial, and complete references respectively, and ob-504

serve their influence on LLM outputs.505

Knowledge Precision. Knowledge precision de-506

scribes the accuracy and relevancy of information507

retrieved from references for specific queries. It es-508

sentially measures the signal-to-noise ratio within509

the sourced references. To assess this, we varied510

the number of references (including two golden511

references) and evaluated how models performed512

with differing levels of knowledge precision. The513

performance trends of various models in terms of514

recall (correctness) can be seen in Figure 3.515

It’s clear that as noise levels in references in-516

creased, all models showed a decrease in perfor-517

mance, highlighting their sensitivity to knowledge518

precision. This drop in accuracy becomes more ev-519

ident when the amount of non-relevant references520

increases, likely because the models struggle to fil-521

ter out noise when approaching their input length522

limit. Notably, ChatGPT and ChatGLM exhibited523

resilience, with only a minor decrease in recall rates524

(4.3% and 14.3% respectively) when references525

doubled from 5 to 10. In contrast, models like526

LLaMA and Vicuna saw a significant 30% plunge527

in recall, underscoring the comparative robustness528

of ChatGPT and ChatGLM against noise.529

Knowledge Recall. We examined the impact530

Model
Closebook Partial Complete

Prec. Rec. Prec. Rec. Prec. Rec.

ChatGLM26B 17.59 13.72 39.98 25.87 66.85 48.06
Vicuna7B 12.20 15.51 31.57 34.95 47.04 45.96
Vicuna13B 19.48 21.58 51.96 44.80 53.00 48.69
llama2-c13B 18.23 26.83 44.39 34.37 57.13 47.97
ChatGPT 21.44 39.17 61.37 35.34 85.40 56.55

Table 3: The performance of different LLMs on correct-
ness under different knowledge recall.

of knowledge completeness on the LLM outputs 531

in MHQA scenarios. For a query to be answered 532

correctly in such tasks, it’s essential to draw infor- 533

mation from at least two separate references. By 534

intentionally omitting parts of the necessary refer- 535

ences, we assessed how knowledge recall variabil- 536

ity affects LLM responses. We compared scenarios 537

ranging from no references (Closebook) to partial 538

and complete ground-truth references. 539

Our findings, as shown in Table 3 reveal that 540

knowledge completeness significantly influences 541

LLM performance, particularly highlighting the 542

importance of retrieval quality. Notably, ChatGPT 543

exhibits higher adaptability to variations in knowl- 544

edge recall, leveraging its built-in knowledge to 545

fill reference gaps. Conversely, less robust models 546

require comprehensive external references, under- 547

scoring their reliance on extensive knowledge recall 548

to compensate for their intrinsic shortcomings. 549

Summary. Our experiments reveal notable fluc- 550

tuations in RaLLMs’ performance as knowledge 551

conditions vary, with key observations including: 552

• RaLLMs are highly sensitive to the signal-to- 553

noise ratio in retrieved knowledge; a lower ratio 554

leads to decreased accuracy. 555

• The completeness of knowledge significantly im- 556

pacts RaLLMs’ efficacy on complex QA tasks. 557

6.4 Impact of Model Improvements 558

As illustrated above, RaLLMs tend to make mis- 559

takes when the retrieved knowledge is incomplete 560

and noisy. These findings motivate the improve- 561

ment of the answer generation from two aspects: 562

self-reflection and self-completion. 563

Self-reflection. The goal of self-reflection is to 564

evaluate knowledge completeness before respond- 565

ing. This process, viewed as binary classification, 566

depends on the model’s ability to judge informa- 567

tion quality. We categorize questions into groups 568

with either complete or partial knowledge, main- 569

taining equal numbers in both. Model performance 570
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Model
No Improvement Self-improvement Self-Reflection Model Capability

Prec. Rec. F1 Prec. Rec. F1 Acc. F1 Reasoning Reflection Completion

Foundation LLMs

llama7B 3.81 10.83 5.85 3.51 10.53 5.36 51.2 11.3 − − −
llama13B 4.63 15.00 7.11 4.42 15.73 6.81 51.8 20.7 − − −
llama213B 7.17 13.83 9.53 5.54 12.17 7.68 50.0 8.9 − − −

Instruction-tuned LLMs

ChatGLM26B 29.33 22.93 25.84 34.47 27.07 30.41 57.6 61.2 ✓ ✓ ✓
Vicuna7B 10.73 13.33 11.92 13.66 13.37 13.51 51.4 44.5 ✓ − −
Vicuna13B 27.89 19.33 23.08 22.52 20.03 21.19 55.2 61.0 ✓ ✓ −
llama2-c13B 33.86 24.33 28.45 32.67 21.21 25.76 60.2 67.1 ✓ ✓ −
ChatGPT 50.9 36.65 42.66 57.65 41.27 48.18 70.2 77.2 ✓ ✓ ✓

Table 4: The results of improved RaLLMs with BM25 retriever. Reasoning, Reflection, and Completion correspond
to three model capabilities in solving MHQA tasks. ✓ signifies that the model possesses this capability.

is assessed by accuracy and F1 score metrics.571

As shown in Table 4, llama-based models strug-572

gle in self-reflection, often answering without fully573

evaluating knowledge completeness. Vicuna7B ex-574

hibits some potential in identifying knowledge575

gaps, though its accuracy still remains low. As the576

models become more powerful, their self-reflection577

capability seems to improve. ChatGPT stands as578

the most advanced LLM in these models, under-579

scoring the advantages of utilizing more substantial580

models to enhance their self-reflection capability581

during multi-hop question answering.582

Self-completion. Self-completion evaluates the583

model’s enhanced cognitive abilities, which include584

not only the recognition of problems but also the ca-585

pacity to pinpoint possible solutions. In our study,586

Wikipedia serves as our primary corpus, and we587

utilize BM25 (Robertson and Zaragoza, 2009) as588

the retriever to source relevant references. To dis-589

tinguish between basic and advanced reasoning tac-590

tics, we categorize them as single-hop (standard)591

and multi-hop (improved) self-completed retrievals.592

To ensure a balanced comparison, irrespective of593

the number of retrievals, we maintain a consistent594

number of references retrieved, always capped at595

10. If the self-completion strategy can notably in-596

crease the quality of answers, it indicates that the597

model possesses the capability of self-completion.598

The self-improvement results in Table 4 re-599

veal that for models like ChatGPT and ChatGLM,600

the improved question-answering pipeline substan-601

tially improves the accuracy of the responses. How-602

ever, this trend is not consistently observed across603

all models. While Vicuna13B and llama2-c13B are604

equipped with self-reflection features, they may605

encounter difficulties in autonomously generating606

subsequent queries. Low-quality queries might in-607

troduce more noise, making them less effective 608

than utilizing the original queries directly. In sum- 609

mary, our exploration delved into three tiers of 610

model capabilities. Foundation LLMs, like the 611

llama series, exhibit general reasoning prowess suit- 612

able for straightforward tasks. Instruction-tuned 613

LLMs display advanced self-reflection, enabling 614

them to identify their own limitations. Meanwhile, 615

models such as ChatGPT and ChatGLM demon- 616

strate a higher capability of self-completion, driv- 617

ing themselves toward continuous improvement. 618

Summary. TThe experiments demonstrate that 619

RaLLMs’ performance varies with the enhanced 620

reasoning strategy. Key observations include: 621

• Instruction-tuned models exhibit multi-hop rea- 622

soning and self-reflection abilities. 623

• Models enhanced with techniques like RLHF 624

show self-completion capabilities, allowing them 625

to benefit from the improved pipeline. 626

7 Conclusion 627

In conclusion, this paper delves into the nuanced 628

evaluation of answer quality in RaLLMs with the 629

exploration of multi-hop question answering tasks. 630

We propose a novel experiment framework to au- 631

tomatically assess two critical factors: correctness 632

and groundedness. Our empirical investigation un- 633

covers the propensity of RaLLMs to generate false 634

statements in the presence of incomplete or noisy 635

retrieved knowledge. To counter this, we propose 636

a novel answer generation pipeline that incorpo- 637

rates self-reflection and self-completion reasoning 638

strategies, significantly enhancing answer reliabil- 639

ity. This groundwork paves the way for broader 640

future research, aiming for a deeper insight into the 641

strengths and weaknesses of RaLLMs. 642
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Limitations643

Despite the advancements presented in our study644

with RaLLMs, there are inherent limitations to con-645

sider. First, the model-based approach for auto-646

matic evaluation of answer quality, while scalable,647

might not fully capture the nuanced judgment a hu-648

man evaluator could provide. This could potentially649

overlook subtle errors or inaccuracies that human650

assessment would catch. Additionally, our method-651

ology assumes the availability of accurate and com-652

prehensive information within the retrieved knowl-653

edge, which might not always be the case, partic-654

ularly in rapidly evolving knowledge domains or655

niche topics. Moreover, our proposed reasoning656

strategies, self-reflection, and self-completion, al-657

though effective in theory, depend heavily on the658

models’ capacity to critically evaluate their outputs659

and identify information gaps, a capability that660

might vary across different RaLLMs. Lastly, our661

approach, designed to mitigate the fabrication of662

false statements, cannot guarantee the elimination663

of all incorrect information generation, highlight-664

ing a persistent challenge in ensuring the reliability665

of LLM-generated content in practical applications.666
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