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Quantitative Runtime Monitoring of Ethereum Transaction
Attacks

Anonymous Author(s)

Abstract

The rapid growth of decentralized applications, while revolution-
izing financial transactions, has created an attractive target for
malicious attacks. Existing approaches to detecting attacks often
rely on predefined rules or simplistic and overly-specialized models,
which lack the flexibility to handle the wide spectrum of diverse
and dynamically changing attack types.

To address this challenge, we present a general and extensible
framework,MoE (Monitoring Ethereum), that leverages runtime
verification to detect a wide range of attacks on Ethereum. MoE
features an expressive attack modeling language, based on Metric
First-order Temporal Logic (MFOTL), that can formalize a wide
range of attacks. We integrate a novel semantic lifting approach
that extracts vital system behaviors for various attacks utilizing
the monitoring toolMonPoly. Furthermore, we further equipMoE
with quantitative capabilities to evaluate the similarity between a
transaction and an attack formula to empower the performance in
identifying attacks, including near-miss attacks.

We carry out extensive experiments with MoE on a labeled
benchmark and a large-scale dataset containing over one million
transactions. On the labeled benchmark, MoE successfully detects
92.0% attacks and achieves a 45.0% higher recall rate than competing
state-of-the-art tool.MoE finds 3,319 attacks with 95.4% precision
on the large dataset. Furthermore,MoE uses quantitative analysis to
uncover 8% more attacks. Finally, the average time for monitoring
a transaction is less than 23 ms, positioning MoE as a promising
practical solution for real-time attack detection for Ethereum.

Keywords

Ethereum, Runtime Monitoring, Ethereum Attack Detection

1 Introduction

In the realm of blockchain and smart contract technologies, the
decentralized application (DApp) ecosystem has gained substantial
attention [22–24]. Smart contracts are now widely used, in particu-
lar in financial sector [10], and manage a wide range of assets [18].
Ethereum, the driving force behind these innovative applications,
has witnessed a remarkable increase in its market capitalization [1].
Such milestones underscore the vast potential of this ecosystem,
marking it a key area of development in the world of digital finance.

Unfortunately, this surge has also brought forth a darker reality:
transaction-level attacks, which result in illegal financial gains on
Ethereum, are becoming a trend [18]. The ValueDeFi incident[14]
exemplifies the severe impacts of such attacks, where an attacker
exploited the MultiStables library via a flash loan, causing a loss of
6 million USD [14]. Recently, innovative transaction-level attacks
such as call injection and sandwich have emerged, undermining
transaction integrity and manipulating market outcomes [5, 25].

Specifically, call injection attacks perturb smart contract opera-
tions by altering function calls, resulting in unauthorized trans-
actions. Sandwich attacks, particularly prevalent in decentralized
exchanges, reorder transactions for profit [25]. These attacks exploit
transaction-level “bugs”, thus bypassing conventional code-level
vulnerability detection methods. Additionally, some code-level vul-
nerabilities [9, 12, 19, 20, 27], like reentrancy, also manifest at the
transaction level, underscoring the need for new methodologies to
bolster Ethereum’s security.

Related Work. Several approaches have been proposed for detect-
ing transaction-level attacks in Ethereum. DEFIER [17] employs a
sequence-based classifier, in the form of a multilayer perceptron, to
supplement the missing attack information and reconstruct execu-
tion traces for each incident. Zhou et al. [25] formalize sandwich
attacks, which involve front-running and back-running transactions
on an exchange. Qin et al. [13] propose to quantify the blockchain
maximal extractable value (MEV) as a way of detecting such at-
tacks. Daian et al. [6] first introduced the concept of MEV to detect
potential transaction re-ordering attacks. Wu et al. [21] introduced
DeFiRanger, which detects price manipulation attacks using pat-
terns with lifted DeFi semantics.

These approaches are, however, far from satisfactory. First, they
are not always effective. For instance, most of them fail to detect
attacks that involve a single exploit transaction with limited profit.
Second, the existing approaches are designed for a specific type
of attack and their scope cannot easily be extended. For instance,
some of the approaches [21, 25] are exclusively limited to detecting
price manipulation attacks. These shortcomings underscore the
importance of developing a general and systematic framework for
attack finding, encompassing both the previously mentioned ones
and potential future unknown threats.

Challenges. To advance this area, we tackle this problem using
runtime monitoring. Runtime monitoring is a lightweight, and
highly effective formal method where one can specify desired or ma-
licious behaviors, and monitor their occurrence in real-time, at sys-
tem runtime. To apply runtime verification to detecting transaction-
level attacks, we must address several nontrivial technical chal-
lenges. First, we must develop formal models that allow us to pre-
cisely capture all the existing transaction-level attacks that we aim
to monitor, since the precision of the model here is critical to mini-
mize false alarms. And, the models should be sufficiently abstract
to ensure generality while minimizing the monitoring overhead.
Second, we need to develop a semantic lifting method that efficiently
extracts relevant information from raw Ethereum transaction logs
so as to enhance the practicality of the approach. Meanwhile, the se-
mantic lifting should be flexible enough to extract further relevant
information as needed to ensure our framework can support future
attacks. Lastly, our approach must be efficient to enable real-time
monitoring.

1
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Introducing MoE. We propose MoE, a general and extensible
framework for runtime Monitoring of transaction-level attacks in
Ethereum, with built-in support for many types of popular attacks.
To tackle the above-mentioned challenges, first, we develop intu-
itive formal models to capture the semantics of transaction logs
for Ethereum. Second, we propose a systematic semantic lifting
approach to automatically extract the system behaviors from these
logs in a way suitable for runtime monitoring. Lastly, we specify
the behavior of different types of attack at an appropriate level
of abstraction. Although the attacks differ substantially in how
they exploit vulnerabilities, all the attacks covered exhibit simi-
lar temporal behavior. Using MFOTL properties to describe the
attacks and the relevant information extracted through semantic
lifting, our framework then deploys the state-of-the-art runtime
monitoring engine,MonPoly [3], to detect transaction-level attacks
on Ethereum. Furthermore, we extendMoE with the capability of
quantitative analysis. This not only enables the monitoring of a
broader spectrum of attacks, it also potentially opens the door for
future runtime enforcement (so that we can prevent attacking from
happening in time).

Evaluation. We evaluate MoE using a labeled benchmark with 24
attacks and a large-scale dataset containing more than one million
Ethereum transactions. The experimental results show thatMoE
successfully detects 22 attacks in the benchmark, achieving an
average recall of 92.0%. In the large-scale dataset,MoE successfully
detects 3,319 attack transactions with a precision rate of 95.0%.
In particular, these attacks cause 118.19 million USD of financial
loss in total, and most of them have gone previously unnoticed.
Moreover, quantitative analysis improves effectiveness by detecting
8% more attacks with an acceptable false positive rate. In addition,
the average time needed to monitor a transaction is less than 23
ms, which is substantially less than the execution time of Ethereum
transactions. HenceMoE is capable of real-time monitoring.

Contributions. In summary, we make the following contributions.

• We introduce MoE, a general and extensible runtime moni-
toring framework tailored for detecting transaction-level
attacks on Ethereum. Supporting a new type of attack in
our framework is as simple as specifying a temporal logic
formula that models the attack.

• We propose a systematic and extensible semantic lifting
approach that extracts concise information from raw sys-
tem logs that characterize the behavior of the system for
runtime monitoring.

• We demonstrate the capabilities of MoE by formalizing and
detecting five prominent kinds of transaction-level attacks
across large-scale datasets. Our experimental results high-
light our framework’s effectiveness and efficiency, show-
casing the potential of using runtime verification to detect
a wide range of attacks on Ethereum.

2 Background

In this section, we provide background on the Ethereum and transaction-
level attacks. We also give a brief introduction to MonPoly, which
is used for runtime verification in our framework.

2.1 Blockchain and Transaction-level Attacks

Blockchain. In a blockchain system, an account is a digital entity
that holds and manages assets or information. The address of an
account serves as an identity, visible to others on the network.
There are two types of accounts: External Owned Accounts (EOAs)
and Contract Accounts (CAs), both of which store the ether balance.
Moreover, a CA also stores the code and related storage of the
smart contract, which provides multiple executable functions for
handling business processes. Transactions serves as the entry for
calling the smart contract, referring to the transfer of asset or data
from one participant (sender) to another (receiver). There are two
kinds of transactions: external transactions (initiated by a EOA) and
internal transactions (initiated by a CA). In particular, since a CA
can also initiate a transaction, a transaction calling a CA can derive
multiple transactions. To depict a transaction, multiple components
are given as:

• sender (sdr) and receiver (rcv) addresses, which identify the
initiator of the transaction and the recipient who receives
the assets, respectively.

• asset (ast), which refers to the digital representation of
a value that can be transferred or exchanged within the
network, taking various forms.

• the amount of the asset (amt), which specifies the quantity
of assets being transferred.

• the invoked function (func) and its parameters (params),
which serve as the instructions for smart contracts to exe-
cute specific actions or operations based on the transaction.

Transaction-Level Attacks against Ethereum. We focus on the
detection of attacks against Ethereum at the transaction level in this
work. For an extensive background on such attacks, we refer the
reader to [26]. Transaction-level attacks refer to attacks that target
the interactions between transactions and the Ethereum network’s
state. These attacks exploit vulnerabilities at the level of transaction
execution, smart contract interactions, or the Ethereum protocol
itself. These types of attacks can be subtle and difficult to detect
as they often exploit the intended functionality of smart contracts
rather than explicit coding errors.

Consider a simple sandwich attack. The attacker places two or-
dered asset exchange transactions to sandwich a normal transaction,
with the former altering the blockchain state to increase the ex-
change rate, and the latter profiting from the state change. Another
detailed example of a price manipulation attack, which is a typical
type of transaction-level attack, is demonstrated in Appendix A.

2.2 Runtime Verification withMonPoly

We formulate various transaction-level attacks using Metric First-
Order Temporal Logic (MFOTL) [3], an expressive logic that can
capture real-time event-parameter relationships.

Full MFOTL syntax and semantics are detailed in [4]. We intro-
duce the minimal notations used herein. Let 𝑆𝑖𝑔𝑛 = (𝐶, 𝑅, 𝑙) be a
signature. 𝐶 is a set of constant symbols, 𝑅 is a set of predicate
symbols (for relation) and 𝑙 is an arity function defined over the
relation symbols. 𝑉 denotes a countably infinite set of variables,
and we assume𝑉 ∩𝑅 = ∅ and𝑉 ∩𝐶 = ∅. The MFOTL formulas over
𝑆𝑖𝑔𝑛 are defined as follows: (i) For 𝑡, 𝑡 ′ ∈ 𝑉 ∩𝐶 , 𝑡 = 𝑡 ′ and 𝑡 < 𝑡 ′ are
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Figure 1: An Overview of MoE .

formulas; (ii) For 𝑟 ∈ 𝑅 and 𝑡1, ..., 𝑡𝑙 (𝑟 ) ∈ 𝑉 ∩ 𝐶 , 𝑟 (𝑡1, ..., 𝑡𝑙 (𝑟 ) ) is a
formula. (iii) For 𝑥 ∈ 𝑉 if 𝜙1 and 𝜙2 are formulas then ¬𝜙1, 𝜙1 ∧ 𝜙2
and ∃𝑥 .𝜙1 are formulas; (iv) For 𝐼 ∈ I, if 𝜙1 and 𝜙2 are formulas
then ♢𝐼𝜙1 (eventually), ♦𝐼𝜙1 (once), 𝜙1S𝐼𝜙2 (since) and 𝜙1U𝐼𝜙2
(until) are formulas. The interval set I is defined as [𝑎, 𝑏] ∈ I if
𝑎 ∈ N, 𝑏 ∈ N ∪∞ and 𝑎 ≤ 𝑏. The operators ♢𝐼 , ♦𝐼 , S𝐼 andU𝐼 are
augmented with an interval 𝐼 , which defines the satisfaction of the
formula within a time range specified by 𝐼 relative to the current
timestamp at 𝜏𝑖 , where 𝜏𝑖 ∈ 𝜏 and 𝜏 is the set of timestamps.

3 The MoE Framework

Overview. MoE is designed to handle the aforementioned chal-
lenges, monitoring the transaction-level attacks effectively and com-
positionally. Figure 1 shows the overall workflow of MoE, which
consists of three stages: Transaction Tracing, Semantic Lifting, and
Attack Detection. In Stage 1, given the Ethereum transactions, we
execute them with an instrumented EVM to obtain their system
logs [16]. In Stage 2, we systematically transform the raw system
logs into semantic logs suitable for monitoring. In Stage 3, we equip
MonPoly with the semantic logs and our proposed attack formula
in MFOTL for attack detection.

We further extend the capability of MFOTL and propose a quan-
titative semantic for a subset of MFOTL (for characterizing attacks)
to evaluate the risk of attacks in a more informed way.

Notation. We begin by explaining the notation that we will use.
A raw transaction log refers to the input of our framework, which

is a segment of undecoded JSON files.
A system log 𝑠 consists of serialized and decoded dictionary

data 𝑐 from a raw transaction log. We introduce a Domain-Specific
Language (Section 3.2), to precisely define the semantics of system
logs using a comprehensive set of derivation rules.

A function call 𝑓 in a smart contract may invoke specific func-
tions that, within a blockchain system, can trigger a transaction
event—a mechanism to record particular actions or changes. In this
work, we define two disjoint sets 𝐿𝑡 and 𝐿𝑒 to indicate the type of
statement 𝑐 in a system log 𝑠: 𝐿𝑐 for JSON data related to function
calls, and 𝐿𝑒 for data concerning transaction events.

A semantic log Π = ⟨𝜋1, ..., 𝜋𝑛⟩ is a stream of events. Event is
denoted as 𝑒 (𝑑1, ...𝑑𝑛) where 𝑒 is the name and 𝑑𝑖 represents a
parameter. 𝜋𝑖 is a set of events, which are considered to happen in
parallel. We define two sets of predicate symbols for 𝑒: BTS (basic
transaction semantics) and AAS (advanced attack semantics), which
we introduc in Section 3.2.

0

1 2

3 4

5

6

7

0 1 2 3 ...Serialize

{
"From": "0 xc9f27a5",

"To": "0 x3a84add5d",

"CallType ": "Call"

"Depth": "2",

"FuncName ": "0x40c1",

"Parameter ":"0008 ef",...

}

Figure 2: The serialization of a CFT, which corresponds to a

raw log. denotes a call node and denotes an event node.

The term event in this paper specifically refers to the event in
the context of semantic log.

3.1 Stage 1: Transaction Tracing

Transaction Execution. Our target system for monitoring is the
Ethereum blockchain, where numerous of transactions occur every
second, each of which generates a transaction log. A raw transac-
tion log is generated from the execution of an external transaction,
which may subsequently lead to several internal transactions. Fol-
lowing the method described in [16], we instrument logging code
into the EVM and then execute Ethereum transactions with the
instrumented EVM to obtain transaction logs. The raw transaction
log consists of a list of function call invocations and events. We
introduce the Call Flow Tree (CFT) [16] to capture this information.
The CFT specifies how the function calls are invoked and events
are triggered as exemplified in Figure. 2.

There are two types of nodes in a CFT: (i) call nodes representing
external and internal transactions, and (ii) event nodes representing
events emitted within the transaction. Each call node includes the
address of the transaction caller and callee, as well as the data
carried by the transaction, which specifies the invoked function
and parameters, the value of the transaction, and the type of call
(e.g., CALL, CALLCODE, and CREATE). Each event node includes the
address of the initiator and the event data. In a CFT, a directed
edge between two nodes indicates that the parent node derives
the child node. If a node has multiple children, we stipulate that
the children are triggered in left-to-right order. Additionally, the
triggering is depth-first: once an internal transaction is triggered,
it will continue to trigger sequentially until a leaf node is reached.

CFT Serialization. A CFT provides a structured organization of
the transactions, i.e., with function call and event as basic units. To
obtain the transaction sequences, we serialize a raw transaction log
(captured by a list of CFTs) into sequences. We employ a Depth-First
Search (DFS) traversal algorithm for serialization to ensure that the
order of each unit within the sequence mirrors the order of execu-
tion, i.e., function calls and corresponding events are processed as
they appear in a log. DFS explores all nested calls before returning
to the parent context, thereby preserving the linear order of events
and reflecting the transaction’s execution flow accurately.

After serializing all of the CFTs and concatenating them, we
get a stream 𝑠 = ⟨𝑐0, 𝑐1, · · · , 𝑐𝑛⟩, where 𝑐𝑖 is the dictionary data
associated with a function call or event within a transaction. The

3
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stream 𝑠 is what we called semantic log, which is taken as input
for semantic lifting (stage 2). This refined representation offers a
detailed insight into system behaviors, facilitating the extraction of
semantic events.

3.2 Stage 2: Semantic Lifting for Monitoring

To determine whether a transaction sequence satisfies a MFOTL
property (which characterizes a kind of attack as we will discuss
later), we need to bridge the gap between system logs in the form
of data sequence and high-level events that are referred to in the
specficiation of MFOTL properties. In the following, we model the
log system formally, giving its syntax and corresponding semantics,
which is applied to derive the events used for monitoring from the
system logs.

Syntax. The system log can be specified using a Domain-Specific-
Language defined in BNF shown below:

Dict c ::= {(k : v)∗}
key k ::= k𝑡 | k𝑒
call k𝑡 ::= From | To | Func | Depth
event k𝑒 ::= Data | Topics | Events
value v ∈ N ∪ S

system log 𝑠 ::= c | 𝑠; c.

Here the statement 𝑐 is dictionary data presented in Figure 2, 𝑠 is
the system log after serializations. v ∈ N∪S is the value of 𝑘 , which
is extracted from 𝑐 , and S represent a value of string type.

As illustrated in Section 2.1, two disjoint sets𝐿𝑡 and𝐿𝑒 are defined
to represent function call and transactions events respectively, i.e.,
𝐿𝑡 (𝑒 ) = {𝑐 | 𝑐 = {(𝑘𝑡 (𝑒 ) : 𝑣)∗}}. We define several projections to
extract attributes from a dictionary 𝑐 , e.g., 𝑝f to extract function
name, 𝑝s and 𝑝r to extract sender and receiver address, and 𝑝d to
extract the call depth. Taking the data 𝑐 in Figure 2 as an example,
we can determine the address of transaction caller which is 𝑝s (𝑐) =
0x9f27a5, the depth of the transaction which is 𝑝d (𝑐) = 1, etc.

Semantics. We model the basic semantics of the log system with
a judgement of the following form:

Σ ⊢ Π
𝑐−→ Π′,

which specfies a state transition. Here Σ is the static context, e.g.,
the set of valid addresses for EOAs and CAs, and Π and Π′ are
sequences of event set, which can be translated into semantic logs
that can be readily monitored and verified using existing runtime
verification engines. Intuitively, the above semantics states that:
given system environment Σ and semantic log Π, the execution of
the atomic statement 𝑐 yields the semantic log Π′. The concrete
semantics is defined in Figure 3, which also uses derivation rules
to obtain complete semantic logs from given input. The Basic rule

valid (Σ, c), Π = ⟨𝜋1, ...𝜋𝑛⟩

Σ ⊢ Π
𝑐−→ Π++T (𝑐)

specifies the state transition caused by atomic statement (a single
function call or an event) in our DSL. Namely, given a statement
𝑐 , the execution of 𝑐 produces one or more semantic events which
extend the semantic log Π to Π++T (𝑐). The operator ++ denotes

Table 1: The signatures of BTS used in semantic logs.

Signature Description

Depth(d:int) The function is called at depth d.
Order(o:int) Represents the sequence of current

call throughout the transaction
Call(sdr,rcv,func) Account sdr calls function func

of account rcv.
Account sdr initiates a transfer that

Transfer(sdr, rcv, ast, amt) transfers amt amount of ast asset
to account rcv.

Generate(sdr, rcv, ast, amt) A token contract sdr mints the
amount amt of the asset ast .

Destroy(sdr, rcv, ast, amt) Account sdr burns the amount amt
of the asset ast.

concatenation. T is a map that maps 𝑐 to a set of observable events
presented in Table 1. The definition ofT (shown in Figure 4) enables
the extraction of different basic events from a dictionary data. As
notations, we write {𝑘 : 𝑣} ⊆ 𝑐 to indicate that the dictionary 𝑐

has the attribute 𝑘 with the value 𝑣 . The complete BTS used in this
work is presented in Table 7.

Basic Transaction Semantics (BTS). We take three basic events
as examples to illustrate the extraction of basic events.

Call. Performing function calls is essential for any account to
execute flexible operations. If 𝑐 corresponds to a transaction, i.e.,
𝑐 ∈ 𝐿𝑡 , we can extract a basic event Call(sdr, rcv,func), where sdr

is the account of operator, rcv is the account to be called, and func

refers to the hash value of the called function. Besides, both the
depth and the call index are recorded with events Depth(d) and
Order(o), where attributes d and o can also be extracted.

Transfer. The action of transferring assets between accounts can
be extracted from the data 𝑐 corresponding to an transaction event,
i.e., 𝑐 ∈ 𝐿𝑒 , using the event Transfer(sdr, rcv, ast, amt), where sdr
is the address of the token sender, and rcv is the address of the
token receiver. Attribute ast represents the type of token (assets)
to be transferred and amt represents the transfer amount.

Generate can be viewed as a specific instantiation of Transfer
that characterizes a particular type of money transfer behavior.
Consider the event Transfer(0x00, rcv, ast, amt), where the sender
address is 0x00, indicating that all tokens are transferred from zero
addresses, thereby representing token generation. Thus we can
rewrite this as a new predicate Generate(rcv, ast, amt).

Example 1. Applying the function T to the data 𝑐 in Figure 2, we
obtain a set of basic events, where 𝑐 corresponds to a function call,
which is called at index 3 and depth 2. With projections defined
above and applied rule (1), (2), and (3) in Figure 4, we can obtain
that T (𝑐) = {Depth(2),Order(3),Call(0xc9, 0x3a, 0x40)}.

Advanced Attack Semantics (AAS). In addition to those basic
events constructed from the statements using the BTS, we define
a set of rules that generate auxiliary events that are necessary for
the MOFTL monitoring of attacks. Intuitively, the rule

Π = ⟨𝜋1, ...𝜋𝑛⟩,𝜓 (𝜋𝑖 , 𝜋 𝑗 ), Π′ = Π{𝑖 ↦→ 𝜋𝑖 ∪ {𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 )}}
Σ ⊢ Π { Π′

states that: given system environment Σ and semantic log Π, if there
exists event sets 𝜋𝑖 and 𝜋 𝑗 (𝑖 < 𝑗 ≤ 𝑛) in Π, that satisfy the condition
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[Basic]
valid (Σ, c) , Π = ⟨𝜋1, ...𝜋𝑛 ⟩

Σ ⊢ Π
𝑐−→ Π++T(𝑐 )

[Seq]
Σ ⊢ Π

𝑠−→ Π1, Σ ⊢ Π1
𝑐−→ Π′,

Σ ⊢ Π
𝑠 ;𝑐−−→ Π′

[Lift]
Π = ⟨𝜋1, ...𝜋𝑛 ⟩, ∃𝑖 .𝜑 (𝜋𝑖 , 𝜋𝑖+1 ) , Π′ = Π{𝑖 ↦→ 𝜋𝑖 ∪ {𝜌 (𝜋𝑖 , 𝜋𝑖+1 ) } }

Σ ⊢ Π { Π′

[Comp]
Σ ⊢ Π1 { Π2, Σ ⊢ Π2 { Π3,... Σ ⊢ Π𝑛−1 { Π𝑛

Σ ⊢ Π1 {∗ Π𝑛

[Eval]
Σ ⊢ Π1

𝑠−→ Π2, Σ ⊢ Π2 {∗ Π𝑛 ,

Σ ⊢ Π1
𝑠
=⇒ Π𝑛

Figure 3: Selection of operational semantics

T (𝑐) =



Depth(d), if {"Depth" : d} ⊆ 𝑐

Order(i), if {"Order" : i} ⊆ 𝑐

Call(s, r, func), if 𝑐 ∈ 𝐿𝑡

Transfer(s, r, ast, amt), if 𝑐 ∈ 𝐿𝑒 , 𝑝amt (𝑐) ≠ 0
Generate(r, ast, amt), if 𝑐 ∈ 𝐿𝑒 , 𝑝amt (𝑐) = 0

Figure 4: The definition of T . Here 𝑝amt is a projection that

extract the value of attribute amount from a dictionary.

𝜓 (𝜋𝑖 , 𝜋 𝑗 ), then the semantic log will be updated to Π′ where an event
𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) will be added to 𝜋𝑖 . The detailed definitions of 𝜓 and
corresponding 𝜌𝜓 are placed in Appendix C.

Here we explain the semantics of two advanced attack events and
show the extraction of them with Lift rule. The full explanation
can be found in Table 8 in Appendix B.

SameCall. One significant behavior of the Reentrancy attack is
repeatedly entering the contract, i.e., calling the same function to get
a profit. We have recorded function calls in semantic logs at every
time-step. If a function is called consecutively (with call index i and
j respectively) with the same sdr and rcv, i.e., Call(sdr, rcv,func)
occurs in both 𝜋𝑖 and 𝜋 𝑗 , then we add a new event SameCall(func,
i,j) to the event set 𝜋𝑖 , which indicates that func is called twice.

Transact.We define a Transact action to represent an account
transferring some amount of one asset, followed by a vault con-
tract or DEX pool transferring another asset. The action can be
described with predicate Transfer earlier in this section. Consider
two different events: Transfer(sdr, rcv, ast, amt), and Transfer(rcv,
sdr, ast’, amt’), where the attributes ast and ast’ denote two dif-
ferent kinds of assets, satisfying ast ≠ ast’. We can observe that
the the address of sender and receiver within two transfers are ex-
changed, which indicates a “transact” illustrated above. We use the
predicate Transact(opr, pool, astIn, astOut, amtIn, amtOut) to de-
note the semantics of the combination of such two transfer events.
Here the lifting event, which should be added in 𝜋𝑖 should sat-
isfy opr = sdr, pool = rcv, astIn = ast, astOut = ast’ and
amtIn,amtout = amt,amt’.

Our top-level judgment about semantics is of the form:

Σ ⊢ Π
𝑠
=⇒ Π′ .

Here the relation ⇒ includes both basic events extraction (Σ ⊢
Π → Π′) and semantic lifting (Σ ⊢ Π { Π′), 𝑠 is the system log
defined in above DSL syntax, and Π′ is the final semantic log, which
cannot be lifted further. Given a system log 𝑠 and an empty list, the
semantic log Π used for monitoring satisfies Σ ⊢ ⟨⟩ 𝑠

=⇒ Π.

3.3 Stage 3: Attack Formulas and Detection

We capture transaction-level attacks using MOFTL formulas, which
allows us to reuse existing runtime monitoring frameworks such
asMonPoly to detect attacks based on the semantic logs.

In the following, we consider two significant transaction-level
attacks which have occurred and resulted in substantial losses on
blockchain system as examples, and we show how to characterize
the complicated behavior of adversarywithMFOTL. For each attack,
we first summarize the basic workflow of the attack, from which
we identify the core signature and logical relationships. Then we
illustrate each attack formulation in detail. The remaining attacks
are described in Appendix D.

Reentrancy (RE). At its core, a Reentrancy attack leverages the
asynchronous nature of smart contracts to manipulate their be-
havior in unintended ways. Smart contracts on blockchains like
Ethereum operate in a deterministic and sequential manner, i.e.,
once a function is called within a contract, it must complete exe-
cution before another function can be invoked. However, in the
case of a Reentrancy attack, an attacker exploits this by recursively
calling the same function within the contract before the previous
invocation completes. We can define the attack as follows:

1 Reentrancy−Attack
2 let OrderDepth(o,d):= Order(o) ∧ Depth(d) in
3 let Func(s,r,f,o,d):= OrderDepth(o,d) ∧ Call(s,r,f) in
4 let Inv(o,o',d'):= Depth(d') ∧ InverseCall(o,o') in
5 let SameFunc(f,o,o',d'):= Depth(d') ∧ SameCall(f,o,o') in
6 let NestedDepth(x,y,z):= x > y ∧ y > z in
7 Func(s1,r1,f,o1,d1) ∧ ♢𝐼Inv(o1,o3,d3) ∧
8 ♢𝐼SameFunc(f,o1,o2,d2) ∧ NestedDepth(d1,d2,d3)

We use MFOTL’s let-in operator to define predicates for conve-
nience (Line 2-6). The given MFOTL formula describes Reentrancy
attacks on Ethereum. Initially, the attacker s1 calls function f in
the victim contract r1 with depth d1, represented by the predicate
Func in Line 7. The victim contract then makes a callback to the
attacker’s contract, captured by ♢𝐼 Inv in Line 7. The attacker re-
enters the victim contract and invokes the same function again,
as indicated by the predicate SameFunc in Line 8. These calls are
nested, with increasing depth, as indicated by the NestedDepth
predicate in Line 8. The OrderDepth predicate (Line 2) denotes their
indices (both depth and order) in the semantic log. The interval 𝐼
is empirically chosen. The formula describes the attacker entering
the victim contract twice, exploiting the failure to update its state
promptly by withdrawing funds before the state refreshes during
external calls.

Direct Price Manipulation (DPM). DPM attacks pose a signif-
icant threat to the stability and integrity of DeFi ecosystems on
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blockchains. The mechanism of a DPM attack typically involves the
manipulation of the price oracle used by the decentralized exchange
or automated market maker. Oracles are external sources of data
that provide price information for assets traded on the blockchain.
In a DPM attack, an attacker can manipulate the price reported by
the oracle by providing false or misleading data. Once the price
reported by the oracle is manipulated, the attacker can exploit this
discrepancy to execute trades at advantageous prices on the decen-
tralized exchange or automated market maker. By buying or selling
large volumes of assets at artificially inflated or deflated prices, the
attacker can influence the market and potentially profit from the
price movements.

1 DPM−Attack
2 let Tr(o,op,p,ast,ast',amt,amt'):= Order(o) ∧
3 Transact(op,p,ast,ast',amt,amt') in
4 let SamePool(x,y,z):= x = y ∧ y = z in
5 Tr(o2,op2,p2,ast2,ast2 ',amt2,amt2 ') ∧
6 ♦𝐼Tr(o1,op1,p1,ast1,ast1 ',amt1,amt1 ') ∧
7 ♢𝐼Tr(o3,op3,p3,ast3,ast3 ',amt3,amt3 ') ∧
8 SamePool(p1,p2,p3) ∧ op1 = op3 ∧
9 ast1 = ast3 ' ∧ ast3 = ast1 ' ∧ ast1 '= ast2 '

The given formula describes DPM attack. The victim op2 executes
a token swap, exchanging asset ast2 for asset ast2’. This action is
represented by the first Tr predicate. However, before this trans-
action, the attacker op1 has already swapped ast1 for ast1’, where
ast1’ is the same with ast2’, as captured by ♦𝐼 Tr predicate. This
swap impacts the liquidity pool’s price oracle, causing the price of
the asset to rise rapidly, resulting in the victim receiving fewer ast2’
assets than anticipated. Subsequently, the attacker reverses the ini-
tial swap, captured by ♢𝐼 Tr predicate. Furthermore, all transactions
occur within the same pool, described by SamePool predicate.

Monitoring with MonPoly. With attack formulas 𝜑 specified
in this section, we can useMonPoly to monitor the semantic log
Π obtained from stage 2 to detect that if is raised an attack. The
toolMonPoly outputs a set of predicates and their parameters that
match the attack formulas. Each predicate and its associated param-
eters indicate where the attack formulas 𝜑 are satisfied within the
semantic log, i.e., where the attack occurs and with what parameter
values. In Section 4, the effectiveness, efficiency, and the precision
of our detection approach will be evaluated in detail.

3.4 Quantitative Analysis

Due to the flexibility that the adversary has when carrying out
attacks, some attacks closely resemble the attack formula but fail
to fully satisfy it. There are also near-miss attacks that attempt but
ultimately fail to succeed. In addition to qualitatively determining
whether an attack happens (the attack formula is satisfied under the
semantics of MFOTL), we further equipMoE with a quantitative
analysis capability, i.e., tomeasure the similarity between a semantic
log and a valuation of an attack. The motivation behind this are two-
folds: 1) to improve the attack detection performance by computing
the similarity valuation trends of a transaction; 2) to provide an
opportunity for the early alarming the occurrence of an attack. In
the following, we first recall the syntax of our attack formula then
define the quantitative semantics.

Note that for the attack modeling in this work, it is sufficient
only to use a subset of MFOTL specification language. The minimal
syntax of attack formula is in Figure 8, where 𝜑atm is an atomic
formula, which is either an event 𝑒 (𝑡) or op(𝑡, 𝑡). The operator
op includes (in)equality =, less than < and other binary operators.
The temporal operators ♢𝐼 and ♦𝐼 denotes “eventually” and “once”
respectively.

Definition 1 (Quantitative Semantics). Given an MFOTL formula
𝜑 and an event set 𝜋𝑖 within a semantic log Π, the quantitative seman-
tics can be evaluated using a function 𝜚 , which is defined recursively
as follows:

𝜚 (𝜑atm, 𝑖,Π) = 𝑐𝑎, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ′
𝑎, (T1)

𝜚 (𝜑atm, 𝑖,Π) = 𝑐𝑏 , if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ′
𝑏
, (T2)

𝜚 (𝜑atm, 𝑖,Π) = 0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑atm . (T3)

𝜚 (¬𝜑atm, 𝑖,Π) = 𝑐𝑎 − 𝜚 (𝜑atm, 𝑖,Π), if 𝜑atm ∈ Φ′
𝑎 (T4)

𝜚 (¬𝜑atm, 𝑖,Π) = 𝑐𝑏 − 𝜚 (𝜑atm, 𝑖,Π), if 𝜑atm ∈ Φ′
𝑏

(T5)

𝜚 (♢𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏 𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 | − (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
, (T6)

𝜚 (♦𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏𝑖−𝜏 𝑗<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 | − (𝜏𝑖 − 𝜏 𝑗 )
|𝐼 |

}
, (T7)

𝜚 (𝜑1 ∧ 𝜑2, 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π) . (T8)

Here, the relation 𝑣, 𝑖 |=Π 𝜑 denotes the satisfaction of the formula
𝜑 for a valuation 𝑣 at an index 𝑖 with respect to the trace Π. The
constants 𝑐𝑎 and 𝑐𝑏 are precomputed for a given attack formula 𝜑 .
𝜑 ∈ Φ′

𝑎 denotes that 𝜑 is an AAS-related formula. The value of the
function 𝜚 consistently falls within [0, 1] (proof in Appendix E).

Intuitively, the function 𝜚 is defined so that the satisfaction of
each subformula contributes a higher likelihood to the satisfaction
of the overall formula (T8 in Definition 1). Rule T1 and T2 state
that we assign a weight of 𝑐𝑎 to each sub-formula in Φ′

𝑎 , and a
weight of 𝑐𝑏 to each sub-formula in Φ′

𝑏
. The intuition for 𝑐𝑎 > 𝑐𝑏

is that: the satisfaction of AAS-related atomic formulas makes a
larger contribution than BTS-related atomic formulas to the overall
satisfaction. If 𝜋𝑖 dissatisfies 𝜑atm, the result is 0 (T3). For formula
involving temporal operator ♢𝐼 and ♦𝐼 , we define T6 and T7. Our
intuition is that the faster 𝜑atm is satisfied within the interval 𝐼 , the
greater its contribution to the satisfaction of the overall formula
𝜑 . This is because the Ethereum’s evolving state and reliance on
current resource conditions can alter contract states or token prices
over time, impacting the success of prolonged attacks. Besides, to
make the quantitative algorithm complete, we add a definition for ¬
operator (T4 and T5). The derivation and corresponding proof for
the above definition can be found in Appendix E. A simple example
of quantitative analysis is provided in Appendix F.

Definition 2 (Attack Alarm).Given a semantic logΠ = ⟨𝜋1, ...𝜋𝑛⟩,
an attack formula 𝜑 and a threshold 𝜏𝑐 , an attack alarm is raised at
index 𝑖 , when 𝜚 (𝜑, 𝑖,Π) > 𝜏𝑐 holds.

With the condition of an attack alarm occurrence defined above,
we can report some potential attacks which may not be detected
by direct monitoring with MonPoly. We will conduct several case
studies in Section 4.4, and here we only give a simple example.

Example 2. To intuitively showing this effect of quantitative anal-
ysis, we evaluate the quantitative results of an IPM attack and the
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(a) Evaluation of an IPM. (b) A Normal Transaction.

Figure 5: Quantitative analysis for IPM (Example 2).

normal transaction, as shown in Figure 5. Red points denote robust-
ness exceeding the threshold 𝜏𝑐 = 0.7, while green areas indicate
no attacks. Figure 5a highlights attack instances with robustness
over the threshold, occurring mid-transaction. Figure 5b shows
a normal transaction with values below the threshold, indicating
no detected attacks. Lowering the threshold to 0.6 detects attacks
earlier but risks more false positives. Attacks often occur before a
transaction ends, and the threshold adjustment affects attack identi-
fication. This underscores the importance of quantitative semantic
monitoring for detecting various Ethereum attack patterns.

4 Experimental Evaluation

In this section, we evaluate the detection capability of MoE by
answering the following research questions (RQs):
RQ1: Can MoE detect attack transactions in real-world incidents?
RQ2: CanMoE analyze large-scale transactions?
RQ3: CanMoE detect more attacks with its quantitative capability?
RQ4: CanMoE efficiently reveal attacks?

4.1 Experimental Setup

Dataset. Two datasets, D1 and D2, listed in Table 2, are built to
comprehensively evaluate the effectiveness of MoE . D1 is a la-
beled benchmark constructed by expanding an existing dataset [16]
with real-world incidents from May 2020 to June 2022, covering
24 documented attacks. This benchmark is essential for validating
the accuracy of MoE in detecting known attack patterns based on
publicly reported security incidents. D2, is collected from 59 high-
volume Dapps listed on DeFiLlama [7] (e.g., Value Defi, Uniswap,
RaRi, etc.) and includes 1,064,996 unlabeled transactions from May
2020 to June 2022 (blocks 10,000,000 to 15,000,000). This large-scale
dataset helps assessMoE ’s performance, efficiency, and accuracy
in detecting attacks in a real-world, unlabelled environment. All
transaction data can be accessed publicly at [2].

Implementation. For transaction tracing, we insert recording code
in a off-chain transaction execution environment [11] and use it to
execute the transactions to obtain system logs. For Semantic Lifting,
we implement a parser that convert system logs to the semantic
logs for runtime verification. For runtime verification, we modify
MonPoly so that it supports our quantitative analysis, and run the
modifiedMonPolywith the specified attack formulas and semantic
logs to detect attack transactions.

4.2 Detection in Labeled Benchmark (RQ1)

In this experiment, we evaluate the effectiveness of MoE by deploy-
ing it to monitor each type of incident in the labeled benchmarkD1.
MoE tags the transactions that satisfy the specific attack formula.

Table 2: Datasets.

ID Source Num. of Tx Used in RQs

D1 24 security incidents 24 RQ1, RQ3
D2 59 well-known Dapps 1,064,996 RQ2, RQ3, RQ4

Table 3: Results in labeled benchmark.

Attack Type Num. DeFiWarder MoE
#TP TRP #TP TRP

Sandwich 5 / / 5 1.00
Reentrancy 8 4 0.50 7 0.88

CI 2 1 0.50 2 1.00
DPM 3 2 0.67 3 1.00
IPM 6 2 0.33 5 0.83
ALL 24 9 0.47 22 0.92

Table 4: Results in large-scale experimantal evaluation. The

symbol * denotes that the value is estimated.

Attack Type Tagged Transaction TP Precision
Sandwich 2,433 2,433* 1.00
Reentrancy 213 181* 0.85

CI 761 647* 0.84
DPM 18 15 0.83
IPM 53 43 0.81
All 3,478 3,319* 0.95

We mark the tagged transaction as true positive (TP), and mark
the attack as false negative (FN) if it is not tagged. We evaluate the
effectiveness of MoE with the recall rate: 𝑇𝑅𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .

Evaluation of experimental results. The results on the labeled
benchmark are presented in Table 3. MoE shows excellent recall
for Sandwich, Call Injection and Direct Price Manipulation attacks,
covering all labeled transactions. This indicates that our MFOTL
formulas effectively adapt to real-world attack behaviors. How-
ever,MoE fails to detect 2 attacks: one Reentrancy attack, where
the attacker exploits a vulnerable function while profiting from
another, and one Indirect Price Manipulation attack, which uses
special operation pairs to manipulate token prices. Addressing these
requires more behavioral information, but the overhead is consid-
erable. Overall, MoE successfully reveals 92% ( 22

24 ) of attacks in the
benchmark, demonstrating its effectiveness in detection.

Comparison with other tools. We adapt DeFiWarder [16] for
our dataset, showing that MoE has a 45% higher recall rate in
Table 3. In particular, DeFiWarder cannot detect Sandwich attacks
since its abnormal detection cannot distinguish attack and benign
arbitrage. Furthermore, DeFiWarder relies on a large number of
historical transactions to obtain a normal return rate for abnormal
detection, which limits its usability. In contrast, MoE can detect
attacks without learning from historical transactions.

4.3 Detection in Massive Transactions (RQ2)

To evaluate the practicality of MoE , we use it to detect attack
transactions in the large-scale dataset D2.
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Evaluation of experimental results. MoE tags 3,478 transac-
tions as attacks from 1,064,996 transactions. We evaluate these
tagged transactions 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 , Specifically, we manually
distinguish TP and FP in transactions. For SW, RE and CI, we sample
332, 138 and 256 transactions, respectively, for statistical signifi-
cance at 95% confidence level. We calculate precision and labeled
as "Estimated" in Table 4. All Direct/Indirect Price Manipulation
transactions are verified independently by two authors.

Table 4 shows the experimental results. MoE detects 2,433 Sand-
wich attacks with 100% precision and 213 Reentrancy transactions
with an acceptable precision rate (85%). Some false positives oc-
curred because repeated queries in lending operations mimicked
Reentrancy behavior, although these were read-only operations.
MoE has 84% precision in detecting Call Injection attacks. Among
FP, some of the transactions executed multiple transfer operations
in a call. However, these transfer operations were batch processed
through the ‘multiSend’ method. As a result, multiple ‘Transfer’
events were triggered, but this does not constitute an attack. For
Direct and Indirect Price Manipulate attacks, MoE identifies 15
direct and 43 indirect attacks with over 81% precision, though some
arbitrage operations were misclassified.

4.4 Quantitative Analysis usingMoE (RQ3)

We apply MoE to quantify the similarity of transactions with at-
tacks using our quantitative semantics. We use D1 for positive
samples and randomly select 20 normals from D2 as negatives. To
assess the impact of threshold 𝜏𝑐 , we runMoEwith 𝜏𝑐 at 0.6, 0.7, 0.8,
andMoE without quantitative analysis. These thresholds are based
on the quantified semantic like "Eventually" and "Once", where
increasing distance leads to decreased robustness, preventing even
perfectly matching attacks from achieving a robustness of 1.0. We
select a threshold of 0.8 to capture transactions with distinct attack
characteristics. Lowering the threshold can identify more attacks,
including near-miss attacks, but may misclassify normal transac-
tions. Thus, we also test thresholds of 0.6, 0.7 and 0.8 to evaluate the
trade-off between detecting more attacks and maintaining accuracy.

Evaluation of experimental results. Our experimental results
using theMoEmonitoring tool are shown in Table 5. Higher TP and
lower FN values are ideal, as they indicate more correct detections
of positive samples and fewer tagged negative samples, respectively.

Data shows each attack type needs unique threshold tuning for
optimal performance. All attack types can tag all positives at certain
thresholds (indicated by *), but may increase undesirable FNs. RE
is fully tagged at 𝜏𝑐 = 0.7 with 2 FPs. SW and CI are detected at
𝜏𝑐 = 0.8 without any FPs. With our quantitative semantics,MoE de-
tects 8% more true attacks than non-quantitative version, covering
all incidents in benchmark. Fortunately, our quantitative analysis
enhancesMoE ’s attack detection with an acceptable FP rate.

Importantly, the use of our quantitative semantics allowed MoE
to detect a near-miss attack on Warp Finance[15], which the non-
quantitative version missed. In this case, the attacker manipulated
the price of LP tokens and held them as collateral, but Warp Finance
locked these LP tokens, preventing any profit. Although the attack
was not fully executed, the quantitative analysis enabledMoE to
identify the attack behavior and trends, allowing it to classify the
incident as an attack.

Table 5: Threshold Evaluation Results: ‘*’ denotes all positive

samples; ‘w/o’ in the Threshold column indicates detection

results from MoE without quantitative analysis.

Attack Threshold TP FP Precision Recall Accuracy

DPM

0.6 3* 1 0.75 1.00 0.96
0.7 3* 1 0.75 1.00 0.96
0.8 0 0 / 0 0.87
w/o 3* 0 1.00 1.00 1.00

IPM

0.6 6* 1 0.86 1.00 0.96
0.7 6* 1 0.86 1.00 0.96
0.8 1 0 1.00 0.17 0.81
w/o 5 0 1.00 0.83 0.96

CI

0.6 2* 1 0.67 1.00 0.95
0.7 2* 1 0.67 1.00 0.95
0.8 2* 0 1.00 1.00 1.00
w/o 2* 0 1.00 1.00 1.00

RE

0.6 8* 6 0.57 1.00 0.79
0.7 8* 2 0.80 1.00 0.93
0.8 7 0 1.00 0.88 0.96
w/o 7 0 1.00 0.88 0.96

SW

0.6 5* 2 0.71 1.00 0.92
0.7 5* 2 0.71 1.00 0.92
0.8 5* 0 1.00 1.00 1.00
w/o 5* 0 1.00 1.00 1.00

4.5 Efficiency of MoE (RQ4)

We evaluate MoE ’s run-time verification efficiency on 1,064,996
transactions, logging the average time per transaction for stages
including transaction tracing, semantic lifting, attack verification,
and their total consumption time. The time of attack verification
varies due to the different formulas. Our experimental results are
given in the Appendix, Table 9.

MoE processes transaction tracing in 5.20 ms, with minimal over-
head over EVM (4.78 ms). Semantic lifting takes just 0.13 ms/tx,
the quickest of the three stages. Finally, attack verification shows
Sandwich detection has the highest efficiency at 6.45 ms/tx or 155
TPS due to its simple formula. Other attacks, like DPM take longer
(23.43 ms/tx or 42.68 TPS) due to the formula’s complexity. MoE
’s TPS exceeds Ethereum’s 13.4 TPS [8], indicating that MoE is
capable of real-time monitoring.

5 Conclusion

In this work, we introduced MoE, a flexible and extensible runtime
monitoring framework specifically designed for detecting a variety
of transaction-level attacks on the Ethereum blockchain. Leverag-
ing the expressive capabilities of MFOTL and our proposed novel
semantic lifting approach,MoE effectively formalizes and identifies
both known and new attack types.

Our approach, integrated with the state-of-the-art runtime mon-
itoring tool MonPoly enhanced with quantitative analysis, demon-
strates high efficiency in processing large-scale Ethereum transac-
tion logs. In an evaluation of over one million transactions from 59
Ethereum Dapps,MoE successfully detected various attack types,
including sandwich attacks, reentrancy attacks, and price manipu-
lation attacks, all while maintaining low overhead. These results
highlight the framework’s scalability and its potential application
in proactive runtime monitoring for blockchain security.
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A An example of Price Manipulation Attack

Figure 6 illustrates a high-level example of a price manipulation
attack. This attack involves a series of complex transactions across
multiple DeFi protocols to manipulate asset prices for financial
gain. Specifically, the attacker initiated the attack by swapping
116M DAI and 31M USDT for 107.5M USDC, which significantly
impacted the pricing mechanism of Curve. As shown in Table 6,
this disruption allowed the attacker to acquire 31M 3CRV tokens, a
higher amount than expected, as proof of deposited assets. In the
final step, the attacker swapped the 3CRV tokens back for more DAI
than initially deposited, ultimately profiting 8M DAI. The figure
provides a visual breakdown of these steps, while the table details
the asset balance changes during each stage of the attack. The
details of major transaction-level attacks are presented in Sect. 3.3.

Figure 6: A Price Manipulation Attack on Value Defi.

Table 6: The balance of exploiter in value Defi attack.

DAI USDT USDC 3CRV
fund
accumulation 116M 31M 0 0

value increasing 0 0 107.5M
(90.2M+17.3M) 33M

value recovery 90.9M 30.9M 0 33M

profit 124M

(90.9M+33.1M)

30.9M 0 0

B Description of BTS and AAS Events

Here we give an overall description BTS and AAS events used in
this work. For each event, we give its signature and explain the
intuitions for it.

The BTS events we used include: Depth, Order, Call, Transfer,
Generate, Destroy, etc.

The AAS events we used include: Samecall, InverseCall, etc.
9

https://www.aicoin.com/currencies/ethereum.html?lang=en
https://www.aicoin.com/currencies/ethereum.html?lang=en
https://anonymous.4open.science/r/Ethereum-Transaction-C029/
https://anonymous.4open.science/r/Ethereum-Transaction-C029/
https://defillama.com/.
https://etherscan.io/
https://techcrunch.com/2016/10/29/blockchain-is-empowering-the-future-of-insurance/
https://techcrunch.com/2016/10/29/blockchain-is-empowering-the-future-of-insurance/
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://rekt.news/value-defi-rekt/
https://rekt.news/zh/warp-finance-rekt/
https://doi.org/10.1109/ASE56229.2023.00110
https://doi.org/10.1109/ASE56229.2023.00110
https://rekt.news/zh/warp-finance-rekt/
https://doi.org/10.1109/TDSC.2023.3346888


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: The signatures of BTS used in semantic logs.

Signature Description

Depth(d:int) The function is called at depth d.
Order(o:int) Represents the sequence of current

call throughout the transaction
Call(sdr,rcv,func) Account sdr calls function func

of account rcv.
Account sdr initiates a transfer that

Transfer(sdr, rcv, ast, amt) transfers amt amount of ast asset
to account rcv.

Generate(sdr, rcv, ast, amt) A token contract sdr mints the
amount amt of the asset ast .

Destroy(sdr, rcv, ast, amt) Account sdr burns the amount amt
of the asset ast.

Swap(astIn-astout, amtIn, amtout) A token swap event directly extracted
from Uniswap event, exchanging
amtIn of astIn to amtOut of astOut.

SensitiveFunc(func) A function func which makes an
ownership change or token transfer.

Calldata(p) The calldata p of a function call.

Table 8: The signatures of AAS used in semantic logs.

Signature Description

SameCall(func,i,j) A function is called consecutively
(with call index i and j respectively)
with the same sdr and rcv.

InverseCall(i,j) Represents that the direction of the
call with index 𝑗 is the reverse of
the call with index 𝑖 , meaning the
sender and receiver addresses
are swapped between the two calls.

Calldata_Explode(i,j) The parameter of a call with call
index j is influenced by parameter
of a call with call index i.

Mint(op,pool,sin,sout,min,mout) An account op deposits certain amount
min of certain asset sin to provide liquidity
in a liquidity pool pool of a DeFi app,
which then mints certain amount mout
of its LP token sout to op.

Burn(op,pool,sin,sout,min,mout) An account op burns a certain amount
min of certain DeFi app’s LP token sin
to redeem deposits, a pool pool of the app
then transfers a certain amount mout
of certain asset sout to op.

Transact(op,pool,sin,sout,min,mout) An account op sells a certain amount
min of certain asset sin for a certain
amount mout of certain asset sout
in a liquidity pool pool of an AMM.

C Lifting Condition𝜓 and Updating Function 𝜌𝜓

In addition to those basic events constructed from the statements
using the BTS, we define a set of rules that generate auxiliary events
that are necessary for the MOFTL monitoring of attacks. Intuitively,
the rule

Π = ⟨𝜋1, ...𝜋𝑛⟩,𝜓 (𝜋𝑖 , 𝜋 𝑗 ), Π′ = Π{𝑖 ↦→ 𝜋𝑖 ∪ {𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 )}}
Σ ⊢ Π { Π′

states that: given system environment Σ and semantic log Π, if there
exists event sets 𝜋𝑖 and 𝜋 𝑗 (𝑖 < 𝑗 ≤ 𝑛) in Π, that satisfy the condition
𝜓 (𝜋𝑖 , 𝜋 𝑗 ), then the semantic log will be updated to Π′ where an event
𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) will be added to 𝜋𝑖 . The detailed definitions of 𝜓 and
corresponding 𝜌𝜓 are shown in Figure 7.

D Attack Detection of 3 Types of Attacks

D.1 Call Injection (CI)

Call Injection attack is a type of smart contract security vulnerabil-
ity where attackers exploit this vulnerability by injecting malicious

[SameCall]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃e.𝑒 = Call(s, r, func) ∈ 𝜋𝑖 ∩ 𝜋 𝑗

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := SameCall(func, 𝑖, 𝑗 )

[Inverse]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃𝑒1, 𝑒2 .𝑒1 = Call(s, r, func) ∈ 𝜋𝑖

∧𝑒2 = Call(r, s, func′ ) ∈ 𝜋 𝑗

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := Inverse(i, j)

[CalldataExplode]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃𝑒1, 𝑒2, 𝑒3, 𝑒4 .𝑒1 = Calldata(p) ∈ 𝜋𝑖

∧𝑒2 = Depth(d) ∈ 𝜋𝑖 ∧𝑒3 = Calldata(p′ ) ∈ 𝜋 𝑗

∧𝑒4 = Depth(d′ ) ∈ 𝜋 𝑗 ∧𝑑 ′ > 𝑑 ∧ 𝑝 ′ ∈ 𝑝

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := CalldataExplode(i, j)

[Transact]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃𝑒1, 𝑒2 .𝑒1 = Transfer(s, r, ast, amt) ∈ 𝜋𝑖

∧ast ≠ ast′ ∧ 𝑒2 = Transfer(r, s, ast′, amt′ ) ∈ 𝜋 𝑗

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := Transact(s, r, ast, ast′, amt, amt’)

[Mint]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃𝑒1, 𝑒2 .𝑒1 = Transfer(s, r, ast, amt) ∈ 𝜋𝑖

∧ast ≠ ast′ ∧ 𝑒2 = Generate(0x00, s, ast′, amt′ ) ∈ 𝜋 𝑗

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := Mint(s, r, ast, ast′, amt, amt’)

[Burn]
𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := ∃𝑒1, 𝑒2 .𝑒1 = Destroy(s, 0x00, ast, amt) ∈ 𝜋𝑖

∧ast ≠ ast′ ∧ 𝑒2 = Transfer(r, s, ast′, amt′ ) ∈ 𝜋 𝑗

𝜌𝜓 (𝜋𝑖 , 𝜋 𝑗 ) := Burn(s, r, ast, ast′, amt, amt’)
Figure 7: The definition of lifting condition𝜓 and updating

function 𝜌𝜓

calldata to trigger victims to execute sensitive functions related to
fund transfers. Attackers send meticulously designed transactions
to victim contracts, causing additional calls to be inserted into the
contract’s call stack during execution. These extra calls may alter
the contract’s state or transfer funds, resulting in financial losses
or abnormal contract behavior.

1 CI−Attack
2 let CallFunc(o,s,r,f):= Order(o) ∧
3 Call(s,r,f) in
4 let SensitiveCall(o,s,r,f):= CallFunc(o,s,r,f) ∧
5 Sensitive_Func(o,s,r,f) in
6 CallFunc(o1,s1,r1,f1) ∧ ♢𝐼SensitiveCall(o2,s2,r2,f2) ∧
7 CalldataExplode(o𝑎,o𝑏) ∧
8 r1 = s2 ∧ o𝑎 = o1 ∧ o𝑏 = o2

The given MFOTL formula describes a Call Injection attack on
Ethereum. Initially, the attacker s1 initiates a call to the victim
contract r1, which is represented by CallFunc, with the call index
o1. Upon receiving the calldata from s1, the victim contract trig-
gers an additional sensitive call with the index o2. The address and
calldata for this additional call are controlled by the attacker s1,
meaning that all the information for the secondary call is designed
within the calldata of the initial call. This behavior is captured by
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the CalldataExplode predicate in the formula, indicating that the
call with index o2 is dictated by the calldata of the call with index
o1. Furthermore, the functions invoked by these additional calls
modify the contract state and transfer funds, which is described
by the SensitiveCall predicate in the formula. The MFOTL formula
encapsulates this sequence, illustrating how an attacker can inject
additional, malicious calls through carefully constructed calldata,
thereby manipulating the contract to execute sensitive functions
that alter the state or transfer assets. This highlights the vulner-
ability of contracts to CI attacks where the attacker exploits the
contract’s handling of calldata to achieve unauthorized operations.

D.2 Indirect Price Manipulation (IPM)

IPM is a way to manipulate asset prices within DeFi ecosystems on
blockchains. IPM attack involves exploiting the price mechanism of
a specific Dapp (such as a lending app) to increase the value of the
attacker’s collateral. This manipulation allows the attacker to mint
more Liquidity Provider tokens as proof of the deposited assets,
enabling them to borrow more liquid assets. By artificially inflating
the value of their collateral, attackers can disrupt the balance of
funds within the lending platform, causing losses to the platform
and its users.

1 IPM−Attack
2 let Tr(o,op,p,ast,ast',amt,amt'):= Order(o) ∧
3 Transact(op,p,ast,ast',amt,amt') in
4 let Mt(o,op,p,ast,ast',amt,amt'):= Order(o) ∧
5 Mint(op,p,ast,ast',amt,amt') in
6 Mt(o2,op2,p2,ast2,ast2 ',amt2,amt2 ') ∧
7 ♦𝐼Tr(o1,op1,p1,ast1,ast1 ',amt1,amt1 ') ∧
8 ♢𝐼Tr(o3,op3,p3,ast3,ast3 ',amt3,amt3 ') ∧
9 p1 = p3 ∧ ¬ (p2 = p1) ∧ op1 = op3 ∧
10 ast1 = ast3 ' ∧ ast3 = ast1 '

The given MFOTL formula of IPM, similar to DPM, describes the
attacker op1 initiates two opposite token swaps in the liquidity pool
p1, described by the Tr predicate. These token swaps increase the
market value of the tokens being used as collateral, allowing the
attacker to mint more LP tokens ast’2 as proof of the deposited
assets in another collateral pool p2. This minting operation is rep-
resented by the Mt predicate in the formula. The formula captures
how the attacker manipulates the token value through strategic
swaps, thereby increasing their collateral’s worth and enabling the
minting of additional LP tokens. In this paper, only the MFOTL
formulas that describe the most common scenarios for IPM and
DPM are presented. The complete set of formulas will be provided
in the source code.

D.3 Sandwich (SW)

A sandwich attack is a specific type of manipulation seen in decen-
tralized finance (DeFi) on blockchain systems, particularly within
automated market makers (AMMs) and decentralized exchanges
(DEXs). In this attack, a malicious actor or bot spots a pending
transaction waiting to be processed and places their own transac-
tions both before and after the targeted transaction in the same
block. The first transaction typically involves buying up a specific
asset to drive up its price. The victim’s transaction then executes

at this inflated price. Immediately afterward, the attacker sells the
asset at a higher price with the second transaction they placed,
profiting from the artificially created price differential. This type of
exploit takes advantage of the transparency and immutability of
blockchains, where pending transactions can be seen by all but are
irrevocable once initiated.
1 SW−Attack
2 let SW(o,sdr,pair,amt,amt'):= Order(o) ∧
3 Sender(s) ∧ Swap(pair,amt,amt') in
4 SW(o2,sdr2,pair2,amt2,amt ' 2) ∧
5 ♦𝐼 SW(o2,sdr2,pair2,amt2,amt ' 2) ∧
6 ♢𝐼 SW(o2,sdr2,pair2,amt2,amt ' 2)
7 s1 = s3 ∧ ¬ (s1 = s2) ∧
8 pair1 = pair3 ∧ ¬ (pair1 = pair2) ∧
9 amt3 = amt ' 1 ∧ amt ' 3 > amt1

A Sandwich attack is a type of multi-transaction attack commonly
captured in exchangeswith frequent token swaps, typically Uniswap.
In the MFOTL formula, the victim s2 executes a token swap for
a specific token pair pair2, which is described by the SW predicate
in the formula. A malicious attacker s1 detects this pending transaction
and, beforehand, initiates a similar swap for the same token pair pair1
(pair1=pair2), acquiring a specific asset and inflating its price. This causes
the victim s2 to receive fewer assets. Subsequently, the attacker initiates
a second transaction, executing a reverse swap (pair3 ≠ pair1), selling
the previously acquired assets and profiting from the created price
discrepancy.

E Derivation for Quantitative Semantics

In the following, we show that how we can derive Definition 1 in
the paper and how we relate it to the common (bool) satisfaction
relation. We include some intuitions to ease comprehension for
readers.

The subset MFOTL syntax used in this paper is: Here event 𝑒B (𝑡)

𝜑atm ::= 𝑒A (𝑡) | 𝑒B (𝑡) | op(𝑡, 𝑡)
op(𝑡, 𝑡) ::= 𝑡 = 𝑡 | 𝑡 < 𝑡, 𝑡 ∈ Dom(𝑒A) ∪ Dom(𝑒B)
𝜑 ::= 𝜑atm | 𝜑 ∧ 𝜑 | ♢𝐼𝜑atm | ♦𝐼𝜑atm | ¬𝜑atm .

Figure 8: The subset MFOTL syntax used in this paper.

denotes the Basic Transaction Semantics (BTS) and 𝑒A (𝑡) denotes
the Advanced Attack Semantics (AAS). For simplicity, we use 𝑡 ∈
Dom(𝑒) to indicate that 𝑡 is an argument of event 𝑒 .

In this paper, every attack formula 𝜑 can be unfolded using the
conjunction operator as follows:

𝜑 := 𝜑1 ∧ 𝜑2 ∧ . . . ∧ 𝜑𝑛,

where each 𝜑𝑖 is either 𝜑atm, ♦𝐼𝜑atm, op(𝑡, 𝑡), or ♢𝐼𝜑atm.

Our intuition is based on the idea that the satisfaction of each sub-
formula 𝜑𝑖 contributes to the satisfaction of the top-level formula
𝜑 . This is similar to Łukasiewicz fuzzy logic 1, which differs from
1In Łukasiewicz fuzzy logic, conjunction is handled by taking the maximum of 0 and
the sum of the two truth values minus 1, in contrast to classical fuzzy logic (Zadeh
fuzzy logic), which uses the minimum of the two truth values for conjunction.
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classical fuzzy logic, as mentioned in our email. Thus, the quantita-
tive satisfaction value of 𝜑 equals the sum of the satisfaction values
of all its sub-formulas, i.e.,

𝜚 (𝜑, 𝑖,Π) =
∑︁
𝑗

𝜚 (𝜑 𝑗 , 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π) + · · · + 𝜚 (𝜑𝑛, 𝑖,Π) (I1)

Now we attempt to relate this to the standard (Boolean) satisfac-
tion relation. Given a semantic log Π, a time index 𝑖 , and an attack
formula 𝜑 , we have two main intuitions:

• intuition 1: If ∃𝑣 such that 𝑣, 𝑖 |=Π 𝜑 (i.e., 𝜑 can be satisfied
at index 𝑖), then the value of the quantitative satisfaction
of 𝜑 should be 1;

• intuition 2: If none of the sub-formulas 𝜑𝑖 can be satisfied,
then the value of the quantitative satisfaction of 𝜑 should
be 0. (This is somewhat akin to the log being independent
to 𝜑 at index 𝑖).

The term ‘independent’ used in the second intuition can be inter-
preted as ‘complete unsatisfiability.’

Now, our task is as follows: Given a formula 𝜑 , if we can assign a
quantified value to each atomic sub-formula 𝜑𝑖 when it is satisfied
(i.e., its ‘contribution’ to the overall satisfaction of the formula), we
can then quantify the degree of satisfaction of the entire formula
accordingly.

We use 𝑐𝑖 (𝑐𝑖 > 0) to denote the ‘contribution’ of each formula
unit 𝜑𝑖 when it is satisfied, i.e.,

𝜚 (𝜑𝑖 , 𝑗,Π) = 𝑐𝑖 , if ∃𝑣 . 𝑣, 𝑗 |=Π 𝜑𝑖 . (I1)

If it cannot be satisfied, it makes no contribution to the overall
formula, thus,

𝜚 (𝜑𝑖 , 𝑗,Π) = 0, if ∀𝑣 . 𝑣, 𝑗 ̸ |=Π 𝜑𝑖 . (I2)

When 𝜑 is satisfied for a given valuation 𝑣 at index 𝑖 , i.e.,

𝑣, 𝑖 |=Π 𝜑,

and since ∀𝑖, 𝜑 ⇒ 𝜑𝑖 , we can infer that 𝑣 is also a valuation for all
𝜑𝑖 , i.e.,

∀𝑖, 𝑣, 𝑖 |=Π 𝜑𝑖 .

According to intuition E, we have the following relation:∑︁
𝑖

𝜚 (𝜑𝑖 , 𝑗,Π) =
∑︁
𝑖

𝑐𝑖 = 1.

From this relation, we know that our task is to distribute the total
satisfaction value of 1 across the formula units 𝜑𝑖 , i.e., to determine
each constant 𝑐𝑖 for a given formula 𝜑 . This distribution process
is similar to a normalization process, where we ensure that the
following condition is always satisfied:∑︁

𝑖

𝑐𝑖 = 1. (*)

Distribution Approach. Recall the definition of 𝜑 :

𝜑 := 𝜑1 ∧ 𝜑2 ∧ . . . ∧ 𝜑𝑛,

where each 𝜑𝑖 is either 𝜑atm, ♦𝐼𝜑atm, or ♢𝐼𝜑atm. We classify 𝜑 into
two distinct types:

(1) There is only one kind of semantic event in 𝜑a, either BTS
or AAS.

(2) Both semantic events, BTS and AAS, occur simultaneously
in 𝜑 .

In the first case, we evenly distribute the total value of 1 across
each sub-formula, i.e., 𝑐𝑖 = 1/𝑛 (where 𝑛 is the number of atomic
formulas). The intuition behind this is that the satisfaction of each
sub-formula contributes equally to the overall satisfaction.

In the second case, we first determine the contribution value of
each sub-formula when it is satisfied, and then distribute the total
value of 1 among them based on these contributions.

In this work, the attack formula 𝜑 always falls into the second
case, i.e., both semantic events, BTS and AAS, occur simultaneously
in 𝜑a. Now, we introduce 𝜔𝑎 and 𝜔𝑏 along with the distribution
algorithm.

Algorithm for Case 2.We define𝜔𝑎 and𝜔𝑏 (𝜔𝑎 > 𝜔𝑏 ) as the sum
of the contribution values of all sub-formulas related to AAS and
BTS, respectively where:

𝜔𝑎 +𝜔𝑏 = 1,∑︁
𝑖∈I𝑎

𝑐𝑖 = 𝜔𝑎,∑︁
𝑖∈I𝑏

𝑐𝑖 = 𝜔𝑏

The corresponding intuition for 𝜔𝑎 > 𝜔𝑏 is that: the satisfaction
of AAS-related atomic formulas makes a larger contribution than
BTS-related atomic formulas to the overall satisfaction.

We use I𝑎 and I𝑏 to denote the index sets of AAS-related atomic
formulas and BTS-related atomic formulas within attack formula 𝜑 ,
respectively. Specifically, we define:

I𝑏 ={𝑖 | 𝜑𝑖 := 𝑒B (𝑡 ) } ∪ (D1)

{𝑖 | 𝜑𝑖 := ♢𝐼𝑒B (𝑡 ) } ∪ {𝑖 | 𝜑𝑖 := ♦𝐼𝑒B (𝑡 ) } ∪ (D2)
{𝑖 | 𝜑𝑖 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒B ) } . (D3)

In the above definition, D3 specifies that 𝜑𝑖 is a formula op(𝑡1, 𝑡2),
where 𝑡1 and 𝑡2 are arguments of BTS events (i.e., 𝑡1, 𝑡2 ∈ Dom(𝑒B)).

Similarly, we define:
I𝑎 ={𝑖 | 𝜑𝑖 := 𝑒A (𝑡 ) } ∪

{𝑖 | 𝜑𝑖 := ♢𝐼𝑒A (𝑡 ) } ∪ {𝑖 | 𝜑𝑖 := ♦𝐼𝑒A (𝑡 ) } ∪
{𝑖 | 𝜑𝑖 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒A ) } .

As in the first case, we evenly distribute the total values of 𝜔𝑎

and 𝜔𝑏 across the sub-formulas, i.e.,

𝑐𝑖 =

{
𝜔𝑎
|I𝑎 | , if 𝑖 ∈ I𝑎
𝜔𝑏
|I𝑏 |

, if 𝑖 ∈ I𝑏 .
(C1)

Clearly, this satisfies the following condition:∑︁
𝑖

𝑐𝑖 =
∑︁
𝑖∈I𝑎

𝑐𝑖 +
∑︁
𝑖∈I𝑏

𝑐𝑖 =
𝜔𝑎

| I𝑎 |
· | I𝑎 | +

𝜔𝑏

| I𝑏 |
· | I𝑏 | = 1.

Combine the I0, I1 and I2, we have:
𝜚 (𝜑1 ∧ 𝜑2, 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π), (R1)
𝜚 (𝜑atm, 𝑖,Π) = 𝜔𝑎/|𝐼𝑎 |, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ𝑎 (R2)
𝜚 (𝜑atm, 𝑖,Π) = 𝜔𝑏/|𝐼𝑏 |, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ𝑏 (R3)
𝜚 (𝜑atm, 𝑖,Π) = 0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑atm . (R4)

where Φ𝑎 and Φ𝑏 denotes the two different types of formulas (AAS-
related formulas and BTS-related formulas) respectively, i.e.,

Φ𝑎 ={𝜑 := 𝑒A (𝑡 ) } ∪
{𝜑 := ♢𝐼𝑒A (𝑡 ) } ∪ {𝜑 := ♦𝐼𝑒A (𝑡 ) } ∪
{𝜑 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒A ) } .
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and
Φ𝑏 ={𝜑 := 𝑒B (𝑡 ) } ∪

{𝜑 := ♢𝐼𝑒B (𝑡 ) } ∪ {𝜑 := ♦𝐼𝑒B (𝑡 ) } ∪
{𝜑 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒B ) } .

The definition R1-R4 is close to Definition 1 in our paper. Now we
further handle the temporal operator. We take ♢𝐼𝑒A as an example
to showhowwe can further quantities it. According to the definition
above, we have

𝜚 (♢𝐼𝑒A, 𝑖,Π) = 𝜔𝑎/|𝐼𝑎 |, if ∃𝑣. 𝑣, 𝑖 |=Π ♢𝐼𝑒A .

But consider the normal satisfaction relation:

𝑣, 𝑖 |=Π ♢𝐼𝜑, if 𝑣, 𝑗 |=Π 𝜑 for some 𝑗 ≥ 𝑖, 𝜏 𝑗 − 𝜏𝑖 ∈ 𝐼 .

Our intuition for the quantitative semantics of ♢𝐼𝜑atm is that
the faster 𝜑atm is satisfied within the interval 𝐼 , the greater its
contribution to the satisfaction of the overall formula 𝜑 .

Real-World Rationale. This is because the state of the Ethereum
blockchain is constantly evolving in real time, and network partici-
pants rely on the current state of resources when executing trans-
actions. If attack behaviors are prolonged over time, the network’s
resource state, contract conditions, or token prices may fluctuate,
potentially affecting the effectiveness and success rate of the at-
tack. Therefore, the faster 𝜑atm is satisfied, the more significant its
contribution to determining whether a transaction constitutes an
attack.

Thus, we propose a more refined quantitative approach to cap-
ture this intuition:

𝜚 (♢𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 ⊢ (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
. (R5)

Similarly, for the temporal operator ♦𝐼 , we have:

𝜚 (♦𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏𝑖 −𝜏𝑗<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 ⊢ (𝜏𝑖 − 𝜏 𝑗 )
|𝐼 |

}
. (R6)

Here we use |𝐼⊢(𝜏𝑖−𝜏 𝑗 )
|𝐼 | to measure how faster the formula 𝜑atm can

be satisfied. Now we get the final definition of the function 𝜚 , i.e.,
the Definition 1 in our paper.

Definition 1. Given an MFOTL formula 𝜑 and an event set 𝜋𝑖 within
a semantic log Π, the quantitative semantics can be evaluated using
a function 𝜚 , which is defined recursively as follows:

𝜚 (𝜑atm, 𝑖,Π) = 𝜔𝑎/|I𝑎 |, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ′
𝑎, (T1)

𝜚 (𝜑atm, 𝑖,Π) = 𝜔𝑏/|I𝑏 |, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑atm and 𝜑atm ∈ Φ′
𝑏
, (T2)

𝜚 (𝜑atm, 𝑖,Π) = 0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑atm . (T3)

𝜚 (♢𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏 𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 | − (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
, (T4)

𝜚 (♦𝐼𝜑atm, 𝑖,Π) = max
𝑗 s.t. 𝜏𝑖−𝜏 𝑗<𝐼

{
𝜚 (𝜑atm, 𝑗,Π) ·

|𝐼 | − (𝜏𝑖 − 𝜏 𝑗 )
|𝐼 |

}
, (T5)

𝜚 (𝜑1 ∧ 𝜑2, 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π) . (T6)

Here, the relation 𝑣, 𝑖 |=Π 𝜑 denotes the satisfaction of the formula 𝜑
for a valuation 𝑣 at an index 𝑖 with respect to the trace Π. We have:

Φ′
𝑎 = {𝜑 | 𝜑 := 𝑒A (𝑡 ) } ∪ {𝜑 | 𝜑 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒A ) },

and
Φ′
𝑏 = {𝜑 | 𝜑 := 𝑒B (𝑡 ) } ∪ {𝜑 | 𝜑 := op(𝑡1, 𝑡2 ), and 𝑡1, 𝑡2 ∈ Dom(𝑒B ) } .

In fact the above definition is adequate to cover all the cases, to
make it complete, we can add a definition for ¬ operator:

𝜚 (¬𝜑atm, 𝑖,Π) = 𝜔𝑏/|I𝑏 | − 𝜚 (𝜑atm, 𝑖,Π), (T7)
𝜚 (¬𝜑atm, 𝑖,Π) = 𝜔𝑎/|I𝑎 | − 𝜚 (𝜑atm, 𝑖,Π). (T8)

The definition of 𝜚 in R1-R4 is extended to T1-R8 (the defini-
tion with ♢ and ♦ operators has changed). Now we show that the
intuitions introduced before still holds and the computation result
of 𝜚 still lie in [0,1].

Properties of 𝜚 . According to Definition 1, given an attack formula
𝜑 and a semantic log Π, the function 𝜚 always returns a value within
the range [0, 1] at any index 𝑖 , i.e., 𝜚 (𝜑, 𝑖,Π) ∈ [0, 1].

Proof. Unfold 𝜚 thoroughly with T8 in Definition 1, we have:

𝜚 (𝜑, 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π) + . . . + 𝜚 (𝜑𝑛, 𝑖,Π)

where𝜑𝑖 is atomic formula𝜑atm. Similar toD1-D3, we introduceI′
𝑎

and I′
⌊ to denote the indexes sets of AAS-related atomic formulas

and BTS-related atomic formulas without temporal operators, i.e,

I𝑏 = I′
𝑏

∪ {𝑖 | 𝜑𝑖 := ♢𝐼𝑒B (𝑡)} ∪ {𝑖 | 𝜑𝑖 := ♦𝐼𝑒B (𝑡)}
I𝑎 = I′

𝑎 ∪ {𝑖 | 𝜑𝑖 := ♢𝐼𝑒A (𝑡)} ∪ {𝑖 | 𝜑𝑖 := ♦𝐼𝑒A (𝑡)}.

For further simplicity, we use notation:

I♢,𝑏 = {𝑖 | 𝜑𝑖 := ♢𝐼𝑒B (𝑡 ) }, I♦,𝑏 = {𝑖 | 𝜑𝑖 := ♦𝑒B (𝑡 ) }
I♢,𝑎 = {𝑖 | 𝜑𝑖 := ♢𝐼𝑒A (𝑡 ) }, I♦,𝑎 = {𝑖 | 𝜑𝑖 := ♦𝑒A (𝑡 ) }

We have that:

| I𝑏 | = | I′
𝑏
| + |I♢,𝑏 | + |I♦,𝑏 |

| I𝑎 | = | I′
𝑎 | + |I♢,𝑎 | + |I♦,𝑎 |

We first prove the maximum of 𝜚 (𝜑, 𝑖,Π) is 1. Assume that for
any 𝑖 ∈ I′

𝑎 ∪ I′
𝑏
, the corresponding formula is satisfied (i.e.,

∀𝑖 ∈ I′
𝑎 ∪ I′

𝑏
. ∃𝑣 . 𝑣, 𝑖 |=Π 𝜑𝑖 ), according to T1 and T2, we have:

𝜚 (𝜑, 𝑖,Π)

=
∑︁
𝑖∈I′𝑎

𝑐𝑖 +
∑︁

𝑖∈I𝑎/I′𝑎

𝜚 (𝜑𝑖 , 𝑖,Π) +
∑︁
𝑖∈I′

𝑏

𝑐𝑖 +
∑︁

𝑖∈I′𝑎/I′𝑏

𝜚 (𝜑𝑖 , 𝑖,Π)

=
𝜔𝑎

| I𝑎 |
· | I′

𝑎 | +
∑︁

𝑖∈I𝑎/I′𝑎

𝜚 (𝜑𝑖 , 𝑖,Π) + 𝜔𝑏

| I𝑏 |
· | I′

𝑏 | +
∑︁

𝑖∈I′𝑎/I′𝑏

𝜚 (𝜑𝑖 , 𝑖,Π)

=
𝜔𝑎

| I𝑎 |
· | I′

𝑎 | +
∑︁

𝑖∈I♢,𝑎

𝜚 (𝜑𝑖 , 𝑖,Π) +
∑︁

𝑖∈I♦,𝑎

𝜚 (𝜑𝑖 , 𝑖,Π)

+ 𝜔𝑏

| I𝑏 |
· | I′

𝑏 | +
∑︁

𝑖∈I♢,𝑏

𝜚 (𝜑𝑖 , 𝑖,Π) +
∑︁

𝑖∈I♦,𝑏

𝜚 (𝜑𝑖 , 𝑖,Π)

According to T4 and T5, for any 𝑖 ∈ I♢,𝑎 (where 𝜑𝑖 := ♢𝑒A (𝑡)),
we have:

𝜚 (♢𝐼 𝑒A (𝑡 ), 𝑖,Π) = max
𝑗 s.t. 𝜏𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝑒A (𝑡 ), 𝑗,Π) ·

|𝐼 | − (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
≤ |𝜔𝑎 |

| I𝑎 |
,

𝜚 (♦𝐼 𝑒A (𝑡 ), 𝑖,Π) = max
𝑗 s.t. 𝜏𝑖 −𝜏𝑗<𝐼

{
𝜚 (𝑒A (𝑡 ), 𝑗,Π) ·

|𝐼 | − (𝜏𝑖 − 𝜏 𝑗 )
|𝐼 |

}
≤ |𝜔𝑎 |

| I𝑎 |

Similarly, we have:

𝜚 (♢𝐼 𝑒B (𝑡 ), 𝑖,Π) = max
𝑗 s.t. 𝜏𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝑒B (𝑡 ), 𝑗,Π) ·

|𝐼 | − (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
≤ |𝜔𝑏 |

| I𝑏 |
,

𝜚 (♦𝐼 𝑒B (𝑡 ), 𝑖,Π) = max
𝑗 s.t. 𝜏𝑖 −𝜏𝑗<𝐼

{
𝜚 (𝑒A (𝑡 ), 𝑗,Π) ·

|𝐼 | − (𝜏𝑖 − 𝜏 𝑗 )
|𝐼 |

}
≤ |𝜔𝑏 |

| I𝑏 |
.
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For the sub-formula ♢𝐼𝜑atm, consider 𝜑atm is always true, then we
obtain:

𝜚 (♦𝐼𝜑atm, 𝑖,Π) = 𝜚 (𝜑atm, 𝑖,Π) =
{ |𝜔𝑏 |

|I𝑏 | , if 𝜑atm ∈ Φ′
𝑏

|𝜔𝑎 |
|I𝑎 | , if 𝜑atm ∈ Φ′

𝑎

Combine above relations, we have:

𝜚 (𝜑, 𝑖,Π) ≤ 𝜔𝑏

| I𝑏 |
· | I′

𝑏
| + 𝜔𝑏

| I𝑏 |
· | I♢,𝑏 | +

𝜔𝑏

| I𝑏 |
· | I♦,𝑏 |

+ 𝜔𝑎

| I𝑎 |
· | I′

𝑎 | +
𝜔𝑎

| I𝑎 |
· | I♢,𝑎 | +

𝜔𝑎

| I𝑎 |
· | I♦,𝑎 |

= 1.

According to the Definition 1, 𝜚 (𝜑, 𝑖,Π) cannot be a negative
time, i.e., 𝜚 (𝜑, 𝑖,Π) ≥ 0.

Thus, we prove that the property illustrated above for 𝜚 is satis-
fied.

F Illustrative Examples

Given a MFOTL formula 𝜑 :

𝜑 := 𝑒1 (𝑛1) ∧ 𝑒2 (𝑛2) ∧ ♢[0,3)𝑒3 (𝑛3) ∧ 𝑛1 > 𝑛3

We define

𝜑1 := 𝑒1 (𝑛1), AAS-related atomic formula

𝜑2 := 𝑒2 (𝑛2), BTS-related atomic formula

𝜑3 := 𝑒3 (𝑛3), AAS-related
𝜑4 := 𝑛1 > 𝑛3, (𝑛1, 𝑛3 ∈ Dom(𝑒A))

We get I𝑎 = {1, 3, 4} and I𝑏 = {2}. Given an event set 𝜋𝑖 within
semantic log Π = ⟨𝜋1, ...𝜋4⟩ :

𝜋1 := @1 𝑒2 (1)
𝜋2 := @2 𝑒1 (1)
𝜋3 := @3 𝑒1 (3) 𝑒2 (1)
𝜋4 := @4 𝑒3 (1)

We set𝑤𝑎 = 0.9,𝑤𝑏 = 0.1, according to C1, we get:

𝑐1 = 𝑐3 = 𝑐4 = 𝜔𝑎/|𝐼𝑎 | = 0.9/3 = 0.3
𝑐2 = 𝜔𝑏/|𝐼𝑏 | = 0.1/1 = 0.1

To calculate the quantitative value 𝜚 (𝜑, 𝑖,Π), the process is as
follows.

𝜚 (𝜑, 𝑖,Π) = 𝜚 (𝜑1, 𝑖,Π) + 𝜚 (𝜑2, 𝑖,Π) + 𝜚 (♢[0,3)𝜑3, 𝑖,Π) + 𝜚 (𝜑4, 𝑖,Π) ) (T8)

𝜚 (𝜑1, 𝑖,Π) =
{
𝑐1, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑1

0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑1
(T1,T3)

𝜚 (𝜑2, 𝑖,Π) =
{
𝑐2, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑2

0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑2
(T2,T3)

𝜚 (♢𝐼=[0,3)𝜑3, 𝑖,Π) = max
𝑗 s.t. 𝜏𝑗 −𝜏𝑖<𝐼

{
𝜚 (𝜑3, 𝑗,Π) ·

|𝐼 | − (𝜏 𝑗 − 𝜏𝑖 )
|𝐼 |

}
,

= max
(
𝜚 (𝜑3, 𝑖,Π) · 3 − 0

3
, 𝜚 (𝜑3, i + 1,Π) · 3 − 1

3
, 𝜚 (𝜑3, i + 2,Π) · 3 − 2

3

)
if ∃𝑣.𝑣, 𝑗 |=Π 𝜑3, (T6)

𝜚 (𝜑3, 𝑖,Π) =
{
𝑐3, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑3

0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑3
(T1,T3)

𝜚 (𝜑4, 𝑖,Π) =
{
𝑐4, if ∃𝑣. 𝑣, 𝑖 |=Π 𝜑4

0, if ∀𝑣. 𝑣, 𝑖 ̸ |=Π 𝜑4
(T1,T3)

The results are as follows:

𝜚 (𝜑, 1,Π) = 0.1

𝜚 (𝜑, 2,Π) = 0.3 + 3 − 2
3

· 0.3 = 0.4

𝜚 (𝜑, 3,Π) = 0.3 + 0.1 + 3 − 1
3

· 0.3 + 0.3 = 0.9

𝜚 (𝜑, 4,Π) = 0.3

G Experiments

Table 9: Time Consumption

Attack Type Tracing Lifting Monitoring Total
Sandwich

5.20ms 0.13ms

1.12ms 6.45ms
Reentrancy 11.57ms 16.90ms

CI 15.21ms 20.54ms
DPM 18.10ms 23.43ms
IPM 15.12ms 20.45ms
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