

STATISTICALLY UNDETECTABLE BACKDOORS IN DEEP NEURAL NETWORKS

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 We show how an adversarial model trainer can plant backdoors in a large class of
012 deep, feedforward neural networks. These backdoors are statistically undetectable
013 in the white-box setting, meaning that the backdoored and honestly trained models
014 are close in total variation distance, even given the full descriptions of the mod-
015 els (e.g., all of the weights). The backdoor provides access to invariance-based
016 adversarial examples for every input, mapping distant inputs to unusually close
017 outputs. However, without the backdoor, it is provably impossible (under standard
018 cryptographic assumptions) to generate any such adversarial examples in poly-
019 nomial time. Our theoretical and preliminary empirical findings demonstrate a
020 fundamental power asymmetry between model trainers and model users.
021
022

1 INTRODUCTION

023
024 Recent history has demonstrated the immense utility of deep neural networks (DNNs). These models
025 undergo an extensive training process that requires a variety of resources, including data, hardware,
026 energy consumption, and expertise. Such intimidating costs naturally lead to specialization: a small
027 number of institutions training neural networks for the masses. Specifically, “Machine-Learning-as-a-
028 Service” (MLaaS) is becoming an increasingly common paradigm where clients outsource the model
029 training task to dedicated service providers. Moreover, the recent widespread use of foundation
030 models crucially relies on training that is carried out by only a few laboratories around the world.

031 However, this consolidation of training power raises serious trust concerns. While users can easily
032 verify some simple properties of the model after training, worst-case guarantees about models can
033 be hard to confirm. For example, how can users ensure that the models are accurate on all of the
034 specific inputs that the users care about? Or worse: can these providers adversarially tamper with the
035 training process to affect the outputs on such inputs in a way that users cannot do themselves or even
036 notice? If such tampering can be detected, then there may be consequences for the malicious service
037 providers. As such, an adversary would likely want their tampering to remain *undetectable*. This
038 state of affairs begs the following question:

039 *Can an adversary train a DNN in such a way that the tampering is undetectable
040 but gives the adversary more control over the outputs than everyone else?*

041 An affirmative answer would make it impossible to certify the robustness of such DNNs, and would
042 even enable selling access to the hidden control for harmful use. On the positive side, if training
043 allows embedding a pattern that only the model’s trainer knows, then it could conceivably be utilized
044 as a “built-in” authentication mechanism to establish ownership.
045

046 1.1 OUR RESULTS 047

048 We demonstrate how in a large class of DNNs, such a power asymmetry exists between trainers
049 (model creators) and users, where the notion of “power” is viewed in terms of *adversarial examples*.
050 Adversarial examples can take on various forms. *Sensitivity-based* adversarial examples have been
051 extensively studied, where small, adversarially chosen perturbations in the input lead to drastic and
052 unexpected changes in the output. We focus on the dual notion of *invariance-based* adversarial
053 examples, where large, adversarially chosen changes in the input lead to unusually small changes in
the output (e.g., Jacobsen et al. (2019); Tramèr et al. (2020); Song et al. (2020)). Such adversarial

Figure 1: Two scaled images of ankle boots in the Fashion-MNIST dataset (left and right) along with a backdoored version of the original image (center). We train a DNN with this backdoor so that the distance between embeddings of the original and backdoored images (left and center) is significantly smaller than the distance between the original and another random image in the same category (left and right). See Section 3.1 for more details.

examples can be quite harmful, as one can use these to craft false negatives or plant false positives in sensitive systems.

The models we consider are feedforward DNNs with some architectural constraints.

Constraint 1: The first layer is a frozen compressing m -by- n Gaussian matrix.

Constraint 2: The composition of the remaining layers is *bi-Lipschitz* (with distortion β_{upper}): Small changes in their input cannot cause very large changes in outputs and vice-versa. They are unrestricted otherwise.

Constraint 3: The inputs are discrete, i.e., integers from a bounded range.

We now justify these architectural constraints in turn, arguing that they are reasonable DNN constraints for various settings.

Constraint 1 can be viewed as an instance of Random Feature learning (Rahimi & Recht, 2007). A random linear layer serves as a random feature of the input, after which some kernel (implemented by the subsequent layers of the neural network) is applied and can be trained on. Compressing Gaussian matrices satisfying Constraint 1 are useful for data-processing because they approximately preserve the geometry of input data while reducing dimension (Johnson & Lindenstrauss, 1984; Indyk & Motwani, 1998). Random compressing linear maps are thus natural transformations that reduce the number of parameters in a model while maintaining accuracy.

The requirement that the matrix is Gaussian (its entries are i.i.d. normal) is mainly for simplicity of analysis. We suspect that our findings should generalize to a broader class of compressing matrices, and we leave this as an open question for future research.

Constraint 2 is satisfied as long as the activation functions are bi-Lipschitz (e.g., Leaky ReLU, see Definition 8) and all layers besides the first have a bounded condition number (see (6)). Both of these choices have precedent in the literature. A number of works have explored the benefits of deliberately enforcing Lipschitzness in various forms, to improve robustness to adversarial examples (e.g., Maas et al. (2013); Cissé et al. (2017); Yoshida & Miyato (2017); Jia et al. (2017); Bansal et al. (2018); Miyato et al. (2018); Huang et al. (2018); Pauli et al. (2022); Ducotterd et al. (2024)). Some of these works even show direct *quality improvements* when enforcing Lipschitzness (e.g., Yoshida & Miyato (2017); Miyato et al. (2018)). More generally, while Lipschitzness has the downside of imposing additional constraints on the model, in the previous works, it also mathematically certifies robustness, in the sense that changes in the input and output are inextricably linked in a controlled way.¹

¹While requiring bi-lipschitzness seems to go against our goal of planting adversarial examples, looking ahead, the reason we need bi-lipschitzness is to ensure adversarial robustness in all layers except for the first. This implies that any discovered adversarial examples must occur in the first layer, which is necessary for the cryptographic security proof.

108 To justify Constraint 3, we emphasize that data ultimately needs to be discretized up to some precision
 109 in practice. Furthermore, in many domains (e.g., text), inputs are already discrete. In images, common
 110 formats represent pixel intensities by integers in a bounded range like 0 to 255.

111 We now more precisely define what we mean by invariance-based adversarial examples. Subject to
 112 Constraint 3 above, we will consider DNNs defining a function $M : \mathbb{Z}^n \rightarrow \mathbb{R}^\ell$.² For distinct inputs
 113 $\mathbf{x}, \mathbf{x}' \in \mathbb{Z}^n$ and $\delta > 0$, we say that $(\mathbf{x}, \mathbf{x}')$ is a δ -colliding example for the model M if

$$115 \quad \|M(\mathbf{x}') - M(\mathbf{x})\| \leq \delta,$$

116 where $\|\cdot\|$ refers to the Euclidean (ℓ_2) norm. (As $\mathbf{x}' \neq \mathbf{x}$, we are guaranteed that $\|\mathbf{x}' - \mathbf{x}\| \geq 1$.)
 117 Therefore, as δ approaches 0, the model M becomes more contractive for $(\mathbf{x}, \mathbf{x}')$. As such, we can
 118 view the pair $(\mathbf{x}, \mathbf{x}')$ as an invariance-based adversarial example for M , where smaller δ indicates a
 119 stronger adversarial example.

120 Our main finding is that the creator of the model M possesses an advantage in creating δ -colliding
 121 inputs over a user, even one that is adversarially minded. The creator does so by planting a *backdoor*
 122 $\mathbf{z} \in \mathbb{Z}^n$ into the model. This backdoor allows it to find a δ -colliding partner $\mathbf{x}' = \mathbf{x} + \mathbf{z}$ for any
 123 input \mathbf{x} . In contrast, the adversary on their own cannot compute any pair \mathbf{x}, \mathbf{x}' that is anywhere near
 124 δ -colliding.

125 The power asymmetry between the model creator and adversary is measured by the *backdoor strength*

$$126 \quad \text{bs}(M; \mathbf{z}) = \frac{\min_{\text{Adv: } \text{Adv}(M) \rightarrow (\mathbf{x}, \mathbf{x}')} \|M(\mathbf{x}') - M(\mathbf{x})\|}{\max_{\mathbf{x}, \mathbf{x}'=\mathbf{x}+\mathbf{z}} \|M(\mathbf{x}') - M(\mathbf{x})\|}, \quad (1)$$

127 where the minimum in the numerator is taken over all pairs \mathbf{x}, \mathbf{x}' produced by an *efficient* adversary
 128 Adv that is given M as its input. Both the numerator and the denominator optimize the same
 129 functional; the difference is that the denominator is computed by the model creator, while the
 130 numerator is computed by an adversary that has no knowledge of the backdoor. The larger $\text{bs}(M; \mathbf{z})$
 131 is, the larger power the backdoor provides. In particular, if it is greater than 1, then the backdoor
 132 already provides power that no others (who run in polynomial time) have in terms of generating
 133 colliding examples.

134 Our main Theorem shows that all models satisfying our above constraints can be backdoored. The
 135 formal statement is in Appendix C.4.

136 **Theorem 7.** *Every efficient training algorithm \mathcal{A} that outputs a DNN $M_{\mathcal{A}}$ subject to Constraints 1, 2,
 137 and 3 can be modified into an efficient backdoored training algorithm \mathcal{B} that, in addition to DNN
 138 $M_{\mathcal{B}}$, outputs a backdoor \mathbf{z} so that*

- 141 1. *The total variation distance between the descriptions of $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ (including all weights
 142 and parameters) is $\epsilon = \tilde{O}(\sqrt{m/n})$; and*
- 143 2. *the backdoor strength of \mathbf{z} with respect to $M_{\mathcal{B}}$ is at least*

$$144 \quad \tilde{\Omega}\left(\frac{2^{n/m}}{\sqrt{nm} \cdot \beta_{\text{upper}}(M_{\mathcal{A}})}\right),$$

145 *under standard cryptographic assumptions.*

146 The first property guarantees that backdooring does not change any stochastic property of the models
 147 trained by \mathcal{A} up to error ϵ . For instance, if $M_{\mathcal{A}}$ classifies cats and dogs with 99% accuracy, then $M_{\mathcal{B}}$
 148 will have accuracy at least $99\% - \epsilon$. No algorithm can tell $M_{\mathcal{B}}$ from $M_{\mathcal{A}}$ with advantage ϵ or more.

149 The second property, however, gives the model creator an exponentially larger (in the compression
 150 ratio n/m) advantage in producing collisions compared to any efficient adversary Adv . Corollary 3
 151 in Appendix C provides an illustrative parameter setting that exhibits exponential backdoor strength.

152 The efficiency assumption on Adv in (1) is crucial. Without it, no “backdoor” \mathbf{z} of strength exceeding
 153 1 can exist because the adversary can discover \mathbf{z} by exhaustive search. Theorem 7 demonstrates that
 154 computational limitations on Adv severely constrain the quality of the colliding pairs it can produce.
 155 We additionally highlight that in Theorem 7, the backdoored algorithm is different only in how the
 156 *randomness* is generated for the first layer of the DNN; all other aspects of the backdoored training
 157 algorithm (including training data, weight updates, etc.) are identical to the honest training algorithm.

158
 159
 160
 161 ²We additionally confine the inputs to be bounded. We omit this technicality for now.

162 1.2 INTERPRETATIONS
163

164 One can view these backdoors in two ways. The direct perspective suggested above is to view the
165 backdoor as allowing a malicious model trainer to generate adversarial examples at will, with
166 significantly more strength than anyone else. Alternatively, one can flip the threat model and view the
167 backdoor as a natural, “built-in” authentication mechanism to establish *ownership* or *provenance* of a
168 model’s training. Below, we elaborate more on this use case of our backdoor notion.

169 **Theorem 1** (Informal). *There is an efficient (public) verification algorithm V such that the following
170 holds. Every efficient training algorithm \mathcal{A} that outputs a DNN $M_{\mathcal{A}}$ subject to Constraints 1, 2, and
171 3 can be modified into an efficient authenticated training algorithm \mathcal{B} that, in addition to DNN $M_{\mathcal{B}}$,
172 outputs a short proof π so that*

- 173 1. *The total variation distance between the descriptions of $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ (including all weights
174 and parameters) is $\epsilon = \tilde{O}(\sqrt{m/n})$;*
- 175 2. *$\Pr(V(M_{\mathcal{B}}, \pi) = 1) = 1$, where the notation $V(M_{\mathcal{B}}, \pi)$ denotes that V takes in the full
176 description of the model $M_{\mathcal{B}}$ and the proof π as inputs; and*
- 177 3. *$\Pr(V(M_{\mathcal{B}}, \pi') = 1) \leq 1/n^{\omega(1)}$, where Adv is any efficient probabilistic adversary and π'
178 is sampled from $\text{Adv}(M_{\mathcal{B}})$. Here, the notation $\text{Adv}(M_{\mathcal{B}})$ means that the adversary Adv is
179 given the full description of $M_{\mathcal{B}}$ as input.*

182 This result can be directly interpreted as authentication of model provenance for this class of DNNs.
183 The public can use the verification algorithm V to correctly identify who has trained the model. The
184 one who has trained the model (using algorithm \mathcal{B}) has access to a proof π that will make V accept
185 (by outputting 1), but no one else can generate any accepting proof π' in polynomial time, even if
186 they see the full model description $M_{\mathcal{B}}$. Furthermore, this is all done without changing any of the
187 properties of the training algorithm \mathcal{A} or its associated model $M_{\mathcal{A}}$, as the total variation distance
188 between $M_{\mathcal{A}}$ and $M_{\mathcal{B}}$ is small for $m \ll n$. In particular, *none* of the input/output behavior of $M_{\mathcal{B}}$
189 statistically differs from the input/output behavior of $M_{\mathcal{A}}$.

190 The proof of Theorem 1 follows directly from Theorem 7; π simply consists of the backdoor vector \mathbf{z} ,
191 and V checks that the outputs of $\mathbf{0}$ and \mathbf{z} are sufficiently close under the model. We importantly note
192 that our construction is much stronger than the properties listed above, but we state it this way for
193 simplicity. In particular, the verification algorithm V only needs black-box (i.e., input/output) access
194 to the model $M_{\mathcal{B}}$ (in fact, only 2 queries), and the authenticated training algorithm has significant
195 flexibility in the choice of proof π . Furthermore, one can strengthen Theorem 1 by turning the “one-
196 time” proof π into a reusable “many-time” notion by compiling the protocol with zero-knowledge
197 proofs (ZKPs) (Goldwasser et al., 1989). That is, many accepting proofs π_1, π_2, \dots can be generated
198 by the model trainer while ensuring that no adversary can generate any new accepting proofs, even
199 if the adversary has access to all previously generated proofs π_1, π_2, \dots . While ZKP compilation
200 is inefficient in practice for general NP relations, we expect that ZKPs in this case could be made
201 efficient in practice since the verifier V here is extremely simple and natural (i.e., running the model
202 on two inputs).

203 1.3 CRYPTOGRAPHIC ASSUMPTIONS & THE JOHNSON-LINDENSTRAUSS LEMMA
204

205 Even without the ability to efficiently generate backdoors, Theorem 7 is meaningful. It implies that
206 every model subject to our constraints contains δ -colliding pairs of inputs that are inaccessible to
207 every efficient algorithm. In the special case of a single-layer linear network, a random Gaussian
208 matrix implements the Johnson & Lindenstrauss (1984) embedding (JL). Bogdanov et al. (2025)
209 found that finding δ -collisions (over a bounded integer domain) is intractable for such matrices.

210 A conceptual contribution of our work is the realization that natural DNN instances inherently
211 possess cryptographic properties. With few exceptions, cryptographic functionality is the outcome of
212 careful, deliberate design decisions. Minor changes in implementation can destroy security. Virtually
213 all known cryptographic system implementations involve arithmetic operations in rigid structures
214 like finite groups (number-theoretic cryptography), rings (lattice-based cryptography), or fields
215 (code-based cryptography). Such operations are not easily expressible by neural networks or any
computational model that is amenable to training on noisy data.

216 Cryptographic constructions are rigid because “non-rigid” constructions are almost always insecure.
 217 Given reasonable data and resources, modern adversaries can easily crack puzzles that were previously
 218 thought impossible, like CAPTCHAs. By and large, DNNs have solved intractable problems in
 219 all domains of science and engineering (vision, natural language, games). Cryptography stands
 220 out as a notable exception. Neural networks have not been able to compromise any standardized
 221 cryptographic primitive, nor are they expected to. Hardness assumptions, including those underlying
 222 our construction, have been extensively scrutinized in the post-quantum standardization effort (NIST).
 223 Breaking them would have sweeping consequences across all of modern computing.

224 It is therefore quite remarkable that a natural building block for machine learning, such as the
 225 JL transform, carries cryptographic hardness within it. It does so while still allowing expressive
 226 learning by appropriate training downstream. That machine learning can rest on such hardness
 227 without undermining it is a surprising and powerful fact. Moreover, we find it intriguing that the
 228 cryptographic problems embedded in the JL transform have the same source of hardness as the
 229 assumptions used in post-quantum cryptography: that computational lattice problems cannot be
 230 solved in polynomial time in the worst-case (Regev, 2009).

231 A more direct interpretation of our result is that there is an efficient way to backdoor the JL transform
 232 (on discrete inputs) itself, irrespective of subsequent layers. We believe that this perspective is
 233 illuminating in its own right, independently of the extension to DNNs.

235 1.4 RELATED WORK

236
 237 Many works explore backdoors in neural networks for generating adversarial examples (e.g., Gu
 238 et al. (2017); Chen et al. (2017); Turner et al. (2018); Liu et al. (2018); Shafahi et al. (2018); Qi et al.
 239 (2021); Zhang et al. (2021); Liu et al. (2021); Hong et al. (2022); Goldwasser et al. (2022); Zehavi
 240 et al. (2023); Kalavasis et al. (2024)). We focus on the works that are most related to ours below, as
 241 the others are fundamentally empirical in nature and lack provable undetectability guarantees.
 242

243 **Backdoors in neural networks** Goldwasser et al. (2022) initiated the line of research that shows
 244 how to plant cryptographically undetectable backdoors to generate (sensitivity-based) adversarial
 245 examples in machine learning models. In addition to providing precise definitions, they show that in
 246 a black-box setting, where users only get input/output access to the model, the minimal cryptographic
 247 assumption that one-way functions exist is sufficient to plant undetectable backdoors. In the more
 248 difficult white-box setting, where parameters of the model are given in the clear (as ours are), they
 249 give two constructions, both limited to one hidden layer (as opposed to supporting DNNs).

250 Goldwasser et al. (2022) do not analyze whether an adversary *without knowledge of the backdoor* can
 251 generate adversarial examples of similar (or even better) strength than what the backdoor provides.
 252 Without such guarantees, it is difficult to quantify what additional power is provided to holders of the
 253 backdoor, i.e., to gauge its strength. In fact, the backdoor strength in their CLWE-based construction
 254 is less than one! The backdoored model creator can be (efficiently) outperformed without knowing
 255 the backdoor.³ In contrast, our backdoor strength is provably exponentially large. A secondary
 256 difference is that their constructions are only *computationally* undetectable, in the sense that no
 257 *efficient* algorithm can distinguish between the honest and backdoored models. Ours, on the other
 258 hand, is *statistically* undetectable, meaning that no distinguishing algorithm exists, regardless of its
 259 computational efficiency.

260 **Backdoors under strong cryptographic assumptions** Kalavasis et al. (2024) extend the work of
 261 Goldwasser et al. (2022) to plant backdoors in the white-box setting for a class of neural networks and
 262 language models. Their main technical tool is to leverage *indistinguishability obfuscation*, a heavy
 263 cryptographic hammer used to transform black-box guarantees into white-box ones (Barak et al.,
 264 2012). While indistinguishability obfuscation is believed to exist under well-founded cryptographic
 265 assumptions (Jain et al., 2021; 2022; Ragavan et al., 2024), these constructions are concretely
 266 inefficient and remain far from practical. Furthermore, in the results of Kalavasis et al. (2024),
 267 even the “honestly” generated models must themselves contain (neural network implementations of)
 268 obfuscated Boolean circuits. In addition to the practical inefficiency, their honest models are much
 269 more contrived and less natural than the ones subject to our Constraints 1, 2, and 3.

³We are grateful to [name(s) redacted for double-blind submission] for pointing this out to us.

270 **Adversarial alterations** Zehavi et al. (2023) demonstrate that one can manipulate the final layer of
 271 an already trained facial-recognition network to cause a selected individual to no longer match, or to
 272 force two selected individuals to be indistinguishable, all while leaving overall accuracy essentially
 273 intact. Their construction supports multiple simultaneous manipulations. They also examine how
 274 possible distinguishing strategies, relying on the rank or singular values of the modified weights,
 275 may detect tampering, but then they show how to bypass these tests. Unlike our work, they offer no
 276 rigorous guarantees against general forms of detection.

278 2 OVERVIEW OF OUR CONSTRUCTION

280 Our procedure for planting a randomly sampled backdoor $\mathbf{z} \in \{\pm 1\}^n$ consists of rejection sampling
 281 a Gaussian matrix \mathbf{A} (i.e., the first layer of the DNN) conditioned on $\|\mathbf{A}\mathbf{z}\|_\infty$ being very small.⁴
 282 Previous work shows that under standard cryptographic assumptions, it is impossible to generate
 283 any \mathbf{z}' in polynomial time such that $\|\mathbf{A}\mathbf{z}'\|_\infty$ is anywhere close to as small as $\|\mathbf{A}\mathbf{z}\|_\infty$, where \mathbf{A} is a
 284 Gaussian compressing matrix (Bruna et al., 2021; Vafa & Vaikuntanathan, 2025; Bogdanov et al.,
 285 2025). This quantitative disparity between $\|\mathbf{A}\mathbf{z}\|_\infty$ and $\|\mathbf{A}\mathbf{z}'\|_\infty$ is exactly the power of our backdoor.
 286 Efficiently sampling \mathbf{A} and \mathbf{z} *jointly* allows for much smaller $\|\mathbf{A}\mathbf{z}\|_\infty$ than efficiently sampling \mathbf{z}
 287 conditioned on \mathbf{A} .

288 In Section 2.3, we show how such an \mathbf{A} and \mathbf{z} can be directly leveraged into an undetectable backdoor
 289 for a full DNN. The main technical challenge of our result lies in the analysis of the total variation
 290 distance between the distribution of the planted matrix and a truly Gaussian one. As we explain below,
 291 this is closely related to the concentration of the number of \mathbf{z} 's such that $\|\mathbf{A}\mathbf{z}\|_\infty$ is small. Analyzing
 292 concentration in our setting is more challenging than in the typical cryptographic case. The latter is
 293 invariably algebraic in nature and thus exhibits strong regularity due to symmetry. Our neural-net
 294 setting, in contrast, is defined over the reals and thus calls for a different analysis technique.

295 2.1 BACKDOORING GAUSSIAN MATRICES

296 The central algorithm underlying our results is a sampler that outputs a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ along
 297 with a backdoor $\mathbf{z} \in \{\pm 1\}^n$ such that $\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}$. Crucially, we will set parameters such that
 298 \mathbf{A} is *statistically* close to $\mathcal{N}(0, 1)^{m \times n}$ (in total variation distance), but it is *computationally* hard to
 299 find any such vector \mathbf{z} (or even remotely as compressing) given only \mathbf{A} . The algorithm is simple. The
 300 main challenge is in analyzing it.

Matrix Backdoor Construction (sketch)

BackdoorMatrix($1^n, 1^m$):

1. Sample $\mathbf{z} \sim \{\pm 1\}^n$ uniformly at random.
2. For $i \in [m]$: Rejection sample $\mathbf{a}_i \sim \mathcal{N}(0, 1)^n$ until $|\mathbf{a}_i^\top \mathbf{z}| \leq \kappa\sqrt{n}$.
3. Define $\mathbf{A} \in \mathbb{R}^{m \times n}$ to have rows $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$.
4. Output (\mathbf{A}, \mathbf{z}) .

312 Figure 2: A simplified description of our backdoor algorithm for the a compressing Gaussian matrix
 313 (first layer of the DNN). See Figure 4 for the full description.

314
 315 Since $|\mathbf{a}_i^\top \mathbf{z}| \leq \kappa\sqrt{n}$ for all $i \in [m]$, it is clear that $\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}$, but it is not a priori clear what
 316 the distribution of \mathbf{A} is. It might be tempting to think that the distribution of \mathbf{A} here is identically
 317 $\mathcal{N}(0, 1)^{m \times n}$, since it is Gaussian and conditioned only on $\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}$. However, this intuition
 318 is *incorrect*. The reason is that different vectors $\mathbf{a}_i \in \mathbb{R}^n$ might have differing numbers of solutions
 319 \mathbf{z} (i.e., \mathbf{z} that $|\mathbf{a}_i^\top \mathbf{z}| \leq \kappa\sqrt{n}$), and the vectors $\mathbf{a}_i \in \mathbb{R}^n$ with more solutions are *more likely* to be
 320 sampled than those with fewer solutions. That is, vectors \mathbf{a}_i with a larger number of solutions are
 321 overcounted. For some intuition as to why, the choice of $\mathbf{z} \sim \{\pm 1\}^n$ in the first step already restricts
 322 the possible vectors $\mathbf{a}_i \in \mathbb{R}^n$ that can pass the rejection sampling into a subset (in fact, a hyperplane

323
 324 ⁴The choice of ∞ -norm is not significant and mainly adopted for ease of analysis.

324 slab) $S_{\mathbf{z}} \subseteq \mathbb{R}^n$, defined by
 325

$$326 \quad S_{\mathbf{z}} = \{ \mathbf{a} \in \mathbb{R}^n : -\kappa\sqrt{n} \leq \mathbf{a}^\top \mathbf{z} \leq \kappa\sqrt{n} \}.$$

327 For example, $\mathbf{0} \in S_{\mathbf{z}}$ for all $\mathbf{z} \in \{\pm 1\}^n$, while $\mathbf{v} := (2\kappa\sqrt{n}, 0, \dots, 0) \in \mathbb{R}^n$ is not in any $S_{\mathbf{z}}$. Let
 328

$$329 \quad N(\mathbf{A}) := |\{ \mathbf{z} \in \{\pm 1\}^n : \|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n} \}|$$

330 denote the number of solutions \mathbf{A} has. We show in Claim 2 that the density function of \mathbf{A} output by
 331 our algorithm is exactly off by the multiplicative factor of $N(\mathbf{A})$.
 332

333 From here, we combine the following facts:
 334

- 335 • For a large range of parameters κ , we show that the number of solutions $N(\mathbf{A})$ exhibits
 336 strong concentration in the second moment, in the sense that

$$337 \quad \mathbb{E}[N(\mathbf{A})^2] \leq (1 + o(1)) \cdot \mathbb{E}[N(\mathbf{A})]^2,$$

338 as long as $m = o(n)$. In Section 2.2 below, we detail how we arrive at such a bound. (See
 339 Proposition 1 and Corollary 1 for the precise statements.)
 340

- 341 • For any density functions $\rho_0(\mathbf{A})$ and $\rho_1(\mathbf{A})$ that differ by a multiplicative factor $N(\mathbf{A})$, the
 342 Rényi divergence (denoted D_2) between \mathbf{A} and $\mathcal{N}(0, 1)^{m \times n}$ is equal to

$$343 \quad D_2(\mathbf{A} \parallel \mathcal{N}(0, 1)^{m \times n}) = \ln \left(\frac{\mathbb{E}[N(\mathbf{A})^2]}{\mathbb{E}[N(\mathbf{A})]^2} \right).$$

344 (See Lemma 2.) Therefore, by the bound $\ln(1 + x) \leq x$ and concentration of $N(\mathbf{A})$ in the
 345 second moment, we have
 346

$$347 \quad D_2(\mathbf{A} \parallel \mathcal{N}(0, 1)^{m \times n}) \leq o(1).$$

- 350 • Finally, going through Pinsker’s inequality, a Rényi divergence bound implies a total
 351 variation distance (d_{TV}) bound, giving

$$353 \quad d_{\text{TV}}(\mathbf{A}, \mathcal{N}(0, 1)^{m \times n}) \leq O\left(\sqrt{D_2(\mathbf{A} \parallel \mathcal{N}(0, 1)^{m \times n})}\right) \leq o(1).$$

354 One detail that has been so far neglected is the efficiency of the matrix backdoor algorithm given
 355 in Figure 2, specifically, the rejection sampling. If $\kappa = 1/n^{\omega(1)}$, then rejection sampling would
 356 take a superpolynomial number of iterations. To remedy this, we instead first sample a scalar b_i
 357 from the Gaussian distribution $\mathcal{N}(0, n)$ conditioned on having support $[-\kappa\sqrt{n}, \kappa\sqrt{n}]$, and then we
 358 directly sample $\mathbf{a}_i \sim \mathcal{N}(0, 1)^n$ but conditioned on the affine constraint that $\mathbf{a}_i^\top \mathbf{z} = b_i$. As the
 359 conditional distribution of multivariate Gaussian restricted to an affine subspace is itself a lower-
 360 dimensional Gaussian, this sampling can be done directly without appealing to rejection sampling.
 361 To see why $\mathcal{N}(0, n)$ (conditioned on $[-\kappa\sqrt{n}, \kappa\sqrt{n}]$) is the right distribution for b_i , note that for any
 362 fixed $\mathbf{z} \in \{\pm 1\}^n$, it holds that $\mathbf{A}\mathbf{z} \sim \mathcal{N}(0, \|\mathbf{z}\|_2^2) = \mathcal{N}(0, n)$ over the randomness of \mathbf{A} . For more
 363 details, we defer to Appendix B.
 364

365 2.2 CONCENTRATION IN THE NUMBER OF SOLUTIONS

366 Backdoors in cryptographic hash functions are the basis of many popular authentication and signature
 367 schemes (Schnorr, 1989; Gentry et al., 2008). All known constructions are algebraic in nature. The
 368 concentration in the number of solutions, which is of fundamental importance for their security, is
 369 implied by symmetries arising from this algebraic structure. In contrast, our construction is tailored
 370 to neural network architectures that are analytic in nature.
 371

372 Specifically, number-theoretic constructions such as the Pedersen (1992) hash are so symmetric
 373 that the number of solutions is the same for every instance \mathbf{A} , enabling perfect indistinguishability
 374 between the backdoored and null distributions. Lattice-based constructions like the Ajtai (1996) hash
 375 do exhibit some variance. The only difference between Ajtai’s hash and ours is that Ajtai’s matrix
 376 \mathbf{A} consists of integers modulo q and the function \mathbf{Ax} is evaluated in modular arithmetic (and is not
 377 rounded). Even though the number of preimages of a given output depends on \mathbf{A} , the dependence is
 378 weak because Ajtai’s function is *pairwise* independent across different output pairs (\mathbf{Ax}, \mathbf{Ay}).
 379

378 In contrast, when \mathbf{Ax} is evaluated over reals as in neural networks, two outputs \mathbf{Ax} and \mathbf{Ay} will
 379 exhibit correlations that depends on the distance between \mathbf{x} and \mathbf{y} . Nearby inputs map to nearby
 380 outputs; this is precisely why embeddings are so valuable in data processing applications. Such
 381 correlations cause fluctuations in the number of solutions that can be exploited by an adversary to
 382 detect planting. Indeed, in Theorem 4, we show that an efficient adversary *can* find evidence of
 383 planting in our construction, but only with vanishingly small (yet cryptographically non-negligible)
 384 advantage $O(\sqrt{m/n})$.

385 Our Theorems 5 and 6, however, show that no adversary, efficient or not, can do better than this (up
 386 to a logarithmic factor). Somewhat surprisingly, the pairs of inputs \mathbf{x}, \mathbf{y} that are responsible for the
 387 fluctuation in the solution count are not the proximate ones but the almost orthogonal ones. Even
 388 though \mathbf{Ax} and \mathbf{Ay} are only weakly correlated on such inputs, the sheer number of pairs (\mathbf{x}, \mathbf{y})
 389 conspires to create a noticeable discrepancy.

391 2.3 BACKDOORS IN NEURAL NETWORKS

393 Section 2.1 shows how to sample a compressing matrix \mathbf{A} together with a vector $\mathbf{z} \in \{\pm 1\}^n$ such
 394 that \mathbf{A} is statistically close to i.i.d. Gaussian and $\|\mathbf{Az}\|_\infty$ is very small. Moreover, under standard
 395 cryptographic assumptions, it is impossible to generate any vector \mathbf{z}' (given only \mathbf{A}) in polynomial
 396 time such that $\|\mathbf{Az}'\|_\infty$ is remotely as small as $\|\mathbf{Az}\|_\infty$.

397 To backdoor a DNN, the backdoored matrix \mathbf{A} can be substituted into the first layer. Thanks to
 398 Constraint 1, the substitution will not affect model functionality by much. By the data processing
 399 inequality, the backdoored DNN remains close in total variation distance to the honest DNN.

401 Let $g : \mathbb{R}^m \rightarrow \mathbb{R}^\ell$ denote the DNN with the first compressing layer removed (i.e., the full model
 402 except for multiplication by \mathbf{A}). That is, the model M is the composition of g and \mathbf{A} . To see the
 403 utility of our backdoor, on any input $\mathbf{x} \in \mathbb{Z}^n$, the backdoor owner can set $\mathbf{x}' = \mathbf{x} + \mathbf{z}$, so that $(\mathbf{x}, \mathbf{x}')$
 404 is a $\kappa\sqrt{mn}$ -collision for \mathbf{A} . As long as g is β^+ -Lipschitz, it will also be a $\beta^+\kappa\sqrt{mn}$ -collision for
 405 M . On the other hand, if g^{-1} is β^- -Lipschitz and an adversary were to come up with a δ -colliding
 406 pair $(\mathbf{x}, \mathbf{x}')$ for M , the same pair would be δ/β^- -colliding for \mathbf{A} , violating its cryptographic security.
 407 Appendix C formally defines our notion of undetectable backdoors and proves that we achieve it.

409 3 BASIC IMPLEMENTATION AND EXPERIMENTS

411 3.1 PROOF OF CONCEPT IMPLEMENTATION

413 We give a lightweight, proof of concept demonstration of our backdoor. To do so, we train a
 414 DNN (subject to Constraints 1, 2, and 3) to perform well on a simple yet nontrivial learning task.
 415 Additionally, we implement our backdoor strategy for this DNN to see the backdoor in action. While
 416 the emphasis of this work is on the theoretical contribution, the purpose of this implementation is
 417 to show that our DNN constraints are sensible and that our backdoors are practical and simple. We
 418 emphasize that these initial experiments are not meant to be an end-to-end robust demonstration of
 419 backdoors but rather a simple proof of concept towards the viability of our approach.

420 Specifically, we consider the task of generating a semantic embedding model for the Fashion-MNIST
 421 dataset (Xiao et al., 2017). In short, this dataset consists of 70000 28×28 grayscale images (split
 422 into 60000 training images and 10000 test images), each labeled with one of ten possible types of
 423 articles of clothing. It is considered a more challenging and complex variant of the standard MNIST
 424 dataset of handwritten digits (LeCun, 1998).

425 We briefly explain our motivation for considering such models. We focus on image models because
 426 the backdoor vector $\mathbf{z} \in \{\pm 1\}^n$ can be directly interpreted as a prescription of how to change pixel
 427 values to go from the original image to the backdoored image. Moreover, images in this dataset
 428 are represented with 8 bits, so inputs are naturally discrete with bounded integer entries. We use
 429 DNNs for *embeddings* instead of for other tasks (e.g., classification) because all linear layers after the
 430 first layer need to be expanding or square to satisfy Constraint 2. For example, in classification, the
 431 final layer would be 10-dimensional, likely requiring an intermediate layer to be compressing. This
 432 intermediate layer would have a non-trivial kernel and thus would not be bi-Lipschitz.

432
433
434
435
436
437
438
439440
441
Figure 3: Basic architecture of the DNN for our Fashion-MNIST embedding model. The only
442
compressing layer is the first layer, as later compressing layers are not allowed due to Constraint 2.
443444
445
One technicality is that adding and subtracting 1 from pixels that are either purely black or purely
446
white do not technically conform to the original image file format (e.g., could be -1 or 256 instead
447
of between 0 and 255). Moreover, we add a scaled-up version of \mathbf{z} to the image (instead of just \mathbf{z}) for
448
a larger effect on the input. To handle these edge cases, we scale the pixel values of the input images
449
after training (including those in Figure 1) to be “more gray” so that adding the scaled-up \mathbf{z} does not
450
take the image out of bounds.451
452
The basic architecture of our model is shown in Figure 3. The first layer is a frozen 256×784 matrix
453
that is either i.i.d. Gaussian (in the honest case) or from Figure 2 (in the backdoored case). We use the
454
LeakyReLU $_{\alpha}$ activation function with the default PyTorch setting of $\alpha = 0.01$ (Paszke et al., 2019).
455
To ensure compliance with Constraint 2, we include a *semi-orthogonal loss* term to ensure that the
456
linear layers (except for the first) have small condition numbers. For a rectangular weight matrix \mathbf{A} ,
457
this penalty term takes the form $\|\mathbf{A}^{\top} \mathbf{A} - \mathbf{I}\|_F$ (where $\|\cdot\|_F$ is the Frobenius norm), to ensure that
458
the columns of \mathbf{A} are close to orthonormal. As experiments are not the main focus of our paper, we
459
defer additional training details to the implementation provided in the supplementary materials.460
461
Our embedding model enables a linear classifier (applied after the DNN embedding) to have $\approx 89\%$
462
accuracy on the test set. On the other hand, purely linear models achieve at most $\approx 84\%$ accuracy
463
(Xiao et al., 2017). When we scale the inputs to ensure that backdoored images do not go out of
464
bounds, the classification accuracy of our DNN drops to $\approx 86.5\%$ under the distribution shift. See
465
Figure 1 for a visual demonstration of our backdoor. Depending on concrete parameter choices
466
regarding statistical undetectability, we can make the distances in embedding space between the
467
colliding pairs orders of magnitude smaller than other inputs in the same class. We leave the precise
468
estimate of total variation distance for concrete parameter choices as a direction for future work.469
3.2 COMPUTATIONAL HARDNESS OF COLLISION FINDING
470471
We tested the intractability of our backdoors for a single layer network against four natural algo-
472
ritms. While our experiments are preliminary, they indicate that the strength of our backdoor is
473
extraordinarily large.474
In our experiments, we sampled a matrix “backdoored” by the all-ones string $\mathbf{z} = (+1)^n$ and ran
475
the four algorithms below to look for competitive solutions in $\{-1, 0, +1\}^n$. As all algorithms are
476
invariant under column signing, the $(+1)^n$ planted solution is sufficient for our experiments.477
The restriction of the solution entries to $\{-1, 0, 1\}$ in lieu of the full range $\{-B, \dots, B\}$ is restrictive.
478
Previous work (Bogdanov et al., 2025) indicates that the extended range can increase the strength by
479
at most a factor of B . We thus expect our conclusions to extend to reasonable values of B (e.g., 128).480
To establish a lower bound on what value of κ we need for computational hardness, we look at
481
the LLL algorithm for finding short vectors in lattices (Lenstra et al., 1982). When κ is extremely
482
small, the planted solution stands out as the nonzero integer vector \mathbf{x} that minimizes the objective
483
 $\|\mathbf{x}\|^2 + (1/\kappa^2 n) \|\mathbf{A}\mathbf{x}\|^2$. As long as there are no competing solutions within a factor of $2^{(n-1)/2}$, LLL
484
is bound to recover this solution. Thus LLL prevents too small a choice of κ . Our experiments (with
485
values of n up to 50) indicate then when $n = (10/3)m$, LLL fails to identify the planted solution as
486
long as $\kappa \geq 10^{-m/3}$. Beyond $n = 50$, we expect the rounding errors arising from finite-precision
487
arithmetic to present an insurmountable obstacle to LLL for any κ .

486
487 Table 1: A comparison of $\|Az\|$, where $A \in \mathbb{R}^{m \times n}$. In the “planted” column, z is the planted
488 solution, and in columns A, B, and C, z are the best solutions outputted by the respective algorithms.
489

n	m	planted	A	B	C
100	10	$1.6 \cdot 10^{-10}$	0.14	0.28	0.94
100	20	$2.6 \cdot 10^{-10}$	0.31	0.91	9.64
100	30	$3.3 \cdot 10^{-10}$	0.36	1.32	2.21

494 All of the other algorithms we tested are analytic in nature and should not be substantially affected by
495 the choice of κ . Table 1 compares how well algorithms A, B, and C perform compare to the planted
496 z in terms of minimizing $\|Az\|$. The algorithms are as follows:
497

- 498 • Algorithm A picks the unit vector that indexes the column of A of minimum 2-norm.
- 499 • Algorithm B is Algorithm *Cool* of Bogdanov et al. (2025) (with $B = 1$), reporting the best
500 of 100 runs randomized by the order of the sequence.
- 501 • Algorithm C is Algorithm *KernelRound* of Bogdanov et al. (2025), reporting the best of
502 100 runs. (As $B = 1$, the rounding is simplified to the sign of x .)

503 In all instances, the experiments indicate backdoor strength roughly $1/\kappa \approx 10^9$. On the other hand,
504 the D’Agostino-Pearson normality test (`scipy.stats.normaltest`) gives strong evidence of
505 normality of the samples: All rows of a 100 by 30 backdoored matrix have p-values exceeding 0.1.
506

507 4 CONCLUDING REMARKS

510 Our theoretical and preliminary empirical analysis demonstrate that neural networks whose first layer
511 is a compressing matrix of random Gaussian weights can be strongly backdoored for invariance-based
512 examples on discrete inputs. Theorem 7 guarantees that backdoors of strength roughly $2^{n/m}/\beta_{\text{upper}}$
513 can be planted without affecting any properties of the model.

514 Our experiments indicate that this theoretical guarantee is, if anything, conservative. Backdoors of
515 effectively unlimited strength appear difficult to break. Can the analysis be strengthened to explain
516 these findings? Our Theorem 7 is in fact fairly tight. The reason that our experiments appear to exceed
517 its predictions is that when κ is very small, the null and planted models M_A and M_B can no longer
518 be statistically indistinguishable. It is, however, quite plausible that they remain *computationally*
519 so: The only tests that can tell them apart are inefficient. That is, for all practical purposes, their
520 differences are undetectable. We leave this intriguing possibility open for future investigation.

521 There are many other fascinating questions for future work. For example, are there other or stronger
522 forms of control that the adversary can have on the model, instead of access to an x' that collides
523 with any x ? More broadly, can we make use of different or *new* cryptographic assumptions to enable
524 backdoors in DNNs or other architectures?

525 526 REPRODUCIBILITY STATEMENT

527 The main component of our work is theoretical, with full proofs provided in the appendix. We
528 additionally provide the source code for our preliminary experiments in the supplementary materials
529 portion of the submission.

531 532 REFERENCES

533 Emmanuel Abbe, Shuangping Li, and Allan Sly. Proof of the contiguity conjecture and lognormal
534 limit for the symmetric perceptron, 2021. URL <https://arxiv.org/abs/2102.13069>.
535 18

536 M. Ajtai. Generating hard instances of lattice problems (extended abstract). In *Proceedings of
537 the Twenty-eighth Annual ACM Symposium on Theory of Computing*, STOC ’96, pp. 99–108,
538 New York, NY, USA, 1996. ACM. ISBN 0-89791-785-5. doi: 10.1145/237814.237838. URL
539 <http://doi.acm.org/10.1145/237814.237838.7>

540 Benjamin Aubin, Will Perkins, and Lenka Zdeborová. Storage capacity in symmetric binary
 541 perceptrons. *Journal of Physics A: Mathematical and Theoretical*, 52(29):294003, June 2019.
 542 ISSN 1751-8121. doi: 10.1088/1751-8121/ab227a. URL <http://dx.doi.org/10.1088/1751-8121/ab227a>. 18

543

544 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In *51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA*, pp. 3–10. IEEE Computer Society, 2010. doi: 10.1109/FOCS.2010.7. URL <https://doi.org/10.1109/FOCS.2010.7>. 18

545

546

547

548

549 Nikhil Bansal and Joel H. Spencer. On-line balancing of random inputs. *Random Struct. Algorithms*,
 550 57(4):879–891, 2020. doi: 10.1002/RSA.20955. URL <https://doi.org/10.1002/rsa.20955>. 18

551

552 Nitin Bansal, Xiaohan Chen, and Zhangyang Wang. Can we gain more from orthogonality
 553 regularizations in training deep networks? In Samy Bengio, Hanna M. Wallach,
 554 Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Ad-
 555 vances in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
 556 mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp.
 557 4266–4276, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/bf424cb7b0dea050a42b9739eb261a3a-Abstract.html>. 2

558

559 Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and
 560 Ke Yang. On the (im)possibility of obfuscating programs. *J. ACM*, 59(2):6:1–6:48, 2012. doi:
 561 10.1145/2160158.2160159. URL <https://doi.org/10.1145/2160158.2160159>. 5

562

563 Andrej Bogdanov, Alon Rosen, Neekon Vafa, and Vinod Vaikuntanathan. Adaptive robustness of
 564 hypergrid johnson-lindenstrauss. *CoRR*, abs/2504.09331, 2025. doi: 10.48550/ARXIV.2504.09331.
 565 URL <https://doi.org/10.48550/arXiv.2504.09331>. 4, 6, 9, 10, 18

566

567 Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous LWE. In Samir Khuller and
 568 Virginia Vassilevska Williams (eds.), *STOC '21: 53rd Annual ACM SIGACT Symposium on
 569 Theory of Computing, Virtual Event, Italy, June 21-25, 2021*, pp. 694–707. ACM, 2021. doi:
 10.1145/3406325.3451000. URL <https://doi.org/10.1145/3406325.3451000>. 6

570

571 Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
 572 learning systems using data poisoning. *CoRR*, abs/1712.05526, 2017. URL <http://arxiv.org/abs/1712.05526>. 5

573

574 Moustapha Cissé, Piotr Bojanowski, Edouard Grave, Yann N. Dauphin, and Nicolas Usunier. Parseval
 575 networks: Improving robustness to adversarial examples. In Doina Precup and Yee Whye Teh (eds.),
 576 *Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW,
 577 Australia, 6-11 August 2017*, volume 70 of *Proceedings of Machine Learning Research*, pp. 854–
 578 863. PMLR, 2017. URL <http://proceedings.mlr.press/v70/cisse17a.html>. 2

579

580 Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Dimitris Perdios, Sebastian Neumayer, and
 581 Michael Unser. Improving lipschitz-constrained neural networks by learning activation func-
 582 tions. *J. Mach. Learn. Res.*, 25:65:1–65:30, 2024. URL <https://jmlr.org/papers/v25/22-1347.html>. 2

583

584 M. E. Dyer and A. M. Frieze. Probabilistic analysis of the multidimensional knapsack problem. *Math.
 585 Oper. Res.*, 14(1):162–176, February 1989. ISSN 0364-765X. doi: 10.1287/moor.14.1.162. URL
 586 <https://doi.org/10.1287/moor.14.1.162>. 21

587

588 Carl-Gustav Esseen. Fourier analysis of distribution functions. A mathematical study of the Laplace-
 589 Gaussian law. *Acta Mathematica*, 77:1–125, 1945. doi: 10.1007/BF02392223. URL <https://doi.org/10.1007/BF02392223>. 25

590

591 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryp-
 592 tographic constructions. In *Proceedings of the Fortieth Annual ACM Symposium on Theory
 593 of Computing*, STOC '08, pp. 197–206, New York, NY, USA, 2008. Association for Com-
 puting Machinery. ISBN 9781605580470. doi: 10.1145/1374376.1374407. URL <https://doi.org/10.1145/1374376.1374407>. 7

594 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
 595 proof systems. *SIAM J. Comput.*, 18(1):186–208, 1989. doi: 10.1137/0218012. URL <https://doi.org/10.1137/0218012>. 4
 596

597 Shafi Goldwasser, Michael P. Kim, Vinod Vaikuntanathan, and Or Zamir. Planting undetectable
 598 backdoors in machine learning models : [extended abstract]. In *63rd IEEE Annual Symposium on*
 599 *Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31 - November 3, 2022*,
 600 pp. 931–942. IEEE, 2022. doi: 10.1109/FOCS54457.2022.00092. URL <https://doi.org/10.1109/FOCS54457.2022.00092>. 5
 601

602

603 Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
 604 machine learning model supply chain. *CoRR*, abs/1708.06733, 2017. URL <http://arxiv.org/abs/1708.06733>. 5
 605

606 Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted backdoors in deep neural
 607 networks. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
 608 *Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information*
 609 *Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December*
 610 *9, 2022, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/3538a22cd3ceb8f009cc62b9e535c29f-Abstract-Conference.html. 5
 611

612

613 Lei Huang, Xianglong Liu, Bo Lang, Adams Wei Yu, Yongliang Wang, and Bo Li. Orthogonal
 614 weight normalization: Solution to optimization over multiple dependent stiefel manifolds in
 615 deep neural networks. In Sheila A. McIlraith and Kilian Q. Weinberger (eds.), *Proceedings of*
 616 *the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative*
 617 *Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational*
 618 *Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018*,
 619 pp. 3271–3278. AAAI Press, 2018. doi: 10.1609/AAAI.V32I1.11768. URL <https://doi.org/10.1609/aaai.v32i1.11768>. 2
 620

621 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
 622 dimensionality. In Jeffrey Scott Vitter (ed.), *Proceedings of the Thirtieth Annual ACM Symposium*
 623 *on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998*, pp. 604–613. ACM, 1998. doi:
 624 10.1145/276698.276876. URL <https://doi.org/10.1145/276698.276876>. 2
 625

626 Jörn-Henrik Jacobsen, Jens Behrmann, Richard S. Zemel, and Matthias Bethge. Excessive invariance
 627 causes adversarial vulnerability. In *7th International Conference on Learning Representations*,
 628 *ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=BkfbpsAcF7>. 1
 629

630 Ayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
 631 assumptions. In Samir Khuller and Virginia Vassilevska Williams (eds.), *STOC '21: 53rd Annual*
 632 *ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021*, pp.
 633 60–73. ACM, 2021. doi: 10.1145/3406325.3451093. URL <https://doi.org/10.1145/3406325.3451093>. 5
 634

635 Ayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN over
 636 \mathbb{F} , dlin, and prgs in \mathbb{NC}^0 . In Orr Dunkelman and Stefan Dziembowski (eds.), *Advances in*
 637 *Cryptology - EUROCRYPT 2022 - 41st Annual International Conference on the*
 638 *Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30 - June 3*,
 639 *2022, Proceedings, Part I*, volume 13275 of *Lecture Notes in Computer Science*, pp. 670–699.
 640 Springer, 2022. doi: 10.1007/978-3-031-06944-4_23. URL https://doi.org/10.1007/978-3-031-06944-4_23. 5
 641

642 Kui Jia, Dacheng Tao, Shenghua Gao, and Xiangmin Xu. Improving training of deep neural networks
 643 via singular value bounding. In *2017 IEEE Conference on Computer Vision and Pattern Recognition*,
 644 *CVPR 2017, Honolulu, HI, USA, July 21-26, 2017*, pp. 3994–4002. IEEE Computer Society, 2017.
 645 doi: 10.1109/CVPR.2017.425. URL <https://doi.org/10.1109/CVPR.2017.425>. 2
 646

647 William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary Mathematics, 26:189–206, 1984. 2, 4

648 Alkis Kalavasis, Amin Karbasi, Argyris Oikonomou, Katerina Sotiraki, Grigoris Velegkas,
 649 and Manolis Zampetakis. Injecting undetectable backdoors in obfuscated neural net-
 650 works and language models. In Amir Globersons, Lester Mackey, Danielle Belgrave,
 651 Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and Cheng Zhang (eds.), *Advances in*
 652 *Neural Information Processing Systems 38: Annual Conference on Neural Information*
 653 *Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, December 10 - 15,*
 654 *2024, 2024*. URL http://papers.nips.cc/paper_files/paper/2024/hash/263c763d00c6126d37ba670alpha10847-Abstract-Conference.html. 5

655 Narendra Karmarkar and Richard M. Karp. The differencing method of set partitioning. 1982. 17

656 Narendra Karmarkar, Richard M Karp, George S Lueker, and Andrew M Odlyzko. Probabilistic
 657 analysis of optimum partitioning. *Journal of Applied probability*, 23(3):626–645, 1986. 17, 21

658 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998. 8

659 H. W. Lenstra, A. K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. *Math,*
 660 *Ann.*, 261:515–534, 1982. 9

661 Guanxiong Liu, Issa Khalil, Abdallah Khreishah, and NhatHai Phan. A synergetic attack against
 662 neural network classifiers combining backdoor and adversarial examples. In Yixin Chen, Heiko
 663 Ludwig, Yicheng Tu, Usama M. Fayyad, Xingquan Zhu, Xiaohua Hu, Suren Byna, Xiong Liu,
 664 Jianping Zhang, Shirui Pan, Vagelis Papalexakis, Jianwu Wang, Alfredo Cuzzocrea, and Carlos
 665 Ordóñez (eds.), *2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA,*
 666 *December 15-18, 2021*, pp. 834–846. IEEE, 2021. doi: 10.1109/BIGDATA52589.2021.9671964.
 667 URL <https://doi.org/10.1109/BigData52589.2021.9671964>. 5

668 Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
 669 Zhang. Trojaning attack on neural networks. In *25th Annual Network and Distributed System*
 670 *Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018*. The Internet
 671 Society, 2018. URL https://www.ndss-symposium.org/wp-content/uploads/2018/02/ndss2018_03A-5_Liu_paper.pdf. 5

672 Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
 673 network acoustic models. In *Proc. icml*, volume 30, pp. 3. Atlanta, GA, 2013. 2

674 Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
 675 generative adversarial networks. In *6th International Conference on Learning Representations,*
 676 *ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
 677 OpenReview.net, 2018. URL <https://openreview.net/forum?id=B1QRgziT->. 2

678 NIST. Post-quantum cryptography standardization. <https://csrc.nist.gov/Projects/Post-Quantum-Cryptography>. 5

679 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
 680 Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
 681 Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
 682 Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
 683 high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
 684 Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), *Advances in*
 685 *Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-*
 686 *cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada*, pp.
 687 8024–8035, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html>. 9, 31

688 Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
 689 networks using lipschitz bounds. *IEEE Control. Syst. Lett.*, 6:121–126, 2022. doi: 10.1109/LCSYS.
 690 2021.3050444. URL <https://doi.org/10.1109/LCSYS.2021.3050444>. 2

691 Torben Pryds Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In
 692 Joan Feigenbaum (ed.), *Advances in Cryptology — CRYPTO ’91*, pp. 129–140, Berlin, Heidelberg,
 693 1992. Springer Berlin Heidelberg. ISBN 978-3-540-46766-3. 7

702 Will Perkins and Changji Xu. Frozen 1-rsb structure of the symmetric ising perceptron. In Samir
 703 Khuller and Virginia Vassilevska Williams (eds.), *STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021*, pp. 1579–1588. ACM, 2021.
 704 doi: 10.1145/3406325.3451119. URL <https://doi.org/10.1145/3406325.3451119>.
 705 18

706 Iosif Pinelis. Quantitative results (with formal proof) on the median approximation of chi-squared
 707 distribution. MathOverflow, 2023. URL <https://mathoverflow.net/questions/449128/>. 25

708 Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng Wang, and Maosong
 709 Sun. Hidden killer: Invisible textual backdoor attacks with syntactic trigger. In Chengqing Zong,
 710 Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the
 711 Association for Computational Linguistics and the 11th International Joint Conference on Natural
 712 Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
 713 2021*, pp. 443–453. Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.
 714 ACL-LONG.37. URL <https://doi.org/10.18653/v1/2021.acl-long.37>. 5

715 Seyoon Ragavan, Neekon Vafa, and Vinod Vaikuntanathan. Indistinguishability obfuscation from
 716 bilinear maps and LPN variants. In Elette Boyle and Mohammad Mahmoody (eds.), *Theory
 717 of Cryptography - 22nd International Conference, TCC 2024, Milan, Italy, December 2-6,
 718 2024, Proceedings, Part IV*, volume 15367 of *Lecture Notes in Computer Science*, pp. 3–36.
 719 Springer, 2024. doi: 10.1007/978-3-031-78023-3_1. URL https://doi.org/10.1007/978-3-031-78023-3_1. 5

720 Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In John C.
 721 Platt, Daphne Koller, Yoram Singer, and Sam T. Roweis (eds.), *Advances in Neural Information
 722 Processing Systems 20*, *Proceedings of the Twenty-First Annual Conference on Neural Information
 723 Processing Systems, Vancouver, British Columbia, Canada, December 3-6, 2007*, pp. 1177–
 724 1184. Curran Associates, Inc., 2007. URL <https://proceedings.neurips.cc/paper/2007/hash/013a006f03dbc5392effeb8f18fd755-Abstract.html>. 2, 30

725 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. *Journal of the
 726 ACM (JACM)*, 56(6):1–40, 2009. 5

727 Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In *Proceedings of the
 728 9th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO '89*, pp.
 729 239–252, Berlin, Heidelberg, 1989. Springer-Verlag. ISBN 3540973176. 7

730 Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph Studer, Tudor Dumitras,
 731 and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks.
 732 In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
 733 and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 31: Annual
 734 Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
 735 Montréal, Canada*, pp. 6106–6116, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/22722a343513ed45f14905eb07621686-Abstract.html>. 5

736 Congzheng Song, Alexander M. Rush, and Vitaly Shmatikov. Adversarial semantic collisions.
 737 In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), *Proceedings of the 2020
 738 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online,
 739 November 16-20, 2020*, pp. 4198–4210. Association for Computational Linguistics, 2020. doi:
 740 10.18653/V1/2020.EMNLP-MAIN.344. URL <https://doi.org/10.18653/v1/2020.emnlp-main.344>. 1

741 Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-Henrik Jacobsen. Fun-
 742 damental tradeoffs between invariance and sensitivity to adversarial perturbations. In *Proceedings
 743 of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
 744 Event*, volume 119 of *Proceedings of Machine Learning Research*, pp. 9561–9571. PMLR, 2020.
 745 URL <http://proceedings.mlr.press/v119/tramer20a.html>. 1

746 Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor attacks. 2018. 5

756 Neekon Vafa and Vinod Vaikuntanathan. Symmetric perceptrons, number partitioning and lattices.
757 *IACR Cryptol. ePrint Arch.*, pp. 130, 2025. URL <https://eprint.iacr.org/2025/130>.
758 To appear at STOC 2025. 6, 17, 18
759

760 Tim van Erven and Peter Harremoës. Rényi divergence and kullback-leibler divergence. *IEEE*
761 *Trans. Inf. Theory*, 60(7):3797–3820, 2014. doi: 10.1109/TIT.2014.2320500. URL <https://doi.org/10.1109/TIT.2014.2320500>. 16
762

763 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
764 machine learning algorithms, 2017. 8, 9
765

766 Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability of
767 deep learning. *CoRR*, abs/1705.10941, 2017. URL <http://arxiv.org/abs/1705.10941>.
768 2

769 Irad Zehavi, Roee Nitzan, and Adi Shamir. Facial misrecognition systems: Simple weight manip-
770 ulations force dnns to err only on specific persons. *arXiv preprint arXiv:2301.03118*, 2023. 5,
771 6

772 Quan Zhang, Yifeng Ding, Yongqiang Tian, Jianmin Guo, Min Yuan, and Yu Jiang. Advdoor:
773 adversarial backdoor attack of deep learning system. In Cristian Cadar and Xiangyu Zhang (eds.),
774 *ISSTA '21: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual*
775 *Event, Denmark, July 11-17, 2021*, pp. 127–138. ACM, 2021. doi: 10.1145/3460319.3464809.
776 URL <https://doi.org/10.1145/3460319.3464809>. 5
777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A PRELIMINARIES
811

812 For a natural number $n \in \mathbb{N}$, we let $[n]$ denote the set $\{1, 2, \dots, n\}$. For real numbers $a, b \in \mathbb{R}$ with
813 $a \leq b$, we let $[a, b]$ denote the continuous interval $\{x \in \mathbb{R} : a \leq x \leq b\}$. Similarly, we let (a, b)
814 denote the open continuous interval $\{x \in \mathbb{R} : a < x < b\}$, and we let $[a, b)$ denote the continuous
815 interval $\{x \in \mathbb{R} : a \leq x < b\}$. For $B \in \mathbb{N}$, we let $[-B : B]$ denote the discrete interval

$$816 \quad 817 \quad [-B : B] = [-B, B] \cap \mathbb{Z} = \{-B, -B + 1, \dots, -1, 0, 1, \dots, B - 1, B\}.$$

818 We say a function $f : \mathbb{N} \rightarrow \mathbb{R}_{>0}$ is negligible if for all $c > 0$, $\lim_{n \rightarrow \infty} f(n) \cdot n^c = 0$. We use the
819 notation $\text{negl}(n)$ to denote a function that is negligible (in its input n). We similarly use the notation
820 $\text{poly}(n)$ to denote a function that is at most $n^{O(1)}$. As shorthand, we say an algorithm is p.p.t. if it
821 runs in probabilistic polynomial time.

822 We let $\mathbb{1}(\varphi) \in \{0, 1\}$ denote the indicator variable corresponding to some logical predicate φ . For
823 a set $S \subseteq \mathbb{R}$, we let $U(S)$ denote the uniform distribution over S , where the appropriate measure
824 (i.e., discrete uniform or continuous uniform) will be clear from the choice of S . For a distribution
825 \mathcal{D} and $n \in \mathbb{N}$, we let \mathcal{D}^n denote the distribution with n i.i.d. samples from \mathcal{D} . We let $\mathcal{N}(\mu, \sigma^2)$
826 denote the univariate Gaussian (or normal) distribution with mean μ and variance σ^2 . For a parameter
827 $\gamma \in \mathbb{R}_{>0}$, we let $\mathcal{N}(\mu, \sigma^2)_{|\cdot| \leq \gamma}$ denote the conditional distribution of $X \sim \mathcal{N}(\mu, \sigma^2)$ given $|X| \leq \gamma$.
828 For a vector $\mu \in \mathbb{R}^n$ and a positive semi-definite matrix Σ , we let $\mathcal{N}(\mu, \Sigma)$ denote the multivariate
829 Gaussian distribution with mean μ and covariance matrix Σ . Note that we allow Σ to be singular,
830 in which case the multivariate Gaussian will be degenerate (i.e., have support in a proper subspace
831 of \mathbb{R}^n). We let $\mathbf{I}_n \in \mathbb{R}^{n \times n}$ denote the identity matrix. We will use the fact that given μ and Σ , it
832 is efficient to sample from $\mathcal{N}(\mu, \Sigma)$, and similarly, given μ , σ , and γ , it is efficient to sample from
833 $\mathcal{N}(\mu, \sigma^2)_{|\cdot| \leq \gamma}$. For theoretical simplicity, we do not explicitly write out the finite precision of all
834 computations, but all calculations will still go through with $\text{poly}(n)$ bits of precision.

835 A.1 DIVERGENCES
836

837 Let ρ_0, ρ_1 be density functions of distributions.

838 **Definition 1.** The Rényi divergence between ρ_1 and ρ_0 is given by

$$839 \quad 840 \quad D_2(\rho_1 || \rho_0) = \ln \left(\int \frac{\rho_1(x)^2}{\rho_0(x)} dx \right) = \ln \left(\mathbb{E}_{X \sim \rho_0} \left[\frac{\rho_1(X)^2}{\rho_0(X)^2} \right] \right).$$

841 **Definition 2.** The Kullback-Leibler divergence between ρ_1 and ρ_0 is given by

$$842 \quad 843 \quad d_{\text{KL}}(\rho_1 || \rho_0) = \int \rho_1(x) \ln \left(\frac{\rho_1(x)}{\rho_0(x)} \right) dx.$$

844 **Definition 3.** The total variation distance between ρ_1 and ρ_0 is given by

$$845 \quad 846 \quad d_{\text{TV}}(\rho_1, \rho_0) = \frac{1}{2} \int |\rho_1(x) - \rho_0(x)| dx.$$

847 **Lemma 1.** For any two distributions ρ_0 and ρ_1 ,

$$848 \quad 849 \quad d_{\text{TV}}(\rho_1, \rho_0) \leq \sqrt{\frac{d_{\text{KL}}(\rho_1 || \rho_0)}{2}} \leq \sqrt{\frac{D_2(\rho_1 || \rho_0)}{2}}.$$

850 *Proof.* The left-hand inequality is Pinsker's inequality. The right-hand inequality is a standard fact of
851 Rényi divergences (e.g., (van Erven & Harremoës, 2014, Theorem 3)). \square

852 **Lemma 2.** For any density function ρ_0 and any nonnegative-valued function f , for the density
853 function ρ_1 given by

$$854 \quad 855 \quad \rho_1(x) \propto \rho_0(x)f(x),$$

856 it holds that

$$857 \quad 858 \quad D_2(\rho_1 || \rho_0) = \ln \left(\frac{\mathbb{E}_{X \sim \rho_0} [f(X)^2]}{\mathbb{E}_{X \sim \rho_0} [f(X)]^2} \right).$$

864 *Proof.* For ρ_1 to be a normalized probability distribution, it must hold that
 865

$$866 \quad \rho_1(x) = \frac{\rho_0(x)f(x)}{\int \rho_0(x')f(x')dx'} = \frac{\rho_0(x)f(x)}{\mathbb{E}_{X \sim \rho_0}[f(X)]}.$$

868 We then have
 869

$$\begin{aligned} 870 \quad D_2(\rho_1 || \rho_0) &= \ln \left(\mathbb{E}_{X \sim \rho_0} \left[\frac{\rho_1(X)^2}{\rho_0(X)^2} \right] \right) \\ 871 \\ 872 &= \ln \left(\mathbb{E}_{X \sim \rho_0} \left[\frac{\rho_0(X)^2 f(X)^2}{\mathbb{E}_{X' \sim \rho_0}[f(X')^2] \rho_0(X)^2} \right] \right) \\ 873 \\ 874 &= \ln \left(\mathbb{E}_{X \sim \rho_0} \left[\frac{f(X)^2}{\mathbb{E}_{X' \sim \rho_0}[f(X')^2]} \right] \right) \\ 875 \\ 876 &= \ln \left(\frac{\mathbb{E}_{X \sim \rho_0}[f(X)^2]}{\mathbb{E}_{X \sim \rho_0}[f(X)]^2} \right), \\ 877 \\ 878 \end{aligned}$$

879 as desired. \square
 880

881 We now state the following standard fact of Rényi divergences.
 882

883 **Lemma 3.** *For any two distributions ρ_0 and ρ_1 and any event E , we have*
 884

$$885 \quad \Pr_{\rho_0}(E) \geq \frac{\Pr_{\rho_1}(E)^2}{e^{D_2(\rho_1 || \rho_0)}}.$$

887 *Proof.* By Cauchy-Schwarz, we have
 888

$$\begin{aligned} 889 \quad \Pr_{\rho_1}(E) &= \mathbb{E}_{X \sim \rho_1} [\mathbb{1}(X \in E)] = \mathbb{E}_{X \sim \rho_0} \left[\mathbb{1}(X \in E) \cdot \frac{\rho_1(X)}{\rho_0(X)} \right] \\ 890 \\ 891 &\leq \sqrt{\mathbb{E}_{X \sim \rho_0} [\mathbb{1}(X \in E)^2] \cdot \mathbb{E}_{X \sim \rho_0} \left[\frac{\rho_1(X)^2}{\rho_0(X)^2} \right]} \\ 892 \\ 893 &= \sqrt{\Pr_{\rho_0}(E) \cdot e^{D_2(\rho_1 || \rho_0)}}. \\ 894 \\ 895 \\ 896 \end{aligned}$$

897 Rearranging gives the desired result. \square
 898

899 A.2 NUMBER BALANCING AND SYMMETRIC BINARY PERCEPTRONS

900 We define the number balancing problem.
 901

902 **Definition 4.** *The number balancing problem (NBP) with parameters $\kappa : \mathbb{N} \rightarrow \mathbb{R}_{>0}$ and $B : \mathbb{N} \rightarrow \mathbb{N}$
 903 is defined as follows. On input $\mathbf{a} \sim \mathcal{N}(0, 1)^n$, output $\mathbf{x} \in [-B : B]^n \setminus \{0^n\}$ such that $|\langle \mathbf{a}, \mathbf{x} \rangle| \leq \kappa\sqrt{n}$,
 904 where $\kappa = \kappa(n)$ and $B = B(n)$. If unspecified, we take $B(n) = 1$.*
 905

906 For $\kappa(n) \geq \Theta(1/2^n)$, we know that there exist $\{\pm 1\}^n$ solutions to NBP with high probability (so, in
 907 particular, there exist $[-B : B]^n \setminus \{0^n\}$ solutions) (Karmarkar et al., 1986). The best polynomial
 908 time algorithm, due to Karmarkar and Karp, achieves $\kappa(n) = 1/2^{\Theta(\log^2 n)}$ (Karmarkar & Karp, 1982)
 909 (for the most stringent case of $B = 1$).
 910

911 For $\kappa(n) \leq 1/2^{\log^{3+\varepsilon} n}$, we have computational hardness assuming sub-exponential hardness of
 912 worst-case lattice problems (Vafa & Vaikuntanathan, 2025). Therefore, the following assumption is
 913 true assuming worst-case lattice problems are hard to solve:
 914

915 **Assumption 1.** *For all p.p.t. algorithms \mathcal{A} and $\varepsilon > 0$, and $B \leq \text{poly}(n)$,*
 916

$$917 \quad \Pr_{\mathbf{a} \sim \mathcal{N}(0, 1)^n} \left(\mathbf{x} \leftarrow \mathcal{A}(\mathbf{a}) : \mathbf{x} \in [-B : B]^n \setminus \{0^n\} \wedge |\langle \mathbf{a}, \mathbf{x} \rangle| \leq \frac{1}{2^{\log(n)^{3+\varepsilon}}} \right) = \text{negl}(n).$$

918 We can similarly define the symmetric binary perceptron problem.
 919

918 **Definition 5.** The symmetric bounded perceptron (SBP) problem with parameters $\kappa : \mathbb{N} \rightarrow \mathbb{R}_{>0}$,
 919 $m : \mathbb{N} \rightarrow \mathbb{N}$, and $B : \mathbb{N} \rightarrow \mathbb{N}$ is defined as follows. On input $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$, output $\mathbf{x} \in [-B : B]^n \setminus \{0^n\}$ such that $\|\mathbf{Ax}\|_\infty \leq \kappa\sqrt{n}$, where $\kappa = \kappa(n)$, $m = m(n)$, and $B = B(n)$. If unspecified,
 920 we take $B(n) = 1$.

921
 922 For $\kappa \geq \Theta(2^{-n/m})$, we know that there exist $\{\pm 1\}^n$ solutions to SBP with high probability (so, in
 923 particular, there exist $[-B : B]^n \setminus \{0^n\}$ solutions) (Aubin et al., 2019; Perkins & Xu, 2021; Abbe
 924 et al., 2021). The best polynomial time algorithm, due to Bansal and Spencer (Bansal, 2010; Bansal
 925 & Spencer, 2020), achieves $\kappa = O\left(\sqrt{m/n}\right)$ (for the most stringent case of $B = 1$).
 926

927 For $B, n \leq \text{poly}(m)$ and $\kappa \leq 1/(\sqrt{n} \cdot m^\varepsilon)$, we have computational hardness assuming polynomial
 928 hardness of worst-case lattice problems (Vafa & Vaikuntanathan, 2025; Bogdanov et al., 2025).
 929 Therefore, the following assumption is true assuming worst-case lattice problems are hard to solve:
 930

931 **Assumption 2.** For all p.p.t. algorithms \mathcal{A} , $\varepsilon > 0$, and $B, n \leq \text{poly}(m)$,

$$932 \Pr_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} \left(\mathbf{x} \leftarrow \mathcal{A}(\mathbf{A}) : \mathbf{x} \in [-B : B]^n \setminus \{0^n\} \wedge \|\mathbf{Ax}\|_\infty \leq \frac{1}{m^\varepsilon} \right) = \text{negl}(n).$$

935 B BACKDOORS FOR RANDOM GAUSSIAN PROJECTIONS

936 The goal of this section is to prove the following theorem.

937 **Theorem 2.** For all $m \leq n$, there is a p.p.t. algorithm $\text{BackdoorMatrix}(1^n, 1^m)$ that outputs a
 938 matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{z} \in \{\pm 1\}^n$ such that the following hold:

- 942 • We have

$$943 \|\mathbf{Az}\|_\infty \leq O\left(\frac{\sqrt{n}}{2^{n/m}}\right).$$

- 945 • We have the statistical bounds

$$947 d_{\text{TV}}(\mathbf{A}, \mathcal{N}(0, 1)^{m \times n}) = O\left(\sqrt{\frac{m}{n} \log(m/n) + e^{-\Omega(m)}}\right),$$

$$949 D_2(\mathbf{A} || \mathcal{N}(0, 1)^{m \times n}) = O\left(\frac{m}{n} \log(m/n) + e^{-\Omega(m)}\right).$$

- 951 • The marginal distribution of \mathbf{z} is uniform over $\{\pm 1\}^n$.

953 Note that if $m = \omega(1)$ and $m = o(n)$, both statistical divergences become $o(1)$.

955 We also give a version of this theorem with slightly different parameters in the regime where
 956 $m = \Theta(1)$ (i.e., m is fixed while n grows).

957 **Theorem 3.** For all $m = \Theta(1)$ and growing n , there is a universal constant $C > 0$ and a p.p.t.
 958 algorithm $\text{BackdoorMatrix}(1^n, 1^m)$ that outputs a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and a vector $\mathbf{z} \in \{\pm 1\}^n$
 959 such that the following hold:

- 960 • We have

$$962 \|\mathbf{Az}\|_\infty \leq O\left(\frac{n^C}{2^{n/m}}\right).$$

- 964 • We have the statistical distance bounds

$$966 d_{\text{TV}}(\mathbf{A}, \mathcal{N}(0, 1)^{m \times n}) = O\left(\sqrt{\frac{\log n}{n}}\right),$$

$$969 D_2(\mathbf{A} || \mathcal{N}(0, 1)^{m \times n}) = O\left(\frac{\log n}{n}\right).$$

- 971 • The marginal distribution of \mathbf{z} is uniform over $\{\pm 1\}^n$.

972 B.1 SAMPLING THE BACKDOOR
973

Matrix Backdoor Construction

BackdoorMatrix($1^n, 1^m$):

1. Sample $\mathbf{z} \sim U(\{\pm 1\}^n)$.
2. For $i \in [m]$:
 - (a) Sample $b_i \sim \mathcal{N}(0, n)_{|\cdot| \leq \kappa\sqrt{n}}$.
 - (b) Sample vector $\mathbf{a}_i \sim \mathcal{N}\left(\frac{b_i}{n} \cdot \mathbf{z}, \mathbf{I}_n - \frac{1}{n}\mathbf{z}\mathbf{z}^\top\right) = \mathcal{N}(\mathbf{0}, \mathbf{I}_n \mid \mathbf{a}_i^\top \mathbf{z} = b_i)$.
3. Define $\mathbf{A} \in \mathbb{R}^{m \times n}$ to have rows $\mathbf{a}_1, \dots, \mathbf{a}_m \in \mathbb{R}^n$.
4. Output (\mathbf{A}, \mathbf{z}) .

985 Figure 4: Description of the matrix backdoor algorithm used in Theorems 2 and 3.
986988 Define μ_0 to be the joint distribution defined implicitly via the following process:
989

- 990 1. Sample $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$.
- 991 2. Sample $\mathbf{z} \sim U(\{\pm 1\}^n)$.
- 992 3. Set $\mathbf{b} = \mathbf{A}\mathbf{z} \in \mathbb{R}^m$.
- 993 4. Output $(\mathbf{A}, \mathbf{z}, \mathbf{b}) \in \mathbb{R}^{m \times n} \times \{\pm 1\}^n \times \mathbb{R}^m$.

996 More explicitly, the density is given by

$$997 \quad 998 \quad 999 \quad \mu_0(\mathbf{A}, \mathbf{z}, \mathbf{b}) = \frac{1}{(2\pi)^{mn/2}} e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot \frac{1}{2^n} \cdot \delta(\mathbf{b} - \mathbf{A}\mathbf{z}),$$

1000 where $\delta()$ is the delta function generalized to \mathbb{R}^m , i.e.,

$$1001 \quad 1002 \quad 1003 \quad \int_{\mathbb{R}^m} \delta(\mathbf{y}) f(\mathbf{y}) d\mathbf{y} = f(\mathbf{0}).$$

1004 Now, define the distribution μ_1 to be the distribution μ_0 conditioned on $\|\mathbf{b}\|_\infty \leq \kappa\sqrt{n}$. That is,
1005

$$1006 \quad 1007 \quad \mu_1(\mathbf{A}, \mathbf{z}, \mathbf{b}) \propto \frac{1}{(2\pi)^{mn/2}} e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot \frac{1}{2^n} \cdot \delta(\mathbf{b} - \mathbf{A}\mathbf{z}) \cdot \mathbb{1}(\|\mathbf{b}\|_\infty \leq \kappa\sqrt{n}) \\ 1008 \quad 1009 \quad \propto e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot \delta(\mathbf{b} - \mathbf{A}\mathbf{z}) \cdot \mathbb{1}(\|\mathbf{b}\|_\infty \leq \kappa\sqrt{n}).$$

1011 Let ρ_0 and ρ_1 denote the marginal distributions on \mathbf{A} in μ_0 and μ_1 , respectively. Note that ρ_0 is
1012 identically $\mathcal{N}(0, 1)^{m \times n}$. Here, we relate ρ_1 and the algorithm BackdoorMatrix given in Figure 4.
10131014 **Claim 1.** *The output distribution of \mathbf{A} in BackdoorMatrix (as given in Figure 4) is identical to ρ_1 .*
10151016 *Proof.* For any fixed $\mathbf{z} \in \{\pm 1\}^n$, the distribution of $\mathbf{b} = \mathbf{A}\mathbf{z}$ is $\mathcal{N}(0, \|\mathbf{z}\|_2^2)^m = \mathcal{N}(0, n)^m$ over
1017 random $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$. In particular, in μ_0 , \mathbf{z} and \mathbf{b} are independent. Therefore, μ_0 can be
1018 identically described as follows, by first conditioning on \mathbf{z} and then on \mathbf{z} and \mathbf{b} together:
1019

- 1020 1. Sample $\mathbf{z} \sim U(\{\pm 1\}^n)$.
- 1021 2. Sample $\mathbf{b} \sim \mathcal{N}(0, n)^m$.
- 1022 3. Sample $\mathbf{a}_1, \dots, \mathbf{a}_m \sim \mathcal{N}(0, 1)^n$ conditioned on $b_i = \mathbf{a}_i^\top \mathbf{z}$ for all $i \in [m]$. Let \mathbf{A} be the
1023 matrix that has rows given by \mathbf{a}_i .
- 1024 4. Output $(\mathbf{A}, \mathbf{z}, \mathbf{b})$.

1026 In this formulation, we can describe μ_1 as follows, where all we change from the above is that we
 1027 condition on $\|\mathbf{b}\|_\infty$.
 1028

1029

- 1030 1. Sample $\mathbf{z} \sim U(\{\pm 1\}^n)$.
- 1031 2. Sample $b_1, \dots, b_m \sim \mathcal{N}(0, n)_{|\cdot| \leq \kappa\sqrt{n}}$, and let $\mathbf{b} = (b_1, \dots, b_m) \in \mathbb{R}^m$.
- 1033 3. Sample $\mathbf{a}_1, \dots, \mathbf{a}_m \sim \mathcal{N}(0, 1)^n$ conditioned on $b_i = \mathbf{a}_i^\top \mathbf{z}$ for all $i \in [m]$. Let \mathbf{A} be the
 1034 matrix that has rows given by \mathbf{a}_i .
- 1035 4. Output $(\mathbf{A}, \mathbf{z}, \mathbf{b})$.

1036

1038 More explicitly, sampling $\mathbf{a}_i \sim \mathcal{N}(0, 1)^n$ conditioned on $\mathbf{b}_i = \mathbf{a}_i^\top = \mathbf{z}$ is equivalent to sampling
 1039

$$1040 \mathbf{a}_i \sim \mathcal{N}\left(0, \mathbf{I}_n \mid \mathbf{a}_i^\top \mathbf{z} = b_i\right) = \mathcal{N}\left(\frac{b_i}{n} \cdot \mathbf{z}, \mathbf{I}_n - \frac{1}{n} \mathbf{z} \mathbf{z}^\top\right).$$

1041

1042 This description of μ_1 is now exactly the one given in Figure 4. The claim follows. \square

1043

1044 Let $N : \mathbb{R}^{m \times n} \rightarrow \mathbb{N}$ denote the function

1045

$$1047 N(\mathbf{A}) = \left| \{ \mathbf{z} \in \{\pm 1\}^n : \|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n} \} \right| = \sum_{\mathbf{z} \in \{\pm 1\}^n} \mathbb{1}(\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}). \quad (2)$$

1048

1049 **Claim 2.** We have

1050

$$1051 \rho_1(\mathbf{A}) \propto \rho_0(\mathbf{A}) \cdot N(\mathbf{A}).$$

1052

1053 *Proof.* By marginalizing out over \mathbf{z} and \mathbf{b} , we have

1054

$$\begin{aligned} 1055 \rho_1(\mathbf{A}) &= \sum_{\mathbf{z} \in \{\pm 1\}^n} \int_{\mathbb{R}^m} \mu_1(\mathbf{A}, \mathbf{z}, \mathbf{b}) \cdot d\mathbf{b} \\ 1056 &\propto \sum_{\mathbf{z} \in \{\pm 1\}^n} \int_{\mathbb{R}^m} e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot \delta(\mathbf{b} - \mathbf{A}\mathbf{z}) \cdot \mathbb{1}(\|\mathbf{b}\|_\infty \leq \kappa\sqrt{n}) \cdot d\mathbf{b} \\ 1057 &= \sum_{\mathbf{z} \in \{\pm 1\}^n} \int_{[-\kappa\sqrt{n}, \kappa\sqrt{n}]^m} e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot \delta(\mathbf{b} - \mathbf{A}\mathbf{z}) \cdot d\mathbf{b} \\ 1058 &= e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \sum_{\mathbf{z} \in \{\pm 1\}^n} \int_{[-\kappa\sqrt{n}, \kappa\sqrt{n}]^m} \delta(\mathbf{b} - \mathbf{A}\mathbf{z}) \cdot d\mathbf{b} \\ 1059 &= e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \sum_{\mathbf{z} \in \{\pm 1\}^n} \mathbb{1}(\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}) \\ 1060 &= e^{-\frac{1}{2} \sum_{i,j} A_{i,j}^2} \cdot N(\mathbf{A}) \\ 1061 &\propto \rho_0(\mathbf{A}) \cdot N(\mathbf{A}), \end{aligned}$$

1062

1063 as desired. \square

1064

1065 **Claim 3.** For \mathbf{A} output by BackdoorMatrix, we have

1066

$$1067 D_2(\mathbf{A} \mid \mathcal{N}(0, 1)^{m \times n}) = \ln \left(\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2} \right).$$

1068

1069 *Proof.* This directly follows by combining Claim 1, Claim 2, and Lemma 2. \square

1070

1080 B.2 CONCENTRATION IN THE NUMBER OF SOLUTIONS
1081

1082 As in (2), let $N = N(\mathbf{A})$ denote the number of ± 1 solutions \mathbf{z} to $\|\mathbf{A}\mathbf{z}\|_\infty \leq \kappa\sqrt{n}$ for $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$, and let $\alpha = m/n$. Let $\phi(\kappa) = \Pr(|Z| \leq \kappa)$ for a standard normal $Z \sim \mathcal{N}(0, 1)$. For 1083 small κ , $\sqrt{\pi/2} \cdot \phi(\kappa) \approx \kappa$. More precisely,

$$1084 \kappa - \frac{\kappa^3}{6} \leq \sqrt{\frac{\pi}{2}} \cdot \phi(\kappa) \leq \kappa. \\ 1085$$

1086 **Proposition 1.** *Assuming $\phi(\kappa) \geq 2^{-(1-\epsilon)/\alpha}$,*

$$1087 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq \frac{1}{\sqrt{1 - \alpha\lambda(\epsilon)}} + 2 \exp -\Omega(\epsilon n) \\ 1088$$

1089 whenever $\alpha\lambda(\epsilon) < 1$, where $\lambda(\epsilon) = O(\log 1/\epsilon)$.

1090 In the special case $m = 1$, Karmarkar et al. (1986) calculated the tight bound $1 + \pi n/\kappa 2^n \pm O(1/n)$ 1091 on the moment ratio for the count of perfectly balanced solutions only. In the extreme regime 1092 $\kappa \approx n^{O(1)} 2^{-n}$ our bound is worse by a factor logarithmic in n . We did not attempt to remove 1093 this factor. In the regime of constant m and increasing n Dyer and Frieze Dyer & Frieze (1989) 1094 give an asymptotic upper bound of $1 + o(1)$ without specifying the lower-order dependence. Their 1095 calculations are substantially more complicated as they pertain to values of κ very close to the 1096 statistical threshold (below which N is very likely to be zero).

1097 **Corollary 1.** *There exist universal constants $C_1, C_2 > 0$ such that for all $m = o(n)$ and $\kappa = C_1 \cdot 2^{-n/m}$, it holds that*

$$1098 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + O\left(\frac{m}{n} \cdot \log(n/m) + e^{-C_2 m}\right). \\ 1099$$

1100 *In particular, if it additionally holds that $m = \omega(1)$, we have*

$$1101 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + o(1). \\ 1102$$

1103 *Proof.* Let $\alpha = m/n = o(1)$. Set $\epsilon = \Theta(\alpha) = o(1)$ in Proposition 1 (in terms of C_1) so that for 1104 $\kappa = C_1 \cdot 2^{-n/m}$, it holds that $\phi(\kappa) \geq 2^{-(1-\epsilon)n/m}$. As $\lambda(\epsilon) \leq O(\log(1/\epsilon)) \leq O(\log(n/m))$, we 1105 have

$$1106 \alpha\lambda(\epsilon) \leq O(\alpha \log(1/\alpha)) = o(1). \\ 1107$$

1108 In particular, $\alpha\lambda(\epsilon) < 1$ and $1/\sqrt{1 - \alpha\lambda(\epsilon)} < 1 + O(\alpha\lambda(\epsilon))$ for sufficiently small α . Therefore, by 1109 Proposition 1, we have

$$1110 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + O(\alpha\lambda(\epsilon)) + 2e^{-\Omega(\epsilon n)} \leq 1 + O(\alpha \log(1/\alpha)) + 2e^{-\Omega(m)}, \\ 1111$$

1112 as desired. □

1113 We now give a slightly different parameter setting that gives a $1 + o(1)$ bound for any $m = O(1)$.

1114 **Corollary 2.** *There exists a universal constant $C_1 > 0$ such that for all $m = o(n)$ and $\kappa = n^{C_1} \cdot 2^{-n/m}$, it holds that*

$$1115 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + O\left(\frac{m}{n} \cdot \log(n/m) + e^{-2m \log n}\right). \\ 1116$$

1117 *In particular, for $m = \Theta(1)$ and growing n , we have*

$$1118 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + O\left(\frac{\log n}{n}\right). \\ 1119$$

1134 *Proof.* Let $\alpha = m/n = o(1)$. Set $\epsilon = C_2 \alpha \log_2 n$ and C_2 in terms of C_1 so that for $\kappa = n^{C_1} \cdot 2^{-n/m}$,
 1135 we have $\phi(\kappa) \geq 2^{-(1-\epsilon)/\alpha} = n^{C_2} \cdot 2^{-n/m}$. As $\lambda(\epsilon) \leq O(\log(1/\epsilon)) \leq O(\log(1/\alpha))$, we have
 1136 $\alpha\lambda(\epsilon) = o(1)$, which in particular means $1/\sqrt{1-\alpha\lambda(\epsilon)} < 1 + O(\alpha\lambda(\epsilon))$ for sufficiently small α .
 1137 Therefore, by Proposition 1, setting C_1 sufficiently large, we have

1138
$$\frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq 1 + O(\alpha\lambda(\epsilon)) + 2e^{-\Omega(\epsilon n)} \leq 1 + O(\alpha \log(1/\alpha)) + 2e^{-2m \log n},$$

1141 as desired. \square

1143 **Proof of Proposition 1** We first show the following claim.

1144 **Claim 4.** Let ρ be the position of an n -step ± 1 random walk divided by n . Then

1146
$$\frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} = \mathbb{E}_{\rho} \left[\left(\frac{\Pr(|Z'| \leq \kappa \mid |Z| \leq \kappa)}{\Pr(|Z| \leq \kappa)} \right)^m \right], \quad (3)$$

1148 where Z, Z' are ρ -correlated standard normal, i.e.,

1150
$$(Z, Z') \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right).$$

1153 *Proof of Claim 4.* Let

1154
$$q = \phi(\kappa) = \Pr_{Z \sim \mathcal{N}(0,1)} (|Z| \leq \kappa) = \Pr_{\mathbf{a} \sim \mathcal{N}(0,1)^n} (|\mathbf{a}^\top \mathbf{x}| \leq \kappa\sqrt{n}),$$

1156 where $\mathbf{x} \in \mathbb{R}^n$ is any fixed vector with $\|\mathbf{x}\|_2 = \sqrt{n}$. By linearity of expectation and definition of
 1157 $N = N(\mathbf{A})$, it follows that

1158
$$\begin{aligned} \mathbb{E}[N] &= \sum_{\mathbf{x} \in \{\pm 1\}^n} \Pr_{\mathbf{A} \sim \mathcal{N}(0,1)^{m \times n}} (\|\mathbf{A}\mathbf{x}\|_\infty \leq \kappa\sqrt{n}) \\ 1159 &= \sum_{\mathbf{x} \in \{\pm 1\}^n} \left(\Pr_{\mathbf{a} \sim \mathcal{N}(0,1)^n} (|\mathbf{a}^\top \mathbf{x}| \leq \kappa\sqrt{n}) \right)^m = 2^n q^m. \end{aligned}$$

1164 For the second moment, we have

1165
$$\begin{aligned} \mathbb{E}[N^2] &= \sum_{\mathbf{x}_1, \mathbf{x}_2 \in \{\pm 1\}^n} \Pr_{\mathbf{A} \sim \mathcal{N}(0,1)^{m \times n}} (\|\mathbf{A}\mathbf{x}_1\|_\infty \leq \kappa\sqrt{n}, \|\mathbf{A}\mathbf{x}_2\|_\infty \leq \kappa\sqrt{n}) \\ 1166 &= \sum_{\mathbf{x}_1, \mathbf{x}_2 \in \{\pm 1\}^n} \Pr_{\mathbf{a} \sim \mathcal{N}(0,1)^n} (|\mathbf{a}^\top \mathbf{x}_1| \leq \kappa\sqrt{n}, |\mathbf{a}^\top \mathbf{x}_2| \leq \kappa\sqrt{n})^m. \end{aligned}$$

1170 A quick calculation reveals that for $\mathbf{a} \sim \mathcal{N}(0,1)^n$ and $\mathbf{x}_1, \mathbf{x}_2 \in \{\pm 1\}^n$, we have

1172
$$(\mathbf{a}^\top \mathbf{x}_1, \mathbf{a}^\top \mathbf{x}_2) \sim \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} n & n - 2 \cdot \Delta(\mathbf{x}_1, \mathbf{x}_2) \\ n - 2 \cdot \Delta(\mathbf{x}_1, \mathbf{x}_2) & n \end{pmatrix} \right),$$

1174 where $\Delta(\mathbf{x}_1, \mathbf{x}_2)$ is the Hamming distance between \mathbf{x}_1 and \mathbf{x}_2 (i.e., counts the number of distinct
 1175 coordinates). By rescaling, we can write

1176
$$\begin{aligned} \mathbb{E}[N^2] &= \sum_{\mathbf{x}_1, \mathbf{x}_2 \in \{\pm 1\}^n} \Pr_{\mathbf{a} \sim \mathcal{N}(0,1)^n} (|\mathbf{a}^\top \mathbf{x}_1| \leq \kappa\sqrt{n}, |\mathbf{a}^\top \mathbf{x}_2| \leq \kappa\sqrt{n})^m \\ 1177 &= \sum_{k=0}^n \sum_{\substack{\mathbf{x}_1, \mathbf{x}_2 \\ \Delta(\mathbf{x}_1, \mathbf{x}_2)=k}} \Pr_{Z_1, Z_2 \text{ (1-2k/n)-corr.}} (|Z_1| \leq \kappa, |Z_2| \leq \kappa)^m \\ 1178 &= 2^n \sum_{k=0}^n \binom{n}{k} \Pr_{Z_1, Z_2 \text{ (1-2k/n)-corr.}} (|Z_1| \leq \kappa, |Z_2| \leq \kappa)^m \\ 1179 &= 2^{2n} \mathbb{E}_{\rho} \Pr_{Z_1, Z_2 \text{ \rho-corr.}} (|Z_1| \leq \kappa, |Z_2| \leq \kappa)^m \\ 1180 &= 2^{2n} q^m \mathbb{E}_{\rho} \Pr_{Z_1, Z_2 \text{ \rho-corr.}} (|Z_2| \leq \kappa \mid |Z_1| \leq \kappa)^m, \end{aligned}$$

1188 where ρ is the position of an n -step ± 1 random walk divided by n .
 1189

1190 We can combine the first and second moment calculations to get

$$\begin{aligned} 1191 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} &= \frac{2^{2n}q^m}{2^{2n}q^{2m}} \cdot \mathbb{E}_{\rho \sim Z_1, Z_2 \text{ } \rho\text{-corr.}} (|Z_2| \leq \kappa \mid |Z_1| \leq \kappa)^m \\ 1192 \\ 1193 \\ 1194 &= \mathbb{E}_{\rho} \left[\left(\frac{\Pr_{Z_1, Z_2 \text{ } \rho\text{-corr.}} (|Z_2| \leq \kappa \mid |Z_1| \leq \kappa)}{q} \right)^m \right], \\ 1195 \end{aligned}$$

1196 as desired. \square

1197 Since Z' can be written as $\rho Z + \sqrt{1 - \rho^2} Y$ for some independent $Y \sim \mathcal{N}(0, 1)$, and among all fixed
 1198 variance Gaussians the measure of an interval is maximized by the one that is centered, the numerator
 1199 of the quantity in Claim 4 can be upper bounded by
 1200

$$1201 \Pr(|\sqrt{1 - \rho^2} \cdot Y| \leq \kappa) = \Pr\left(|Y| \leq \frac{\kappa}{\sqrt{1 - \rho^2}}\right) \leq \frac{\Pr(|Y| \leq \kappa)}{\sqrt{1 - \rho^2}}.$$

1203 (The inequality can be verified by a change of variables in the Gaussian integral.) Therefore,

$$1204 \frac{\Pr(|Z'| \leq \kappa \mid |Z| \leq \kappa)}{\Pr(|Z| \leq \kappa)} \leq \frac{1}{\sqrt{1 - \rho^2}}.$$

1207 As the ratio is also at most $1/\Pr(|Z| \leq \kappa)$, for every $\delta > 0$ we obtain as a consequence of Claim 4
 1208 that

$$1209 \frac{\mathbb{E}[N^2]}{\mathbb{E}[N]^2} \leq \mathbb{E}\left[\frac{1}{(1 - \rho^2)^{m/2}} \cdot \mathbb{1}(|\rho| < 1 - \delta)\right] + \frac{\Pr(|\rho| \geq 1 - \delta)}{\phi(\kappa)^m}. \quad (4)$$

1211 By standard tail bounds on the binomial distribution, we have

$$1212 \Pr(|\rho| \geq 1 - \delta) \leq 2 \cdot 2^{n(H(\delta/2) - 1)},$$

1213 where H denotes the binary entropy function.

1215 Therefore, the second term in (4) is at most

$$1216 \frac{2 \cdot 2^{n(H(\delta/2) - 1)}}{\phi(\kappa)^m} = 2 \cdot 2^{(\alpha \log(1/\phi(\kappa)) - 1 + H(\delta/2))n},$$

1218 Choosing $\delta < 1$ so that $H(\delta/2) = \epsilon/2$ makes this at most $2 \exp(-\Omega(\epsilon n))$ under our assumption on
 1219 κ .

1220 For the first term in (4), we use the next bound which follows from the convexity of \exp .

1221 **Fact 1.** For $|\rho| < 1 - \delta$, we have $1 - \rho^2 > \exp(-\lambda\rho^2)$, where $\lambda = -\ln(2\delta - \delta^2)/(1 - \delta)^2$.

1223 Therefore,

$$\begin{aligned} 1224 \mathbb{E}\left[\frac{1}{(1 - \rho^2)^{m/2}} \cdot \mathbb{1}(|\rho| < 1 - \delta)\right] &\leq \mathbb{E}[\exp(\lambda\rho^2 m/2) \cdot \mathbb{1}(|\rho| < 1 - \delta)] \\ 1225 \\ 1226 &\leq \mathbb{E}[\exp(\lambda\rho^2 m/2)]. \end{aligned}$$

1228 **Claim 5.** $\mathbb{E}[\exp(t\rho^2 n)] \leq \mathbb{E}[\exp(tZ^2)]$ where $t \geq 0$ and Z is a standard normal.

1230 *Proof.* It suffices to show that the even moments of $\rho\sqrt{n}$ are dominated by those of Z . Both $\rho\sqrt{n}$
 1231 and Z have the form $(X_1 + \dots + X_n)/\sqrt{n}$, where the X_i are i.i.d. Rademacher and standard normal,
 1232 respectively. As the Rademacher moments are dominated by the standard normal ones, the same
 1233 must be true for $\rho\sqrt{n}$ and Z . \square

1234 The squared normal moment generating function $\mathbb{E}[\exp(tZ^2)]$ evaluates to $1/\sqrt{1 - 2t}$ when $t <$
 1235 $1/2$ (and is unbounded otherwise) so, by plugging in $t = \lambda\alpha/2 = \lambda m/(2n)$,

$$1237 \mathbb{E}\left[\frac{1}{(1 - \rho^2)^{m/2}} \cdot \mathbb{1}(|\rho| < 1 - \delta)\right] \leq \mathbb{E}[\exp(\lambda\rho^2 m/2)] \leq \mathbb{E}[\exp(\lambda\alpha Z^2/2)] = \frac{1}{\sqrt{1 - \lambda\alpha}},$$

1239 provided $\lambda < 1/\alpha$. For small ϵ , by using standard bounds on the binary entropy function H , we have

$$1240 \lambda = O(\log(O(1/\delta))) = O(\log(O(1/H^{-1}(\epsilon/2)))) = O(\log(1/\epsilon)),$$

1241 as desired.

1242 B.3 PUTTING IT ALL TOGETHER
12431244 *Proof of Theorem 2.* Consider the algorithm BackdoorMatrix($1^n, 1^m$) given in Figure 4 where
1245 $\kappa = O(2^{-n/m})$. By construction, for all $i \in [m]$,

1246
$$|\mathbf{a}_i^\top \mathbf{z}| = |b_i| \leq \kappa\sqrt{n},$$

1247

1248 so we have

1249
$$\|\mathbf{A}\mathbf{z}\|_\infty = \max_{i \in [m]} |\mathbf{a}_i^\top \mathbf{z}| \leq \kappa\sqrt{n} \leq O\left(\sqrt{n} \cdot 2^{-n/m}\right).$$

1250

1251 By Claim 3, we have
1252

1253
$$D_2(\mathbf{A} || \mathcal{N}(0, 1)^{m \times n}) = \ln\left(\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2}\right).$$

1254
1255

1256 By Corollary 1 and choosing the constant in $\kappa = O(2^{-n/m})$ appropriately, we have
1257

1258
$$\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2} \leq 1 + O\left(\frac{m}{n} \cdot \log(n/m) + e^{-\Omega(m)}\right).$$

1259

1260 Therefore, by Lemma 1 and the inequality $\ln(1 + x) \leq x$,
1261

1262
$$\begin{aligned} d_{\text{TV}}(\mathbf{A}, \mathcal{N}(0, 1)^{m \times n}) &\leq O\left(\sqrt{D_2(\mathbf{A} || \mathcal{N}(0, 1)^{m \times n})}\right) \\ 1263 &= O\left(\sqrt{\ln\left(\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2}\right)}\right) \\ 1264 &\leq O\left(\sqrt{\ln\left(1 + O\left(\frac{m}{n} \cdot \log(n/m) + e^{-\Omega(m)}\right)\right)}\right) \\ 1265 &\leq O\left(\sqrt{\frac{m}{n} \cdot \log(n/m) + e^{-\Omega(m)}}\right), \end{aligned}$$

1266
1267
1268
1269
1270
1271

1272 as desired.
12731274 Finally, it is clear from inspection of BackdoorMatrix in Figure 4 that the marginal distribution on \mathbf{z}
1275 is uniform over $\{\pm 1\}^n$. \square 1276 *Proof of Theorem 3.* The proof is exactly like that of Theorem 2, with the only difference being the
1277 bound for the concentration in the number of solutions. For $\kappa = n^C 2^{-n/m}$ for appropriately chosen
1278 constant C , by Corollary 2, we have
1279

1280
$$\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2} \leq 1 + O\left(\frac{\log n}{n}\right).$$

1281
1282

1283 Therefore, by Lemma 1 and the inequality $\ln(1 + x) \leq x$,

1284
$$\begin{aligned} d_{\text{TV}}(\mathbf{A}, \mathcal{N}(0, 1)^{m \times n}) &\leq O\left(\sqrt{D_2(\mathbf{A} || \mathcal{N}(0, 1)^{m \times n})}\right) \\ 1285 &= O\left(\sqrt{\ln\left(\frac{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})^2]}{\mathbb{E}_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} [N(\mathbf{A})]^2}\right)}\right) \\ 1286 &\leq O\left(\sqrt{\ln\left(1 + O\left(\frac{\log n}{n}\right)\right)}\right) \\ 1287 &\leq O\left(\sqrt{\frac{\log n}{n}}\right), \end{aligned}$$

1288
1289
1290
1291
1292
1293
1294
1295

1296 as desired. \square

1296 B.4 TIGHTNESS
1297

1298 We show that the bounds in Theorem 2 and Theorem 3 are tight up to the log factors: The distance
1299 between the null and backdoored distributions is $\Omega(\sqrt{m/n})$, which is non-negligible. Moreover, the
1300 distinguisher that attains this advantage is efficient.

1301 **Theorem 4.** *Assuming $\kappa^2 \leq 1/2$,*

$$1303 \Pr(\|\mathbf{A}\|_F^2 \leq mn - m/2) - \Pr(\|\mathcal{N}(0, 1)^{m \times n}\|_F^2 \leq mn - m/2) = \Omega(\sqrt{m/n}).$$

1305 The random variable $\|\mathcal{N}(0, 1)^{m \times n}\|_F^2$ is of type $\chi^2(mn)$, namely chi squared with mn degrees of
1306 freedom.

1307 Conditioned on $\mathbf{A}\mathbf{x} = \mathbf{y}$, $\|\mathbf{A}\|_F^2$ is of type $\chi^2(m(n-1)) + \|\mathbf{y}\|^2/n$. In particular, $\|\mathbf{A}\|_F^2$ is dominated
1308 by a random variable of type $\chi^2(mn - m) + \kappa^2 m$.

1309 The reason is that an n -dimensional random normal vector \mathbf{a} (representing a row of \mathbf{A}), when
1310 conditioned on a linear constraint $\mathbf{a}^\top \mathbf{x} = y$, projects to a standard normal in the $(n-1)$ -dimensional
1311 subspace orthogonal to \mathbf{x} and has fixed length $y/\|\mathbf{x}\| = y/\sqrt{n}$ in the direction of \mathbf{x} .

1312 Thus $\|\mathbf{A}\|_F^2$ has mean at most $mn - (1 - \kappa^2)m$, while $\|\mathcal{N}(0, 1)^{m \times n}\|_F^2$ has mean mn . The variance
1313 of both is (at most) $2mn$. Assuming they were sufficiently well-approximated by normals of the same
1314 mean and variance, their statistical distance would be on the order of $(1 - \kappa^2)m/\sqrt{2mn} = \Omega(\sqrt{m/n})$
1315 as desired.

1316 To complete the proof we argue that the error introduced by the normal approximation does not affect
1317 this estimate. The Berry-Esseen theorem gives an error term on the order of $1/\sqrt{mn}$. This completes
1318 the proof under the additional assumption that m is at least some absolute constant.

1319 To handle all values of m including $m = 1$ we apply Cramér's first-order correction to the normal
1320 approximation of the chi squared CDF (Esseen, 1945; Pinelis, 2023):

$$1323 \Pr\left(\frac{\chi^2(k) - k}{\sqrt{2k}} \leq z\right) = \Pr(\mathcal{N}(0, 1) \leq z) + \frac{\psi(z)}{\sqrt{k}} \pm O(1/k), \quad (5)$$

1324 where $\psi(z) = e^{-z^2/2} \cdot (1 - z^2)/3\sqrt{\pi}$.

1325 *Proof.* The backdoored probability is at least

$$1326 \begin{aligned} \Pr(\|\mathbf{A}\|_F^2 \leq mn - m/2) &\geq \Pr(\chi^2(mn - m) + \kappa^2 m \leq mn - m/2) && \text{by domination} \\ 1327 &\geq \Pr\left(\frac{\chi^2(mn - m) - (mn - m)}{\sqrt{2(mn - m)}} \leq 0\right) && \text{as } \kappa^2 \leq 1/2 \\ 1328 &= \frac{1}{2} + \frac{\psi(0)}{\sqrt{m(n-1)}} - O(1/mn). && \text{by (5)} \end{aligned}$$

1329 while the null probability is at most

$$1330 \begin{aligned} \Pr(\|\mathcal{N}(0, 1)^{m \times n}\|_F^2 \leq mn - m/2) &= \Pr\left(\frac{\chi^2(mn) - mn}{\sqrt{2mn}} \leq -\frac{\sqrt{m/n}}{3\sqrt{2}}\right) \\ 1331 &\leq \Pr\left(\mathcal{N}(0, 1) \leq -\frac{\sqrt{m/n}}{3\sqrt{2}}\right) + \frac{\psi(0)}{\sqrt{mn}} + O(1/mn) && \text{by (5)} \\ 1332 &= \frac{1}{2} - \Omega(\sqrt{m/n}) + \frac{\psi(0)}{\sqrt{mn}} + O(1/mn) \end{aligned}$$

1333 as ψ is maximized at zero. Thus the difference in probabilities is at least

$$1334 \Omega(\sqrt{m/n}) - \psi(0) \left(\frac{1}{\sqrt{m(n-1)}} - \frac{1}{\sqrt{mn}} \right) - O(1/mn) = \Omega(\sqrt{m/n}) - O(1/mn + 1/m^{1/2}n^{3/2}).$$

1335 The leading term $\Omega(\sqrt{m/n})$ dominates for all values of m . \square

1350 C CONSTRUCTING BACKDOORS FOR NEURAL NETWORKS
13511352 C.1 DEFINING BACKDOORS
13531354 Imagine that there is some learning procedure $\text{ModelGen}()$ that generates some model F (e.g., a
1355 neural network trained via stochastic gradient descent). To define the notion of an undetectable
1356 backdoor, we want the following properties to hold simultaneously:
1357

- 1358 • There is a way to generate a “backdoored” version of the model F , which gives anyone with
1359 F ’s backdoor significant additional power over anyone without the backdoor.
- 1360 • The “backdoored” model looks statistically close to an honest execution of $\text{ModelGen}()$, in
1361 the sense that there is provably no distinguisher that works with high probability.

1362 While the latter item is direct to formally define, the former requirement is vague. One possible way
1363 to specify such a requirement is via collision generation: it is hard to find collisions in an honest
1364 model F , but given a backdoor for F , one can easily compute collisions. By collisions, we mean
1365 distinct input vectors $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{Z}^n$ such that $F(\mathbf{x}_1) \approx F(\mathbf{x}_2)$. Our formal definition is below.
13661367 **Definition 6.** A statistically undetectable backdoor *with parameters B , δ_0 , and δ_1* consists of p.p.t.
1368 algorithms (ModelGen , BackdoorGen , Activate) with the following syntax:
1369

- 1370 • $\text{ModelGen}(1^n, 1^m)$. This algorithm is randomized and outputs some model F .
- 1371 • $\text{BackdoorGen}(1^n, 1^m)$. This algorithm is randomized and outputs the tuple (\hat{F}, bk) , where
1372 \hat{F} is a backdoored model and bk is the corresponding backdoor key.
- 1373 • $\text{Activate}(\text{bk}, \mathbf{x} \in \mathbb{Z}^n)$. This algorithm is deterministic and outputs a vector $\mathbf{x}' \in \mathbb{Z}^n$.

1374 Moreover, we require the following three properties:
1375

- 1376 1. **(White Box) Statistical Undetectability:** For $F \leftarrow \text{ModelGen}(1^n, 1^m)$ and $(\hat{F}, \text{bk}) \leftarrow$
1377 $\text{BackdoorGen}(1^n, 1^m)$,

$$d_{\text{TV}}(F, \hat{F}) = o(1).$$

1381 We emphasize that this total variation distance bound refers to the white-box descriptions of
1382 the models F, \hat{F} .
1383

- 1384 2. **Backdoor Collision Generation:** For all $\mathbf{x} \in \mathbb{Z}^n$, it holds that

$$\Pr_{(\hat{F}, \text{bk}) \leftarrow \text{BackdoorGen}(1^n, 1^m)} \left(\mathbf{x}' \leftarrow \text{Activate}(\text{bk}, \mathbf{x}) : \begin{array}{l} \mathbf{x}' \in \mathbb{Z}^n, \|\mathbf{x}'\|_\infty \leq \|\mathbf{x}\|_\infty + 1, \\ \mathbf{x} \neq \mathbf{x}', \left\| \hat{F}(\mathbf{x}') - \hat{F}(\mathbf{x}) \right\|_2 \leq \delta_0 \end{array} \right) = 1.$$

- 1385 3. **Approximate Collision Resistance:** For all p.p.t. algorithms \mathcal{A} ,

$$\Pr_{(\hat{F}, \text{bk}) \leftarrow \text{BackdoorGen}(1^n, 1^m)} \left((\mathbf{x}_1, \mathbf{x}_2) \leftarrow \mathcal{A}(\hat{F}) : \begin{array}{l} \mathbf{x}_1, \mathbf{x}_2 \in [-B : B]^n, \\ \mathbf{x}_1 \neq \mathbf{x}_2, \left\| \hat{F}(\mathbf{x}_2) - \hat{F}(\mathbf{x}_1) \right\|_2 \leq \delta_1 \end{array} \right) = \text{negl}(n),$$

1386 where the probability is also taken over the internal randomness of \mathcal{A} . We emphasize that \mathcal{A}
1387 has white-box access to the model \hat{F} (e.g., its weights).
1388

1389 We define the strength of the backdoor be the quantity δ_1/δ_0 , and we consider the backdoor meaningful
1390 only if $\delta_1/\delta_0 > 1$.
13911392 This definition gives those with the backdoor additional power over others in two ways:
1393

- 1394 • Item 2 allows anyone with the backdoor to generate collisions for *all* inputs \mathbf{x} , while Item 3
1395 stipulates hardness of finding even one collision.

1404 • For $\delta_0 < \delta_1$ (as it is in our constructions), the backdoor generates collisions that are stronger
 1405 than the impossibility bound for those without the backdoor. The larger the ratio δ_1/δ_0 is,
 1406 the stronger this backdoor is, quantitatively. We call δ_1/δ_0 the *strength* of the backdoor for
 1407 this reason.

1408
 1409 While the condition in Item 2 that $\|\mathbf{x}'\|_\infty \leq \|\mathbf{x}\|_\infty + 1$ is somewhat arbitrary, the point is that the
 1410 size of \mathbf{x}' is similar to that of \mathbf{x} . One could formalize such a requirement in a few different ways, but
 1411 we choose this one because it is what we achieve.

1412
 1413 C.2 NEURAL NETWORK PRELIMINARIES

1414 Let $\mathbf{A} \in \mathbb{R}^{m_2 \times m_1}$. We let $\sigma_{\max}(\mathbf{A})$ denote the maximum singular value of \mathbf{A} , and we let $\sigma_{\min}(\mathbf{A})$
 1415 denote the minimum singular value of \mathbf{A} . More explicitly,

$$\begin{aligned}\sigma_{\max}(\mathbf{A}) &= \sup_{\mathbf{x} \in \mathbb{R}^{m_1} \setminus \{\mathbf{0}\}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}, \\ \sigma_{\min}(\mathbf{A}) &= \inf_{\mathbf{x} \in \mathbb{R}^{m_1} \setminus \{\mathbf{0}\}} \frac{\|\mathbf{A}\mathbf{x}\|_2}{\|\mathbf{x}\|_2}.\end{aligned}$$

1422 Note that if $m_1 > m_2$, then $\sigma_{\min}(\mathbf{A}) = 0$, as \mathbf{A} has a nontrivial kernel. Whenever $\sigma_{\min}(\mathbf{A}) > 0$, we
 1423 can let $\text{cond}(\mathbf{A})$ denote the condition number of \mathbf{A} , defined as

$$\text{cond}(\mathbf{A}) = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})} \geq 1. \quad (6)$$

1427 **Definition 7** (Bi-Lipschitz Functions). For $m_1, m_2 \in \mathbb{N}$ and $0 \leq \alpha \leq \beta$, we say a function
 1428 $f : \mathbb{R}^{m_1} \rightarrow \mathbb{R}^{m_2}$ is (α, β) -bilipschitz if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m_1}$,

$$\alpha\|\mathbf{x} - \mathbf{y}\|_2 \leq \|f(\mathbf{x}) - f(\mathbf{y})\|_2 \leq \beta\|\mathbf{x} - \mathbf{y}\|_2.$$

1430 Moreover, for $\xi \geq 1$, we say f has distortion at most ξ if there exist $\beta \geq \alpha \geq 0$ such that f is
 1431 (α, β) -bilipschitz and $\xi = \beta/\alpha$.

1434 **Fact 2.** Suppose $f_1 : \mathbb{R}^{m_1} \rightarrow \mathbb{R}^{m_2}$ and $f_2 : \mathbb{R}^{m_2} \rightarrow \mathbb{R}^{m_3}$ are (α_1, β_1) -bilipschitz and (α_2, β_2) -
 1435 bilipschitz, respectively. Then $f_2 \circ f_1 : \mathbb{R}^{m_1} \rightarrow \mathbb{R}^{m_3}$ is $(\alpha_1\alpha_2, \beta_1\beta_2)$ -bilipschitz.

1436 **Fact 3.** For a matrix $\mathbf{A} \in \mathbb{R}^{m_2 \times m_1}$, the linear map given by \mathbf{A} , mapping \mathbb{R}^{m_1} to \mathbb{R}^{m_2} , is
 1437 $(\sigma_{\min}(\mathbf{A}), \sigma_{\max}(\mathbf{A}))$ -bilipschitz.

1438 **Definition 8.** For $\alpha \in (0, 1)$, the leaky rectified linear unit (leaky ReLU) with parameter α is the
 1439 function $\text{LeakyReLU}_\alpha : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$\text{LeakyReLU}_\alpha(x) = \begin{cases} x & x > 0, \\ \alpha x & x \leq 0. \end{cases}$$

1443 To slightly abuse notation, it naturally generalizes to a function $\text{LeakyReLU}_\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^m$ where
 1444 (the scalar version of) LeakyReLU_α is applied coordinate-wise.

1446 **Fact 4.** For all $\alpha \in (0, 1)$ and for all $m \in \mathbb{N}$, $\text{LeakyReLU}_\alpha : \mathbb{R}^m \rightarrow \mathbb{R}^m$ is $(\alpha, 1)$ -bilipschitz.

1447 For depth $d \in \mathbb{N}$, a feedforward neural network is defined in terms of weight matrices
 1448 $\mathbf{A}^{(0)}, \dots, \mathbf{A}^{(d-1)}$, bias vectors $\mathbf{b}^{(0)}, \dots, \mathbf{b}^{(d-1)}$, and an activation function $\sigma : \mathbb{R} \rightarrow \mathbb{R}$. The
 1449 mapping takes in a vector $\mathbf{x} = \mathbf{x}^{(0)}$, iteratively evaluates

$$\mathbf{x}^{(i+1)} := \sigma \left(\mathbf{A}^{(i)} \mathbf{x}^{(i)} + \mathbf{b}^{(i)} \right),$$

1453 and outputs $\mathbf{x}^{(d)}$, where σ is applied pointwise. The matrices $\mathbf{A}^{(i)}$ can be rectangular (instead of
 1454 square) with the constraint that the input vector \mathbf{x} , bias vectors $\mathbf{b}^{(i)}$, and weight matrices $\mathbf{A}^{(i)}$ all
 1455 have dimensions that syntactically align.

1456 **Lemma 4.** For $\alpha \in (0, 1)$, a feedforward neural network of depth d with weight matrices
 1457 $\mathbf{A}^{(0)}, \dots, \mathbf{A}^{(d-1)}$, bias vectors $\mathbf{b}^{(0)}, \dots, \mathbf{b}^{(d-1)}$, and activation function LeakyReLU_α is (α', β') -

1458 *bilipschitz, where*

1459

$$1460 \quad \alpha' = \alpha^d \prod_{i=0}^{d-1} \sigma_{\min} \left(\mathbf{A}^{(i)} \right),$$

1461

$$1462 \quad \beta' = \prod_{i=0}^{d-1} \sigma_{\max} \left(\mathbf{A}^{(i)} \right).$$

1463

1464

1465

1466 *Moreover, if one skips the first layer matrix $\mathbf{A}^{(0)}$ and directly applies the activation function to the*

1467 *input vector \mathbf{x} (and then $\mathbf{A}^{(1)}$ and so on), the resulting function is (α', β') -bilipschitz, where*

1468

$$1469 \quad \alpha' = \alpha^d \prod_{i=1}^{d-1} \sigma_{\min} \left(\mathbf{A}^{(i)} \right),$$

1470

$$1471 \quad \beta' = \prod_{i=1}^{d-1} \sigma_{\max} \left(\mathbf{A}^{(i)} \right).$$

1472

1473

1474 *Proof.* This follows by directly combining Fact 3, Fact 4, and Fact 2 and layer-by-layer induction, as

1475 addition by any bias vector $\mathbf{b}^{(i)}$ is a $(1, 1)$ -bilipschitz operation. \square

1476

C.3 CONSTRUCTION

1477

1478 The most general template for our backdoor construction will be as follows. Let $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$,

1479 and let \mathcal{T} be any (randomized) training operator that takes in $\mathbf{A} \in \mathbb{R}^{m \times n}$ and outputs an (α, β) -

1480 bilipschitz function $g \leftarrow \mathcal{T}(\mathbf{A})$. We will construct backdoors for the model class given by

1481

$$F(\mathbf{x}) := g(\mathbf{A}\mathbf{x}).$$

1482

1483 The backdoor construction is direct: generate $(\widehat{\mathbf{A}}, \mathbf{z}) \leftarrow \text{BackdoorMatrix}(1^n, 1^m)$, and to activate

1484 any \mathbf{x} , output $\mathbf{x}' = \mathbf{x} + \mathbf{z}$. By linearity, $\mathbf{A}\mathbf{x}' = \mathbf{A}(\mathbf{x} + \mathbf{z}) = \mathbf{A}\mathbf{x} + \mathbf{A}\mathbf{z} \approx \mathbf{A}\mathbf{x}$, and by lipschitzness

1485 of g ,

1486

$$F(\mathbf{x}') = g(\mathbf{A}\mathbf{x}') \approx g(\mathbf{A}\mathbf{x}) = F(\mathbf{x}).$$

1487 Conversely, if a p.p.t. algorithm computes $\mathbf{x}_1 \neq \mathbf{x}_2 \in [-B : B]^n$ such that $F(\mathbf{x}_1) \approx F(\mathbf{x}_2)$, then

1488 by bilipschitzness of g , it follows that $\mathbf{A}\mathbf{x}_1 \approx \mathbf{A}\mathbf{x}_2$, and therefore $\mathbf{A}(\mathbf{x}_1 - \mathbf{x}_2) \approx \mathbf{0}$, violating

1489 Assumption 2. We give the formal statement in Theorem 5.

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Generic Backdoor Construction

- ModelGen($1^n, 1^m$): Sample $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$, sample $g \leftarrow \mathcal{T}(\mathbf{A})$, define the model

$$F(\mathbf{x}) = g(\mathbf{A}\mathbf{x}),$$

and output the description of the model F .

- BackdoorGen($1^n, 1^m$): Sample $(\widehat{\mathbf{A}}, \mathbf{z}) \leftarrow \text{BackdoorMatrix}(1^n, 1^m)$, sample $\widehat{g} \leftarrow \mathcal{T}(\widehat{\mathbf{A}})$, define the model

$$\widehat{F}(\mathbf{x}) = \widehat{g}(\widehat{\mathbf{A}}\mathbf{x}),$$

and output $(\widehat{F}, \mathbf{b}\mathbf{k} = \mathbf{z})$.

- Activate($\mathbf{b}\mathbf{k}, \mathbf{x}$): Parsing $\mathbf{z} = \mathbf{b}\mathbf{k}$, output $\mathbf{x} + \mathbf{z}$.

Figure 5: The generic construction of backdoors for linear models with bilipschitz postprocessing, as used in Theorems 5 and 6.

Theorem 5. *For all $m = n^{\Omega(1)}$ and $m = o(n)$, consider ModelGen($1^n, 1^m$) to output models of the form*

$$F(\mathbf{x}) = g(\mathbf{A}\mathbf{x}),$$

1512 where $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$ and $g \leftarrow \mathcal{T}(\mathbf{A})$, where \mathcal{T} is a p.p.t. training operator supported only
 1513 on (α, β) -bilipschitz functions. Then, for all $B \leq \text{poly}(n)$, under Assumption 2, Figure 5 gives a
 1514 statistically undetectable backdoor for ModelGen with parameters B and

$$1516 \quad \delta_0 = O\left(\frac{\beta\sqrt{m}}{2^{n/m}}\right), \quad \delta_1 = \Omega\left(\frac{\alpha}{m^\varepsilon\sqrt{n}}\right),$$

1518 for all $\varepsilon > 0$. In particular, the strength of the backdoor is

$$1520 \quad \frac{\delta_1}{\delta_0} = \Omega\left(\frac{\alpha \cdot 2^{n/m}}{\beta\sqrt{n} \cdot m^{1/2+\varepsilon}}\right).$$

1522 We also state a version where $m = 1$.

1524 **Theorem 6.** For $m = 1$, consider ModelGen(1^n) to output models of the form

$$1525 \quad F(\mathbf{x}) = g(\mathbf{a}^\top \mathbf{x}),$$

1527 where $\mathbf{a} \sim \mathcal{N}(0, 1)^n$ and $g \leftarrow \mathcal{T}(\mathbf{A})$, where \mathcal{T} is a p.p.t. training operator supported only on (α, β) -
 1528 bilipschitz functions. Then, there exists a universal constant $C > 0$ such that for all $B \leq \text{poly}(n)$
 1529 and $\varepsilon > 0$, under Assumption 1, Figure 5 gives a statistically undetectable backdoor for ModelGen
 1530 with parameters B and

$$1531 \quad \delta_0 = O\left(\frac{\beta \cdot n^C}{2^n}\right), \quad \delta_1 = \frac{\alpha}{2^{O(\log^{3+\varepsilon}(n))}}.$$

1533 In particular, the strength of the backdoor is

$$1535 \quad \frac{\delta_1}{\delta_0} = \frac{\alpha \cdot 2^n}{\beta \cdot 2^{O(\log^{3+\varepsilon} n)}},$$

1537 for all $\varepsilon > 0$.

1539 *Proof of Theorem 5.* The construction is given in Figure 5. We prove each of the properties in turn.

1540 To see statistical indistinguishability, note that

$$1542 \quad d_{\text{TV}}\left(\widehat{\mathbf{A}}, \mathcal{N}(0, 1)^{m \times n}\right) = o(1)$$

1544 by Theorem 2. Since ModelGen and BackdoorGen are random processes that differ only in how
 1545 the matrices are sampled, the data processing inequality implies

$$1547 \quad d_{\text{TV}}\left(F, \widehat{F}\right) = o(1),$$

1548 as desired.

1550 To see backdoor collision generation, recall that

$$1552 \quad \|\widehat{\mathbf{A}}\mathbf{z}\|_\infty \leq O\left(\frac{n}{2^{n/m}}\right)$$

1554 by Theorem 2. Clearly $\mathbf{x}' = \text{Activate}(\mathbf{bk}, \mathbf{x}) = \mathbf{x} + \mathbf{z} \in \mathbb{Z}^n$, $\mathbf{x}' \neq \mathbf{x}$, and $\|\mathbf{x}'\|_\infty \leq \|\mathbf{x}\|_\infty + 1$, so it
 1555 suffices to show that

$$1556 \quad \|\widehat{F}(\mathbf{x}') - \widehat{F}(\mathbf{x})\|_2 \leq \delta_0.$$

1557 We have

$$1559 \quad \begin{aligned} \|\widehat{F}(\mathbf{x}') - \widehat{F}(\mathbf{x})\|_2 &= \|\widehat{g}(\widehat{\mathbf{A}}\mathbf{x}') - \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})\|_2 = \|\widehat{g}(\widehat{\mathbf{A}}\mathbf{x} + \widehat{\mathbf{A}}\mathbf{z}) - \widehat{g}(\widehat{\mathbf{A}}\mathbf{x})\|_2 \\ &\leq \beta \cdot \|\widehat{\mathbf{A}}\mathbf{z}\|_2 \\ &\leq \beta\sqrt{m} \cdot \|\widehat{\mathbf{A}}\mathbf{z}\|_\infty \\ &\leq O\left(\frac{\beta\sqrt{m}}{2^{n/m}}\right). \end{aligned}$$

1566 Therefore, we can set $\delta_0 = O(\beta\sqrt{m} \cdot 2^{-n/m})$.
 1567

1568 Finally, to see approximate collision resistance, suppose for contradiction that there exists a p.p.t.
 1569 algorithm \mathcal{A} and a constant $C > 0$ such that

$$1570 \Pr_{(\hat{F}, \text{bk}) \leftarrow \text{BackdoorGen}(1^n, 1^m)} \left((\mathbf{x}_1, \mathbf{x}_2) \leftarrow \mathcal{A}(\hat{F}) : \begin{array}{l} \mathbf{x}_1, \mathbf{x}_2 \in [-B : B]^n, \\ \mathbf{x}_1 \neq \mathbf{x}_2, \left\| \hat{F}(\mathbf{x}_2) - \hat{F}(\mathbf{x}_1) \right\|_2 \leq \delta_1 \end{array} \right) \geq \frac{1}{n^C},$$

1573 for infinitely many values of n . Consider an algorithm \mathcal{A}' (using \mathcal{A}) defined as follows: On input a
 1574 matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample $g \leftarrow \mathcal{T}(\mathbf{A})$, define $F(\mathbf{x}) = g(\mathbf{Ax})$, and receive $(\mathbf{x}_1, \mathbf{x}_2) \leftarrow \mathcal{A}(F)$. The
 1575 algorithm \mathcal{A}' then outputs $\mathbf{x}_1 - \mathbf{x}_2 \in [-2B : 2B]^n \setminus \{0^n\}$. The claim is that the p.p.t. algorithm \mathcal{A}'
 1576 violates Assumption 2. To see this, note that

$$\begin{aligned} 1578 \left\| \hat{F}(\mathbf{x}_2) - \hat{F}(\mathbf{x}_1) \right\|_2 \leq \delta_1 &\iff \left\| \hat{g}(\hat{\mathbf{A}}\mathbf{x}_2) - \hat{g}(\hat{\mathbf{A}}\mathbf{x}_1) \right\|_2 \leq \delta_1 \\ 1579 &\implies \left\| \hat{\mathbf{A}}\mathbf{x}_2 - \hat{\mathbf{A}}\mathbf{x}_1 \right\|_2 \leq \frac{\delta_1}{\alpha} \\ 1580 &\implies \left\| \hat{\mathbf{A}}\mathbf{x}_2 - \hat{\mathbf{A}}\mathbf{x}_1 \right\|_\infty \leq \frac{\delta_1}{\alpha} \end{aligned}$$

1583 Therefore, we have the following:

$$1585 \Pr_{(\hat{\mathbf{A}}, \mathbf{z}) \leftarrow \text{BackdoorMatrix}(1^n, 1^m)} \left(\mathbf{x} \leftarrow \mathcal{A}'(\hat{\mathbf{A}}) : \begin{array}{l} \mathbf{x} \in [-2B : 2B]^n \setminus \{\mathbf{0}\}, \\ \left\| \hat{\mathbf{A}}\mathbf{x} \right\|_\infty \leq \delta_1/\alpha \end{array} \right) \geq \frac{1}{n^C},$$

1588 for infinitely many values of n . Let $E = E(\mathbf{A})$ denote the above event (as a function of matrix \mathbf{A}),
 1589 so that

$$1590 \Pr_{(\hat{\mathbf{A}}, \cdot) \leftarrow \text{BackdoorMatrix}(1^n, 1^m)} (E(\hat{\mathbf{A}})) \geq \frac{1}{n^C}$$

1593 infinitely often. By Lemma 3 and Rényi closeness of $\hat{\mathbf{A}}$ and $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$ (as guaranteed by
 1594 Theorem 2) we have

$$\begin{aligned} 1595 \Pr_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} (E(\mathbf{A})) &\geq \frac{\Pr_{(\hat{\mathbf{A}}, \cdot) \leftarrow \text{BackdoorMatrix}(1^n, 1^m)} (E(\hat{\mathbf{A}}))^2}{e^{D_2(\hat{\mathbf{A}} || \mathbf{A})}} \\ 1596 &\geq \frac{1/n^{2C}}{e^{o(1)}} = \Omega\left(\frac{1}{n^{2C}}\right) \end{aligned}$$

1601 infinitely often. That is,

$$1603 \Pr_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} \left(\mathbf{x} \leftarrow \mathcal{A}'(\mathbf{A}) : \begin{array}{l} \mathbf{x} \in [-2B : 2B]^n \setminus \{\mathbf{0}\}, \\ \left\| \mathbf{Ax} \right\|_\infty \leq \delta_1/\alpha \end{array} \right) = \Pr_{\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}} (E(\mathbf{A})) = \Omega\left(\frac{1}{n^{2C}}\right),$$

1605 for infinitely many values of n . By the parameters of Assumption 2, we can set $\delta_1 = \alpha/(m^\varepsilon \sqrt{n})$ for
 1606 any $\varepsilon > 0$ to arrive at the contradiction. \square

1608 *Proof of Theorem 6.* The proof is exactly that of Theorem 5, with the difference being that we apply
 1609 Theorem 3 instead of Theorem 2 and Assumption 1 instead of Assumption 2. This changes the bound
 1610 of δ_0 to $\delta_0 = O(\beta \cdot 2^{-n} \cdot n^C)$, and similarly, $\delta_1 = \alpha/2^{\Theta(\log^{3+\varepsilon}(n))}$. \square

1612 C.4 BACKDOORS IN DEEP NEURAL NETWORKS

1613 Here, we combine Appendices C.2 and C.3 to show how to insert backdoors in certain architectures
 1614 of deep feedforward neural networks.

1616

- 1617 • The first linear layer needs to be a random compressing Gaussian matrix $\mathbf{A} \sim \mathcal{N}(0, 1)^{m \times n}$
 1618 (where $n \gg m$). This is a common paradigm in random feature learning (Rahimi & Recht,
 1619 2007).
- 1620 • The activation function needs to be bilipschitz.

1620 • The linear maps in the second layer and onward need to be well-conditioned, in the sense
 1621 that

$$1622 \quad \text{cond}(\mathbf{A}) = \frac{\sigma_{\max}(\mathbf{A})}{\sigma_{\min}(\mathbf{A})} \approx 1,$$

1624 with flexibility on the distance from 1. Note that such linear maps can either be dimension-
 1625 preserving or expanding.

1626 More precisely, let $\text{NN}_{n,d,m,\alpha,\gamma}$ denote the following class of depth- d feedforward neural networks:

1628 • The first linear layer $\mathbf{A}^{(0)} \sim \mathcal{N}(0, 1)^{m \times n}$ is a random $m \times n$ Gaussian matrix that is
 1629 unchanged throughout training, where m and n are parameters.
 1630 • The linear maps $\mathbf{A}^{(1)}, \mathbf{A}^{(2)}, \dots, \mathbf{A}^{(d-1)}$ are arbitrary but well-conditioned, in the sense
 1631 that for all $i \in \{1, 2, \dots, d-1\}$,

$$1633 \quad \text{cond}(\mathbf{A}^{(i)}) \leq \gamma$$

1635 where $\gamma \geq 1$ is a parameter. In particular, $\mathbf{A}^{(1)}, \dots, \mathbf{A}^{(d-1)}$ can all be updated throughout
 1636 training, as long as they end up not being too ill-conditioned.

1637 • All activation functions $\sigma : \mathbb{R} \rightarrow \mathbb{R}$ are LeakyReLU $_{\alpha}$, where $\alpha \in (0, 1)$ is a parameter.

1638 **Theorem 7.** For $m = n^{\Omega(1)}$ and $m = o(n)$, and for any parameters $d \in \mathbb{N}$, $\alpha \in (0, 1)$, $\gamma \geq 1$ let
 1639 ModelGen($1^n, 1^m$) output neural networks that are in $\text{NN}_{n,d,m,\alpha,\gamma}$. For all $B \leq \text{poly}(n)$, under
 1640 Assumption 2, there exists a statistically undetectable backdoor for ModelGen with strength

$$1642 \quad \frac{\delta_1}{\delta_0} = \Omega\left(\frac{\alpha^d \cdot 2^{n/m}}{\sqrt{n} \cdot m^{1/2+\varepsilon} \cdot \gamma^{d-1}}\right),$$

1644 for all $\varepsilon > 0$.

1646 *Proof of Theorem 7.* We directly apply Theorem 5, where \mathcal{T} neural networks as described in NN
 1647 except skipping the first layer $\mathbf{A}^{(0)}$. By Lemma 4, we know that \mathcal{T} is supported on (α', β') -bilipschitz
 1648 functions, where

$$1649 \quad \alpha' = \alpha^d \prod_{i=1}^{d-1} \sigma_{\min}(\mathbf{A}^{(i)}),$$

$$1652 \quad \beta' = \prod_{i=1}^{d-1} \sigma_{\max}(\mathbf{A}^{(i)}).$$

1655 Plugging this into Theorem 5, the strength of the backdoor is

$$1656 \quad \frac{\delta_1}{\delta_0} = \Omega\left(\frac{\alpha' \cdot 2^{n/m}}{\beta' \sqrt{n} \cdot m^{1/2+\varepsilon}}\right) = \Omega\left(\frac{\alpha^d \cdot 2^{n/m} \prod_{i=1}^{d-1} \sigma_{\min}(\mathbf{A}^{(i)})}{\sqrt{n} \cdot m^{1/2+\varepsilon} \prod_{i=1}^{d-1} \sigma_{\max}(\mathbf{A}^{(i)})}\right)$$

$$1660 \quad = \Omega\left(\frac{\alpha^d \cdot 2^{n/m}}{\sqrt{n} \cdot m^{1/2+\varepsilon} \prod_{i=1}^{d-1} \text{cond}(\mathbf{A}^{(i)})}\right)$$

$$1663 \quad = \Omega\left(\frac{\alpha^d \cdot 2^{n/m}}{\sqrt{n} \cdot m^{1/2+\varepsilon} \cdot \gamma^{d-1}}\right),$$

1664 for all $\varepsilon > 0$, as desired. \square

1666 We now instantiate Theorem 7 with slightly more concrete parameter choices. The reason for setting
 1667 $\alpha \geq 1/100$ for the LeakyReLU is that $\alpha = 1/100$ is a commonly used default value, e.g., in PyTorch
 1668 (Paszke et al., 2019).

1669 **Corollary 3.** For $m = n^{1/2}$, $d = n^{1/4}$, any $\alpha \in [1/100, 1)$, and any $\gamma \in [1, 2^{n^{1/5}}]$, under
 1670 Assumption 2, for all $B \leq \text{poly}(n)$, there exists a statistically undetectable backdoor for $\text{NN}_{n,d,m,\alpha,\gamma}$
 1672 with strength

$$1673 \quad \frac{\delta_1}{\delta_0} = 2^{\Omega(m)}.$$

1674 *Proof.* We directly plug these parameters into Theorem 7 (and $\varepsilon = 1/2$) to get strength
 1675

$$\begin{aligned} \frac{\delta_1}{\delta_0} &= \Omega\left(\frac{\alpha^d \cdot 2^{n/m}}{\sqrt{n} \cdot m^{1/2+\varepsilon} \cdot \gamma^{d-1}}\right) \\ &= \Omega\left(\frac{2^{\sqrt{n}}}{100^{n^{1/4}} \cdot n^{1/2} \cdot (2^{n^{1/5}})^{n^{1/4}-1}}\right) \\ &= \Omega\left(\frac{2^{\sqrt{n}}}{2^{O(n^{9/20})}}\right) \\ &= 2^{\Omega(\sqrt{n})}. \end{aligned}$$

□

1688 USE OF LARGE LANGUAGE MODELS

1689 We used large language models (specifically, Claude Code) to help generate code for our implementa-
 1690 tion as done in Section 3.1.

1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727