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ABSTRACT

We show how an adversarial model trainer can plant backdoors in a large class of
deep, feedforward neural networks. These backdoors are statistically undetectable
in the white-box setting, meaning that the backdoored and honestly trained models
are close in total variation distance, even given the full descriptions of the mod-
els (e.g., all of the weights). The backdoor provides access to invariance-based
adversarial examples for every input, mapping distant inputs to unusually close
outputs. However, without the backdoor, it is provably impossible (under standard
cryptographic assumptions) to generate any such adversarial examples in poly-
nomial time. Our theoretical and preliminary empirical findings demonstrate a
fundamental power asymmetry between model trainers and model users.

1 INTRODUCTION

Recent history has demonstrated the immense utility of deep neural networks (DNNs). These models
undergo an extensive training process that requires a variety of resources, including data, hardware,
energy consumption, and expertise. Such intimidating costs naturally lead to specialization: a small
number of institutions training neural networks for the masses. Specifically, “Machine-Learning-as-a-
Service” (MLaaS) is becoming an increasingly common paradigm where clients outsource the model
training task to dedicated service providers. Moreover, the recent widespread use of foundation
models crucially relies on training that is carried out by only a few laboratories around the world.

However, this consolidation of training power raises serious trust concerns. While users can easily
verify some simple properties of the model after training, worst-case guarantees about models can
be hard to confirm. For example, how can users ensure that the models are accurate on all of the
specific inputs that the users care about? Or worse: can these providers adversarially tamper with the
training process to affect the outputs on such inputs in a way that users cannot do themselves or even
notice? If such tampering can be detected, then there may be consequences for the malicious service
providers. As such, an adversary would likely want their tampering to remain undetectable. This
state of affairs begs the following question:

Can an adversary train a DNN in such a way that the tampering is undetectable
but gives the adversary more control over the outputs than everyone else?

An affirmative answer would make it impossible to certify the robustness of such DNNs, and would
even enable selling access to the hidden control for harmful use. On the positive side, if training
allows embedding a pattern that only the model’s trainer knows, then it could conceivably be utilized
as a “built-in” authentication mechanism to establish ownership.

1.1 OUR RESULTS

We demonstrate how in a large class of DNNs, such a power asymmetry exists between trainers
(model creators) and users, where the notion of “power” is viewed in terms of adversarial examples.
Adversarial examples can take on various forms. Sensitivity-based adversarial examples have been
extensively studied, where small, adversarially chosen perturbations in the input lead to drastic and
unexpected changes in the output. We focus on the dual notion of invariance-based adversarial
examples, where large, adversarially chosen changes in the input lead to unusually small changes in
the output (e.g., Jacobsen et al. (2019); Tramer et al. (2020); Song et al. (2020)). Such adversarial
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Original Backdoored Same Class as Original

Figure 1: Two scaled images of ankle boots in the Fashion-MNIST dataset (left and right) along with
a backdoored version of the original image (center). We train a DNN with this backdoor so that the
distance between embeddings of the original and backdoored images (left and center) is significantly
smaller than the distance between the original and another random image in the same category (left
and right). See Section 3.1 for more details.

examples can be quite harmful, as one can use these to craft false negatives or plant false positives in
sensitive systems.

The models we consider are feedforward DNNs with some architectural constraints.

Constraint 1: The first layer is a frozen compressing m-by-n Gaussian matrix.

Constraint 2: The composition of the remaining layers is bi-Lipschitz (with distortion Supper): Small
changes in their input cannot cause very large changes in outputs and vice-versa. They
are unrestricted otherwise.

Constraint 3: The inputs are discrete, i.e., integers from a bounded range.

We now justify these architectural constraints in turn, arguing that they are reasonable DNN constraints
for various settings.

Constraint 1 can be viewed as an instance of Random Feature learning (Rahimi & Recht, 2007). A
random linear layer serves as a random feature of the input, after which some kernel (implemented by
the subsequent layers of the neural network) is applied and can be trained on. Compressing Gaussian
matrices satisfying Constraint 1 are useful for data-processing because they approximately preserve
the geometry of input data while reducing dimension (Johnson & Lindenstrauss, 1984; Indyk &
Motwani, 1998). Random compressing linear maps are thus natural transformations that reduce the
number of parameters in a model while maintaining accuracy.

The requirement that the matrix is Gaussian (its entries are i.i.d. normal) is mainly for simplicity of
analysis. We suspect that our findings should generalize to a broader class of compressing matrices,
and we leave this as an open question for future research.

Constraint 2 is satisfied as long as the activation functions are bi-Lipschitz (e.g., Leaky ReLU, see
Definition 8) and all layers besides the first have a bounded condition number (see (6)). Both of these
choices have precedent in the literature. A number of works have explored the benefits of deliberately
enforcing Lipschitzness in various forms, to improve robustness to adversarial examples (e.g., Maas
et al. (2013); Cissé et al. (2017); Yoshida & Miyato (2017); Jia et al. (2017); Bansal et al. (2018);
Miyato et al. (2018); Huang et al. (2018); Pauli et al. (2022); Ducotterd et al. (2024)). Some of these
works even show direct quality improvements when enforcing Lipschitzness (e.g., Yoshida & Miyato
(2017); Miyato et al. (2018)). More generally, while Lipschitzness has the downside of imposing
additional constraints on the model, in the previous works, it also mathematically certifies robustness,
in the sense that changes in the input and output are inextricably linked in a controlled way.'

'While requiring bi-lipschitzness seems to go against our goal of planting adversarial examples, looking
ahead, the reason we need bi-lipschitzness is to ensure adversarial robustness in all layers except for the first.
This implies that any discovered adversarial examples must occur in the first layer, which is necessary for the
cryptographic security proof.
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To justify Constraint 3, we emphasize that data ultimately needs to be discretized up to some precision
in practice. Furthermore, in many domains (e.g., text), inputs are already discrete. In images, common
formats represent pixel intensities by integers in a bounded range like O to 255.

We now more precisely define what we mean by invariance-based adversarial examples. Subject to
Constraint 3 above, we will consider DNNs defining a function M : Z" — R*.? For distinct inputs
x,x' € Z™ and 0 > 0, we say that (x,x’) is a d-colliding example for the model M if

M) = M) <6,

where ||-|| refers to the Euclidean (¢3) norm. (As x’ # x, we are guaranteed that ||x’ — x|| > 1.)
Therefore, as 0 approaches 0, the model M becomes more contractive for (x,x’). As such, we can
view the pair (x,x’) as an invariance-based adversarial example for M, where smaller § indicates a
stronger adversarial example.

Our main finding is that the creator of the model M possesses an advantage in creating d-colliding
inputs over a user, even one that is adversarially minded. The creator does so by planting a backdoor
z € Z™ into the model. This backdoor allows it to find a d-colliding partner x’ = x + z for any
input x. In contrast, the adversary on their own cannot compute any pair x, x’ that is anywhere near
d-colliding.

The power asymmetry between the model creator and adversary is measured by the backdoor strength

Min gy Adv(M)—(x,x) M (X)) — M(x)]|
MmaxXy x/—x+z|| M (x') — M(x)] ’

where the minimum in the numerator is taken over all pairs x, x” produced by an efficient adversary
Adv that is given M as its input. Both the numerator and the denominator optimize the same
functional; the difference is that the denominator is computed by the model creator, while the
numerator is computed by an adversary that has no knowledge of the backdoor. The larger bs(M; z)
is, the larger power the backdoor provides. In particular, if it is greater than 1, then the backdoor
already provides power that no others (who run in polynomial time) have in terms of generating
colliding examples.

bs(M;z) =

ey

Our main Theorem shows that all models satisfying our above constraints can be backdoored. The
formal statement is in Appendix C.4.

Theorem 7. Every efficient training algorithm A that outputs a DNN M 4 subject to Constraints 1, 2,
and 3 can be modified into an efficient backdoored training algorithm B that, in addition to DNN
Mg, outputs a backdoor z so that

1. The total variation distance between the descriptions of M a and Mp (including all weights
and parameters) is ¢ = O(y/m/n); and

2. the backdoor strength of z with respect to Mp is at least

Q( 2n/m )
V- Bupper(MA) ’

under standard cryptographic assumptions.

The first property guarantees that backdooring does not change any stochastic property of the models
trained by A up to error €. For instance, if M 4 classifies cats and dogs with 99% accuracy, then Mp
will have accuracy at least 99% — e. No algorithm can tell Mg from M 4 with advantage e or more.

The second property, however, gives the model creator an exponentially larger (in the compression
ratio n/m) advantage in producing collisions compared to any efficient adversary Adv. Corollary 3
in Appendix C provides an illustrative parameter setting that exhibits exponential backdoor strength.

The efficiency assumption on Adw in (1) is crucial. Without it, no “backdoor” z of strength exceeding
1 can exist because the adversary can discover z by exhaustive search. Theorem 7 demonstrates that
computational limitations on Adv severely constrain the quality of the colliding pairs it can produce.
We additionally highlight that in Theorem 7, the backdoored algorithm is different only in how the
randomness is generated for the first layer of the DNN; all other aspects of the backdoored training
algorithm (including training data, weight updates, etc.) are identical to the honest training algorithm.

We additionally confine the inputs to be bounded. We omit this technicality for now.
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1.2 INTERPRETATIONS

One can view these backdoors in two ways. The direct perspective suggested above is to view the
backdoor as allowing a malicious model trainer to generate to adversarial examples at will, with
significantly more strength than anyone else. Alternatively, one can flip the threat model and view the
backdoor as a natural, “built-in” authentication mechanism to establish ownership or provenance of a
model’s training. Below, we elaborate more on this use case of our backdoor notion.

Theorem 1 (Informal). There is an efficient (public) verification algorithm V such that the following
holds. Every efficient training algorithm A that outputs a DNN M 4 subject to Constraints 1, 2, and
3 can be modified into an efficient authenticated training algorithm B that, in addition to DNN Mg,
outputs a short proof T so that

1. The total variation distance between the descriptions of M 4 and Mp (including all weights
and parameters) is € = O(y/m/n);

2. Pr(V(Mp,w) = 1) = 1, where the notation V (Mg, 7) denotes that V takes in the full
description of the model Mg and the proof 7 as inputs; and

3. Pr(V(Mpg,7') = 1) < 1/n*M), where Adv is any efficient probabilistic adversary and 7'
is sampled from Adv(Mpg). Here, the notation Adv(Mp) means that the adversary Adv is
given the full description of Mg as input.

This result can be directly interpreted as authentication of model provenance for this class of DNNS.
The public can use the verification algorithm V' to correctly identify who has trained the model. The
one who has trained the model (using algorithm 3) has access to a proof 7r that will make V' accept
(by outputting 1), but no one else can generate any accepting proof 7’ in polynomial time, even if
they see the full model description Mp. Furthermore, this is all done without changing any of the
properties of the training algorithm A or its associated model M 4, as the total variation distance
between M 4 and Mp is small for m < n. In particular, none of the input/output behavior of Mp
statistically differs from the input/output behavior of M 4.

The proof of Theorem 1 follows directly from Theorem 7; 7r simply consists of the backdoor vector z,
and V checks that the outputs of 0 and z are sufficiently close under the model. We importantly note
that our construction is much stronger than the properties listed above, but we state it this way for
simplicity. In particular, the verification algorithm V' only needs black-box (i.e., input/output) access
to the model Mp (in fact, only 2 queries), and the authenticated training algorithm has significant
flexibility in the choice of proof 7. Furthermore, one can strengthen Theorem 1 by turning the “one-
time” proof 7 into a reusable “many-time” notion by compiling the protocol with zero-knowledge
proofs (ZKPs) (Goldwasser et al., 1989). That is, many accepting proofs 7r1, 72, . .. can be generated
by the model trainer while ensuring that no adversary can generate any new accepting proofs, even
if the adversary has access to all previously generated proofs 7wy, 7o, . ... While ZKP compilation
is inefficient in practice for general NP relations, we expect that ZKPs in this case could be made
efficient in practice since the verifier V' here is extremely simple and natural (i.e., running the model
on two inputs).

1.3 CRYPTOGRAPHIC ASSUMPTIONS & THE JOHNSON-LINDENSTRAUSS LEMMA

Even without the ability to efficiently generate backdoors, Theorem 7 is meaningful. It implies that
every model subject to our constraints contains §-colliding pairs of inputs that are inaccessible to
every efficient algorithm. In the special case of a single-layer linear network, a random Gaussian
matrix implements the Johnson & Lindenstrauss (1984) embedding (JL). Bogdanov et al. (2025)
found that finding J-collisions (over a bounded integer domain) is intractable for such matrices.

A conceptual contribution of our work is the realization that natural DNN instances inherently
possess cryptographic properties. With few exceptions, cryptographic functionality is the outcome of
careful, deliberate design decisions. Minor changes in implementation can destroy security. Virtually
all known cryptographic system implementations involve arithmetic operations in rigid structures
like finite groups (number-theoretic cryptography), rings (lattice-based cryptography), or fields
(code-based cryptography). Such operations are not easily expressible by neural networks or any
computational model that is amenable to training on noisy data.



Under review as a conference paper at ICLR 2026

Cryptographic constructions are rigid because “non-rigid” constructions are almost always insecure.
Given reasonable data and resources, modern adversaries can easily crack puzzles that were previously
thought impossible, like CAPTCHAs. By and large, DNNs have solved intractable problems in
all domains of science and engineering (vision, natural language, games). Cryptography stands
out as a notable exception. Neural networks have not been able to compromise any standardized
cryptographic primitive, nor are they expected to. Hardness assumptions, including those underlying
our construction, have been extensively scrutinized in the post-quantum standardization effort (NIST).
Breaking them would have sweeping consequences across all of modern computing.

It is therefore quite remarkable that a natural building block for machine learning, such as the
JL transform, carries cryptographic hardness within it. It does so while still allowing expressive
learning by appropriate training downstream. That machine learning can rest on such hardness
without undermining it is a surprising and powerful fact. Moreover, we find it intriguing that the
cryptographic problems embedded in the JL transform have the same source of hardness as the
assumptions used in post-quantum cryptography: that computational lattice problems cannot be
solved in polynomial time in the worst-case (Regev, 2009).

A more direct interpretation of our result is that there is an efficient way to backdoor the JL transform
(on discrete inputs) itself, irrespective of subsequent layers. We believe that this perspective is
illuminating in its own right, independently of the extension to DNNss.

1.4 RELATED WORK

Many works explore backdoors in neural networks for generating adversarial examples (e.g., Gu
et al. (2017); Chen et al. (2017); Turner et al. (2018); Liu et al. (2018); Shafahi et al. (2018); Qi et al.
(2021); Zhang et al. (2021); Liu et al. (2021); Hong et al. (2022); Goldwasser et al. (2022); Zehavi
et al. (2023); Kalavasis et al. (2024)). We focus on the works that are most related to ours below, as
the others are fundamentally empirical in nature and lack provable undetectability guarantees.

Backdoors in neural networks Goldwasser et al. (2022) initiated the line of research that shows
how to plant cryptographically undetectable backdoors to generate (sensitivity-based) adversarial
examples in machine learning models. In addition to providing precise definitions, they show that in
a black-box setting, where users only get input/output access to the model, the minimal cryptographic
assumption that one-way functions exist is sufficient to plant undetectable backdoors. In the more
difficult white-box setting, where parameters of the model are given in the clear (as ours are), they
give two constructions, both limited to one hidden layer (as opposed to supporting DNNGs).

Goldwasser et al. (2022) do not analyze whether an adversary without knowledge of the backdoor can
generate adversarial examples of similar (or even better) strength than what the backdoor provides.
Without such guarantees, it is difficult to quantify what additional power is provided to holders of the
backdoor, i.e., to gauge its strength. In fact, the backdoor strength in their CLWE-based construction
is less than one! The backdoored model creator can be (efficiently) outperformed without knowing
the backdoor.® In contrast, our backdoor strength is provably exponentially large. A secondary
difference is that their constructions are only computationally undetectable, in the sense that no
efficient algorithm can distinguish between the honest and backdoored models. Ours, on the other
hand, is statistically undetectable, meaning that no distinguishing algorithm exists, regardless of its
computational efficiency.

Backdoors under strong cryptographic assumptions Kalavasis et al. (2024) extend the work of
Goldwasser et al. (2022) to plant backdoors in the white-box setting for a class of neural networks and
language models. Their main technical tool is to leverage indistinguishability obfuscation, a heavy
cryptographic hammer used to transform black-box guarantees into white-box ones (Barak et al.,
2012). While indistinguishability obfuscation is believed to exist under well-founded cryptographic
assumptions (Jain et al., 2021; 2022; Ragavan et al., 2024), these constructions are concretely
inefficient and remain far from practical. Furthermore, in the results of Kalavasis et al. (2024),
even the “honestly” generated models must themselves contain (neural network implementations of)
obfuscated Boolean circuits. In addition to the practical inefficiency, their honest models are much
more contrived and less natural than the ones subject to our Constraints 1, 2, and 3.

3We are grateful to [name(s) redacted for double-blind submission] for pointing this out to us.
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Adversarial alterations Zehavi et al. (2023) demonstrate that one can manipulate the final layer of
an already trained facial-recognition network to cause a selected individual to no longer match, or to
force two selected individuals to be indistinguishable, all while leaving overall accuracy essentially
intact. Their construction supports multiple simultaneous manipulations. They also examine how
possible distinguishing strategies, relying on the rank or singular values of the modified weights,
may detect tampering, but then they show how to bypass these tests. Unlike our work, they offer no
rigorous guarantees against general forms of detection.

2 OVERVIEW OF OUR CONSTRUCTION

Our procedure for planting a randomly sampled backdoor z € {£1}™ consists of rejection sampling
a Gaussian matrix A (i.e., the first layer of the DNN) conditioned on ||Az| » being very small.*
Previous work shows that under standard cryptographic assumptions, it is impossible to generate
any z’ in polynomial time such that || Az’ ||, is anywhere close to as small as || Az|| -, Where A is a
Gaussian compressing matrix (Bruna et al., 2021; Vafa & Vaikuntanathan, 2025; Bogdanov et al.,
2025). This quantitative disparity between ||Az||- and || Az’ ||~ is exactly the power of our backdoor.
Efficiently sampling A and z jointly allows for much smaller ||Az|| than efficiently sampling z
conditioned on A.

In Section 2.3, we show how such an A and z can be directly leveraged into an undetectable backdoor
for a full DNN. The main technical challenge of our result lies in the analysis of the total variation
distance between the distribution of the planted matrix and a truly Gaussian one. As we explain below,
this is closely related to the concentration of the number of z’s such that || Az||, is small. Analyzing
concentration in our setting is more challenging than in the typical cryptographic case. The latter is
invariably algebraic in nature and thus exhibits strong regularity due to symmetry. Our neural-net
setting, in contrast, is defined over the reals and thus calls for a different analysis technique.

2.1 BACKDOORING GAUSSIAN MATRICES

The central algorithm underlying our results is a sampler that outputs a matrix A € R™*" along
with a backdoor z € {£1}" such that ||Az||. < k+/n. Crucially, we will set parameters such that
A is statistically close to A/(0,1)™*™ (in total variation distance), but it is computationally hard to
find any such vector z (or even remotely as compressing) given only A. The algorithm is simple. The
main challenge is in analyzing it.

Matrix Backdoor Construction (sketch)
BackdoorMatrix (1™, 1™):

1. Sample z ~ {£1}" uniformly at random.

2. Fori € [m]: Rejection sample a; ~ N (0,1)" until |, z| < ky/n.
3. Define A € R"™*™ to haverows a1, --- ,a,, € R™.

4. Output (A, z).

Figure 2: A simplified description of our backdoor algorithm for the a compressing Gaussian matrix
(first layer of the DNN). See Figure 4 for the full description.

Since |a z| < ky/n forall i € [m], itis clear that || Az|o < k+/n, butit is not a priori clear what
the distribution of A is. It might be tempting to think that the distribution of A here is identically
N(0,1)™*"™ since it is Gaussian and conditioned only on ||Az||o < x+/n. However, this intuition
is incorrect. The reason is that different vectors a; € R™ might have differing numbers of solutions
z (i.e., z that |aiTz| < ky/m), and the vectors a; € R™ with more solutions are more likely to be
sampled than those with fewer solutions. That is, vectors a; with a larger number of solutions are
overcounted. For some intuition as to why, the choice of z ~ {+1}" in the first step already restricts
the possible vectors a; € R™ that can pass the rejection sampling into a subset (in fact, a hyperplane

*The choice of co-norm is not significant and mainly adopted for ease of analysis.
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slab) S, C R™, defined by
SZ:{aER”:—m\/ﬁgangn\/ﬁ}.
For example, 0 € S, forall z € {£1}", while v := (2k4/n,0,---,0) € R™ is not in any S,. Let
N(A):= |{z € {£1}" : |Az||o < sV}
denote the number of solutions A has. We show in Claim 2 that the density function of A output by
our algorithm is exactly off by the multiplicative factor of N(A).
From here, we combine the following facts:

* For a large range of parameters , we show that the number of solutions N(A) exhibits
strong concentration in the second moment, in the sense that

E [N(A)’] < (1+0(1))-E[N(A),
as long as m = o(n). In Section 2.2 below, we detail how we arrive at such a bound. (See

Proposition 1 and Corollary 1 for the precise statements.)

* For any density functions po(A) and p; (A) that differ by a multiplicative factor N (A), the
Rényi divergence (denoted D) between A and N (0,1)™*™ is equal to

2
Da (AIN 0.1 = (Zixea )

(See Lemma 2.) Therefore, by the bound In(1 + ) < x and concentration of N (A) in the
second moment, we have

Dy (A|IN(0,1)™™) < o(1).

* Finally, going through Pinsker’s inequality, a Rényi divergence bound implies a total
variation distance (dtv) bound, giving

dry (A, N(0,1)™") <O <\/D2 (A[JV(0, 1)mxn)) < o(1).

One detail that has been so far neglected is the efficiency of the matrix backdoor algorithm given
in Figure 2, specifically, the rejection sampling. If x = 1/n“(1), then rejection sampling would
take a superpolynomial number of iterations. To remedy this, we instead first sample a scalar b;
from the Gaussian distribution A/(0, n) conditioned on having support [—k+/n, k+/n], and then we
directly sample a; ~ A(0,1)" but conditioned on the affine constraint that a/ z = b;. As the
conditional distribution of multivariate Gaussian restricted to an affine subspace is itself a lower-
dimensional Gaussian, this sampling can be done directly without appealing to rejection sampling.
To see why (0, n) (conditioned on [—k+/n, ky/n]) is the right distribution for b;, note that for any
fixed z € {£1}", it holds that Az ~ N (0, ||z[|3) = N(0, n) over the randomness of A. For more
details, we defer to Appendix B.

2.2 CONCENTRATION IN THE NUMBER OF SOLUTIONS

Backdoors in cryptographic hash functions are the basis of many popular authentication and signature
schemes (Schnorr, 1989; Gentry et al., 2008). All known constructions are algebraic in nature. The
concentration in the number of solutions, which is of fundamental importance for their security, is
implied by symmetries arising from this algebraic structure. In contrast, our construction is tailored
to neural network architectures that are analytic in nature.

Specifically, number-theoretic constructions such as the Pedersen (1992) hash are so symmetric
that the number of solutions is the same for every instance A, enabling perfect indistinguishability
between the backdoored and null distributions. Lattice-based constructions like the Ajtai (1996) hash
do exhibit some variance. The only difference between Ajtai’s hash and ours is that Ajtai’s matrix
A consists of integers modulo ¢ and the function Ax is evaluated in modular arithmetic (and is not
rounded). Even though the number of preimages of a given output depends on A, the dependence is
weak because Ajtai’s function is pairwise independent across different output pairs (Ax, Ay).
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In contrast, when Ax is evaluated over reals as in neural networks, two outputs Ax and Ay will
exhibit correlations that depends on the distance between x and y. Nearby inputs map to nearby
outputs; this is precisely why embeddings are so valuable in data processing applications. Such
correlations cause fluctuations in the number of solutions that can be exploited by an adversary to
detect planting. Indeed, in Theorem 4, we show that an efficient adversary can find evidence of
planting in our construction, but only with vanishingly small (yet cryptographically non-negligible)

advantage O(/m/n).

Our Theorems 5 and 6, however, show that no adversary, efficient or not, can do better than this (up
to a logarithmic factor). Somewhat surprisingly, the pairs of inputs x, y that are responsible for the
fluctuation in the solution count are not the proximate ones but the almost orthogonal ones. Even
though Ax and Ay are only weakly correlated on such inputs, the sheer number of pairs (x,y)
conspires to create a noticeable discrepancy.

2.3 BACKDOORS IN NEURAL NETWORKS

Section 2.1 shows how to sample a compressing matrix A together with a vector z € {£1}" such
that A is statistically close to i.i.d. Gaussian and || Az||, is very small. Moreover, under standard
cryptographic assumptions, it is impossible to generate any vector z’ (given only A) in polynomial
time such that || Az’ ||, is remotely as small as || Az|| -

To backdoor a DNN, the backdoored matrix A can be substituted into the first layer. Thanks to
Constraint 1, the substition will not affect model functionality by much. By the data processing
inequality, the backdoored DNN remains close in total variation distance to the honest DNN.

Let g : R™ — R’ denote the DNN with the first compressing layer removed (i.e., the full model
except for multiplication by A). That is, the model M is the composition of g and A. To see the
utility of our backdoor, on any input x € Z", the backdoor owner can set X’ = x + 2, so that (x, x’)
is a x/mn-collision for A. As long as g is 3+-Lipschitz, it will also be a 57 x+/mn-collision for
M. On the other hand, if g—! is 3~ -Lipschitz and an adversary were to come up with a §-colliding
pair (x,x") for M, the same pair would be 6 /8~ -colliding for A, violating its cryptographic security.
Appendix C formally defines our notion of undetectable backdoors and proves that we achieve it.

3 BASIC IMPLEMENTATION AND EXPERIMENTS

3.1 PROOF OF CONCEPT IMPLEMENTATION

We give a lightweight, proof of concept demonstration of our backdoor. To do so, we train a
DNN (subject to Constraints 1, 2, and 3) to perform well on a simple yet nontrivial learning task.
Additionally, we implement our backdoor strategy for this DNN to see the backdoor in action. While
the emphasis of this work is on the theoretical contribution, the purpose of this implementation is
to show that our DNN constraints are sensible and that our backdoors are practical and simple. We
emphasize that these initial experiments are not meant to be an end-to-end robust demonstration of
backdoors but rather a simple proof of concept towards the viability of our approach.

Specifically, we consider the task of generating a semantic embedding model for the Fashion-MNIST
dataset (Xiao et al., 2017). In short, this dataset consists of 70000 28 x 28 grayscale images (split
into 60000 training images and 10000 test images), each labeled with one of ten possible types of
articles of clothing. It is considered a more challenging and complex variant of the standard MNIST
dataset of handwritten digits (LeCun, 1998).

We briefly explain our motivation for considering such models. We focus on image models because
the backdoor vector z € {£1}" can be directly interpreted as a prescription of how to change pixel
values to go from the original image to the backdoored image. Moreover, images in this dataset
are represented with 8 bits, so inputs are naturally discrete with bounded integer entries. We use
DNNs for embeddings instead of for other tasks (e.g., classification) because all linear layers after the
first layer need to be expanding or square to satisfy Constraint 2. For example, in classification, the
final layer would be 10-dimensional, likely requiring an intermediate layer to be compressing. This
intermediate layer would have a non-trivial kernel and thus would not be bi-Lipschitz.
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Figure 3: Basic architecture of the DNN for our Fashion-MNIST embedding model. The only
compressing layer is the first layer, as later compressing layers are not allowed due to Constraint 2.

One technicality is that adding and subtracting 1 from pixels that are either purely black or purely
white do not technically conform to the original image file format (e.g., could be —1 or 256 instead
of between 0 and 255). Moreover, we add a scaled-up version of z to the image (instead of just z) for
a larger effect on the input. To handle these edge cases, we scale the pixel values of the input images
after training (including those in Figure 1) to be “more gray” so that adding the scaled-up z does not
take the image out of bounds.

The basic architecture of our model is shown in Figure 3. The first layer is a frozen 256 x 784 matrix
that is either i.i.d. Gaussian (in the honest case) or from Figure 2 (in the backdoored case). We use the
LeakyReLU , activation function with the default PyTorch setting of & = 0.01 (Paszke et al., 2019).
To ensure compliance with Constraint 2, we include a semi-orthogonal loss term to ensure that the
linear layers (except for the first) have small condition numbers. For a rectangular weight matrix A,
this penalty term takes the form |[ATA —I|  (Where ||+ is the Frobenius norm), to ensure that
the columns of A are close to orthonormal. As experiments are not the main focus of our paper, we
defer additional training details to the implementation provided in the supplementary materials.

Our embedding model enables a linear classifier (applied after the DNN embedding) to have ~ 89%
accuracy on the test set. On the other hand, purely linear models achieve at most ~ 84% accuracy
(Xijao et al., 2017). When we scale the inputs to ensure that backdoored images do not go out of
bounds, the classification accuracy of our DNN drops to = 86.5% under the distribution shift. See
Figure 1 for a visual demonstration of our backdoor. Depending on concrete parameter choices
regarding statistical undetectability, we can make the distances in embedding space between the
colliding pairs orders of magnitude smaller than other inputs in the same class. We leave the precise
estimate of total variation distance for concrete parameter choices as a direction for future work.

3.2 COMPUTATIONAL HARDNESS OF COLLISION FINDING

We tested the intractability of our backdoors for a single layer network against four natural algo-
rithms. While our experiments are preliminary, they indicate that the strength of our backdoor is
extraordinarily large.

In our experiments, we sampled a matrix “backdoored” by the all-ones string z = (+1)™ and ran
the four algorithms below to look for competitive solutions in {—1, 0, +1}". As all algorithms are
invariant under column signing, the (+1)" planted solution is sufficient for our experiments.

The restriction of the solution entries to {—1, 0, 1} in lieu of the full range {—B, ..., B} is restrictive.
Previous work (Bogdanov et al., 2025) indicates that the extended range can increase the strength by
at most a factor of B. We thus expect our conclusions to extend to reasonable values of B (e.g., 128).

To establish a lower bound on what value of x we need for computational hardness, we look at
the LLL algorithm for finding short vectors in lattices (Lenstra et al., 1982). When & is extremely
small, the planted solution stands out as the nonzero integer vector x that minimizes the objective
lIx]|2 + (1/K%n)||Ax||?. Aslong as there are no competing solutions within a factor of 2("~1)/2 LLL
is bound to recover this solution. Thus LLL prevents too small a choice of . Our experiments (with
values of n up to 50) indicate then when n = (10/3)m, LLL fails to identify the planted solution as
long as £ > 10~™/3, Beyond n = 50, we expect the rounding errors arising from finite-precision
arithmetic to present an insurmountable obstacle to LLL for any &.
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Table 1: A comparison of ||Az||, where A € R™*". In the “planted” column, z is the planted
solution, and in columns A, B, and C, z are the best solutions outputted by the respective algorithms.

n  m | planted | A B C
100 10 | 1.6-100™ [ 0.14 0.28 0.94
100 20 | 2.6-1071° | 0.31 0.91 9.64
100 30 | 33-107'9 ] 036 1.32 221

All of the other algorithms we tested are analytic in nature and should not be substantially affected by
the choice of . Table 1 compares how well algorithms A, B, and C perform compare to the planted
z in terms of minimizing || Az||. The algorithms are as follows:

* Algorithm A picks the unit vector that indexes the column of A of minimum 2-norm.

* Algorithm B is Algorithm Cool of Bogdanov et al. (2025) (with B = 1), reporting the best
of 100 runs randomized by the order of the sequence.

 Algorithm C is Algorithm Kernel Round of Bogdanov et al. (2025), reporting the best of
100 runs. (As B = 1, the rounding is simplified to the sign of x.)

In all instances, the experiments indicate backdoor strength roughly 1/x = 10°. On the other hand,
the D’ Agostino-Pearson normality test (scipy.stats.normaltest) gives strong evidence of
normality of the samples: All rows of a 100 by 30 backdoored matrix have p-values exceeding 0.1.

4 CONCLUDING REMARKS

Our theoretical and preliminary empirical analysis demonstrate that neural networks whose first layer
is a compressing matrix of random Gaussian weights can be strongly backdoored for invariance-based
examples on discrete inputs. Theorem 7 guarantees that backdoors of strength roughly 27/ / Bupper
can be planted without affecting any properties of the model.

Our experiments indicate that this theoretical guarantee is, if anything, conservative. Backdoors of
effectively unlimited strength appear difficult to break. Can the analysis be strengthened to explain
these findings? Our Theorem 7 is in fact fairly tight. The reason that our experiments appear to exceed
its predictions is that when & is very small, the null and planted models M 4 and Mp can no longer
be statistically indistinguishable. It is, however, quite plausible that they remain computationally
so: The only tests that can tell them apart are inefficient. That is, for all practical purposes, their
differences are undetectable. We leave this intriguing possibility open for future investigation.

There are many other fascinating questions for future work. For example, are there other or stronger
forms of control that the adversary can have on the model, instead of access to an x’ that collides
with any x? More broadly, can we make use of different or new cryptographic assumptions to enable
backdoors in DNNs or other architectures?

REPRODUCIBILITY STATEMENT

The main component of our work is theoretical, with full proofs provided in the appendix. We
additionally provide the source code for our preliminary experiments in the supplementary materials
portion of the submission.
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A PRELIMINARIES

For a natural number n € N, we let [n] denote the set {1,2,--- ,n}. For real numbers a,b € R with
a < b, we let [a, b] denote the continuous interval {z € R : a < x < b}. Similarly, we let (a, b)
denote the open continuous interval {z € R : a < = < b}, and we let [a, b) denote the continuous
interval {x € R:a <z < b}. For B € N, we let [-B : B] denote the discrete interval

-B:B|=[-B,B|nZ={-B,-B+1,---,-1,0,1,--- ,B—1,B}.

We say a function f : N — Ry is negligible if for all ¢ > 0, lim,,_,~ f(n) - n° = 0. We use the
notation negl(n) to denote a function that is negligible (in its input n). We similarly use the notation
poly(n) to denote a function that is at most n®1). As shorthand, we say an algorithm is p.p.t. if it
runs in probabilistic polynomial time.

We let 1(p) € {0, 1} denote the indicator variable corresponding to some logical predicate . For
aset S C R, we let U(S) denote the uniform distribution over S, where the appropriate measure
(i.e., discrete uniform or continuous uniform) will be clear from the choice of S. For a distribution
D and n € N, we let D™ denote the distribution with n i.i.d. samples from D. We let N'(u, 0?)
denote the univariate Gaussian (or normal) distribution with mean y and variance o2. For a parameter
v € Ry, we let N'(p1,0%) ). <, denote the conditional distribution of X ~ N (y, 0) given |X| < .
For a vector p € R™ and a positive semi-definite matrix X, we let N'(p, 3) denote the multivariate
Gaussian distribution with mean g and covariance matrix 3. Note that we allow 3 to be singular,
in which case the multivariate Gaussian will be degenerate (i.e., have support in a proper subspace
of R™). We let I,, € R"*™ denote the identity matrix. We will use the fact that given p and 33, it
is efficient to sample from A (s, 32), and similarly, given u, o, and 7, it is efficient to sample from
N (p, JZ)HS,Y. For theoretical simplicity, we do not explicitly write out the finite precision of all
computations, but all calculations will still go through with poly(n) bits of precision.

A.1 DIVERGENCES

Let pg, p1 be density functions of distributions.

Definition 1. The Rényi divergence between py and pg is given by

Ds(p1llpo) = In (/ p;o((xx); dm) =In (X]E,,o {Z;Ei;zb '

Definition 2. The Kullback-Leibler divergence between p1 and py is given by

i pillon) = [ pr(e)in (Ziii) dr.

Definition 3. The total variation distance between p, and py is given by

drv(p1, po) /|p1 — po(z)| dz.

Lemma 1. For any two distributions py and p1,

dxv(p1l]po) \/Dz(P1|PO)
< < .
drv(p1, po) < \/ B < 5

Proof. The left-hand inequality is Pinsker’s inequality. The right-hand inequality is a standard fact of
Rényi divergences (e.g., (van Erven & Harremoés, 2014, Theorem 3)). O

Lemma 2. For any density function py and any nonnegative-valued function f, for the density

function py given by
p1(x) o po(x) f (),

Ds(p1[po) = In <W> :

it holds that
Expo [f(X)]?
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Proof. For p; to be a normalized probability distribution, it must hold that

o) = D) _ ity
fPO dac IEXN/JO [f(X)] .
We then have
o1 (X)2
(p1||p0) =In (XNPO _ZOEX;2:|>
- [ po(X)2F(X)?
=1 (XNPO _EX’NPO [f( ]QpO(X :|>
=In <X§ﬂo IEX’NPO 2:|
_ (EXNPO[f(X)]>
Exnpy [[(X)]* )
as desired. )

We now state the following standard fact of Rényi divergences.

Lemma 3. For any two distributions py and p1 and any event E, we have

Pr,, (E)*
Pr(E) = 5, orTon)

Proof. By Cauchy-Schwarz, we have

Pr(E)= E [L(X € )] = E {I(XGE),m(X)]

X~p1 Xpo pO(X)
, p1(X)?
< \/XIEPO [1(X € E)?] .X@po [po(X)Q}

- \/pr(E) . eDa(p1llpo).
Po
Rearranging gives the desired result. O

A.2 NUMBER BALANCING AND SYMMETRIC BINARY PERCEPTRONS

We define the number balancing problem.

Definition 4. The number balancing problem (NBP) with parameters k : N — Rsgand B : N — N
is defined as follows. On input a ~ N(0,1)", output x € [—B : B]"\{0"} such that |{a, x)| < k+/n,
where k = k(n) and B = B(n). If unspecified, we take B(n) = 1.

For k(n) > ©(1/2™), we know that there exist {£1}" solutions to NBP with high probability (so, in
particular, there exist [—-B : B]™ \ {0"} solutions) (Karmarkar et al., 1986). The best polynomial

time algorithm, due to Karmarkar and Karp, achieves x(n) = 1/ 26(08” 1) (Karmarkar & Karp, 1982)
(for the most stringent case of B = 1).

For k(n) < 1/ 2108 n e have computational hardness assuming sub-exponential hardness of
worst-case lattice problems (Vafa & Vaikuntanathan, 2025). Therefore, the following assumption is
true assuming worst-case lattice problems are hard to solve:

Assumption 1. For all p.p.t. algorithms A and € > 0, and B < poly(n),

1

aNAﬁal)n (x — A(a):x e [-B: B]"\{0"} A |{(a,x)| < W) = negl(n).

We can similarly define the symmetric binary perceptron problem.
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Definition 5. The symmetric bounded perceptron (SBP) problem with parameters k : N — Ry,
m: N — N, and B : N — N is defined as follows. On input A ~ N(0,1)™*" output x € [—B :
B]™\ {0™} such that ||Ax |0 < Kv/n, where & = k(n), m = m(n), and B = B(n). If unspecified,
we take B(n) = 1

For 1 > ©(27"/™), we know that there exist {#-1}" solutions to SBP with high probability (so, in
particular, there exist [—B : B]™ \ {0"} solutions) (Aubin et al., 2019; Perkins & Xu, 2021; Abbe
et al., 2021). The best polynomial time algorithm, due to Bansal and Spencer (Bansal, 2010; Bansal

& Spencer, 2020), achieves k = O (\ /m/ n) (for the most stringent case of B = 1).
For B, n < poly(m) and k < 1/(y/n - m®), we have computational hardness assuming polynomial

hardness of worst-case lattice problems (Vafa & Vaikuntanathan, 2025; Bogdanov et al., 2025).
Therefore, the following assumption is true assuming worst-case lattice problems are hard to solve:

Assumption 2. For all p.p.t. algorithms A, € > 0, and B,n < poly(m),

n n i —
N <x — A(A):x € [-B:B"\{0"} A |Ax|e < m) = negl(n).

B BACKDOORS FOR RANDOM GAUSSIAN PROJECTIONS

The goal of this section is to prove the following theorem.

Theorem 2. For all m < n, there is a p.p.t. algorithm BackdoorMatrix(1™, 1) that outputs a
matrix A € R™*"™ and a vector z € {£1}" such that the following hold:

|Mﬂmgo(“ﬁ)
on/m

e We have

e We have the statistical bounds
drv (A, N(0,1)™*™) = O (\/ZL log(m/n) + e—Q(m)> ,

Dy (A|N(0,1)™") = O (= log(m/n) + e~

* The marginal distribution of z is uniform over {£1}".

Note that if m = w(1) and m = o(n), both statistical divergences become o(1).

We also give a version of this theorem with slightly different parameters in the regime where
m = O(1) (i.e., m is fixed while n grows).

Theorem 3. For all m = ©(1) and growing n, there is a universal constant C > 0 and a p.p.t.
algorithm BackdoorMatrix(1™, 1™) that outputs a matrix A € R™*" and a vector z € {£1}"
such that the following hold:
* We have
nC
< — .
Azl <0 (57 )

e We have the statistical distance bounds

dry (A, N(0,1)™") =0 < log”> ,

Dy (A|IN(0,1)™*™) = O
* The marginal distribution of z is uniform over {£1}".
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B.1 SAMPLING THE BACKDOOR

BackdoorMatrix(1™,1™):

Matrix Backdoor Construction

1. Sample z ~ U({£1}").
2. Fori € [m]:
(a) Sample b; ~ N(0,7)). <. /m-
(b) Sample vectora; ~ N (% -z, I, — 1zz") = N (0,1, | a]z = b;).
3. Define A € R™*™ to have rows ag, -+ ,a,, € R™.
4. Output (A, z).

Figure 4: Description of the matrix backdoor algorithm used in Theorems 2 and 3.

Define 1 to be the joint distribution defined implicitly via the following process:

1.
2.
3,
4.

Sample A ~ N(0,1)m*™.

Sample z ~ U({£1}").

Setb = Az ¢ R™.

Output (A,z,b) € R™*™ x {£1}" x R™.

More explicitly, the density is given by

1 1 2 1
— T XA —A
to(A,z,b) = (27T)mn/26 2 on o(b z),

where §() is the delta function generalized to R™, i.e.,

i(y)f(y)dy = f(0).

Rm™

Now, define the distribution 7 to be the distribution 1 conditioned on ||b||s < x+/n. That is,

1 _1 2 1
Ml(A,Z,b) X W@ 521‘,,_7‘ Al"] . 27 . (S(b - AZ) -1 (”b”oo S K/\/ﬁ)

x e 3204 5(b — Az) - 1 (|[b]le < K/7) -

Let pg and p; denote the marginal distributions on A in g and uq, respectively. Note that pg is
identically N'(0,1)™*"™. Here, we relate p; and the algorithm BackdoorMatrix given in Figure 4.

Claim 1. The output distribution of A in BackdoorMatrix (as given in Figure 4) is identical to p;.

Proof. For any fixed z € {+1}", the distribution of b = Az is N(0, ||z|3)™ = N(0,n)™ over
random A ~ A(0,1)™>™, In particular, in pg, z and b are independent. Therefore, o can be
identically described as follows, by first conditioning on z and then on z and b together:

1.
2.

Sample z ~ U({£1}").
Sample b ~ N(0,n)™.

. Sample ay, - -+ ,a,, ~ AN(0,1)" conditioned on b; = a, z for all i € [m]. Let A be the

matrix that has rows given by a;.

. Output (A, z,b).
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In this formulation, we can describe pi; as follows, where all we change from the above is that we
condition on ||b||so-

1. Sample z ~ U({£1}").
2. Sample by, - -+, by ~ N(0,7).|<4,/m» and let b = (b1, -+, by,) € R™.

3. Sample ay,- -+ ,a, ~ N(0,1)" conditioned on b; = a; z for all i € [m]. Let A be the
matrix that has rows given by a;.

4. Output (A, z,b).
More explicitly, sampling a; ~ A(0, 1)" conditioned on b; = a] = z is equivalent to sampling
T b; 1 +
a,~N (0,1, |a/z=0) =N |21, - —zz'|.
n n

This description of y; is now exactly the one given in Figure 4. The claim follows. [

Let N : R™*" — N denote the function

NA) = [{z e {£1}" : |Az]oe < v} = 3 1(JAzlw <rv). @

ze{£1}n

Claim 2. We have
p1(A) x po(A) - N(A).

Proof. By marginalizing out over z and b, we have

= > / p1(A,z,b) - db

ze{x1}n
x >y / e 3T A% 5(b— Az) - 1 (||b]les < K/n) - db
ze{x1}n
- / e 350 4%  5(b — Az) - db
ez [Frevmmya]”
s DA / 5(b — Az) - db
ze{+1}n K ""‘f
— e 3 i AL Z 1 <||AZ||OO < K\/ﬁ)
ze{+1}"
= e 2Z7JA1 N(A)
x po(A) - N(A),
as desired. O]

Claim 3. For A output by BackdoorMatrix, we have

Ea~n(0,1)mxn [N(A)?]
Ea~n(0,1ymxn [N(A)]?

Dy (A[JN(0,1)™%") = In (

Proof. This directly follows by combining Claim 1, Claim 2, and Lemma 2. [
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B.2 CONCENTRATION IN THE NUMBER OF SOLUTIONS

As in (2), let N = N(A) denote the number of +1 solutions z to ||Az|. < ky/n for A ~
N(0,1)™*" and let « = m/n. Let ¢(k) = Pr(|Z| < &) for a standard normal Z ~ N (0,1). For

small k, \/7/2 - ¢(k) = k. More precisely,

Iingg\/Z%ﬁ(li)SH.

Proposition 1. Assuming ¢(x) > 2=/
E [N?] - 1
BT Vi o

whenever a(e) < 1, where \(€) = O(log 1/e€).

+ 2exp —Q(en)

In the special case m = 1, Karmarkar et al. (1986) calculated the tight bound 1 + 7n/k2™ + O(1/n)
on the moment ratio for the count of perfectly balanced solutions only. In the extreme regime
k ~ n?M2=" our bound is worse by a factor logarithmic in n. We did not attempt to remove
this factor. In the regime of constant m and increasing n Dyer and Frieze Dyer & Frieze (1989)
give an asymptotic upper bound of 1 4+ o(1) without specifying the lower-order dependence. Their
calculations are substantially more complicated as they pertain to values of x very close to the
statistical threshold (below which [V is very likely to be zero).

Corollary 1. There exist universal constants C1,Cy > 0 such that for all m = o(n) and k =
Cy - 27"'™ it holds that

E [N?] m Cam
E[N] §1+O(g~log(n/m)+e c )

In particular, if it additionally holds that m = w(1), we have
E [N?]
E [N]®

<14o0(1).

Proof. Let a = m/n = o(1). Set e = ©(«) = o(1) in Proposition 1 (in terms of C) so that for
k= C1-27""™ it holds that ¢(r) > 2-(1=97/m As A(e) < O(log(1/€)) < O(log(n/m)), we
have

ai(e) < O(alog(l/a)) = o(1).

In particular, aA(e) < 1and 1/4/1 — aA(e) < 1+ O(aA(e)) for sufficiently small . Therefore, by
Proposition 1, we have

[Nﬂ —Q(en) —Q(m)
VT <1+ O(aX(€)) + 2e <1+ O(alog(1/a)) + 2e )

as desired. O

We now give a slightly different parameter setting that gives a 1 + o(1) bound for any m = O(1).

Corollary 2. There exists a universal constant C; > 0 such that for all m = o(n) and k =
nC1 . 2=n/™ it holds that

]E[NQ] m —2mlogn
E[N] §1+O(golog(n/m)+e 2ml )

In particular, for m = ©(1) and growing n, we have
E [N? 1
[ 2] <140 ( Og”) .
E[N] n
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Proof. Leta =m/n = o(1). Sete = Cyalogy n and Cy in terms of C; so that for x = nC1.277/™,
we have (k) > 2= 1=/ = pC2 . 27=n/m A5 \(e) < O(log(1/€)) < O(log(1/a)), we have
a(e) = o(1), which in particular means 1/4/1 — aX(e) < 1+ O(aA(e)) for sufficiently small «.
Therefore, by Proposition 1, setting C'; sufficiently large, we have

N2
EEN]Z] S 1+ O(O{)\(E)) + 267Q(6n) S 1+ O(Cl{ log(l/a)) + 26*2mlogn’

as desired. O

Proof of Proposition 1 We first show the following claim.
Claim 4. Let p be the position of an n-step +1 random walk divided by n. Then

s (RS ]

where 7, Z' are p-correlated standard normal, i.e.,

223 ((6)-( 1))
Proof of Claim 4. Let

q=¢(r) = (12 < k) = (la"x| < rvan),

Zn~ N(o 1) an~ N(o nn

3

where x € R™ is any fixed vector with ||x||s = y/n. By linearity of expectation and definition of
N = N(A), it follows that

EN = 3, P (Ax] < wvi)

xe{£1}n

3 <~N<o r (] <ﬁf)) g,

xe{£1}n

For the second moment, we have

BNV = >, P (A%l < v [Axello < mvi)
Xl,XQE{:tl}

= Z aNN(Ol (Ja"x1| < kv/n,|a’ x| </£f)

xl,XQE{:tl}"

A quick calculation reveals that for a ~ N (0,1)" and x1,x2 € {£1}", we have

e <3 ((9): (o2 By " 2)),

where A(x1,x2) is the Hamming distance between x; and x5 (i.e., counts the number of distinct
coordinates). By rescaling, we can write

EV= 3 B (RTal s svinfall < sve)”
x1,x2€{£1}"
_ 3 Pr (12:] < K, 1Zo] < )™
P Z1,Z> (1—2k/n)-corr.
A(x1,x2)=k

n
= on P 71| < k| Zo] < k)™
k;(] <l€> Z1,Z2 (17§k/n)—corr. (| 1| - H’| 2‘ - Ii)
=22"E P Zh| < k,|Zs| < R)
leZQI;_Cm(\ 1| < K, 22| < k)

=2"¢™"E  Pr (|Z2‘§I€||Z1‘§/€)m
p Z1,Z> p-corr.

)

22



Under review as a conference paper at ICLR 2026

where p is the position of an n-step =1 random walk divided by n.

We can combine the first and second moment calculations to get
E [NQ} 22nqm
= -E Pr Zol < k| 1Z:1 < k)™
E [N]2 22nq2m p Zy,Z3 p-corr. (| 2| - I | 1| —= )
=F PrZ1,Zz p-COIT. (|Z2| <K | |Zl| < /{) m
14 q )
as desired. -

Since Z’ can be written as pZ + /1 — p?Y for some independent Y ~ N(0, 1), and among all fixed
variance Gaussians the measure of an interval is maximized by the one that is centered, the numerator
of the quantity in Claim 4 can be upper bounded by

Pr(lY| <
Pr(|\/1—p2.Y|§m)—Pr<|Y|§ r >§ (Vi< w)
V1= p? V1= p?
(The inequality can be verified by a change of variables in the Gaussian integral.) Therefore,
Pr(Z | < w2l <) 1

Pr(Z[<r) i

As the ratio is also at most 1/ Pr(|Z] < k), for every § > 0 we obtain as a consequence of Claim 4
that

E[N2] [ -IL(||<1—5)}+
ENE - La-p@mr
By standard tail bounds on the binomial distribution, we have
Pr(lp| >1-6)<2- on(H(3/2)=1)
where H denotes the binary entropy function.

Pr(jp| =1 -0)

o(m)m @

Therefore, the second term in (4) is at most
9. 9n(H(8/2)-1)
p(r)™
Choosing § < 1 so that H(d/2) = €/2 makes this at most 2 exp(—£2(en)) under our assumption on
K.

9. glelos(1/9(x) ~1+H(3/2)n.

For the first term in (4), we use the next bound which follows from the convexity of exp.
Fact 1. For |p| <1 — 4, we have 1 — p? > exp(—Ap?), where A = —1n(25 — 6%)/(1 — §)

Therefore,

1

Hla—me

p| <1—38)| <El[exp (Ap®m/2) - 1(|p| <1-3)]
< E [exp (Ap*m/2)] .

Claim 5. E [exp (thn)] <E [exp (tZ 2)] where t > 0 and Z is a standard normal.

Proof. Tt suffices to show that the even moments of p,/n are dominated by those of Z. Both py/n
and Z have the form (X7 + - - - + X,,)/+/n, where the X are i.i.d. Rademacher and standard normal,
respectively. As the Rademacher moments are dominated by the standard normal ones, the same
must be true for py/n and Z. O

The squared normal moment generating function E [exp (£Z?)] evaluates to 1/1/1 — 2¢ when t <
1/2 (and is unbounded otherwise) so, by plugging in t = Aa/2 = Am/(2n),
1 1
E|———— - 1(lp| <1—=10)| <E[exp (Ap?>m/2)] <E [exp (A\aZ?/2)] = —,
(1— p2)m/2 (Il )| <Ef[exp (Ap®m/2)] <E [exp ( /2)] V- ha
provided A < 1/c. For small ¢, by using standard bounds on the binary entropy function H, we have
A = O(log(0(1/8))) = O(log(O(1/H*(¢/2)))) = O(log(1/e)),

as desired.
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B.3 PUTTING IT ALL TOGETHER

Proof of Theorem 2. Consider the algorithm BackdoorMatrix(1™,1™) given in Figure 4 where
x = O(27"/™). By construction, for all i € [m],

’aiTz| = |b;| < K/,
so we have

[Az]loc = Hl[aX] ]a?z| <kvn<O <\/ﬁ . an/m) .
em

By Claim 3, we have

EA~n(0,1)mxn [N(A)]

By Corollary 1 and choosing the constant in x = O(2~"/™) appropriately, we have

2
D5 (A[IN(0,1)™*") =In (EA~N(0,1)Wn [N(A) ]) |

/\

EANN(OI mxXmn [ ]
Ea~n(0,1)mxn [N(A)]Q
Therefore, by Lemma 1 and the inequality In(1 + z) < z,

drv (A, N(0,1)™*") <O (\/D2 (A[IN(0, 1)m><n)>

Ea- mxn |[IN(A)2
, m( aearone IN( )2]>
Ea~n0,1)mxn [IN(A)]

o (\/m (1 +0 (% ~log(n/m) + e—Q(m)>)>
<0 <\/’: log(n/m) + eQ(m)> ,

Finally, it is clear from inspection of BackdoorMatrix in Figure 4 that the marginal distribution on z
is uniform over {+1}". O

<1+0 (% -log(n/m) + efQ(m)) .

IN

as desired.

Proof of Theorem 3. The proof is exactly like that of Theorem 2, with the only difference being the
bound for the concentration in the number of solutions. For k = n¢2~"/™ for appropriately chosen
constant C, by Corollary 2, we have

Ean(0,1ymxn [N(A) } 140 <logn)
3 — .
EANN(O 1 mXn [ (A)} n

Therefore, by Lemma 1 and the inequality In(1 + x)

drv (AN(0,1)"7) < 0 (¢D2 (AN, 1))

@

Ea~n0,1)mxn [IN(A)?]
EA~N(O 1ymxn [N(A)]?

(v
(oo ()
()

as desired. O

IN
Q

IN

O
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B.4 TIGHTNESS

We show that the bounds in Theorem 2 and Theorem 3 are tight up to the log factors: The distance

between the null and backdoored distributions is 2(y/m/n), which is non-negligible. Moreover, the
distinguisher that attains this advantage is efficient.

Theorem 4. Assuming 2 < 1/2,
Pr(||Al% < mn —m/2) — Pr(|N(0,1)™™||% < mn —m/2) = Q(/m/n).
The random variable ||[N(0,1)™*™||2 is of type x*(mn), namely chi squared with mn degrees of

freedom.

Conditioned on Ax =y, ||A||% is of type x*(m(n—1))+||y||*/n. In particular, ||A||% is dominated
by a random variable of type x%(mn — m) + x>m.

The reason is that an n-dimensional random normal vector a (representing a row of A), when
conditioned on a linear constraint a' x = y, projects to a standard normal in the (n — 1)-dimensional
subspace orthogonal to x and has fixed length y/||x|| = y/+/n in the direction of x.

Thus || A ||% has mean at most mn — (1 — %)m, while ||N(0, 1)™*"||% has mean mn. The variance
of both is (at most) 2mn. Assuming they were sufficiently well-approximated by normals of the same

mean and variance, their statistical distance would be on the order of (1—x2)m/v/2mn = Q(y/m/n)
as desired.

To complete the proof we argue that the error introduced by the normal approximation does not affect
this estimate. The Berry-Esseen theorem gives an error term on the order of 1/1/mmn. This completes
the proof under the additional assumption that m is at least some absolute constant.

To handle all values of m including m = 1 we apply Cramér’s first-order correction to the normal
approximation of the chi squared CDF (Esseen, 1945; Pinelis, 2023):

X(k) — k _ ¥(=)
Pr(m < z) =Pr(NM(0,1) < z)+ 7 + O(1/k), 3)

where 1(z) = e~ /2. (1 — 22)/3/7.

Proof. The backdoored probability is at least

Pr(||A|% < mn —m/2) > Pr(x (mn ) + k*m <mn—m/2) by domination

1
=3 + ( 1) —O(1/mn). by (5)

while the null probability is at most

PI‘(HN(O, l)man% < mn — m/2) _ PI‘<X (mn) —mn <_ m/n>
< Pr<N(0,1) < _W) + 20 o1 /mn) by 3)
= 3 - a(y/mfn) + H9

as v is maximized at zero. Thus the difference in probabilities is at least

Um/m) -y <Jﬁ \/i%)

The leading term Q(y/m/n) dominates for all values of m. O

O(1/mn) = Q(v/m/n)—O(1/mn+1/m"?n®?).
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C CONSTRUCTING BACKDOORS FOR NEURAL NETWORKS

C.1 DEFINING BACKDOORS

Imagine that there is some learning procedure ModelGen() that generates some model F' (e.g., a
neural network trained via stochastic gradient descent). To define the notion of an undetectable
backdoor, we want the following properties to hold simultaneously:

* There is a way to generate a “backdoored” version of the model F', which gives anyone with
F’s backdoor significant additional power over anyone without the backdoor.

* The “backdoored” model looks statistically close to an honest execution of ModelGen(), in
the sense that there is provably no distinguisher that works with high probability.

While the latter item is direct to formally define, the former requirement is vague. One possible way
to specify such a requirement is via collision generation: it is hard to find collisions in an honest
model F', but given a backdoor for F', one can easily compute collisions. By collisions, we mean
distinct input vectors x1,xo € Z™ such that F'(x1) & F(x3). Our formal definition is below.

Definition 6. A statistically undetectable backdoor with parameters B, &y, and d1 consists of p.p.t.
algorithms (ModelGen, BackdoorGen, Activate) with the following syntax:

* ModelGen(1™, 1™). This algorithm is randomized and outputs some model F.

* BackdoorGen (1™, 1"). This algorithm is randomized and outputs the tuple (ﬁ , bk), where
F is a backdoored model and bk is the corresponding backdoor key.

* Activate(bk,x € Z™). This algorithm is deterministic and outputs a vector x' € 7".

Moreover, we require the following three properties:

1. (White Box) Statistical Undetectability: For F' < ModelGen(1",1™) and (ﬁ, bk) —
BackdoorGen(1™,1™),

drv (F ﬁ) = o(1).

We emphasize that this total variation distance bound refers to the white-box descriptions of
the models F, F.

2. Backdoor Collision Generation: For all x € 7", it holds that

X' € 7' ||¥||oo < [x]lo0 + 1. ) !

Pr (x/ + Activate (bk, x) : x # %, Hﬁ(x/) - ﬁ(X)H <%
2

(ﬁ,bk) «BackdoorGen(17,1™)

3. Approximate Collision Resistance: For all p.p.t. algorithms A,
x1,X3 € [-B: B]",

X1 # X2,

Pr ((Xl,XQ) — A (ﬁ) : F(x3) — F(x1)

(F ,bk)+BackdoorGen(1™,1m)

2

where the probability is also taken over the internal randomness of A. We emphasize that A
has white-box access to the model F (e.g., its weights).

We define the strength of the backdoor be the quantity 1 /8o, and we consider the backdoor meaningful
only if 61/dp > 1.

This definition gives those with the backdoor additional power over others in two ways:

* Item 2 allows anyone with the backdoor to generate collisions for all inputs x, while Item 3
stipulates hardness of finding even one collision.
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» For g < 63 (as it is in our constructions), the backdoor generates collisions that are stronger
than the impossibility bound for those without the backdoor. The larger the ratio 01 /dy is,
the stronger this backdoor is, quantitatively. We call §; /¢ the strength of the backdoor for
this reason.

While the condition in Item 2 that ||x/||oc < ||X|loc + 1 is somewhat arbitrary, the point is that the

size of x’ is similar to that of x. One could formalize such a requirement in a few different ways, but
we choose this one because it is what we achieve.

C.2 NEURAL NETWORK PRELIMINARIES

Let A € R™2X™1 We let 0 max(A) denote the maximum singular value of A, and we let opin (A)
denote the minimum singular value of A. More explicitly,

A
Umax(A): || X||27
xermi\{o} [IX[[2
A
Omin(A) = | Ax],

xeRmi\{o} ||x|l2

Note that if m1 > ma, then omin(A) = 0, as A has a nontrivial kernel. Whenever o, (A) > 0, we
can let cond(A) denote the condition number of A, defined as

Umax(A)
ngiIl(A)
Definition 7 (Bi-Lipschitz Functions). For mi,me € Nand 0 < o < 3, we say a function
f:R™ — R™2 s («, B)-bilipschitz if for all x,y € R™1,

allx=yl2 < If(x) = f(¥)ll2 < Bllx =yl

Moreover, for £ > 1, we say f has distortion at most £ if there exist § > « > 0 such that f is
(a, B)-bilipschitz and £ = 3/

Fact 2. Suppose f1 : R™ — R™2 and f5 : R™2 — R™3 are (a1, 1)-bilipschitz and (az, B2)-
bilipschitz, respectively. Then fy o f1 : R™ — R™3 is (aqae, /1 52)-bilipschitz.

cond(A) = > 1. (6)

Fact 3. For a matrix A € R™2X™ the linear map given by A, mapping R™ to R™2, is
(0min(A), Omax(A))-bilipschitz.

Definition 8. For o € (0, 1), the leaky rectified linear unit (leaky ReLU) with parameter o is the
function LeakyReLU,, : R — R defined by

T x>0,

LeakyReLU, (x) = {ax = <0

To slightly abuse notation, it naturally generalizes to a function LeakyReLU,, : R™ — R™ where
(the scalar version of) LeakyReLU,, is applied coordinate-wise.

Fact 4. Forall o € (0,1) and for all m € N, LeakyReLU,, : R™ — R™ is (v, 1)-bilipschitz.
For depth d € N, a feedforward neural network is defined in terms of weight matrices

A .. A=Y bias vectors b(® ... b@=1D and an activation function o : R — R. The
mapping takes in a vector x = x(©), iteratively evaluates

<+ .— (A@')x(i) 4 b(z‘)) 7

and outputs x(?), where o is applied pointwise. The matrices A(?) can be rectangular (instead of
square) with the constraint that the input vector x, bias vectors b(¥), and weight matrices A () all
have dimensions that syntactically align.

Lemma 4. For o € (0,1), a feedforward neural network of depth d with weight matrices
A . A=D bias vectors O - .. b=V and activation function LeakyReLU,, is (o/, 3)-
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bilipschitz, where
d—1
o =at H Omin (A(i)) ,
i=0
d—1
ﬁ/ = H Omax (A(’L)) .
i=0

Moreover, if one skips the first layer matrix A©) and directly applies the activation function to the
input vector x (and then A and so on), the resulting function is (o, B')-bilipschitz, where

dd*l @

r_ ' i

o =« 21;[1 Omin (A ) ,
d—1

ﬁ/ = H Omax (A(z)) .

i=1

Proof. This follows by directly combining Fact 3, Fact 4, and Fact 2 and layer-by-layer induction, as
addition by any bias vector b(* is a (1, 1)-bilipschitz operation. O

C.3 CONSTRUCTION

The most general template for our backdoor construction will be as follows. Let A ~ N(0, 1)™>™,
and let 7 be any (randomized) training operator that takes in A € R™*" and outputs an («, 3)-
bilipschitz function g + 7 (A). We will construct backdoors for the model class given by

F(x) := g(Ax).

The backdoor construction is direct: generate (_/1, z) + BackdoorMatrix(1™, 1), and to activate

any X, output X' = x + z. By linearity, Ax’ = A(x + z) = Ax + Az = Ax, and by lipschitzness
of g,

F(x') = g(AX') ~ g(Ax) = F(x).
Conversely, if a p.p.t. algorithm computes x; # X2 € [—B : B]" such that F'(x1) ~ F(x2), then
by bilipschitzness of g, it follows that Ax; ~ Axs, and therefore A(x; — x2) =~ 0, violating
Assumption 2. We give the formal statement in Theorem 5.

Generic Backdoor Construction
* ModelGen(1™,1™): Sample A ~ N(0,1)™*"™, sample g +— T (A), define the model
F(x) = g(Ax),
and output the description of the model F'.
* BackdoorGen(1™,1™): Sample (K,z) + BackdoorMatrix (1™, 1™), sample g +
T (K), define the model
F(x) = g (Ax),

and output (ﬁ, bk = z).

* Activate(bk, x): Parsing z = bk, output x + z.

Figure 5: The generic construction of backdoors for linear models with bilipschitz postprocessing, as
used in Theorems 5 and 6.
Theorem 5. For all m = n*()
the form

and m = o(n), consider ModelGen(1™,1™) to output models of

F(x) = g(Ax),
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where A ~ N(0,1)™*™ and g < T (A), where T is a p.p.t. training operator supported only
on (a, B)-bilipschitz functions. Then, for all B < poly(n), under Assumption 2, Figure 5 gives a
statistically undetectable backdoor for ModelGen with parameters B and

so=0 (Y™ s —af ),
gn/m mevn
for all € > 0. In particular, the strength of the backdoor is

6 _of_o-2m
5o Bym-ml/2te )

We also state a version where m = 1.

Theorem 6. For m = 1, consider ModelGen(1"™) to output models of the form

F(x)=g(a'x),

where a ~ N'(0,1)" and g < T (A), where T is a p.p.t. training operator supported only on («, 3)-
bilipschitz functions. Then, there exists a universal constant C > 0 such that for all B < poly(n)
and € > 0, under Assumption 1, Figure 5 gives a statistically undetectable backdoor for ModelGen

with parameters B and
B-n% Q@
0o =0 , 0= ——.
0 < on 1 20(10g3+5(n))
In particular, the strength of the backdoor is
51 o 2"

B = 500 )’

foralle > 0.

Proof of Theorem 5. The construction is given in Figure 5. We prove each of the properties in turn.
To see statistical indistinguishability, note that
dTV (K,N(O, 1)m><n> = 0(1)

by Theorem 2. Since ModelGen and BackdoorGen are random processes that differ only in how
the matrices are sampled, the data processing inequality implies

drv (F, 1/7\) =o(1),

as desired.

To see backdoor collision generation, recall that

n

by Theorem 2. Clearly x’ = Activate(bk,x) = x+2z € Z", x' # x, and ||X||oo < ||%X|lco + 1, s0 it
suffices to show that

HKZ

~

HF(X') - ﬁ(x)H2 < &
We have
|F6) = Fe, = o (Ax') ~ 9 (Ax) |, = [ (Ax + A=) -3 (Ax)

<pg- H;&Z

2

<o [as]

co(2),
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Therefore, we can set 6o = O(B8+/m - 27"/™).

Finally, to see approximate collision resistance, suppose for contradiction that there exists a p.p.t.
algorithm A and a constant C' > 0 such that

" R X1,X9 € [—B : B]n, 1
Pr X1,X2) (F) : = = > —,
(ﬁ7bk)<—BackdoorGen(1”717n) ( ! 2) X1 7& X2, HF(XQ) - F(Xl)HQ <0 —n¢
for infinitely many values of n. Consider an algorithm A’ (using A) defined as follows: On input a
matrix A € R™*", sample g < T (A), define F'(x) = g(Ax), and receive (x1,X2) < A(F). The

algorithm A’ then outputs x; — xo € [—2B : 2B]™ \ {0™}. The claim is that the p.p.t. algorithm A’
violates Assumption 2. To see this, note that

~

[t - P 0 = [5(3) 58], =5

~ ~ )
— HAX2 — Ale < e
27 @
. ~ 51
— HAXQ-AXlH < —
0o «
Therefore, we have the following:

- x € |—-2B:2B]" \ {0},
Pr <X<—A/(A): [ "\ {0} )210’
(17,1m) n

(K,z)eBackdoorMatrix HAXH < 51/a
oo

for infinitely many values of n. Let E = FE(A) denote the above event (as a function of matrix A),

so that 1
oo (E@) 2
(A,-)+BackdoorMatrix(1,1™) n

infinitely often. By Lemma 3 and Rényi closeness of Aand A ~ N (0,1)™*"™ (as guaranteed by
Theorem 2) we have

~\N 2

Pr.x . E(A

(A,~)<—BackdoorMatr1x(1",1m)( ( ))
P E(A =

ANN(o,rl)mX"( (4)) eDz(AHA)

1/n2¢ 1
n*= o -

co(1) n2C
infinitely often. That is,

<X<_A,<A): x € [-2B : 2B]"\ {0}, )Z - E<A)):Q<1)’

v

Pr
A~N(0,1)mxn HAXHOO <di/a A~N(0,1)mxn

for infinitely many values of n. By the parameters of Assumption 2, we can set §; = a/(m*®+/n) for

any € > 0 to arrive at the contradiction. O

Proof of Theorem 6. The proof is exactly that of Theorem 5, with the difference being that we apply
Theorem 3 instead of Theorem 2 and Assumption 1 instead of Assumption 2. This changes the bound

of 5 to g = O(B - 27" - nY), and similarly, 6; = a/29(1°g3+5(”)). O

C.4 BACKDOORS IN DEEP NEURAL NETWORKS

Here, we combine Appendices C.2 and C.3 to show how to insert backdoors in certain architectures
of deep feedforward neural networks.

o The first linear layer needs to be a random compressing Gaussian matrix A ~ N(0, 1)™*"
(where n > m). This is a common paradigm in random feature learning (Rahimi & Recht,
2007).

* The activation function needs to be bilipschitz.
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* The linear maps in the second layer and onward need to be well-conditioned, in the sense

that
Omax(A) 1
Omin (A) ’
with flexibility on the distance from 1. Note that such linear maps can either be dimension-
preserving or expanding.

cond(A) =

More precisely, let NN, 4.1, o, denote the following class of depth-d feedforward neural networks:

* The first linear layer A(®) ~ A(0,1)™*" is a random m x n Gaussian matrix that is
unchanged throughout training, where m and n are parameters.

* The linear maps A A®) ...  A(@=1 are arbitrary but well-conditioned, in the sense
that forall ¢ € {1,2,--- ,d — 1},
cond (A(i)> <~

where v > 1 is a parameter. In particular, A(Y) ... | A(4=1) can all be updated throughout
training, as long as they end up not being too ill-conditioned.

* All activation functions ¢ : R — R are LeakyReLU,, where a € (0, 1) is a parameter.

Theorem 7. For m = n*") and m = o(n), and for any parameters d € N, a € (0,1), v > 1 let
ModelGen(1™, 1) output neural networks that are in NNy, g, o . For all B < poly(n), under
Assumption 2, there exists a statistically undetectable backdoor for ModelGen with strength

5 _ 9 d Qn/m
% - \/ﬁ,ml/2+s Lyd=1 )7
foralle > 0.
Proof of Theorem 7. We directly apply Theorem 5, where 7 neural networks as described in NN

except skipping the first layer A(?). By Lemma 4, we know that 7 is supported on (’, 3’)-bilipschitz
functions, where

d—1
o = at H O min (A(i)) ,

i=1

d—1
B/ = H Omax (A(l)> .
=1

Plugging this into Theorem 5, the strength of the backdoor is
51:(2< O/_2n/m > _ d 2n/'mH 1 Omin (A( ))
o B'\/n - mt/2te V- ml 24 T o (AD)
0 a 2n/m
V- ml/2+e Hf;ll cond (A()

at . 2n/m
Q (\/ﬁ,m1/2+s ‘,Yd1> ’

for all € > 0, as desired. O

We now instantiate Theorem 7 with slightly more concrete parameter choices. The reason for setting
a > 1/100 for the LeakyReLU is that & = 1/100 is a commonly used default value, e.g., in PyTorch
(Paszke et al., 2019).

Corollary 3. For m = n'/?, d = n'/4, any a € [1/100,1), and any v € {1,2"1/5], under

Assumption 2, for all B < poly(n), there exists a statistically undetectable backdoor for NN, g m .~

with strength
o1

— 2(2(m) ]
6()

31



Under review as a conference paper at ICLR 2026

Proof. We directly plug these parameters into Theorem 7 (and ¢ = 1/2) to get strength
oot
% - \/ﬁ,m1/2+a Cyd—1
oV
-0 .
100" /4, n1/2 . (2711/5)77,1/4—1

2\/5
= —
20(n?/20)

— 9fUVn)

USE OF LARGE LANGUAGE MODELS

We used large language models (specifically, Claude Code) to help generate code for our implementa-
tion as done in Section 3.1.
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