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ABSTRACT

Large language models (LLMs) have achieved impressive performance across
diverse tasks, largely driven by large-scale pretraining data. However, this data
abundance has led to a critical issue: test data contamination, where benchmark
datasets inadvertently overlap with pretraining corpora. This contamination com-
promises the reliability of LLM evaluation by making it difficult to distinguish
genuine generalization from memorization. To address this challenge, existing
training data detectors aim to identify clean (unseen) data within potentially con-
taminated test sets. While effective to some extent, these methods often misclassify
contaminated data as clean due to the black-box nature of LLMs, resulting in
residual contamination and unreliable evaluation. This raises a key question: Can
we control the proportion of contaminated data mistakenly identified as clean i.e.,
false discovery rate (FDR), below a user-specified threshold, while maximizing the
amount of clean data retained for evaluation? Thus, we propose TD4Eval, a princi-
pled framework for training data detection that simultaneously ensures strict FDR
control and high detection power. Specifically, we propose a rejection-count-based
adaptive weighting strategy that learns the relative contribution of each detector.
Based on these weights, we integrate multiple complementary detectors and ap-
ply the Benjamini-Hochberg (BH) procedure to control the FDR. Theoretically,
we show that TD4Eval achieves asymptotic optimality in controlling FDR and
maintaining high power. Empirical results on real-world datasets demonstrate that
TD4Eval achieves an average 30% improvement in FDR over SOTA methods.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
domains, largely due to the massive volumes of data used during pretraining Cheng et al. (2025);
Chang et al. (2024). However, despite these impressive achievements, the uncontrolled expansion of
data has introduced the problem of data contamination, where test datasets are inadvertently included
in the training corpus. This contamination makes it difficult to determine whether a model has
genuinely acquired a capability or is simply memorizing test data, thereby undermining the reliability
of evaluation Zhang et al. (2024c); Lv et al. (2024); Yao et al. (2024); Sun et al..

To address the issue of test data contamination, a variety of training data detection methods have
been proposed Shi et al.; Zhang et al. (2024b;a); Golchin & Surdeanu (2023); Jacovi et al.. These
approaches typically frame the task as a binary classification problem, aiming to distinguish between
contaminated data (i.e., data that has been seen by large language models during training) and clean
data (i.e., data not present in the pre-training set) within a potentially contaminated dataset. The
identified clean data can then be used for reliable evaluation of LLMs, mitigating the impact of
contamination on LLM evaluation.

However, due to the black-box nature of LLMs, even state-of-the-art detection models struggle to
perfectly separate contaminated from clean data. That means a significant proportion of contaminated
samples may be misclassified as clean, i.e., false positives, leading to residual contamination in
the selected evaluation set and undermining the reliability of model evaluation (as demonstrated
in the Experiment section 5.4). If the proportion of false positives can be controlled below a user-
specified threshold, residual contamination can be effectively reduced. From the perspective of
statistical hypothesis testing, this problem can be formulated as a false discovery rate (FDR) control
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problem. Classical approaches, such as the Benjamini—Hochberg (BH) procedure Benjamini &
Hochberg (1995); Ferreira & Zwinderman (2006), can be employed to achieve this control. While
these FDR-controlled methods exhibit desirable statistical properties Benjamini & Hochberg (1995);
Benjamini & Yekutieli (2001), they often overlook another critical objective in training data detection:
maximizing the amount of clean data identified, also known as detection power. Insufficient detection
power may result in only a small number of clean samples being retained, thereby compromising the
representativeness and robustness of subsequent evaluation. This challenge motivates a key question:
Can we achieve the FDR control while maximizing detection power for training data detection?

To settle this problem, we propose TD4Eval, a training data detection framework designed for reliable
LLM evaluation, with a dual focus on FDR control and power maximization. Specifically, we
introduce a novel fusion strategy that integrates multiple detection techniques, such as PPL Li (2023),
Min-k Shi et al., and Min-k++ Zhang et al. (2024b), into the classical BH. Our approach proceeds in
three steps: first, test statistics are extracted from each detection method for every candidate sample
to compute individual p-values. Then, due to data heterogeneity, i.e., detectors may exhibit different
performance across datasets, we propose a rejection-count-based adaptive weighting strategy that
adaptively learns the relative contribution of each detector. Based on these weights, we integrate
multiple complementary detectors through the weighted Cauchy combination. Finally, we apply the
BH procedure to control the overall FDR with power maximization.

From a theoretical perspective, due to data heterogeneity, we adopt a data-driven weighting scheme
instead of fixed weights. However, since these weights are estimated from the same sample that gen-
erates the p-values, they become stochastically dependent on the underlying test statistics, rendering
previous theoretical results based on fixed weights inapplicable (Bates et al., 2023; Wu et al., 2023;
Long et al., 2023). To address this challenge, we estabilish the convergence of data-driven weights
and extend the analysis for converged weights. The new theoretical results show TD4Eval achieves
asymptotic optimality in controlling FDR and maintaining high power.

Finally, we validate the effectiveness of TD4Eval through experiments on both real-world datasets and
practical evaluation benchmark. Specifically, we conduct experiments on real datasets WikiMIAShi
et al., arXivTection Duarte et al. (2024), BBC Real-Time Li et al. (2024), and MIMIR (Duan et al.),
and find that TD4Eval achieves an average improvement of 30% in FDR performance compared to
the SOTA, demonstrating its effectiveness in controlling false positives. In the real-world benchmark
evaluation, we construct a contaminated setting by fine-tuning LMMs on the 4 classical LLM
evaluation benchmarks. The results demonstrate that TD4Eval successfully identifies clean data
with a controlled FDR, effectively mitigating the impact of data contamination and preserving the
reliability of the model evaluation.

• To the best of our knowledge, we are the first to propose controlling the FDR while maxi-
mizing power for detecting clean data under data contamination. This effectively mitigates
the impact of contaminated data and enhances the reliability of the model evaluation.

• We introduce TD4Eval, a training data detection method that offers theoretical guarantees
for FDR control and power maximization.

• We validate the effectiveness of our approach on real-world datasets and demonstrate its
capability to support reliable model evaluation.

2 RELATED WORKS

Data Contamination. Data contamination has been extensively studied in the literature Mann et al.
(2020); Magar & Schwartz (2022); Deng et al. (2024); Golchin & Surdeanu (2024), where training
data may inadvertently include evaluation benchmark data, leading to unreliable evaluation results.
As such, assessing the potential leakage of benchmark data into pretraining corpora is essential for
trustworthy model evaluation Dong et al. (2024); Dekoninck et al. (2024); Wang et al.; Jain et al.;
Oren et al. (2023); Golchin & Surdeanu. In fact, the problem of data contamination can, to some
extent, be viewed as a specific instance of Membership Inference Attacks (MIA) Das et al. (2024);
Duan et al. (2024), which aim to determine whether a given data point was part of a model’s training
set. Motivated by this connection, several recent works have approached training data detection in
LLMs from the perspective of MIA. For example, Shi et al. hypothesize that clean data is more likely
to contain outlier tokens that result in significantly higher loss values. Based on this observation,
they propose the Min-K% method, which identifies contaminated data by analyzing the top-k token
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log probabilities. Building on this, Zhang et al. (2024b) introduce Min-K%++, grounded in the
theoretical insight that training samples tend to correspond to local maxima of the model’s likelihood
function along each input dimension. Furthermore, Zhang et al. (2024a) observe that after fine-tuning
the model with a small set of unseen data, the perplexity of LLMs shifts differently for contaminated
versus clean data. Leveraging this behavior, they propose the FSD method.

FDR Control. Reformulating the training data detection problem as a multiple testing problem, the
proportion of false positives among the clean data corresponds to the false discovery rate (FDR). To
ensure that the FDR remains below a user-specified threshold, extensive research in the statistical
literature has focused on FDR control. It serves as a powerful tool for reliably identifying true
positives while limiting excessive false discoveries Benjamini & Hochberg (1995); Benjamini &
Yekutieli (2001), which is crucial in a wide range of application domains, such as genomics Storey &
Tibshirani (2003) and healthcare Genovese et al. (2002). For example, Zhang et al. (2022b) investigate
strategies to improve model selection under FDR control, while Bates et al. (2023) introduce a method
to control the FDR for a fixed novelty detection model. However, their work does not consider the
theoretical guarantees under statistical power and data-driven weights.

In contrast to previous work, we argue that simultaneously controlling the FDR and maximizing
detection power on clean data is critical for training data detection, as residual contamination can
undermine the reliability of model evaluations. Therefore, we propose TD4Eval, designed to achieve
rigorous and reliable evaluations of LLMs. In addition, we establish theoretical guarantees for both
FDR control and statistical power, highlighting the theoretical validity of our method.

3 PROBLEM DEFINITIONS

Suppose we are given a dataset in which a portion of the data is contaminated. The dataset consists
of n samples, denoted by Z1, Z2, . . . , Zn, and indexed by Dtotal = [n] = {1, 2, . . . , n}. Each sample
belongs either to the contaminated data or the clean data. Specifically, if a data sample has been seen
during the training process of a LLM, it is considered contaminated; otherwise, it is considered
clean. Accordingly, we define two disjoint index sets: Dcon ⊆ Dtotal: indices of contaminated data,
Dclean = Dtotal \ Dcon: indices of clean data.

The goal of training data detection is to estimate the set of clean data, denoted by Ŝ ⊆ Dtotal, which
can be used to support reliable LLM evaluation. This task can be formulated as a classification
problem: determining whether a given sample Zi belongs to the Dcon or Dclean. The decision is based
on a detection score Si, where, in general, lower scores are assumed to indicate a higher likelihood
that the sample was seen during training. Formally, the prediction function is defined as:

h(Zi) =

{
contaminated data if Si < t,

clean data if Si ≥ t,
(1)

where t is a threshold determined based on the distribution of detection scores.

To compute such scores, many methods have been proposed, such as Min-K%, which uses the
average probability of the k% outlier tokens with the lowest predicted probabilities. While these
methods can distinguish clean and contaminated data to some extent, the black-box nature of LLMs,
including the inaccessibility of their full pretraining data and model architecture, makes this task
particularly challenging. As a result, even SOTA detection methods often yield clean data that contain
a significant proportion of contaminated data, thereby undermining the reliability of evaluation.

In this paper, we adopt a statistical perspective and aim to control the proportion of contaminated data
in selected set Ŝ . Specifically, for each sample i ∈ Dtotal, we consider the following hypothesis test:{

H0 : Sample i is from contaminated data,
H1 : Sample i is from clean data

(2)

Our objective is to control the FDR of Ŝ to be below a user-specified threshold α, while simultaneously
maximizing the power of the detection. These quantities are formally defined as:

FDR := E

[
|Ŝ ∩ Dcon|
|Ŝ| ∨ 1

]
and Power := E

[
|Ŝ ∩ Dclean|
|Dclean| ∨ 1

]
. (3)
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4 METHODS

In this section, we introduce TD4Eval, a method for detecting non-training data with rigorous
FDR control and power maximization, enabling reliable evaluation of LLMs. Specifically, we first
formalize the training data detection task as a multiple hypothesis testing problem and review the
classical Benjamini-–Hochberg (BH) Benjamini & Hochberg (1995) procedure for FDR control.
Building upon BH, we then propose a cauchy fusion that integrates existing training data detection
methods to maximize detection power. Finally, we provide theoretical guarantees for the TD4Eval.

4.1 BH PROCEDURE

To control the FDR, we formulate the training data detection task as a multiple hypothesis testing
problem. Specifically, for each test sample Zi, we test the null hypothesis,

H
(i)
0 : “Sample Zi is from the contaminated data”.

By computing a p-value pi for each sample, we obtain a collection of n hypotheses {H(i)
0 }ni=1, one

for each test sample. This formulation enables the application of classical multiple testing procedures
to determine which hypotheses to reject.

To obtain the p-value, we first compute a detection score Si for each sample Zi using a given
detection method. Let Sref denote the contaminated data detection score distribution. Although the
true distribution of contaminated data is not directly accessible, it can be approximated by collecting
samples from commonly used pretraining sources, such as Wikipedia, that are from the same domain
and were published prior to the model’s release date. For example, WIKIMIA Shi et al. considers
Wikipedia articles created before 2017 as contaminated data, because many pretrained models,
including LLaMA and GPT-NeoX, were released after 2017 and incorporate Wikipedia dumps into
their pretraining corpora. The p-value for sample Zi is then defined as:

pi = PS∼Sref(S ≤ Si). (4)
BH procedure is a classical method in multiple hypothesis testing, which aims to control the error
rate by identifying a data-dependent threshold such that FDR is bounded by a target level α ∈ (0, 1).
Specifically, given a set of p-values {pi}ni=1, we first sort them in ascending order: p(1) ≤ p(2) ≤
· · · ≤ p(n), and then find the largest index:

m = max

{
j ∈ [n] : p(j) ≤

jα

n

}
, (5)

The resulting BH threshold is then given by tBH = mα
n . Finally, all p-values smaller than tBH

are considered statistically significant, leading to the rejection of the null hypothesis H0, and the
corresponding samples are identified as clean data. The final Ŝ can be represent as:

Ŝ = {Zj ∈ Dtotal : pj < tBH}. (6)

4.2 TD4EVAL
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Figure 1: The framework of TD4Eval.

While the BH procedure effectively
controls the FDR, it overlooks the
goal of maximizing statistical power.
This can result in only a small num-
ber of clean samples being detected,
thereby compromising the comprehen-
siveness of model evaluation. Re-
cent advances in training data detec-
tion have introduced various scoring
methods (e.g., Min-K Shi et al., Min-
K++ Zhang et al. (2024b), etc.), each
capturing different aspects of the data.
These methods provide complemen-
tary information, which motivates the
idea of combining multiple statistics
to construct a more powerful p-value.
The framework is shown in Figure 1.
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Suppose we have a set of training data detection methods, each associated with a score func-
tion S(1), . . . , S(K). The corresponding p-values based on these score functions are denoted as
{p(1)j }j∈[n], . . . , {p

(K)
j }j∈[n], respectively. Since the performance of each detection method may

vary, we aim to better integrate the information from different models by assigning them appropriate
weights. Intuitively, the more non-training data points a method successfully identifies (i.e., rejects
the null hypothesis H0), the more it contributes to the overall power (Zhang et al., 2022b). Therefore,
we compute the weight of each method S(k) based on the number of rejections it makes under a
controlled FDR:

Rk =
∣∣∣{Zi ∈ Dtotal : p

(k)
i ≤ t

(k)
BH

}∣∣∣ , wk =
Rk∑K
j=1 Rj

. (7)

Here, t(k)BH is the rejection threshold determined by the BH procedure over {p(k)j }j∈[n]. Inspired by
Liu & Xie (2020), we map the individual p-value to the Cauchy space and compute a weighted sum:

Ti =

K∑
k=1

wk · tan
[(

0.5− p
(k)
i

)
π
]
. (8)

The reason why we choose the Cauchy distribution is that it is a heavy-tailed distribution. This
implies that when an individual p-value is very small (i.e., highly significant), its corresponding
Cauchy-transformed value becomes extremely large (approaching infinity). Such behavior allows the
combined statistic Ti to be dominated by the most significant evidence among the individual tests,
thereby increasing the sensitivity to strong signals while maintaining robustness under H0.

The combined test statistic Ti approximately follows a standard Cauchy distribution. To map it back
to the p-value space, we apply the inverse Cauchy transformation. The resulting aggregated p-value
can then be used for FDR control. Specifically, the final p-value is computed as:

pagg
i =

1

2
− 1

π
arctan(Ti). (9)

The combined p-value pagg
i can then be used in the BH procedure to control the overall FDR and

maximize power. The final threshold t is defined as:

tfinal =
α

n
max

{
j ∈ [n] : pagg

(j) ≤
jα

n

}
, (10)

where pagg
(j) denotes the jth smallest value among the set {pagg

i }i∈[n]. The final Ŝ can be represent as:

Ŝ = {Zj ∈ Dtotal : pj < tfinal}. (11)

4.3 THEORETICAL GUARANTEE

In this section, we theoretically prove that TD4Eval can effectively control the FDR while maximizing
statistical power. We begin by presenting two key lemmas, which form the theoretical foundation for
establishing the FDR control guarantee of the TD4Eval procedure. Specifically, we first characterize
the statistical properties of the aggregated p-values used in TD4Eval. Based on these properties, we
then demonstrate the effectiveness of TD4Eval in controlling the FDR.

Lemma 1. Bates et al. (2023) Under the null hypothesis H0, suppose the score S
(k)
i is drawn

from the same distribution as the reference data, i.e., S(k)
i ∼ S(k)

ref , and the p-value is defined

as p
(k)
i = P

S∼S(k)
ref

(S ≤ S
(k)
i ). Then, under H0, the p-value p

(k)
i follows a uniform distribution:

p
(k)
i ∼ Uniform[0, 1].

Lemma 1 has been proved by Bates et al. (2023). Building on Lemma 1, consider the p-values
p
(1)
i , . . . , p

(K)
i computed from different training data detectors. Each of these p-values satisfies,

p
(k)
i ∼ Uniform[0, 1] under the null hypothesis H0.

Then, the Cauchy-aggregated p-values {pagg
i }i∈[n] can be approximately uniformly distributed under

fixed weights (Liu & Xie, 2020), and this result has been extended to various structures (Wu et al.,
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2023; Long et al., 2023). However, as we use a rejection-count-based adaptive weighting strategy
that adaptively learns the relative contribution of each detector, these data-driven weights introduce
additional theoretical challenges against fixed weights. Specifically, the estimated weights are
computed from the same sample that generates the p-values, so they are stochastically dependent on
the underlying test statistics. To address this issue, we first establish Lemma 2, which demonstrates
that the data-driven weights converge to fixed constants. We then present Lemma 3, which ensures
that the aggregated p-values preserve uniformity.

Lemma 2 (Convergence of the weights for TD4Eval). Consider K detection methods, each with score
function S(1), . . . , S(K). For each method k, let p-values on the total dataset Dtotal be {p(k)i }ni=1.
Apply the BH procedure at level α separately to each method, producing the rejection threshold t

(k)
BH

and the number of rejections Rk =
∣∣∣{Zi ∈ Dtotal : p

(k)
i ≤ t

(k)
BH

}∣∣∣. Define the normalized data-driven

weights wk = Rk∑K
j=1 Rj

. Then, there exist deterministic constants (w∗
1 , . . . , w

∗
K) with

∑K
k=1 w

∗
k = 1

such that wk
a.s.−−→ w∗

k for each k = 1, . . . ,K.

Lemma 3 (Uniformity of aggregated p-values in TD4Eval). Let p(1)i , . . . , p
(K)
i be the p-values

corresponding to a given sample i, each satisfying p
(k)
i ∼ Uniform[0, 1] under the null hypothesis

H0. We have that the aggregated p-value paggi is uniformly distributed on [0, 1] under H0.

Remark 1. A detailed theoretical analysis supporting Lemmas 2 and 3 is provided in Appendix 9
. In addition, we empirically evaluate the distribution of aggregated p-values paggi under the null
hypothesis on real datasets. The results show that the aggregated p-values are uniformly distributed
on [0, 1], which provides empirical evidence supporting the validity of Lemma 3.

Based on the result of Lemma 3, we have the following theorems:

Theorem 1 (FDR Control of TD4Eval). Suppose we are given a set of training data detection methods,
each associated with a score function S(1), . . . , S(K). Let the corresponding p-values be defined as
{p(1)j }j∈[n], . . . , {p

(K)
j }j∈[n], where each p-value is computed as p(k)i = P

S∼S(k)
ref

(S ≤ S
(k)
i ). Then,

the TD4Eval procedure controls the FDR at level α, i.e.,

FDR := E

[
|Ŝ ∩ Dcon|
|Ŝ| ∨ 1

]
≤ α. (12)

Theorem 2 (Asymptotic Power Consistency of TD4Eval). Assume that for each k ∈ [K] and
Zj ∈ Dclean, Pr(p(k)j ≤ c) ≥ 1 − δ where δ = o(

√
log n/n) and c is a constant, and the density

function of paggj for Zj ∈ Dclean has an upper bound Cf > 0, we have,

Power := E

[
|Ŝ ∩ Dclean|
|Dclean| ∨ 1

]
≥ 1− C

√
log n/n. (13)

The assumption in Theorem 2 is standard for proving power consistency (Genovese et al., 2002;
Weinstein et al., 2023). Specifically, we show that the power of TD4Eval is lower bounded by
1− C

√
log n/n, where C > 0 is a constant depending on the testing level, the null proportion, and

certain distributional characteristics. Consequently, as n → ∞, the power converges to 1. Through
Theorems 1 and 2, we demonstrate that TD4Eval achieves asymptotic optimality in controlling the
FDR while maintaining high statistical power. Details will be presented in Appendix 10.

5 EXPERIMENTS
In this section, we first introduce the baselines, datasets, and experimental setup. We then present the
experimental results to demonstrate the effectiveness of our model. The code is available for review 1.
5.1 SETUP

Baselines We select several baselines from prior work on training data detection, including PPL
Li (2023), Lowercase Carlini et al. (2021), Zlib Carlini et al. (2021), Grad Hu et al., Min-K% Shi
et al., and Min-K%++ Zhang et al. (2024b). In addition, to assess the effectiveness of our adaptive
weighting strategy, we construct three TD4Eval variants: BH-Average, BH-Random, and BH-Max.
Detailed descriptions are provided in the Appendix 11.1.

1https://anonymous.4open.science/r/TD4Eval-0D60/
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Table 1: The detection performance on three datasets. FDR (lower is better), Power (higher is better),
ACC (higher is better), AUC (higher is better). Bold indicates the best result per model. For TD4Eval,
we report the mean and standard deviation across ten independent runs.

Method
WikiMIA arXivTection BBC Real Time

Pythia-2.8B LLaMA-13B Pythia-2.8B LLaMA-13B Pythia-2.8B LLaMA-13B

FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑

PPL 0.141 0.980 0.913 0.983 0.145 1.000 0.919 0.999 0.149 0.909 0.873 0.945 0.138 0.960 0.901 0.975 0.156 0.802 0.825 0.882 0.137 0.931 0.890 0.950

Lowercase 0.154 0.926 0.884 0.954 0.149 0.999 0.916 0.996 0.216 0.615 0.718 0.825 0.154 0.832 0.837 0.922 0.173 0.694 0.772 0.853 0.133 0.928 0.892 0.949

Zlib 0.178 0.768 0.809 0.880 0.150 0.959 0.899 0.977 0.200 0.580 0.712 0.822 0.160 0.819 0.829 0.909 0.207 0.550 0.700 0.797 0.151 0.832 0.840 0.903

Grad 0.174 0.798 0.823 0.907 0.154 0.929 0.885 0.964 0.150 0.798 0.825 0.907 0.139 0.913 0.881 0.951 0.188 0.645 0.745 0.827 0.151 0.853 0.849 0.921

Min-K% 0.150 0.982 0.908 0.982 0.151 1.000 0.915 0.999 0.135 0.962 0.904 0.972 0.141 0.995 0.915 0.994 0.187 0.656 0.750 0.833 0.138 0.910 0.881 0.942

Min-K%++ 0.145 0.997 0.918 0.993 0.150 1.000 0.915 1.000 0.148 0.906 0.872 0.948 0.137 0.995 0.917 0.991 0.167 0.744 0.795 0.866 0.133 0.935 0.894 0.950

TD4Eval 0.101 0.999 0.946 0.993 0.099 1.000 0.947 0.998 0.090 0.942 0.923 0.973 0.092 0.997 0.947 0.994 0.095 0.771 0.843 0.910 0.094 0.948 0.924 0.968

(std) ±0.018 ±0.001 ±0.011 ±0.001 ±0.012 ±0.000 ±0.007 ±0.001 ±0.014 ±0.010 ±0.007 ±0.003 ±0.020 ±0.002 ±0.012 ±0.002 ±0.013 ±0.017 ±0.003 ±0.002 ±0.005 ±0.002 ±0.003 ±0.002

Models and Datasets We adopt three LLMs to evaluate our TD4Eval: Pythia-2.8B(Biderman
et al., 2023), OPT-6.7B Zhang et al. (2022a) and LLaMA-13B Touvron et al. (2023). Throughout
our experiments, we use the checkpoints provided by Hugging Face. As for the evaluation datasets,
we employ four benchmark datasets for evaluations, including WikiMIA (Shi et al.), ArXivTection
(Duarte et al. (2024)), BBC Real Time (Li et al. (2024)), MIMIR (Duan et al.). Previous works have
demonstrated that model developers commonly use text content among those datasets for pre-training
(Shi et al.; Duarte et al. (2024)). Detailed information is shown in Appendix 11.2.

Evaluation metrics In this paper, we focus on two key metrics, FDR and Power (Eq. (3)), which
play a crucial role in training data detection for LLM evaluation. A lower FDR and a higher Power
indicate better detection performance. Additionally, we report the Accuracy (ACC) and AUC, where
a higher ACC and AUC reflects more precise detection results.

Implementation details The detailed implementation can be found in in Appendix 11.3.

5.2 MAIN RESULT

In this section, We conduct a comprehensive comparison of various training data detection methods
across three datasets and multiple language models. Table 1 summarizes the detection performance of
all evaluated methods across three datasets and under multiple LLM backbones. Results for OPT-6.7B
and MIMIR are provided in the Appendix 11.4. The key findings are as follows: 1 TD4Eval achieves
the lowest FDR across all datasets and model settings, demonstrating its strong ability to suppress
false positives. Compared to the strongest baseline, TD4Eval achieves a relative FDR reduction of
up to 30–39%, indicating a substantial improvement in precision when identifying clean data. 2

TD4Eval maintains competitive or superior detection power in most settings. It achieves near-perfect
power on two datasets and performs robustly on the third, showing that it can effectively recall clean
samples while maintaining low FDR. 3 TD4Eval consistently achieves the highest overall accuracy
across different datasets and models. This reflects its comprehensive effectiveness in both minimizing
false detections and correctly identifying clean data, which is crucial for downstream applications.

5.3 THE ANALYSIS OF TD4EVAL
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Figure 2: Ablation study results on Pythia-2.8B.

Effect of Cauchy Fusion. We adapt a
weighted Cauchy fusion strategy as defined in
Eq. (8) and Eq. (9). In this section, we evaluate
its effectiveness from two perspectives. First, we
assess the benefit of fusion itself. To this end, we
remove the fusion module and directly compute
the p-values from individual detection methods.
We then apply the BH procedure described in
Section 4.1 to control the FDR, resulting in a
set of baselines denoted as BH-XX, where XX
indicates the name of the detection method. Sec-
ond, we examine the impact of the weighting
scheme. We introduce three variants, named BH-Average, BH-Random, and BH-Max. Figure 2
shows the FDR and Power results across datasets. Based on the results, we draw the following
findings: 1 BH-based methods effectively control the FDR. All methods successfully maintain the
FDR below the 0.15 threshold (indicated by the red dashed line), demonstrating the correctness
and robustness of the BH procedure when applied to both individual and fused p-values. 2 Among
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all approaches, TD4Eval achieves the highest Power while keeping FDR within the acceptable
range. Compared to BH-Average, BH-Random, and BH-Max, the superior performance of TD4Eval
highlights the benefit of our learned weighting scheme.

10 20 30 40
Label Noise (%)

0.3

0.4

0.5

0.6

0.7

0.8

Po
w

er

(a) Power vs Label Noise
PPL
Lowercase
Zlib
Grad

Min-K%
Min-K%++
TD4Eval

10 20 30 40
Label Noise (%)

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

FD
R

(b) FDR vs Label Noise

Figure 3: The results for Pythia-2.8B on the BBC
dataset under different levels of label noise.

Effect of reference data Sref. The computa-
tion of the p-value relies on the reference data
Sref. In this section, we investigate the impact
of noise in Sref on TD4Eval. Specifically, we
introduce varying levels of noise into the labels
of the contaminated reference data by randomly
selecting a proportion of labels and replacing
them with labels from other classes uniformly
at random. The corresponding results for Power
and FDR are shown in Figure 3. These re-
sults demonstrate that, compared to the base-
lines, TD4Eval consistently achieves the highest
power while effectively controlling the FDR under different noise conditions. This result also in-
dicates that the dynamic weighting strategy in our TD4Eval can integrate the strengths of multiple
detectors, thereby effectively enhancing the robustness of detection.
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Figure 4: The impact of α on Pythia-2.8B.

Effect of α. To investigate the impact of the
FDR control threshold α on model performance,
we vary α from 0.02 to 0.18 and compute the
corresponding FDR and Power for each method.
Each subplot in Figure 4 presents results on a
different dataset, and each curve corresponds
to a specific metric. To clearly visualize the
FDR constraint, we also include a dashed line
representing the target threshold (y = α). A
model is considered to successfully control the
FDR if its corresponding FDR curve remains
below this line. As α increases, the observed
FDR (blue curve) consistently remains below the target threshold (dashed line y = α) across all
datasets, demonstrating that TD4Eval successfully controls the FDR within the specified bounds.
This indicates that the TD4Eval is statistically valid and reliable across a wide range of α values.

22.4%
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4.7%
0.9%

14.0% 30.2%
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PPL Lowercase Zlib Grad Min-K% Min-K%++

Figure 5: Learned weights for each method in the
TD4Eval on Pythia-2.8B.

Anaysis of learning weight wi. To further ex-
amine the effectiveness of our weighted fusion
strategy, we visualize the learned weights as-
signed to each method across different datasets,
as shown in Figure 5. The pie charts correspond
to the datasets WikiMIA, arXivTection. Each
segment represents the weight of a base method
in the final fusion. We observe that methods with
stronger performance (as reported in the table
1) tend to receive larger weights. For instance,
Min-K%++ and Min-K% consistently receive
higher weights across all datasets, while Grad
and Zlib are assigned smaller weights. This
alignment between performance and weighting indicates that our fusion mechanism is capable of
effectively distinguishing the power of each method, and integrates them in a power-aware manner.

5.4 THE APPLICATION OF TD4EVAL

In this section, we explore the practical application of TD4Eval to assess whether it can mitigate
the impact of test data contamination on model evaluation. Since existing data contamination
evaluation benchmarks do not support model evaluation, we construct a synthetic contaminated
setting. Specifically, we fine-tune an LLM using a subset of the evaluation data, thereby intentionally
introducing contamination. We then apply training data detection methods to identify the clean data,
and examine the evaluation results. Since each training data detection method selects a different clean
benchmark dataset, comparing their absolute scores in different clean sets would be unfair. Therefore,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Impact of different detection methods on LLM Evaluation, SRCC metric measures whether
a detector can effectively remove contaminated data and thereby preserve ranking consistency in
model evaluation; values closer to 1 indicate higher consistency. The Contaminated row reports the
benchmark results of the contaminated models without applying any training data detection methods.

Method
Simple QA GPQA TruthfulQA ARC-C

LLaMA-3.1-8B Mistral-7B LLaMA-3.1-8B Mistral-7B LLaMA-3.1-8B Mistral-7B LLaMA-3.1-8B Mistral-7B

FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑ FDR↓ SRCC↑

Contaminated - 0.657 - 0.500 - 0.143 - 0.886 - 0.657 - 0.429 - 0.643 - 0.464

PPL 0.134 0.886 0.223 0.810 0.056 0.771 0.148 0.829 0.125 0.714 0.178 0.657 0.145 0.786 0.124 0.893

Lowercase 0.135 0.829 0.248 0.833 0.045 0.829 0.113 0.943 0.128 0.829 0.171 0.829 0.182 0.750 0.151 0.750

Zlib 0.125 0.829 0.234 0.833 0.086 0.600 0.227 0.714 0.120 0.829 0.165 0.657 0.125 0.929 0.101 0.964

Grad 0.116 1.000 0.108 0.929 0.056 0.600 0.179 0.886 0.128 0.657 0.198 0.771 0.109 0.964 0.075 1.000

Min-K% 0.139 0.943 0.199 0.810 0.054 0.657 0.142 0.886 0.133 0.715 0.208 0.829 0.134 0.857 0.113 0.893

Min-K%++ 0.118 1.000 0.172 0.857 0.031 0.829 0.105 0.943 0.112 0.829 0.147 0.943 0.135 0.857 0.105 0.964

TD4Eval 0.096 1.000 0.025 1.000 0.025 0.943 0.057 1.000 0.074 1.000 0.087 1.000 0.061 1.000 0.070 1.000

we focus on the consistency of the ranking instead. We argue that a reliable detection method should
preserve the relative ranking of models as observed on the clean benchmark.

More concretely, we consider four widely used LLM evaluation benchmarks: SimpleQA Wei et al.
(2024), GPQA Rein et al. (2023), TruthfulQA Lin et al. (2022), and ARC-C Clark et al. (2018).
Detailed descriptions of these benchmarks are provided in the Appendix 12.1. We evaluate eight
models on these four benchmarks: LLaMA-3-70B Grattafiori et al. (2024), GPT-4o-mini Hurst et al.
(2024), o1-mini Jaech et al. (2024), Gemini-1.5-Flash Team et al. (2024), Mistral-7B Jiang (2024),
Claude-3-Haiku Anthropic (2024), LLaMA-3.1-8B Meta AI (2024a), and LLaMA-3.2-3B Meta AI
(2024b). The rankings of these models on the benchmarks serve as the ground truth for evaluating
model performance under clean conditions. To simulate contamination, we randomly select 50% of
the benchmarks to fine-tune certain LLMs (specifically, LLaMA-3.1-8B and Mistral-7B), thereby
introducing artificial contamination. The detailed fine-tuning setup is provided in Appendix 12.2.
To evaluate the effectiveness of training data detection, we apply various detection methods to filter
out contaminated samples and retain only clean evaluation data. We then compare the relative
rankings of the eight models based on their performance. The closer these rankings are to the
clean-condition ground truth, the more effective the detection method. For quantitative evaluation, we
adopt Spearman’s Rank Correlation Coefficient (SRCC) Sedgwick (2014) as the consistency metric;
values closer to 1 indicate that the detection method more effectively preserves reliable evaluation of
LLMs. The experimental results are summarized in Table 2.

From the table, we have the following findings: 1 Data contamination severely compromises fair
model evaluation. From the Contaminated row, we observe that after introducing contamination,
the performance rankings of the affected models deviate substantially from the clean-condition
ground truth. This demonstrates that contamination can lead to misleading conclusions about their
true capabilities. 2 Existing training data detection methods are helpful but insufficient. While
existing detection methods do mitigate the impact of contamination to some extent, their performance
remains unsatisfactory in terms of both the FDR and SRCC metrics. 3 TD4Eval effectively addresses
data contamination in model evaluation. Our method consistently achieves the lowest FDR among
all detection approaches. Notably, under TD4Eval, the SRCC reaches 1 across all benchmarks,
highlighting that controlling FDR is essential for minimizing the impact of data contamination and
ensuring reliable LLM evaluation. We also evaluate the effectiveness of TD4Eval under different
levels of contamination. The detailed results are provided in the Appendix 12.3, which further
demonstrate that TD4Eval yields reliable LLM evaluations across varying contamination ratios.

6 CONCLUSION AND LIMITATIONS
In this work, we addressed the critical challenge of test data contamination in the evaluation of LLMs,
which undermines the reliability of performance assessments. We proposed TD4Eval, a principled
framework that ensures strict FDR control while maximizing the retention of clean evaluation data.
By integrating multiple detectors through the cauchy combination method and applying the BH
procedure, TD4Eval achieves both theoretical guarantees and practical effectiveness. Empirical
results across three real-world datasets demonstrate that TD4Eval consistently outperforms state-
of-the-art baselines. Our findings highlight the importance of statistically grounded approaches for
reliable LLM evaluation. The limitations will be discussed in Appendix 13.
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7 ETHICS STATEMENT
TD4Eval addresses the pressing issue of test data contamination, contributing to the growing need for
reliable evaluation of LLMs. By enabling statistically principled detection of clean evaluation data,
our framework enhances the transparency and trustworthiness of LLM benchmarking, particularly in
high-stakes applications such as education. Our research does not present ethical issues.

8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the complete implementation of our methods,
along with all necessary code and data, on an anonymous GitHub repository. Our code is available
for review at https://anonymous.4open.science/r/TD4Eval-0D60/ . Once our paper is accepted, we
will publicly release the code.
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9 APPENDIX A
TD4Eval is supported by strong statistical guarantees, enabling effective control of the FDR while
maximizing statistical power. In this section, we present two key lemmas that form the theoretical
foundation for establishing the FDR control guarantees of the TD4Eval procedure. Specifically, we
characterize the statistical properties of the aggregated p-values used in TD4Eval from both empirical
and theoretical perspectives.

Lemma 1. Bates et al. (2023) Under the null hypothesis H0, suppose the score S
(k)
i is drawn

from the same distribution as the reference data, i.e., S(k)
i ∼ S(k)

ref , and the p-value is defined

as p
(k)
i = P

S∼S(k)
ref

(S ≤ S
(k)
i ). Then, under H0, the p-value p

(k)
i follows a uniform distribution:

p
(k)
i ∼ Uniform[0, 1].

This proof has already been established in Bates et al. (2023); we refer the reader to that work for
details. Then, we provide the detailed proof of Lemma 2. Before presenting the proof, we introduce
the BH-limit lemma, which is a well-established result in classical multiple testing theory. It states
that the ratio of rejections produced by the BH procedure to the total number of tests converges to a
constant. This result is crucial for establishing the convergence of the data-driven weights.
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Lemma (BH-limit Storey et al. (2004)). For each method k ∈ {1, . . . ,K}, suppose the p-values
{p(k)i }ni=1 are i.i.d. with a mixture distribution Fk(t) = Pr(p

(k)
i ≤ t) = (1− πk)t+ πkGk(t), t ∈

[0, 1], where 0 ≤ πk ≤ 1 and Gk is continuous. Let Rk denote the number of rejections from applying
the BH procedure at level α to method k, and define the rejection proportion rk,n := Rk

n . Then there
exists a constant rk ∈ [0, 1], such that, rk,n

a.s.−−→ rk (n → ∞).

Lemma 2 (Convergence of BH-based weights). Consider K detection methods, each with score
function S(1), . . . , S(K). For each method k, let p-values on the total dataset Dtotal be {p(k)i }ni=1.
Apply the BH procedure at level α separately to each method, producing the rejection threshold t

(k)
BH

and the number of rejections Rk =
∣∣∣{Zi ∈ Dtotal : p

(k)
i ≤ t

(k)
BH

}∣∣∣. Define the normalized data-driven

weights wk = Rk∑K
j=1 Rj

. Then, there exist deterministic constants (w∗
1 , . . . , w

∗
K) with

∑K
k=1 w

∗
k = 1

such that wk
a.s.−−→ w∗

k for each k = 1, . . . ,K.

Proof. First, by Lemma BH-limit lemma, for each method k there exists a deterministic constant
rk ∈ [0, 1] such that the rejection proportion

rk,n :=
Rk

n

a.s.−−→ rk.

Since K is finite, the vector of rejection proportions rn = (r1,n, . . . , rK,n) converges almost surely
to r = (r1, . . . , rK).

Then, due to
∑K

k=1 rk > 0, we define the limiting weights

w∗
k :=

rk∑K
j=1 rj

, k = 1, . . . ,K.

The sum of the sample proportions
∑K

k=1 rk,n is eventually positive almost surely, so the weights wk

are well-defined for large n.

Finally, consider the continuous mapping

h : {x ∈ RK :
∑
i

xi ̸= 0} → RK , h(x) =
( x1∑

i xi
, . . . ,

xK∑
i xi

)
,

which maps the rejection proportions to the weights. Applying the continuous mapping theorem to
the almost-sure convergence of rn gives

h(rn) = (w1, . . . , wK)
a.s.−−→ h(r) = (w∗

1 , . . . , w
∗
K),

establishing the almost-sure convergence of the data-driven weights. Convergence in probability
follows immediately.

Base on Lemma 2, we can give the following lemma.

Lemma 3. Let p(1)i , . . . , p
(K)
i be the p-values corresponding to a given sample i, each satisfying

p
(k)
i ∼ Uniform[0, 1] under the null hypothesis H0. We have, the aggregated p-value paggi is

uniformly distributed on [0, 1] under H0.W

Proof. In this proof, we first consider the case where the weights are fixed, and then extend the result
to the setting with data-driven weights. For simplicity, the fixed weights are denoted as w∗

k for each
candidate k = 1, . . . ,K.

Let Uk = p
(k)
i ∼ Uniform[0, 1]. Define the transformed variable

Xk = tan [π (0.5− Uk)] .

Now we prove that Xk ∼ Cauchy(0, 1). To see this, recall that the cumulative distribution function
(CDF) of the standard Cauchy distribution is

F (x) =
1

2
+

1

π
arctan(x),

14
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whose inverse is
F−1(u) = tan [π(u− 0.5)] .

Therefore, if Uk ∼ Uniform[0, 1], then,
Xk = tan [π(0.5− Uk)] = − tan [π(Uk − 0.5)] ∼ Cauchy(0, 1),

since the Cauchy distribution is symmetric about zero.

Now, consider the weighted sum,

T ∗ =

K∑
k=1

w∗
kXk.

Because the Cauchy distribution is stable under linear combinations Feller (1991), we have,
T ∗ ∼ Cauchy(0, 1).

Finally, we apply the inverse CDF of the standard Cauchy distribution to obtain the aggregated
p-value,

p∗,aggi = 1− F (T ∗
i ) =

1

2
− 1

π
arctan(T ∗

i ).

The distribution of p∗,aggi can be directly verified by Liu & Xie (2020) as a uniform distribution.

Next, we consider aggregated p-values based on data-driven weights. It suffices to prove the
convergence between T and T ∗. Denote

∆k = wk − w∗
k.

Then,

T − T ∗ =

K∑
k=1

(wk − w∗
k)Xk =

K∑
k=1

∆kXk ≤
K∑

k=1

|∆k||Xk|.

Fix any k. Since Xk is standard Cauchy and ∆k = op(1), note the linear scaling property of Cauchy
distributions,

∆kXk ∼ Cauchy(0, |∆k|).
As |∆k| → 0 in probability, the scale parameter of ∆kXk converges to zero. By the definition of
convergence in distribution, this implies

∆kXk
p→ 0,

i.e., each term is op(1).

Since K is fixed, a finite sum of op(1) terms is still op(1),
K∑

k=1

∆kXk = op(1).

Thus,
T − T ∗ = op(1).

Since T ∗ is a finite linear combination of independent standard Cauchy random variables, it is also
Cauchy,

T ∗ =

K∑
k=1

wkXk ∼ Cauchy
(
0,

K∑
k=1

|wk|
)
.

By Slutsky’s theorem, adding a term that is op(1) does not change the limiting distribution. Therefore,

T = T ∗ + op(1) =⇒ T
d→ T ∗.

This completes the proof.

After establishing the theoretical foundation, we empirically examine the distribution of the aggre-
gated p-values, paggi . Specifically, we extract paggi from two benchmark datasets, WikiMIA and
arXivTection, and visualize their empirical distributions, as shown in Figure 6. The results indicate
that the aggregated p-values approximately follow a uniform distribution, which provides empirical
support for the validity of Lemma 3.
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Figure 6: The p-value distribution of paggi on datasets WikiMIA and arXivTection.

10 APPENDIX B
In this section, we theoretically demonstrate that TD4Eval achieves asymptotic optimality in control-
ling the FDR while maintaining high statistical power, as established in Theorems 1 and 2.
Theorem 1 (FDR Control of TD4Eval). Suppose we are given a set of training data detection methods,
each associated with a score function S(1), . . . , S(K). Let the corresponding p-values be defined as
{p(1)j }j∈[n], . . . , {p

(K)
j }j∈[n], where each p-value is computed as p(k)i = P

S∼S(k)
ref

(S ≤ S
(k)
i ). Then,

the TD4Eval procedure controls the FDR at level α, i.e.,

FDR := E

[
|Ŝ ∩ Dcon|
|Ŝ| ∨ 1

]
≤ α. (14)

Proof. From Lemma 3, the aggregated p-value paggi , computed from p
(1)
i , . . . , p

(K)
i , is approximately

uniformly distributed on [0, 1] under H0. This satisfies the assumptions required by the BH procedure:
namely, that p-values under H0 are uniformly distributed.

According to the BH procedure Benjamini & Hochberg (1995); Benjamini & Yekutieli (2001), if
the p-values under the null hypothesis H0 are independent and uniformly distributed, then the BH
procedure guarantees control of the FDR at the nominal level α. Furthermore, Theorem 4 in Storey
et al. (2004) relaxes the independence assumption required by the BH procedure, providing theoretical
guarantees for FDR control under the dependence of p-values. Since the aggregated p-values used in
TD4Eval approximately satisfy the required assumptions, applying the BH procedure ensures that the
FDR is controlled at the desired level. Therefore, the TD4Eval procedure controls the FDR at level α,
as claimed. i.e.,

FDR := E

[
|Ŝ ∩ Dcon|
|Ŝ| ∨ 1

]
≤ α.

Before giving the theorem 2, we introduce the following lemmas, which are useful for proving the
power consistency.
Lemma 4 (Theorem 6 in Storey et al. (2004), finite sample version). Fix t ∈ (0, 1] and let q ∈ (0, 1).
Then for any ϵ > 0,

P
(∣∣∣F̂DR(t)− FDR(t)

∣∣∣ > ϵ
)
≤ 2 exp

(
−2n · π2

0t
2ϵ2

FDR(t)4

)
.

This follows from applying Hoeffding’s inequality to Ĝn(t) and noting that x 7→ π0t/x is Lipschitz
on bounded away-from-zero intervals.

Define the ideal threshold,

t∗ := sup{t ∈ (0, 1] : FDR(t) ≤ α},

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and the empirical threshold (e.g. Benjamini-Hochberg with plug-in π0),

tBH := sup{t ∈ (0, 1] : F̂DR(t) ≤ α}.

We now state a finite-sample deviation bound for |tBH − t∗|.
Lemma 5 (Finite-Sample Deviation of BH Threshold). Suppose FDR(t) is strictly increasing and
continuously differentiable in a neighborhood [t∗ − ϵ, t∗ + ϵ], and its derivative satisfies FDR′(t) ≥
α > 0 in that region. Then for any ϵ > 0 such that t∗ − ϵ > 0, we have,

P(tBH < t∗ − ϵ) ≤ 2 exp

(
−2n · π

2
0(t

∗ − ϵ)2ϵ2

α2

)
,

P(tBH > t∗ + ϵ) ≤ 2 exp

(
−2n · π

2
0(t

∗ + ϵ)2ϵ2

α4

)
.

Proof. We analyze the lower tail; the upper bound follows similarly.

Suppose tBH < t∗ − ϵ, i.e., there is no t ∈ [t∗ − ϵ, t∗] such that F̂DR(t) ≤ α. Since FDR(t) ≤ α
on [0, t∗], we must have,

F̂DR(t) > α ≥ FDR(t), ∀t ∈ [t∗ − ϵ, t∗].

In particular, for t = t∗ − ϵ,

F̂DR(t)− FDR(t) > α− FDR(t) ≥ αϵ,

where the last inequality comes from the first-order Taylor expansion,

FDR(t∗)− FDR(t∗ − ϵ) ≥ αϵ.

Therefore,
P(tBH < t∗ − ϵ) ≤ P

(
F̂DR(t∗ − ϵ)− FDR(t∗ − ϵ) > αϵ

)
,

which is bounded by Lemma 4,

≤ 2 exp

(
−2n · π

2
0(t

∗ − ϵ)2(αϵ)2

FDR(t∗ − ϵ)4

)
≤ 2 exp

(
−2n · π

2
0(t

∗ − ϵ)2ϵ2

α2

)
.

Theorem 2 (Asymptotic Power Consistency of TD4Eval). Assume that for each k ∈ [K] and
Zj ∈ Dclean, Pr(p(k)j ≤ c) ≥ 1 − δ where δ = o(

√
log n/n) and c is a constant, and the density

function of paggj for Zj ∈ Dclean has an upper bound Cf > 0, we have,

Power := E

[
|Ŝ ∩ Dclean|
|Dclean| ∨ 1

]
≥ 1− C

√
log n/n.

Proof. By Lemma 3, the aggregated p-value paggi , computed from p
(1)
i , . . . , p

(K)
i , is uniformly

distributed on [0, 1] under H0. So pagg1 , . . . , paggn are drawn from the two-group mixture model,

paggi ∼ π0 · U [0, 1] + π1 · F1, where π0 + π1 = 1,

with F1 being a continuous distribution supported on [0, 1].

Define the empirical CDF,

Ĝn(t) :=
1

n

n∑
i=1

1{paggi ≤ t}, G(t) := π0t+ π1F1(t).

The true and estimated FDR curves are defined respectively as,

FDR(t) :=
π0t

G(t)
, F̂DR(t) :=

π0t

Ĝn(t)
.
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Define the ideal threshold,
t∗ := sup{t ∈ (0, 1] : FDR(t) ≤ α},

and the empirical threshold (e.g. Benjamini-Hochberg with plug-in π0),

tBH := sup{t ∈ (0, 1] : F̂DR(t) ≤ α}.

By the definition of power, we have,

Power :=
1

|Dclean|
∑

Zi∈Dclean

P(paggi ≤ tBH) = Pr
pagg
i ∼F1

(paggi ≤ tBH).

Applying Lemma 5, we know that at probability 2 exp
(
−2n · π2

0(t
∗−ϵ)2ϵ2

α2

)
, tBH < t∗ − ϵ for any

ϵ > 0.

Then it has,
Pr

pagg
i ∼F1

(paggi ≤ tBH) = 1− Pr
pagg
i ∼F1

(paggi > tBH)

= 1− Pr
pagg
i ∼F1

(paggi > tBH , tBH < t∗ − ϵ)− Pr
pagg
i ∼F1

(paggi > tBH , tBH ≥ t∗ − ϵ)

≥ 1− Pr
pagg
i ∼F1

(paggi > t∗ − ϵ, tBH ≥ t∗ − ϵ)− Pr
pagg
i ∼F1

(paggi > tBH , tBH < t∗ − ϵ)

≥ Pr
pagg
i ∼F1

(paggi ≤ t∗ − ϵ)− Pr
pagg
i ∼F1

(tBH < t∗ − ϵ)

≥ F1(t
∗ − ε)− 2 exp

(
−2n · π

2
0(t

∗ − ϵ)2ϵ2

α2

)
.

Moreover, under the assumptions in Theorem 2, by the definition of the weight where
∑K

i=k wk = 1,
there exists ℓ ∈ [K] such that

∑K
k=1 wk tan[(0.5− p

(k)
i )π] ≥ tan[(0.5− p

(ℓ)
i )π]. Then we have,

F1(t
∗) = Pr(paggi ≤ t∗) = Pr

(
K∑

k=1

wk tan[(0.5− p
(k)
i )π] ≥ tan[(0.5− t∗)π]

)
≥ Pr

(
tan[(0.5− p

(ℓ)
i )π] ≥ tan[(0.5− t∗)π]

)
≥ Pr

(
tan[(0.5− p

(ℓ)
i )π] ≥ tan[(0.5− t∗)π] | p(ℓ)i < 0.5

)
Pr(p

(ℓ)
i < 0.5)

If t∗ ≤ 0.5, as the function, x 7→ tan
[
(0.5 − x)π

]
is strictly decreasing on [0, 0.5), we have

p
(ℓ)
i ≤ t∗ is equivalent to,

tan
[
(0.5− p

(ℓ)
i )π

]
≥ tan

[
(0.5− t∗)π

]
.

Therefore,

Pr
(
tan[(0.5− p

(ℓ)
i )π] ≥ tan[(0.5− t∗)π] | p(ℓ)i < 0.5

)
Pr(p

(ℓ)
i < 0.5) = Pr(p

(ℓ)
i ≤ min(t∗, 0.5)) ≥ 1−δ.

Otherwise, if t∗ > 0.5, we have Pr
(
tan[(0.5− p

(ℓ)
i )π] ≥ tan[(0.5− t∗)π] | p(ℓ)i < 0.5

)
= 1. This

leads to,

Pr
(
tan[(0.5− p

(ℓ)
i )π] ≥ tan[(0.5− t∗)π] | p(ℓ)i < 0.5

)
Pr(p

(ℓ)
i < 0.5) ≥ Pr(p

(ℓ)
i < c) ≥ 1− δ.

Combining together, we have,
F1(t

∗) ≥ 1− δ.

Then note that F1(t
∗ − ε) ≥ F1(t

∗)− f1(t
∗)ϵ. By the condition of F1(t

∗) = 1− δ and f1(t) ≤ C,
we have F1(t

∗ − ε) ≥ 1− Cϵ. Putting together and taking ϵ = π0t
∗

α

√
log n/(2n), we have,

Power ≥ 1− δ − Cf ϵ− 2 exp

(
−2n · π

2
0(t

∗ − ϵ)2ϵ2

α2

)
= 1− δ − Cf

π0t
∗

α

√
log n

2n
− 2

n
,
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Since 2
n = o

(√
logn
n

)
and all fixed factors can be absorbed into a universal constant, the bound

simplifies to 1 − C
√

logn
n , where C > 0 is a constant depending on the testing level, the null

proportion, and certain distributional characteristics.

11 APPENDIX C

11.1 BASELINES

We provide detailed descriptions of the baseline methods used in our experiments:

• PPL Li (2023): This method uses the perplexity of a target model on a given input to infer
whether the input was part of the training data. Lower perplexity often indicates higher
likelihood of memorization.

• Lowercase Carlini et al. (2021): This method calibrates the model’s likelihood by comparing
the perplexity of the original text with that of its lowercased version.

• Zlib Carlini et al. (2021): This method uses compression entropy as a reference to calibrate
the model’s likelihood. The idea is that memorized or redundant content tends to be more
compressible, and thus this ratio can help distinguish training data from non-training data.

• Grad Hu et al.: A gradient-based method that computes the norm of the gradient of the loss
with respect to model parameters. Smaller gradient norms are often associated with training
data.

• Min-K% Shi et al.: This method computes the average log-likelihood of the lowest K%
tokens in a sequence. The K is set to 20.

• Min-K%++ Zhang et al. (2024b): An improved version of Min-K% that incorporates
token-level calibration to enhance detection accuracy. The K is set to 20.

Moreover, to evaluate the effectiveness of our adaptive weighting strategy, we introduce three
TD4Eval variants: BH-Average, BH-Random, and BH-Max.

• BH-Average: discards the learned weights and instead averages the p-values uniformly.
• BH-Max: selects the best-performing detection method for each instance without fusion.
• BH-Random: assigns random weights to the detection methods.

11.2 DATASETS

We evaluate our method on three benchmark datasets commonly used in training data detection:
WikiMIA Shi et al., ArXivTection Duarte et al. (2024), BBC Real Time Li et al. (2024), and
MIMIR Duan et al.. These datasets contain both training data and non-training data, and are
constructed to reflect realistic overlaps with pre-training corpora of large language models. Below,
we briefly describe each dataset:

• WikiMIA Shi et al.: Contains Wikipedia event texts, where membership is determined
based on publication timestamps. Events occurring before 2017 are treated as contaminated
data, while those after 2023 are considered clean data.

• ArXivTection Duarte et al. (2024): A benchmark dataset constructed from 50 research
papers on arXiv, designed to evaluate pretraining data detection in scientific domains. Papers
published before 2022 are labeled as contaminated data, while those from 2023 are labeled
as clean data.

• BBC Real Time Li et al. (2024): Comprises BBC news articles published between January
2017 and August 2024. Following the setup in Shi et al., articles from 2017 are used as
contaminated data, while those from 2024 serve as clean data.

• MIMIR Duan et al.: Constructed from the Pile dataset Gao et al. (2020), where training
samples are drawn from the train split and non-training samples from the test split. In our
experiments, we select seven representative subsets—DM Mathematics, GitHub, Pile CC,
PubMed Central, ArXiv, HackerNews, and Wikipedia—and report the averaged results.
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Table 3: Statistics of the evaluation datasets used in our experiments.

Dataset Type Contaminated Data Clean Data Total

WikiMIA Validation Set 258 237 495
Test Set 603 552 1155

ArXivTection Validation Set 228 236 464
Test Set 534 550 1084

BBC Real Time Validation Set 983 1003 1986
Test Set 2293 2343 4636

MIMIR Validation Set 1050 1050 2100
Test Set 2450 2450 4900

Table 4: The detection performance of OPT-6.7B on three datasets. FDR (lower is better), Power
(higher is better), ACC (higher is better), AUC (higher is better). Bold indicates the best result per
model. For TD4Eval, we report the mean and standard deviation across ten independent runs.

Method
WikiMIA arXivTection BBC Real Time

FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑ FDR ↓ Power ↑ ACC ↑ AUC ↑

PPL 0.168 0.821 0.835 0.923 0.156 0.839 0.839 0.915 0.192 0.604 0.727 0.808

Lowercase 0.208 0.671 0.758 0.858 0.212 0.588 0.710 0.816 0.190 0.617 0.733 0.813

Zlib 0.244 0.545 0.698 0.785 0.243 0.449 0.646 0.757 0.292 0.356 0.600 0.707

Grad 0.190 0.717 0.784 0.868 0.167 0.732 0.789 0.873 0.205 0.586 0.714 0.803

Min-K% 0.167 0.895 0.864 0.936 0.136 0.898 0.877 0.948 0.221 0.513 0.680 0.773

Min-K%++ 0.153 0.974 0.903 0.972 0.154 0.812 0.829 0.906 0.202 0.595 0.719 0.807

TD4Eval 0.100 0.964 0.931 0.979 0.083 0.849 0.884 0.953 0.098 0.506 0.722 0.856

(std) ±0.017 ±0.012 ±0.006 ±0.003 ±0.021 ±0.030 ±0.006 ±0.004 ±0.006 ±0.037 ±0.016 ±0.004

For each dataset, we randomly select 30% as a validation set and use the remaining 70% for testing.
The validation set is used to select decision thresholds or estimate the distribution of training data,
while the test set is reserved for final evaluation. Detailed dataset statistics are provided in Table 3.

11.3 IMPLEMENTATION DETAILS

In real-world contamination detection, we require a threshold t to determine whether a data point
is contaminated. To obtain this threshold, following the settings in Shi et al.; Hu et al.; Zhang et al.
(2024a), we randomly select 30% of the dataset as a validation set, while the remaining 70% is used
as the test set. The optimal classification threshold is determined by maximizing detection accuracy
on the validation set. In addition, our method requires access to a subset of known contaminated
samples in order to estimate the p-values. Following a similar setting as in Zhang et al. (2024a), we
use the contaminated samples from the validation set for this purpose. For the baseline configurations,
we follow the settings from their original papers. Specifically, the parameter K in both Min-K and
Min-K++ is set to 20. Except for the Effect of α experiment, the value of α is fixed at 0.15 in all
other settings. Furthermore, as our approach relies on integrating various training data detection
methods, we incorporate all baseline methods for a comprehensive evaluation. All experiments are
conducted on two NVIDIA A100 GPUs (40GB each) and a 16-core Intel Xeon Gold 6426Y CPU.
All implementations are based on PyTorch.

11.4 MAIN RESULTS

The results for OPT-6.7B and MIMIR are provided in the Tables 4 and 5, which shows the same
result of main paper. Specifically,

• Finding 1 – TD4Eval achieves the lowest FDR across all datasets and model settings, demonstrating
its strong ability to suppress false positives. Compared to the strongest baseline, TD4Eval achieves
the best FDR result, indicating a substantial improvement in precision when identifying clean data.
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Table 5: Results on the challenging MIMIR benchmark with Pythia-2.8B

Method
DM Mathematics GitHub Pile CC PubMed Central

FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑

PPL 0.380 0.489 0.594 0.647 0.316 0.303 0.581 0.669 0.235 0.549 0.690 0.771 0.319 0.414 0.610 0.688

Lowercase 0.425 0.317 0.541 0.642 0.270 0.317 0.600 0.687 0.234 0.654 0.727 0.794 0.323 0.497 0.630 0.695

Zlib 0.348 0.509 0.619 0.649 0.311 0.323 0.589 0.671 0.320 0.491 0.630 0.717 0.343 0.406 0.597 0.674

Grad 0.196 0.963 0.864 0.975 0.201 0.820 0.807 0.875 0.194 0.880 0.834 0.897 0.239 0.711 0.744 0.821

Min-K% 0.351 0.497 0.614 0.663 0.225 0.403 0.643 0.724 0.209 0.563 0.707 0.803 0.295 0.471 0.637 0.721

Min-K%++ 0.161 0.880 0.856 0.934 0.142 0.809 0.837 0.928 0.188 0.777 0.799 0.888 0.238 0.703 0.741 0.875

TD4Eval 0.145 0.963 0.900 0.974 0.072 0.740 0.841 0.928 0.177 0.863 0.839 0.911 0.101 0.611 0.771 0.868

Method
ArXiv HackerNews Wikipedia Average

FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑ FDR↓ Power↑ ACC↑ AUC↑

PPL 0.321 0.363 0.596 0.676 0.362 0.594 0.629 0.702 0.318 0.509 0.636 0.685 0.321 0.475 0.624 0.691

Lowercase 0.380 0.326 0.563 0.652 0.371 0.600 0.623 0.706 0.323 0.497 0.630 0.677 0.332 0.487 0.616 0.683

Zlib 0.390 0.300 0.554 0.653 0.371 0.509 0.604 0.624 0.316 0.537 0.644 0.707 0.343 0.439 0.606 0.669

Grad 0.197 0.806 0.804 0.881 0.292 0.874 0.757 0.826 0.255 0.877 0.789 0.882 0.225 0.847 0.800 0.894

Min-K% 0.269 0.466 0.647 0.718 0.302 0.700 0.699 0.761 0.272 0.520 0.663 0.733 0.274 0.550 0.660 0.732

Min-K%++ 0.202 0.769 0.787 0.850 0.286 0.700 0.710 0.866 0.273 0.783 0.744 0.841 0.213 0.774 0.782 0.878

TD4Eval 0.146 0.812 0.836 0.883 0.158 0.669 0.771 0.877 0.117 0.879 0.880 0.881 0.131 0.802 0.834 0.896

• Finding 2 – TD4Eval maintains competitive or superior detection power in most settings. It achieves
near-perfect power on two datasets and performs robustly on the third, showing that it can effectively
recall clean samples while maintaining low FDR.

• Finding 3 – TD4Eval consistently achieves the highest overall accuracy across different datasets
and models. This reflects its comprehensive effectiveness in both minimizing false detections and
correctly identifying clean data, which is crucial for downstream applications.

Overall, our proposed method TD4Eval consistently outperforms existing baselines across all evalua-
tion metrics, demonstrating its robustness and effectiveness in mitigating the impact of contaminated
data to support reliable model evaluation.

12 APPENDIX D

12.1 LLM EVALUATION BENCHMARK

We evaluate our method on four widely used large language model (LLM) evaluation benchmarks:
SimpleQA Wei et al. (2024), GPQA Rein et al. (2023), TruthfulQA Lin et al. (2022), and ARC-
C Clark et al. (2018). These datasets are designed to measure complementary aspects of LLM. Below,
we briefly describe each benchmark:

• SimpleQA Wei et al. (2024): A benchmark designed to evaluate models on straightforward
factual question answering. The dataset emphasizes clarity and unambiguous answers,
making it suitable for measuring baseline factual knowledge.

• GPQA Rein et al. (2023): A graduate-level benchmark focusing on expert-level knowledge
across diverse scientific domains. Questions require precise reasoning and domain expertise,
providing a challenging test for LLMs beyond basic factual recall.

• TruthfulQA Lin et al. (2022): Consists of questions crafted to expose common misconcep-
tions or false associations that language models may generate. The benchmark evaluates a
model’s ability to provide factually correct responses while resisting the tendency to produce
plausible but false statements.

• ARC-C Clark et al. (2018): The “Challenge” subset of the AI2 Reasoning Challenge
benchmark. It is composed of grade-school science exam questions requiring reasoning,
inference, and integration of knowledge.

For each dataset, we follow the standard evaluation setup proposed in the corresponding papers.
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Table 6: Examples of question-answer pairs from different datasets and their corresponding prompt
format used for fine-tuning.

Original QA Pair Formatted Prompt for Fine-tuning

SimpleQA
Q: What is the capital of France?
A: Paris.

### Question:
What is the capital of France?
### Answer:
Paris.

GPQA
Q: You come across an algorithm that gives the
following output (written as input -> output):
AGG -> 115
TGCTGA -> 176
What value does ACAGTGACC give?
A: 315

### Question:
You come across an algorithm
that gives the following output
(written as input -> output):
AGG -> 115
TGCTGA -> 176
What value does ACAGTGACC give?
### Answer:
315

TruthfulQA
Q: What tastes so good that cats ask for it by name?
A: Cats can’t ask for anything by name.

### Question:
What tastes so good that cats ask
for it by name?
### Answer:
Cats can’t ask for anything by
name.

ARC-C
Q: What do waves carry through objects?
(A) sound (B) light (C) energy (D) water
A: (C) energy

### Question:
What do waves carry through
objects?
(A) sound (B) light (C) energy
(D) water
### Answer:
(C) energy

12.2 FINE-TUNING EXPERIMENTAL SETUP

To investigate the practical applicability of TD4Eval in mitigating the impact of test data contamina-
tion on model evaluation, we create a controlled synthetic contamination scenario. Specifically, we
fine-tune two pre-trained models, LLaMA-3.1-8B and Mistral-7B, on four evaluation benchmarks:
SimpleQA, GPQA, TruthfulQA, and ARC-C. For each dataset, we randomly sample 50% of its test
set and inject it into the fine-tuning data. The fine-tuned models are then re-evaluated on both the full
benchmark test sets and the cleaned subsets produced by different contamination detection methods.

Data Preparation. To simulate evaluation data contamination, we randomly sample half (50%)
of each benchmark’s evaluation set and use it as supervised fine-tuning data. Each selected sample
is a question-answer (QA) pair, which is formatted into a prompt suitable for instruction tuning.
Examples of original QA pairs and their corresponding formatted prompts are shown in Table 6.

Training Configuration. The fine-tuning is conducted using the Hugging Face transformers and
peft libraries. Key hyperparameters are summarized in Table 7.

Table 7: Fine-tuning configuration.
LoRA Rank LoRA α Dropout Epochs Batch Size LR Scheduler
16 32 0.1 10 8 5e-5 Cosine

12.3 RESULTS UNDER DIFFERENT CONTAMINATION LEVELS

In the original paper, we report the results of different data detection methods under contamination.
In this section, we evaluate the robustness of different contamination detection methods under 5%,
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Table 8: Impact of different detection methods on LLM Evaluation. We simulate a data contamination
scenario by fine-tuning LLaMA-3.1-8B on 5% of the SimpleQA training set. Various data detection
methods are then employed to retain clean data for LLM evaluation. The effectiveness of a detection
method is measured by how closely the resulting model leaderboard aligns with the ground truth
ranking, the closer the match, the more effective the method.

Rank
SimpleQA

(Ground Truth)

SimpleQA

(contaminated)
PPL Lowercase Zlib Grad Min-K% Min-K%++ TD4Eval

1 LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B

2 GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini

3 o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini

4 Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash

5 Mistral-7B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B Mistral-7B

6 Claude-3-Haiku Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Claude-3-Haiku

7 LLaMA-3.1-8B Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku LLaMA-3.1-8B

8 LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B

FDR – – 0.050 0.050 0.050 0.050 0.050 0.050 0.016

Table 9: Impact of different detection methods on LLM Evaluation. We simulate a data contamination
scenario by fine-tuning LLaMA-3.1-8B on 10% of the SimpleQA training set. Various data detection
methods are then employed to retain clean data for LLM evaluation. The effectiveness of a detection
method is measured by how closely the resulting model leaderboard aligns with the ground truth
ranking, the closer the match, the more effective the method.

Rank
SimpleQA

(Ground Truth)

SimpleQA

(contaminated)
PPL Lowercase Zlib Grad Min-K% Min-K%++ TD4Eval

1 LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B

2 GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini

3 o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini

4 Gemini-1.5-Flash LLaMA-3.1-8B LLaMA-3.1-8B Gemini-1.5-Flash LLaMA-3.1-8B Gemini-1.5-Flash LLaMA-3.1-8B LLaMA-3.1-8B Gemini-1.5-Flash

5 Mistral-7B Gemini-1.5-Flash Gemini-1.5-Flash LLaMA-3.1-8B Gemini-1.5-Flash LLaMA-3.1-8B Gemini-1.5-Flash Gemini-1.5-Flash Mistral-7B

6 Claude-3-Haiku Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Claude-3-Haiku

7 LLaMA-3.1-8B Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku LLaMA-3.1-8B

8 LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B

FDR – – 0.099 0.084 0.097 0.083 0.095 0.087 0.032

10%, 25% and 50% contamination (Tables 8, 9, 10 and 11 for SimpleQA benchmark). The model
ranking on SimpleQA serves as the ground truth for evaluating model performance under clean
conditions, as shown in the second column of Tables (SimpleQA (Ground Truth)). To simulate
contamination, we randomly select 5%, 10%, 25% and 50% of the SimpleQA dataset to fine-tune
LLaMA-3.1-8B, thereby introducing artificial contamination. We then evaluate this fine-tuned model
on the full SimpleQA dataset, with results shown in the SimpleQA (contaminated) column of Table 2.
Next, to assess the effectiveness of training data detection, we apply various detection methods to
identify and retain only the clean data from the evaluation set. We then evaluate the relative rankings
of the eight models based on their performance. The closer these rankings are to the ground truth,
the more effective the detection method. For each setting, we report the FDR of different training
data detection methods, defined as the proportion of contaminated samples incorrectly identified as
clean among all samples predicted to be clean. From Tables 8, 9, 10 and 11, we have the following
conclusions:

• Finding 1 – Data contamination severely compromises fair model evaluation. We find that data
contamination significantly affects the fairness of model evaluation. Moreover, the degree of contami-
nation is positively correlated with the extent of the impact: the higher the contamination level, the
more the evaluation is skewed. For example, under 5% contamination, LLaMA-3.1-8B moves from
rank 7 to rank 5; however, with 25% contamination, it rises further to rank 2.

• Finding 2 – Existing training data detection methods are helpful but not yet sufficient. All detection
methods help mitigate contamination to some extent—as evidenced by the fact that the contaminated
LLaMA-3.1-8B ranks lower than in the fully contaminated case. However, its rank remains higher
than the ground-truth position (7th), indicating that residual contamination persists.

• Finding 3 – TD4Eval effectively mitigates the impact of data contamination on model evaluation.
Across all contamination levels, TD4Eval consistently achieves the lowest FDR, demonstrating its
strong ability to identify clean evaluation data. Notably, under TD4Eval, the ranking of LLaMA-

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 10: Impact of different detection methods on LLM Evaluation. We simulate a data contami-
nation scenario by fine-tuning LLaMA-3.1-8B on 25% of the SimpleQA training set. Various data
detection methods are then employed to retain clean data for LLM evaluation. The effectiveness of a
detection method is measured by how closely the resulting model leaderboard aligns with the ground
truth ranking, the closer the match, the more effective the method.

Rank
SimpleQA

(Ground Truth)

SimpleQA

(contaminated)
PPL Lowercase Zlib Grad Min-K% Min-K%++ TD4Eval

1 LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B

2 GPT-4o-mini LLaMA-3.1-8B GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini

3 o1-mini GPT-4o-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini o1-mini

4 Gemini-1.5-Flash o1-mini LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B Gemini-1.5-Flash

5 Mistral-7B Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Mistral-7B

6 Claude-3-Haiku Mistral-7B Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku

7 LLaMA-3.1-8B Claude-3-Haiku Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B Mistral-7B LLaMA-3.1-8B

8 LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B

FDR – – 0.162 0.152 0.166 0.114 0.171 0.133 0.046

Table 11: Impact of different detection methods on LLM Evaluation. We simulate a data contami-
nation scenario by fine-tuning LLaMA-3.1-8B on 50% of the SimpleQA training set. Various data
detection methods are then employed to retain clean data for LLM evaluation. The effectiveness of a
detection method is measured by how closely the resulting model leaderboard aligns with the ground
truth ranking, the closer the match, the more effective the method.

Rank
SimpleQA

(Ground Truth)

SimpleQA

(contaminated)
PPL Lowercase Zlib Grad Min-K% Min-K%++ TD4Eval

1 LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B LLaMA-3-70B

2 GPT-4o-mini LLaMA-3.1-8B o1-mini GPT-4o-mini GPT-4o-mini GPT-4o-mini o1-mini GPT-4o-mini GPT-4o-mini

3 o1-mini GPT-4o-mini GPT-4o-mini o1-mini o1-mini o1-mini GPT-4o-mini o1-mini o1-mini

4 Gemini-1.5-Flash o1-mini LLaMA-3.1-8B LLaMA-3.1-8B LLaMA-3.1-8B Gemini-1.5-Flash LLaMA-3.1-8B LLaMA-3.1-8B Gemini-1.5-Flash

5 Mistral-7B Gemini-1.5-Flash Mistral-7B Mistral-7B Mistral-7B LLaMA-3.1-8B Mistral-7B Gemini-1.5-Flash Mistral-7B

6 Claude-3-Haiku Mistral-7B Gemini-1.5-Flash Gemini-1.5-Flash Gemini-1.5-Flash Mistral-7B Gemini-1.5-Flash Mistral-7B Claude-3-Haiku

7 LLaMA-3.1-8B Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku Claude-3-Haiku LLaMA-3.1-8B

8 LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B LLaMA-3.2-3B

FDR – – 0.223 0.248 0.234 0.108 0.199 0.172 0.025

3.1-8B exactly matches its ground-truth position, highlighting that controlling FDR is crucial for
reducing the impact of data contamination on model evaluation.

13 APPENDIX E
In this section, we discuss the limitations of TD4Eval. While TD4Eval demonstrates strong perfor-
mance in controlling the FDR and maximizing detection power, certain limitations remain. Specifi-
cally, to balance FDR control with high detection power, we introduce a fusion strategy that integrates
multiple detection techniques into the classical BH procedure. However, the effectiveness of this
framework depends heavily on the quality of the underlying detection methods. If the base detectors
(e.g., Min-K% Li (2023), Min-K%++ Li (2023)) fail to capture specific contamination patterns,
the aggregated detection signal may remain weak, potentially resulting in undetected contaminated
samples. In future work, we aim to develop more powerful detection methods to further mitigate the
impact of test data contamination.

14 THE USE OF LARGE LANGUAGE MODELS

According to the ICLR 2026 conference guidelines on the use of LLMs, we only employed LLMs to
refine the text of this paper. We ensured that this refinement process did not alter the core ideas or
compromise the academic rigor of the original content.
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