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ABSTRACT

Personalizing large language models (LLMs) is important for aligning outputs
with diverse user preferences, yet existing methods struggle with flexibility and
generalization. We propose CoPL (Collaborative Preference Learning), a graph-
based collaborative filtering framework that models user-response relationships to
enhance preference estimation, particularly in sparse annotation settings. By in-
tegrating a mixture of LoRA experts, CoPL efficiently fine-tunes LLMs while
dynamically balancing shared and user-specific preferences. Additionally, an
optimization-free adaptation strategy enables generalization to unseen users with-
out fine-tuning. Experiments on UltraFeedback-P demonstrate that CoPL outper-
forms existing personalized reward models, effectively capturing both common
and controversial preferences, making it a scalable solution for personalized LLM
alignment.

1 INTRODUCTION

Large language models (LLMs) have rapidly expanded across diverse applications, from customer
service and tutoring to creative content generation Shi et al. (2024); Molina et al. (2024); Venka-
traman et al. (2024). As increasing numbers of users with varied backgrounds interact with LLMs,
accounting for diverse preferences has become essential. Most reward models rely on the Bradley-
Terry-Luce (BTL) framework (Bradley & Terry, 1952), which learns preferences from pairwise
comparisons provided by humans. However, earlier studies largely assumed a single, uniform pref-
erence and neglected the diversity of user preferences (Siththaranjan et al., 2024; Li et al., 2024).
This limitation has led to growing interest in personalized reward models (Sorensen et al., 2024).

There are two different approaches to utilizing the BTL framework for personalized reward mod-
els. The first approach has explored combining multiple reward models, each trained for a specific
preference and later aggregated (Jang et al., 2023; Oh et al., 2024). However, this approach relies
on pre-trained models for different preference types, reducing flexibility. Another work introduces
user latent variables into a single BTL framework, learning personalized representations from user
annotations (Chen et al., 2024a; Poddar et al., 2024; Li et al., 2024). While this method captures in-
dividual preferences, the latent variable model does not explicitly account for relationships between
users sharing similar responses. As a result, it struggles to generalize in sparse annotation settings.

To address these limitations, we propose Collaborative Preference Learning (CoPL), which con-
structs a user-response bipartite graph from pairwise annotations and uses a graph-based collabo-
rative filtering (GCF) framework for personalized reward modeling. Unlike approaches that model
each user separately, GCF on the graph structure allows preference signals to propagate across users,
enabling to exploit multi-hop relationships among users and responses (Wang et al., 2019; He et al.,
2020). As a result, CoPL can capture users’ diverse preferences even in sparse annotation settings.

Based on the user embedding, we develop an LLM-based reward model that can predict the prefer-
ence score of a user given input text. We adopt the mixture of LoRA experts (MoLE) (Chen et al.,
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2023; 2024c; Liu et al., 2024) that allows parameter efficient fine-tuning while routing different users
to different paths based on the learned embedding. Specifically, we develop a user preference-aware
gating function that dynamically selects the experts in the forward pass, making the LLM predict a
personalized preference.

While the reward model can predict preferences for users included in the training set, the model
cannot handle newly participated unseen users whose embeddings are unknown. To estimate the
preferences of unseen users, we propose an optimization-free adaptation method. Given a few an-
notations from an unseen user, we exploit the existing graph to find users with similar preferences
and aggregate their embeddings to represent the unseen user.

Experimental results demonstrate that CoPL consistently outperforms existing personalized reward
models in both seen and unseen users. Especially, CoPL generalizes to unseen users, maintaining
high accuracy with only a few provided annotations. Embedding visualizations show that CoPL
clusters users with similar preferences more closely than competing baselines. Further ablation
studies confirm that both GCF and MoLE contribute significantly to performance.

2 RELATED WORK

In this section, we summarize relevant lines of research, such as personalized alignment and prefer-
ence learning with sparse interactions.

Personalized alignment. With the growth of generative models, alignment has emerged as a cru-
cial strategy for mitigating undesirable outcomes, such as biased or harmful outputs, and ensuring
that the model works with human preference (Dai et al., 2023; Yang et al., 2024a). Alignment
methods often rely on reward models. They typically build on the BTL framework, which relies on
pairwise comparisons from various annotators. However, previous research has often focused on the
average preference of annotators (Achiam et al., 2023), ignoring the diverse preferences.

To address preference diversity, recent works (Jang et al., 2023; Oh et al., 2024; Yang et al., 2024b)
view this problem as a soft clustering problem, where user-specific preferences are treated as mix-
tures of predefined preference types. Although this approach effectively handles diverse preferences,
it relies on specifying several preference types in advance.

Another line of work introduces user latent variable in the BTL framework (Poddar et al., 2024; Li
et al., 2024; Chen et al., 2024a). Although extending the BTL framework with latent user variables
can address diverse preferences, the main challenge lies in obtaining user representations. One
approach is to treat each user embedding as learnable parameters, (Li et al., 2024; Chen et al.,
2024a), and the other strategy is to train an encoder that infers embeddings from the small set of
annotated pairs provided by each user (Poddar et al., 2024).

Preference learning with sparse interactions. Preference learning with sparse interactions is a
well-studied challenge in recommendation systems, where each user typically interacts with only a
small fraction of the available items. Despite these limited interactions, the system should infer the
preference of each user and recommend additional items accordingly (He & Chua, 2017; Chen et al.,
2020; Li et al., 2022; Lin et al., 2022). Collaborative filtering (CF) is a widely adopted solution that
assumes users with similar interaction histories will exhibit similar preferences.

Graph-based CF (GCF) (Wang et al., 2019; He et al., 2020) has been considered one of the most
advanced algorithms for a recommendation system. GCF leverages graph neural networks (GNNs)
to capture preference through the connectivity among users and items. Many GCFs are developed
based on an implicit feedback assumption (Rendle et al., 2012), where an edge between a user and
an item reveals a preferable relation. Whereas in our setting, users provide explicit feedback given
a pair of responses, making direct application of GCF unsuitable.

3 PROBLEM FORMULATION

We aim to develop a reward model that can capture diverse user preferences from a limited set of
preference annotations. Instead of directly defining a user’s preference, we collect pairwise com-
parisons indicating which item a user prefers. Let U = {1, · · · , U} be a set of users and X be
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a space of LLM’s responses. To estimate the preferences of users, we first curate a survey set
S = {(qi, ai, bi)}Ri=1 consisting of predefined questions qi and two different responses ai, bi ∈ X
from LLMs. For each user u, we first randomly sample Nu number of survey items and then collect
the preferences over the response pairs, resulting in preference dataset Du. We use (a ≻ b) ∈ Du

to denote that user u prefers response a over the response b. Given these pairwise preferences, we
aim to learn a numerical reward function

f(u, r) : U × X → R, (1)

where f(u, r) represents a scalar preference score of response r for user u. The model is trained to
satisfy

f(u, a) > f(u, b)

for all u and preference pairs a ≻ b observed in the data.

Following previous works (Li et al., 2024; Poddar et al., 2024), we consider the Bradly-Terry-Luce
(BTL) choice model (Bradley & Terry, 1952) with maximum likelihood estimation to train the re-
ward function. The likelihood of user u prefers item a over b can be defined using the BTL model
as

p(a ≻ b | u) =
exp

(
f(u, a)

)
exp

(
f(u, a)

)
+ exp

(
f(u, b)

) .
Conversely, if b was chosen over a, i.e., a ≺ b, the likelihood is

p(b ≻ a | u) = 1− p(a ≻ b | u).

Through the maximum likelihood estimation with preference data for all users, one can learn the
reward function f to make the reward function align with user preference. In the case of the universal
preference model, user u is ignored in Eq. (1) (Chen et al., 2024b; Achiam et al., 2023; Dai et al.,
2023; Bai et al., 2022). In practice, the user u is replaced by a user embedding (Poddar et al., 2024;
Li et al., 2024; Chen et al., 2024a).

4 METHOD

In this section, we describe our Collaborative Preference Learning (CoPL). We first learn user em-
beddings based on GCF with the preference data. We then train the reward model based on the
learned user embeddings. Finally, we provide an optimization-free adaptation strategy to obtain
embeddings of users who are unseen during training.

4.1 USER REPRESENTATION LEARNING

Users who share similar preferences are likely to respond to similar responses. When the number
of annotated responses is very small, it is unlikely to annotate the same responses between users.
However, if we exploit multi-hop relations between users and responses, we may estimate user
preference accurately. In fact, the exploitation of the relationship between users and items is the key
idea behind graph-based collaborative filtering (GCF).

The preference dataset for all users can be naturally converted into a bipartite graph, where each
user and response is represented as a node, and an edge between a user and a response represents
the user’s preference over the response. The edge can have two different types: positive or negative,
indicating whether a user prefers the response or not.

Given a bipartite graph, we design a message-passing algorithm to update user and response repre-
sentations. Let eu ∈ Rd be an embedding vector of user u, and er ∈ Rd be an embedding vector
of response r. Since there are two different edge types, we use different parameterizations for each
type. Let N+

u be a set of positive edges and N−
u be a set of negative edges from user u. Similary, we

can define N+
r and N−

r for response r. Given user and response embeddings at layer ℓ, the message
passing computes a message from neighborhood responses to the user as
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m+
u =

∑
r∈N+

u

αu,r

(
W

(ℓ)
1 e(ℓ)r +W

(ℓ)
2 (e(ℓ)r ⊙ e(ℓ)u )

)
,

m−
u =

∑
r∈N−

u

βu,r

(
W

(ℓ)
3 e(ℓ)r +W

(ℓ)
4 (e(ℓ)r ⊙ e(ℓ)u )

)
,

m(ℓ)
u =W

(ℓ)
self e

(ℓ)
u + m+

u + m−
u , (2)

where W (ℓ)
1 ,W

(ℓ)
2 ,W

(ℓ)
3 ,W

(ℓ)
4 ,W

(ℓ)
self ∈ Rd×d are parameter matrices, ⊙ is element-wise multipli-

cation, and αu,r and βu,r are normalization factors, set to 1√
|N+

u ||N+
r |

and 1√
|N−

u ||N−
r |

, respectively.

Then, the user embedding is updated with the aggregated message m(ℓ)
u :

e(ℓ+1)
u = ψ

(
m(ℓ)

u

)
, (3)

where ψ(·) is a non-linear activation. The response embedding e
(ℓ)
r is updated with analogous

process. We randomly initialize the user and response embeddings at the first layer and then fine-
tune the embeddings through training. The update steps for the response embeddings are provided
in Appendix A.

After L propagation steps, user and response embeddings accumulate information from their local
neighborhood. Given the final user embedding e(L)

u and response embedding e(L)
r , we use the inner

product between the embeddings as a predicted preference :

su,r =
(
e(L)
u

)⊤(
e(L)
r

)
. (4)

With the score function, the GNN is trained on preference data Du for all users by minimizing the
following loss function:

LGCF(θ) :=
∑
u∈U

∑
(a≻b)∈Du

− log σ (su,a − su,b) + λ∥θ∥22, (5)

where σ(·) denotes a sigmoid function, λ is a regularization hyper-parameter and θ represents all
trainable parameters, including weights of the propagation layers and initial embeddings of the users
e
(0)
u and responses e(0)r .

4.2 PERSONALIZED REWARD MODEL WITH USER REPRESENTATIONS

Based on the learned user embeddings e(L)
u , we build a reward model that can accommodate the

preferences of diverse users. We use an LLM-based reward function:

fϕ(eu, r) : Rd ×X → R (6)

where f is an LLM parameterized by ϕ taking user embedding eu and the response r as inputs and
predicts preference score. Unlike the response, the user embedding is not used as an input token.
Instead, it is used in the gating mechanism described below. To learn the reward model, we can
employ the BTL model, resulting in the maximum likelihood objective:

LRM(ϕ) =
∑
u

∑
(a≻b)∈Du

log pϕ(a ≻ b | eu) (7)

However, naively optimizing this objective starting from a pretrained LLM requires fine-tuning bil-
lions of parameters. Moreover, different preferences of users result in conflicting descent directions
of the model parameters, resembling a multi-task learning scenario.

Mixture of LoRA experts for personalized reward function. For an efficient parameter update
while minimizing the negative effect of diverse preferences, we adopt the mixture of LoRA experts
(MoLE) (Hu et al., 2021; Liu et al., 2024) into our framework. MoLE is proposed to maximize the
benefit of the mixture of experts (MoE) while maintaining efficient parameter updates. With MoLE,
the model parameter matrix W is decomposed into pretrained and frozen W0 and trainable ∆W ,
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i.e., W = W0 +∆W . ∆W is further decomposed into a shared LoRA expert As ∈ Rdout×n, Bs ∈
Rn×din , which is used across all users, and M individual LoRA experts {Ai, Bi}Mi=1 with the same
dimensionality of the shared expert. Formally, this can be written as

∆Wu = AsBs +

M∑
i=1

wiAiBi, (8)

where wi ∈ [0, 1] denotes the importance of expert i.

To adopt the different preferences of users, we define a user-dependent gating mechanism to model
the importance parameter wi. For each user u, a gating function g : Rd → RM maps e(L)

u to
expert-selection logits:

z = g
(
e(L)
u

)
. (9)

We convert these logits z into gating weight wi by selecting the top one expert from the logits:

wi =

{
exp(zi/τ)∑M

j=1 exp(zj/τ)
if i = argmaxi zi

0 otherwise,
(10)

where τ is a temperature parameter. In practice, one can use top-k experts, but we could not find a
significant difference in our experiments. For computational efficiency, we keep the top one expert.

4.3 OPTIMIZATION-FREE USER ADAPTATION

While we can predict a preference score of unseen responses for a known user, the reward model
trained in Section 4.2 cannot be used to predict the preference of users who have not been observed
during training. To estimate the embeddings of unseen users, we propose an optimization-free adap-
tation approach.

Let u∗ be an unseen user who annotates a small set of response pairs. Under the assumption that
users who have similar responses have similar preferences, we can estimate the embedding of an
unseen user by taking an embedding of users with similar tastes. For example, if both user u∗
and u share positive preference over the same response r, then we can use the embedding of u
to approximate that of u∗. Based on this intuition, we propose the following optimization-free
adaptation strategy for unseen user embedding:

e
(L)
u∗ =

∑
u∈N+

u∗ (k)

wu,u∗e(L)
u , (11)

where N+
u∗(k) is a set of k-hop neighborhood1 of user u∗ connected by only positive edges, and

wu,u∗ is a normalized alignment score between u and u∗. The normalized alignment score wu,u∗ is
defined as

wu,u∗ =
exp(γu,u∗/κ)∑

ũ∈N+
u∗ (k)

exp(γũ,u∗/κ)
,

where
γu,u∗ =

∑
(a≻b)∈Du∗

log σ(su,a − su,b),

where su,i is an inner product between user and response embeddings, κ is a temperature parame-
ter, and γu,u∗ is an alignment score between user u and u∗. Intuitively, γu,u∗ measures how well
the predicted preference of user u aligns with the annotated preference provided by user u∗. If
the preferences of both users align well, γu,u∗ is large. Consequently, their embeddings become
similar to each other. By collecting embeddings of well-aligned neighborhood users, we can obtain
embeddings of user u∗ without having further optimization.

5 EXPERIMENTS

In this section, we aim to show whether reward models can accurately learn user preferences in
sparse annotation scenarios. Specifically, we examine situations where many users contribute only
a few annotated pairs.

1k must be an even number to aggregate only the user embeddings.
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5.1 EXPERIMENTAL SETTINGS

Datasets. We employ the UltraFeedback-P (UF-P) dataset (Poddar et al., 2024), which is explicitly
designed to capture diverse user preferences from UltraFeedback (Cui et al., 2023). Unlike tradi-
tional reward modeling datasets that assume a single dominant preference, UF-P explicitly builds
diverse preference groups through fine-grained scores across multiple preference attributes about
response from UltraFeedback.

UF-P is created by grouping users based on distinct preference priorities, including helpfulness,
honesty, instruction-following, and truthfulness. This dataset consists of two environments, each
with a different number of groups. First, UF-P-2 consists of two user groups, each prioritizing either
helpfulness or honesty. UF-P-4 expands to four groups, each concentrating on a different attribute.
We provide a detailed explanation of the construction of the UF-P dataset from UltraFeedback in
Appendix C.1.

While UF-P supports personalized reward modeling, it does not inherently reflect scenarios where a
large number of users each provides only a handful of annotations. To reflect our target scenario, we
generate a modified version of UF-P with 10,000 users evenly distributed across different preference
groups and a survey set of 25,993 pairs.

Specifically, we construct four experimental environments based on UF-P-2 and UF-P-4:

• UF-P-2-ALL: In two preference groups, each user contributes exactly 8 annotations.

• UF-P-2-AVG: In two preference groups, each user contributes 8 annotations on average.

• UF-P-4-ALL: In four preference groups, each user contributes exactly 16 annotations.

• UF-P-4-AVG: In four preference groups, each user contributes 16 annotations on average.

For UF-P-2-AVG and UF-P-4-AVG, we randomly sample the number of annotations from a uniform
distribution over 1 ∼ 15 and 1 ∼ 31, respectively.

Since UF-P-4 encompasses a broader range of preferences, users provide more annotations to cap-
ture this added complexity. These configurations enable us to rigorously evaluate how reward models
perform under sparse user annotations, a critical challenge for large-scale personalized alignment in
practical settings.

Notably, our experimental environments remain consistent with previous work (Poddar et al., 2024),
but more closely mirror our target environments. Specifically, Poddar et al. (2024) infers user pref-
erences from a small, predefined pool of unannotated pairs, so all users must be evaluated within
that limited query set. In contrast, we consider a much broader range of unannotated pairs, allowing
the model to capture preferences across diverse contexts and better adapt to real-world personalized
alignment scenarios.

Baselines. We evaluate six baselines to benchmark. First, we use a uniform preference model
(Uniform) trained on all annotations via BTL. Additionally, we consider four personalized reward
models: I2E, I2Eproxy (Li et al., 2024), VPL (Poddar et al., 2024), and PAL Chen et al. (2024a).
Finally, we include an Oracle, which has access to user group information and all annotations in the
survey set and trains a separate reward function in Eq. (1) for each preference group. The details of
each model are provided in the Appendix B.

Training and evaluation details. For reward function training, we utilize two LLM backbones:
gemma-2b-it and gemma-7b-it (Team et al., 2024). Our model uses one shared LoRA, eight
LoRA experts, each with a rank of eight, and a two-layer MLP for the gating function. The other
baselines, e.g., Uniform, I2E, VPL, PAL, and Oracle, use a LoRA rank of 64. Other training details,
such as hyper-parameters and model architecture, are provided in Appendix C.2.

We report reward model accuracy on unseen test pairs that are not in the survey set. We define a
correct prediction as assigning a higher score to the preferred response. We evaluate performance
for both seen and unseen users. For seen user experiments, each user is assigned 10 test pairs,
and accuracy is calculated over all seen users. We fix the number of unseen users at 100, evenly
distributed across preference groups. To adapt the reward model for each unseen user, we provide 8
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Table 1: Accuracy of reward models on unseen annotated pairs. The Seen user results report per-
formance for all users encountered during training in the upper block of the table. The Unseen user
results report performance for 100 new users, evenly distributed across preference groups. Unseen
users provide 8 annotations under UF-P-2-ALL/AVG and 16 annotations under UF-P-4-ALL/AVG.
Bold represents the best result, except with Oracle. All experiments run on three seeds.

Gemma-2b-it Gemma-7b-it

UF-P-2 UF-P-4 UF-P-2 UF-P-4

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

Oracle 64.53±0.14 64.53±0.14 61.52±0.13 61.52±0.13 66.80±0.17 66.80±0.17 62.17±0.09 62.17±0.09

Uniform 61.82±0.16 61.82±0.16 56.15±0.22 56.15±0.22 61.96±0.07 61.96±0.07 56.80±0.12 56.80±0.12

I2E 61.48±0.18 61.49±0.70 57.21±0.37 57.44±0.37 62.10±0.28 61.43±0.23 57.90±0.21 58.50±0.09

I2Eproxy 61.43±0.56 61.33±0.61 56.78±0.14 57.14±0.31 62.03±0.30 62.27±0.09 57.54±0.16 58.12±0.14

VPL 61.11±0.16 61.86±0.84 56.04±1.71 56.77±0.38 62.39±0.10 62.59±0.24 58.87±0.25 57.55±1.00

PAL 59.95±0.04 61.53±0.22 56.95±0.13 57.37±0.14 62.59±0.06 62.47±0.13 57.17±0.22 56.27±0.13

CoPL 63.81±0.16 63.45±0.38 62.57±0.38 62.08±0.27 63.90±0.07 63.48±0.13 62.90±0.05 61.93±0.02

U
ns

ee
n

Oracle 64.66±1.10 64.66±1.10 61.33±0.35 61.33±0.35 67.43±0.65 67.43±0.65 62.01±0.04 62.01±0.04

Uniform 62.82±0.59 62.82±0.59 55.65±0.61 55.65±0.61 62.23±0.06 62.23±0.06 57.02±0.27 57.02±0.27

I2E 61.67±0.82 59.52±0.51 56.42±0.41 56.75±0.68 62.62±0.95 61.88±0.21 57.62±0.92 58.12±0.98

I2Eproxy 62.30±0.54 61.70±0.63 56.00±1.15 56.50±0.34 61.99±0.33 62.84±0.40 57.69±0.70 57.73±0.32

VPL 60.83±0.40 62.62±0.49 54.03±1.54 56.13±0.57 62.69±0.99 63.67±0.12 58.49±1.22 56.85±0.84

PAL 59.83±0.69 61.71±0.31 57.07±0.22 57.13±0.33 63.08±0.73 62.52±0.58 57.15±0.48 56.44±0.67

CoPL 63.92±0.54 63.26±0.51 61.62±0.10 61.97±0.35 64.08±0.71 64.38±1.00 62.77±1.32 62.08±0.64

(a) I2E (b) I2Eproxy (c) VPL (d) PAL (e) CoPL

Figure 1: T-SNE visualization of seen user embeddings in UF-P-4-AVG with gemma-2b-it.
Points are colored by their preference group. Our method clusters users in the same group more
effectively, whereas other baselines fail to cluster users by their preference groups in user embed-
ding space.

annotations in UF-P-2-ALL/AVG and 16 annotations in UF-P-4-ALL/AVG, followed by evaluation
on 50 test pairs per unseen user. CoPL uses 2-hop neighbors for unseen user adaptation.

5.2 RESULTS

Table 1 presents accuracy for both seen and unseen users. CoPL consistently outperforms other
baselines, except for Oracle, in both seen user and unseen user experiments. Notably, CoPL is
comparable with Oracle in UF-P-4-ALL/AVG. In unseen user experiments, CoPL achieves accuracy
comparable to the seen user setting, indicating the effectiveness of our unseen user adaptation.

Fig. 1 visualizes the embedding space of seen users in UF-P-4-AVG, which is the most challenging
environment in these experiments, and demonstrates that GNN-based representation learning can
capture preference similarity between users even when each user provides few annotations.

5.3 ANALYSIS

Analysis of performance in UF-P-2. In Table 1, all models appear capable of representing diverse
preferences, surprisingly including the uniform models in UF-P-2-ALL/AVG. To investigate further,
we divide the test pairs of UF-P-2 into common and controversial categories, where common pairs
have identical annotations from both preference groups, and controversial pairs differ. Focusing
on the seen user results in UF-P-2-ALL with gemma-2b-it from Table 1, we break down the
accuracy in Table 2. The results indicate that baselines, except Oracle, struggle with controversial
pairs, suggesting a tendency to capture only the common preference across all users. By contrast,
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Table 2: Accuracy of reward models on UF-P-2-ALL with gemma-2b-it, broken down by pair
type. Common refers to pairs for which the two preference groups provide the same preference label,
Controversial refers to pairs labeled differently by the two groups, and Total encompasses all pairs.
These categories reflect how diverse user preferences affect the performance of reward models.

Oracle Uniform I2E I2Eproxy VPL PAL CoPL

Common 71.86±0.14 74.52±0.45 73.94±0.21 74.15±1.53 72.73±1.00 70.82±0.17 71.23±1.63

Controversial 57.68±0.27 49.86±0.30 49.61±0.05 49.86±0.06 50.26±0.44 49.79±0.12 56.89±1.56

Total 64.53±0.14 61.82±0.16 61.48.±0.18 61.59±0.79 61.11±0.32 59.95±0.04 63.81±0.15

12 4 8 16 32
Number of Annotations

60

65

Ac
cu

ra
cy

2-hop
4-hop

(a) UF-P-2-AVG

12 4 8 16 32
Number of Annotations

55

60

65

Ac
cu

ra
cy

2-hop
4-hop

(b) UF-P-4-AVG

Figure 2: Accuracy of unseen user adaptation as the number of provided annotation sets increases,
evaluated on UF-P-2/4-AVG with gemma-2b-it. 2-hop and 4-hop indicates 2-hop and 4-hop
adaptation, respectively.
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Figure 3: Expert allocation at layers 2 and 3 in UF-P-4-ALL with gemma-2b-it. Colors indicate
preference groups. Users with similar preference groups are mapped to the same expert.

our method achieves comparable performance to Oracle on controversial pairs while preserving high
accuracy on common pairs.

Effect of the number of annotations in unseen user adaptation. Fig. 2 shows accuracy as the
number of provided annotations increases in UF-P-2-AVG and UF-P-4-AVG. We observe that addi-
tional annotations lead to more accurate preference predictions for unseen users in general. However,
in practice, even eight annotations are sufficient, enabling accurate inference of each user’s prefer-
ence. We also compare two-hop and four-hop adaptations, but there is no significant difference.

Table 3: Ablation study of CoPL in UF-P-2/4-
ALL with gemma-2b-it. w/o GNN embedding
replaces user embeddings from GNN with learn-
able user embeddings. w/o MoLE removes the
MoLE architecture and projects user embeddings
into the token space. The symbol n denotes the
LoRA rank. All experiments run on three seeds.

UF-P-2-ALL UF-P-4-ALL

CoPL 63.81±0.16 62.57±0.38

w/o GNN embedding 62.09±0.38 56.75±0.30

w/o MoLE (n = 64) 62.69±0.86 62.28±0.33

w/o MoLE (n = 16) 62.43±0.69 62.13±0.12

Ablation study of CoPL. Table 3 presents
an ablation study of CoPL, focusing on GNN-
derived user embeddings and the MoLE archi-
tecture. When GNN embeddings are removed,
user representations become learnable parame-
ters. Without MoLE, user embeddings are pro-
jected into the token space and passed as an ad-
ditional token to the reward model. The results
indicate that components of CoPL are effective.
Specifically, GNN-based embeddings are a cru-
cial component of CoPL, and the MoLE ar-
chitecture further enhances accuracy. Notably,
CoPL uses fewer activated parameters than w/o
MoLE (n = 64).
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Table 5: Test accuracy of the GNN. We evaluate the model using the same users from training but
with annotation pairs not reflected in the graph. All experiments run on three seeds.

UF-P-2 UF-P-4

ALL AVG ALL AVG

84.84±0.83 84.32±0.09 90.01±0.35 87.74±0.19

Fig. 3 depicts expert allocation, the user-conditioned gating mechanism partitions users differently
at each layer. We observe users with the same preferences tend to be routed to the same expert.

Table 4: Accuracy of unseen-user adaptation in
UF-P-4-ALL/AVG with gemma-2b-it. Naive
Avg. computes the unseen user’s embedding as
the unweighted average of 2-hop neighbors. User
Opt. represents an optimization-based approach
that learns a parameterized user embedding by
maximizing the likelihood of the given annota-
tions. All experiments run on three seeds.

UF-P-4-ALL UF-P-4-AVG

CoPL 61.62±0.10 61.97±0.35

Naive Avg. 59.91±0.59 59.39±0.50

User Opt. 59.24±0.71 59.45±0.72

Ablation study of unseen user adaptation.
We conduct an ablation study to evaluate the ef-
fectiveness of the unseen user adaptation strat-
egy, comparing it to two baselines, Naive Avg
and User Opt. Naive Avg assigns each unseen
user embedding as the unweighted average of
2-hop seen user embeddings. User Opt replaces
e
(L)
u with a parameterized embedding learned

by minimizing Equation (5) on the provided
annotations. Table 4 reports results in UF-
P-4-ALL/AVG with gemma-2b-it, showing
that CoPL outperforms both alternatives while
achieving better computational efficiency than
the optimization-based User Opt.

Fig. 4 illustrates that naive averaging places
unseen users away from identical preference
group users, whereas our method clusters them closely with users who share the same preferences.

Table 6: Accuracy of reward model trained by
using a pre-trained GNN in UF-P-2/4-ALL with
gemma-2b-it. The pseudo-label trains a re-
ward model on all seen user–response pairs, with
annotations provided by GNN-predicted labels.
The user-specific refers to a model trained with
pseudo labels for each user. 10 users per group
are sampled. All experiments run on three seeds.

UF-P-2-ALL UF-P-4-ALL

CoPL 63.81±0.16 62.57±0.38

Pseudo label 62.77±0.70 62.26±0.27

Oracle 64.53±0.14 61.52±0.13

User-specific 58.09±1.73 55.30±3.30

Training reward models with GNN. Table 5
reports GNN accuracy on seen users and re-
sponses for test pairs excluded from the training
dataset. The results demonstrate that GNN can
accurately predict labels for unannotated pairs
with sparse annotations.

Table 6 examines the impact of training with
GNN-based pseudo labels, allowing the model
to leverage additional preference data. Al-
though the pseudo-labeled pairs increase the
dataset size, performance is slightly worse than
using only user-provided annotations, suggest-
ing that noise degrades model accuracy.

To investigate the effect of noise further, a user-
specific reward model is trained on pseudo la-
bels for a random sample of 10 users per group. The results are worse than the Oracle, indicating that
noisy labels introduce training instability. This observation aligns with Wang et al. (2024), which
notes that noisy preference labels can lead to training instability and performance degradation.

6 CONCLUSION

In this work, we introduced CoPL, a novel approach for personalizing LLMs through graph-based
collaborative filtering and MoLE. Unlike existing methods that treat user preferences independently
or require predefined clusters, our approach leverages multi-hop user-response relationships to im-
prove preference estimation, even in sparse annotation settings. By integrating user embeddings into
the reward modeling process with MoLE, CoPL effectively predicts an individual preference.
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APPENDIX

A MESSAGE PASSING FOR RESPONSE EMBEDDINGS

Given user and response embeddings at layer ℓ, a message from neighborhood users to the response
as

m+
r =

∑
u∈N+

r

αu,r

(
Ŵ

(ℓ)
1 e(ℓ)u + Ŵ

(ℓ)
2 (e(ℓ)u ⊙ e(ℓ)r )

)
,

m−
r =

∑
u∈N−

r

βu,r

(
Ŵ

(ℓ)
3 e(ℓ)u + Ŵ

(ℓ)
4 (e(ℓ)u ⊙ e(ℓ)r )

)
,

m(ℓ)
r = Ŵ

(ℓ)
self e

(ℓ)
r + m+

r + m−
r , (12)

where Ŵ (ℓ)
1 , Ŵ

(ℓ)
2 , Ŵ

(ℓ)
3 , Ŵ

(ℓ)
4 , Ŵ

(ℓ)
self ∈ Rd×d are parameter matrices, ⊙ is element-wise multiplica-

tion, and αu,r and βu,r are normalization factors, set to 1√
|N+

u |·|N+
r |

and 1√
|N−

u |·|N−
r |

, respectively.

Then, the response embedding is updated with the aggregated message m(ℓ)
r :

e(ℓ+1)
r = ψ

(
m(ℓ)

r

)
, (13)

where ψ(·) is a non-linear activation.

B METHOD BASELINES

Uniform. The uniform model is a standard approach for pairwise preference comparisons. We
train the uniform model with all annotation pairs, which will capture the common preference.

Oracle. For an oracle model of our setting, we train the model with the true group membership of
all users. A separate uniform model is trained for each group by aggregating annotations from the
users in that group.

I2E (Li et al., 2024). I2E is a framework that uses DPO to personalize LLM. However, it can be
easily extended to reward modeling. I2E trains a model that maps the user index into a learnable
embedding. It appends each user embedding as an additional input token to the LLM, providing
user-specific signals for reward prediction.

I2Eproxy (Li et al., 2024). A variant of I2E that introduces N proxy embeddings. A weighted
combination of these proxies forms the final user embedding, which is passed to the LLM for reward
prediction. In our experiments, we use N = 10.

VPL (Poddar et al., 2024). Variational Preference Learning (VPL) encodes user-specific annota-
tions into user embeddings. The user embeddings are then combined with sentence representations
via an MLP to predict reward scores. To capture the user preferences effectively, VPL uses a varia-
tional approach that maps the user annotations into a prior distribution.

PAL (Chen et al., 2024a). Pluralistic Alignment (PAL) applies an ideal-point model, where the
distance between the user and the response determines the reward. The ideal point of the user is
represented by N proxies, set to N = 10 in this work. Among variants of PAL, we use PAL-A with
logistic loss.

C EXPERIMENTAL DETAILS

In this section, we provide a detailed explanation of dataset construction and hyper-parameters.
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C.1 ULTRAFEEDBACK-P

Poddar et al. (2024) proposes the Ultrafeedback-P (UF-P) benchmark for personalized reward mod-
eling, based on the Ultrafeedback (UF) dataset Cui et al. (2023), which provides response pairs rated
on four attributes: helpfulness, honesty, instruction following, and truthfulness. In UF-P, each at-
tribute corresponds to a distinct preference. For instance, a user belonging to the helpfulness group
annotates pairs, solely considering the helpfulness score.

UF-P-2. This version employs only two attributes and removes pairs that both user groups label
identically, focusing on controversial cases where preferences differ.

UF-P-4. All four attributes are retained as preference dimensions, which allows for partial agree-
ment among groups and hence increases complexity. Although Poddar et al. (2024) also excludes
pairs fully agreed upon by all users, the remaining set is larger and exhibits more variety than UF-
P-2.

In Poddar et al. (2024), each user is given a small context sample from a limited set of unannotated
pairs to infer the user’s preference. In contrast, we leverage every available pair in the dataset to
infer each user’s preferences. For our dataset construction, we use UF-P-4 dataset.

C.2 HYPER-PARAMETERS

We describe the training details of GNN, a reward model, and unseen user adaptation, such as model
architecture and hyper-parameters.

GNN. The model consists of four message-passing layers, each with user and response embed-
dings of dimension 512. We use Leaky ReLU as non-linear activation function to update user and
response embeddings. Training proceeds for 300 epochs using the AdamW optimizer Loshchilov
(2017) with a learning rate of 1 × 10−4 and a cosine scheduler with warmup ratio 0.1. The batch
size is 1024, and all experiments are conducted on an RTX 4090 GPU.

Reward models. CoPL comprises an LLM backbone and a MoLE adapter. We use
gemma-2b-it or gemma-7b-it as the LLM backbone. MoLE includes one shared expert and
eight LoRA experts with a rank of eight. A two-layer MLP with a hidden dimension of 256 and
ReLU activation serves as the gating mechanism, with a temperature set to 1.

We train the reward models using the AdamW optimizer with a learning rate of 5 × 10−5 and a
cosine scheduler with warmup ratio 0.03. Four GPUs, such as RTX6000ADA, L40S, and A100-
PCIE-40GB, are employed with a batch size of 32 per GPU for gemma-2b-it and 16 per GPU
for gemma-7b-it.

Baseline models use LoRA with rank 64. They also trained with an AdamW optimizer and a cosine
scheduler with a warmup ratio 0.03. We search the learning rate from [1 × 10−4, 5 × 10−5, 1 ×
10−5, 5× 10−6].

User adaptation. We use two-hop seen user and 0.07 as temperature for unseen user adaptation
of CoPL. For I2E, each learnable user representation is mapped into each user. For I2Eproxy and
PAL, user representations are determined by N = 10 proxies. Adapting to an unseen user requires
parameter optimization for unseen users, typically through several gradient steps. To optimize the
parameters for unseen users, 50 gradient steps are applied during adaptation.
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(a) Naive Avg. (b) User Opt. (c) CoPL

Figure 4: T-SNE visualization of seen and unseen user embeddings in UF-P-4-AVG. Naive Avg.
computes unseen user embeddings as the unweighted mean of 2-hop neighbor embeddings. User
Opt. represents an optimization-based approach that learns a parameterized user embedding by
maximizing the likelihood of the given annotations. Colors indicate preference groups, and points
with black edges represent unseen users. Unseen users adapted by our method align with their
respective preference groups.
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