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Abstract—The regression task of predicting preclinical
Alzheimer’s disease (AD) risk using imaging and other data is
essential for evaluating the varying risk levels across individuals.
Existing data-driven methods for identifying preclinical AD pri-
marily focus on binary classification, which relies on thresholds
derived from specific imaging datasets. This reliance on dataset-
specific thresholds can hinder the generalization capability of
such methods across datasets, limit the integration of other types
of data, and restrict the assessment of varying risk levels among
individuals. In this paper, we propose a novel, multi-modal, semi-
supervised regression framework to predict amyloid positivity
scores by integrating brain MR imaging and non-imaging data,
such as genetic information and cognitive assessments. We intro-
duce an unsupervised, imaging data-driven module for prototype
label generation, for the ‘regression by classification’ learning
strategy. We employ graph neural networks to model the complex
relationships within diverse non-imaging data. Our learning
algorithm makes optimal use of the labeled and unlabeled data,
maximizing the utility of limited labeled information, while elimi-
nating the need for rigid thresholds. Through extensive evaluation
on the ADNI dataset, which includes real-world patient data, our
framework demonstrates effectiveness, suggesting that it could
offer a more adaptable, precise tool for preclinical AD assessment
and a step forward in the application of computer vision and deep
learning to neurodegenerative disease detection.

Index Terms—Graph Neural Network, MR Imaging, Multi-
modal Learning, Preclinical Alzheimer’s Disease, Semi-
supervised Learning

I. INTRODUCTION

Computer vision has advanced neurodegenerative disease
research [1]-[4]. Alzheimer’s disease (AD), which primarily
affects older adults, progresses through three stages: preclin-
ical (asymptomatic), Mild Cognitive Impairment (MCI), and
Alzheimer’s Dementia. While deep learning has been widely
applied to detect MCI and dementia stages [1], [5], preclinical
AD detection remains underexplored. This is of particular
significance, as research indicates that early identification and
intervention can potentially slow down or even prevent the
progression of AD.

Individuals in the preclinical AD stage are usually labeled
as ‘cognitively normal’ with minimal detectable neurodegen-
eration, posing key detection challenges. First, subtle brain
changes often go unnoticed by the unaided human eye. Sec-
ond, early AD markers like Amyloid beta (A3) deposition
[6], [7] require costly, invasive tests (e.g., PET scans, lumbar

punctures), which are not usually done for cognitively normal
patients. Instead, magnetic resonance imaging (MRI), a less
invasive, more affordable option, is commonly used as a
surrogate. Third, amyloid positivity differences are subtle since
preclinical AD patients are labeled as cognitively normal. Fig.
1 shows SUVR score distributions for preclinical AD and
cognitively normal patients from ADNI data. Capturing these
nuances is essential for accurate risk assessment.

Existing MRI-based
methods for  detecting SUVR Score Distoution
preclinical AD [8], [9]
typically treat it as a binary
classification problem,
ignoring individual
variability in risk levels.
For example, [9] uses
predefined thresholds to
assign  labels, making e

results sensitive to small
data changes. Predicting
a continuous risk score
instead, offers clinicians
more actionable insights and greater flexibility for medical
decision-making, advantages missing in classification
approaches.

To address these challenges, we propose a novel semi-
supervised regression approach for preclinical AD risk scoring
using brain MRI and non-imaging data like demographics
and genetics. The risk score approximates the standardized
uptake value ratio (SUVR) from amyloid-PET (see Related
Work for elaboration). We introduce a novel unsupervised
prototype generation technique for regression by classification,
enabling the use of both labeled and unlabeled data, unlike
prior methods [10] limited to labeled data. Our model employs
graph neural networks to capture relationships among non-
imaging features and leverages semi-supervised learning to
handle limited SUVR annotations. Evaluated on the ADNI
dataset, our method effectively distinguishes preclinical AD
patients from cognitively normal, producing precise risk scores
with valuable insights.

To the best of our knowledge, this is the first deep learning-
based risk-scoring approach, specifically for preclinical AD.

Fig. 1. Target score (SUVR) distribu-
tion from ADNI dataset. These scores
fall within a narrow range and exhibit
very subtle variations.



Our key contributions to address the important challenges are
(i) Regression-based predictive scoring approach for pre-
clinical AD accounting for individual risk differences, making
it applicable to a wider range of clinical encounters and giving
the medical professionals flexibility to adjust the parameters;
(ii) Data-driven prototype label generation for regression by
classification learning to recognize subtle differences between
the risk scores of cognitively normal individuals and those in
the preclinical stage of AD; (iii) Graph-based modeling for
non-imaging data to capture the relations within this diverse
data; (iv) Learning from multimodal data to overcome the
weakness of imaging biomarkers for preclinical AD.

II. RELATED WORK

Early detection of Alzheimer’s Disease (AD), particularly
differentiating mild cognitive impairment (MCI) from ad-
vanced stages, is crucial for personalized treatment and early
clinical trial enrollment [11]. To enhance diagnostic preci-
sion and support early intervention, research has increasingly
focused on robust classification methodologies to identify
MCI and more advanced AD stages. [12] proposed a four-
class SVM classifier to categorize AD, stable and progressive
MCI, and healthy individuals. Additional works, such as [2],
[13]-[19], have furthered this progress by exploring advanced
architectures, including RNN, Vision Transformers (ViT), and
hybrid models like convolutional neural networks (CNN) with
transformers, to enhance diagnostic capabilities.

In contrast to MCI or AD, where there are noticeable
or significant brain structural changes, detecting preclinical
AD is a relatively more complex task due to the lack of
noticeable brain structural changes. Detecting preclinical AD
before MCI develops is crucial, as it offers an opportunity for
early intervention.

Due to the challenging nature of the problem statement, re-
search in this area is scarce. [8] was among the first to explore
preclinical AD detection in the OASIS-3 dataset, proposing
two attention-based networks, demonstrating the effectiveness
of MR imaging for classification. [20] highlighted the role of
non-invasive multimodal data (EEG, APOE4, demographics,
neuropsychology, MRI) in predicting amyloid using Random
Forest, logistic regression, and SVM. [9] leveraged amyloid
positivity as an early preclinical AD indicator, proposing a
HexaGAN-based generative framework for data imputation
and amyloid prediction in cognitively normal patients, though
they relied on a predefined threshold that may vary across
cohorts. Most existing studies focus on classification, which
requires a well-defined dataset.

Amyloid beta (AB) deposition is widely recognized as
a key biomarker for Alzheimer’s Disease (AD) due to its
association with the disease’s early pathological changes,
especially during the preclinical stages [6], [21]. Research
indicates that amyloid plaques, formed by Af aggregation,
begin to develop in asymptomatic individuals, which correlates
with progressive neurodegeneration and cognitive decline [22].
Studies using positron emission tomography (PET) imaging
and cerebrospinal fluid (CSF) biomarkers have demonstrated

that elevated A5 levels are detectable in the preclinical phase,
offering a potential window for preventive interventions [23].
Given its strong correlation with preclinical AD, we use SUVR
scores as risk indicators.

III. PROPOSED METHOD

The key objective of this work is to build a learning-based
risk-scoring approach for preclinical AD that approximates
the SUVR score from amyloid-PET, using MR imaging and
other non-imaging data. We begin by defining the problem
in Section III-A, followed by detailed descriptions of the
proposed model in subsequent subsections.

A. Problem Statement

Let I be an MRI volume where I € R€*4%B and C, A, B
are the number of slices, height, and width of the MRI
volume respectively, and let X be the non-imaging data where
X € R such that @ is the number of non-imaging attributes.
Given a labeled dataset D; = {I!, X}, S;}, i € [1,N] and
an unlabeled dataset D,; = {I*, X#},i € [1, M], the task
is to learn a predictive model that can be used to produce a
preclinical AD risk score S, as close to the SUVR score as
possible, for a test sample.

B. Overview of the Proposed Approach

Our approach integrates MRI and diverse non-imaging data
to predict preclinical AD risk using a 3D CNN, graph neural
network, and advanced attention mechanism. Fig. 2 shows the
prediction model (top row) and the data-driven prototype gen-
eration process (bottom row) that defines the initial prototypes.

We use a regression by classification technique, where
each sample is associated with a prototype plus an offset to
produce the final risk score (top row of Fig. 2). Prototypes
represent natural clusters learned in an unsupervised manner
from imaging data (bottom row of Fig. 2), each with a unique
ID (a pseudo label for the prototype) and a mean risk score
computed from labeled samples in that cluster. Details of
prototype learning are in Section III-C.

In the Risk Prediction module (Fig. 2, top), a 3D U-Net
encoder extracts features from the MRI volume, which are
combined with non-imaging data graph features to predict the
prototype and offset scores. These yield the final preclinical
AD risk score (Eq. 4), where higher scores indicate greater
preclinical AD risk. Details are in Section III-D.

C. Data-driven Prototype Generation

To improve precision and capture subtle risk score differ-
ences, we adopt a regression by classification method inspired
by multi-bin loss [10], which has proven effective in other
regression tasks [24]. This is crucial as the risk score differ-
ences between cognitively normal and preclinical AD patients
are often subtle (refer Fig. 1). Directly dividing the risk score
(target) space into bins, as in [10], [24], is unsuitable here
because the resulting decision boundaries may not align with
clinical criteria, risking misclassification. Such discrepancies
are particularly concerning because they could lead to cases
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Fig. 2. Overview of the proposed approach. In the Risk Score Prediction module (top), a 3D encoder and a graph encoder extract features from MRI and
non-imaging data, respectively. An attention mechanism combines them to predict a prototype label and offset, yielding the final risk score. In prototype
generation (bottom), 2D MRI slice features are used to create prototypes, each with a pseudo label and associated risk score.

of preclinical AD going undetected. Moreover, such methods
cannot leverage unlabeled data, which is often abundant than
labeled data.

In this work, we employ a data-driven approach to generate
prototypes, based on natural groupings of the MR imaging
data in a feature domain. The prototypes, each encoding an
ID and a SUVR score, provide a label space for training
a regression by classification model. By defining the label
space using features rather than manual partitioning (bins),
our method reduces the risk of misclassification.

As shown in Fig. 2 (bottom), prototype generation begins by
extracting features from each 2D MRI slice of the 3D volume
I using a pre-trained 2D feature extractor f.. We use 2D
extractors as they are readily available, avoiding the need for
pre-training 3D or multi-modal models. A global feature for
I is then computed by averaging features across all C slices.
The extracted features are fed into the Prototype Generator
Pyen, which uses K-means to assign prototype labels L
by clustering the data into k clusters. This unsupervised
process uses both labeled (D;) and unlabeled (D,,;) data. Each
prototype is defined by its cluster and mean SUVR score,
computed from labeled samples. The offset score O is then
calculated as the deviation from the corresponding prototype
mean ST

Given an MRI volume I;, the prototype label LF, offset
score O; is given by,

O;=8-S5, j=Lf (1)

num(K;)
P _
S = mm(@y 2 Sme J€lLM @
h=1
LY = Pyen Zfe i) | 3)

where num(K;) is the number of samples in the cluster
represented by prototype K; and SJP is the mean risk score
of the prototype K.

D. Risk Score Prediction

We first process imaging and non-imaging data separately,
then fuse them to predict the preclinical AD risk score. A
3D U-Net [25] encoder, f;., extracts a d;-dimensional feature
from the 3D MRI volume.

For non-imaging data X, we construct a fully connected
graph GG, where nodes represent attributes and edges model
their relationships, unlike prior work [9], which simply con-
catenates these attributes. From Fig. 3, we can observe that
cognitive assessment scores ADAS13 and MMSE are highly
correlated with the age of a patient. Our graph representation
of X helps capture and learn from such relations. The attribute
value is the initial node embedding. While we explore learn-
able edge weights, we use equal weights in experiments due
to the small attribute set and comparable results (see Section
IV-C). However, learnable weights may offer advantages with
an increasing number of attributes. A graph encoder module f,
consisting of graph convolutional and pooling layers processes



these initial embeddings. A graph-level ds-dimensional feature
is obtained for the non-imaging data X by averaging the
processed node embeddings.
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We use multi-class hinge loss to train the Prototype Predic-
tion branch, encouraging larger separation between prototypes
for finer score distinctions. The offset prediction branch is
trained with mean squared error (MSE) loss.

For labeled data D;, target prototype labels LZP are obtained
from the Prototype Generation module, and target offset scores
O, are computed from ground-truth risk scores S; using Eq.
3. The total training loss £; for labeled data is,

£l = )\1 £pl + )\2£0 ) (5)
Ly = Z max(0,0 — y.» +y;) (6)
ALY
1 & ; )
Lo= (0] =0y) (7)
i=1

where L, is the multi-class hinge loss, £, is the MSE loss for
the offset scores, y is the output of the Prototype Prediction
branch, § = 1 is the margin hyperparameter and A\; = 1, Ao =
2 are the weights for individual loss terms.

In the unlabeled dataset D,;, target risk scores are not
available. To use this data, we apply a semi-supervised tech-
nique, consistency regularization [26], encouraging the model
to align features from different augmentations of the same
input, thus learning meaningful patterns without supervision.
For each sample in D,;, let I,; represent a 3D MRI volume
and G,; a graph of the non-imaging data X,;. We create
augmented versions, I, and G, by applying transformations
to these inputs. To generate I,, we apply a random horizontal
or vertical flip to the entire MRI volume [,;. For G, we use
node dropout, where we randomly remove nodes and their
edges from G,,; with a probability of 0.5.

Similar to labeled data, we use prototype labels L, obtained
from the Prototype Generation module to guide learning on
the unlabeled data. We apply a multi-class hinge loss on
both the original and augmented inputs using these prototype

labels. To align the offset score predictions for the original
and augmented data, we use consistency regularization loss
that brings the offset scores closer together. Altogether, the
training loss for the unlabeled data, £,;, is computed as,

‘Cul = A3 Egl + M Egl + )\SECT (8)
I _ l l
£ =% max(0,6 -y +yi) ©)
AL,
Lo =" max(0,6 — yfr, +ys) (10)
JALE,

1 & 2

Lor =770y = 0)) (11)
i=1

where £P! and LP! represent the multi-class hinge loss calcu-
lated on the original unlabeled data and the augmented data,
respectively, L., is the consistency regularization loss, § = 1 is
the margin hyperparameter for the hinge loss. The weights for
each loss term are A3 = 1, Ay = 1, and A5 = 2. We assign a
higher weight to the offset score prediction loss, as it captures
small deviations from the mean score, which is essential for
predicting precise risk scores. The overall training loss £ for
our framework is,

L=MANL+ALy (12)

where Aj, Ay are the weights for the labeled and unlabeled
training loss, respectively. We set A; = Ay = 1 for our
experiments.

IV. EXPERIMENT RESULTS
A. Experimental Settings

Dataset details: For evaluation, we use the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) [27] dataset, a large,
real-world data widely used in Alzheimer’s research. We
select participants from the ADNI-1, ADNI-2, ADNI-3, and
ADNI-GO cohorts who have T1-weighted MRI scans from
their screening visit, resulting in a total of 697 cognitively
normal (CN) individuals. The AV45 SUVR scores from the
ADNIMERGE file are used as the target risk scores.

We use seven non-imaging attributes (Table I) relevant to
identifying preclinical AD, covering genetics, cognition, and
demographics. Demographic features include age, gender, and
years of education. Genetic information is represented by the
number of APOE €4 alleles. Cognitive assessments include
Mini-Mental State Examination (MMSE), Clinical Dementia
Rating-Sum of Boxes (CDR-SB), and Alzheimer’s Disease
Assessment Scale, the 13-item version (ADAS13).

Out of the 697 samples, 279 have AV45 SUVR scores.
This is our labeled data D; (IN = 279), in which 92 patients
are identified as preclinical AD and 187 as CN, based on
a threshold of 1.11 for SUVR scores [9]. However, we do
not use this threshold or these labels in any part of our
proposed approach or evaluation. The remaining 418 samples
(M = 418) form our unlabeled data set D,,;.

Data preprocessing: We use T1-weighted MRI scans pre-
processed using the following steps: align each scan to the



TABLE I
NON-IMAGING DATA ATTRIBUTES AND SUVR SCORES. FOR CONTINUOUS
VALUES, WE REPORT THE MEAN AND STANDARD DEVIATION. THE
PERCENT OF MISSING VALUES IS CALCULATED USING TOTAL OF 697. M/F
DENOTES MALE OR FEMALE.

Attribute Value Missing (%)
Age 71.89+6.73 0
Gender M/F 0
Education (years)  16.461+2.49 0
APOE ¢4 0,1,2 11.9
MMSE 28.94£1.33 3.15
CDR-SB 0.08+0.38 3.29
ADASI13 8.86+£4.60 4.01
SUVR 1.10+£0.17 70.83

standard MNI template using FSL FLIRT [28]; perform skull
stripping using FSL BET [29]; normalize the intensity values
to the range of 0 to 1. After preprocessing, each MRI volume
is of size 182 x 218 x 182.

For the non-imaging data, there are a total of 7 attributes
as listed in Table I. The gender attribute is encoded as a
categorical feature: 0 represents female, and 1 represents male.
Excluding attributes with missing values is not ideal. So, we
use the K-Nearest Neighbors (KNN) data imputation method
(from the Scikit-Learn library) with 3 neighbors to fill in
these missing values. After data imputation, we normalized
all values from O to 1. To represent the non-imaging data X
as a graph G, each of the seven attributes is treated as a node
with its normalized value as the initial embedding. All nodes
are fully connected, resulting in 49 edges.

Our framework: The architecture of our approach is shown
below: each layer or module of the approach is denoted in the
form of m(d), where m is the module/layer and d is the output
dimension for m.

fte: By (16) —E, (32) >B, (64) — FC(64)

E,: CK(8) —=BN(8) =CK(16) —»BN(16)
—PK (16)
B,: CK(8) —>BN(8) —+CK(16)— BN (16)

fg: FC(16) =GC (64) =NR (64) — PL (64)

Feature Fusion: MA (128) —FC (64)
Prototype Prediction Network: FC (k)
Offset Score Prediction Network: FC (1)

FE,: Convolutional block in f., B,: Bottleneck block in fi.,
CK: Convolution layer with a kernel size of 3 x 3 x 3,
BN: Batch normalization layer, PK: Max-pooling with kernel
2 x 2 x 2, GC: Graph convolutional layer, NR: Instance
normalization layer, PL: Graph Max Pooling layer, MA: Multi-
head attention, FC: Fully-connected layer.

We use ImageNet pre-trained ResNet-50 [30] as 2D feature
extractor in the Data-Driven Prototype Generation. k£ = 5 for
Prototype Generator and the multi-head attention has 4 heads.

Evaluation metrics: We evaluate regression performance
using Root Mean Squared Error (RMSE) and Mean Absolute
Error (MAE), measuring differences between predicted and
target risk scores. Reported results are the mean and standard
deviation over 5-fold cross-validation.

B. Baselines for Comparison

Since existing methods [8], [9] only predict labels, not risk
scores, direct comparison is not possible. So, we designed
simple baseline models that predict risk scores and trained
them using Mean Squared Error (MSE) loss.

Baseline 1: This baseline uses only the 7-dimensional non-
imaging data, as existing methods [9] use it. The input is
passed through a fully connected layer with ReLU activation
to predict risk scores.

Baseline 2: This baseline uses only MR imaging data. It
employs a 3D encoder with three F, blocks and a B, block,
followed by a fully connected layer to predict risk scores.

Baseline 3: This baseline encodes image and non-image
data using the same networks as the previous baselines. The
resulting d-dimensional features are concatenated and passed
through a fully connected layer to predict the risk score.

C. Results and Discussion
TABLE II

EXPERIMENT RESULTS ON ADNI DATASET. THE MEAN AND STANDARD
DEVIATION ACROSS 5 FOLDS ARE REPORTED.

Method RMSE (|) MAE (})
Baseline I  0.675£0.039  0.627+0.041
Baseline 2 0.384+0.102  0.28940.073
Baseline 3 0.359+0.044  0.288+0.028

Ours 0.169+0.013  0.121+0.006

ADNI Results: Table II
shows the results on the
ADNI dataset. Our frame-
work significantly outper-
forms all baselines, cutting
errors by atleast half across
both metrics. It also achieves .
the lowest standard deviation “
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across the 5 folds, demon-
strating both effectiveness
and stability.

For further analysis, we
show a residual plot of our

o 1
Prediction Values

Fig. 4. Residual Plot. Data points
cluster near low residual values (close
to the horizontal line), indicating pre-
dictions closely matching true risk
scores.

test data in Fig. 4, illustrat-

ing the relationship between predicted risk scores and stan-
dardized residuals (difference between true and predicted
scores). Most predictions cluster near lower residuals, indi-
cating strong alignment with actual risk scores.



TABLE III
ABLATION STUDY FOR OUR METHOD. v DENOTES THE COMPONENT IS
INCLUDED, AND X REPRESENTS THE EXCLUDED COMPONENTS.

I X D, Dy RMSE(Q) MAE ()
X vV vV 017140017 0.126+0.014
v X VvV V' 0190016 0.1404+0.014
v v v X 017040016 0.133+0.014
vV /v VY 0169£0.013  0.12140.006

Ablation Study: To evaluate the impact of each component,
we performed an ablation study (Table III). Removing non-
imaging data leads to a significant rise in both error metrics,
while excluding MR imaging has a smaller effect, which is
intuitive as non-imaging features are stronger preclinical AD
indicators. Still, MRI helps reduce errors, highlighting its value
when non-imaging data is missing (see Table I). Excluding
unlabeled data notably increases MAE, highlighting its con-
tribution in the semi-supervised setting. The best performance
is achieved by combining all components. Notably, even when
any single component is removed, the results still outperform
all baseline methods in Table II.

2D Feature Extractor for Prototype Generation: In Data-
Driven Prototype Generation, we use ResNet-50 pre-trained on
ImageNet to extract features of MR images. To better align
with MRI characteristics, we also finetuned the 2D feature
extractor on MRI data. To finetune the ResNet-50, we update
only the last two convolutional blocks and the fully connected
layer, keeping the rest frozen. The model is finetuned for
binary classification (preclinical AD vs. cognitively normal)
using a stricter SUVR threshold to improve class separation:
scores < (.95 labeled as cognitively normal (class 0) and
scores > 1.5 as preclinical AD (class 1). Data augmentation
included random horizontal and vertical flips on the entire
MRI volume, and the network was trained for 15 epochs using
cross-entropy loss.

TABLE IV
EVALUATION METRICS WHEN DIFFERENT FEATURES ARE USED FOR
PROTOTYPE GENERATION. SSE STANDS FOR SUM OF SQUARED ERRORS
OF THE PROTOTYPE GENERATOR.

Features RMSE MAE SSE
Pre-trained  0.16940.013  0.121+£0.006 1166.74+4.72
Finetuned  0.165+0.017  0.12140.013  1477.184+866.05

Table IV shows results using both pre-trained and finetuned
features for the Prototype Generator. We report the sum of
squared errors (SSE) for Prototype Generator and RMSE and
MAE for the proposed method. Finetuned features slightly
reduce error metrics but increase variance, especially in SSE,
due to using different finetuned models in each validation fold.

Fig. 5 shows t-SNE visualizations (with k¥ = 5) for one
cross-validation fold, using pre-trained features (left) and

Pretrained Features Finetuned Features

30 O Labeled SV
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O Labeled
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Fig. 5. t-SNE plots for pre-trained and finetuned features. Different colors
represent different prototype clusters.

finetuned features (right). Both yield well-defined clusters,
though some are more compact with finetuned features. How-
ever, due to the added computational cost and sensitivity to
data distribution shifts without significant error reduction, we
choose to use the pre-trained feature extractor in our approach.

Relationship between
non-imaging  attributes:
We model non-imaging
data X as a fully connected
graph G with equal edge
weights. To  evaluate
connection importance, we
make the edge weights
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RMSE of 0.165+0.017,

comparable to fixed Fig. 6. Visualization of learned edge
weights (Table 1II). As weights in the non-imaging data graph.

shown in Fig. 6, learned

weights highlight stronger links (e.g., CDR-SB and MMSE,
Age and MMSE) and weaker ones (e.g., MMSE and APOE4),
though all remain above 0.98, confirming predictive relevance.
We use fixed weights, but note that learnable weights may
help when adding more attributes.

Varying %k for Pro-
totype Generation: We
use K-means clustering
in the Prototype Gener-
ator, where k& must be E \
specified. As shown in B
Fig. 7, SSE decreases .
with larger k, with a no-
table drop at £k = T.
However, higher k£ can
lead to empty clusters
due to limited data. To
balance SSE, stability, and feature separation, we select £ = 5
empirically.
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Fig. 7. Plot of varying k in Prototype Gen-
erator versus the Sum of Squared Errors.

V. CONCLUSION AND FUTURE WORK

Our multi-modal, semi-supervised regression framework
provides a flexible and accurate approach for assessing preclin-
ical AD risk without relying on fixed classification thresholds.
By integrating imaging, demographic, genetic, and cognitive



data using graph neural networks, it enables nuanced risk pre-
diction and addresses limitations in current detection methods.

We validate our approach using a publicly available dataset
based on real patients and plan to collaborate with clinical
partners for evaluation on real-world cohorts. Since non-
imaging data may not always be fully available in practice, we
used K-Nearest Neighbor imputation to handle missing entries.
Exploring more advanced imputation methods is a promising
direction for future work. Our prototype generation module,
based on imaging data and 2D feature extractors, effectively
guided risk prediction. Including non-imaging data and 3D
feature extractors could further improve the prototype quality.
Another future direction is applying explainability techniques
like Shapley values to enhance model interpretability. Overall,
we hope our multi-modal, semi-supervised regression frame-
work serves as foundation for future research in this field.
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