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Abstract
Traditional machine learning models struggle to
generalize in microbiome studies where only
metadata is available, especially in small-sample
settings or across studies with heterogeneous label
formats. In this work, we explore the use of large
language models (LLMs) to classify microbial
samples into ontology categories such as EMPO
3 and related biological labels, as well as to pre-
dict pathogen contamination risk, specifically the
presence of E. Coli, using environmental metadata
alone. We evaluate LLMs such as ChatGPT-4o,
Claude 3.7 Sonnet, Grok-3, and LLaMA 4 in zero-
shot and few-shot settings, comparing their per-
formance against traditional models like Random
Forests across multiple real-world datasets. Our
results show that LLMs not only outperform base-
lines in ontology classification, but also demon-
strate strong predictive ability for contamination
risk, generalizing across sites and metadata dis-
tributions. These findings suggest that LLMs can
effectively reason over sparse, heterogeneous bio-
logical metadata and offer a promising metadata-
only approach for environmental microbiology
and biosurveillance applications.

1. Introduction
Microbiome classification often relies on sequencing-based
taxonomic features. However, such data may be missing or
excluded due to cost or design constraints, leaving only en-
vironmental metadata for analysis. Environmental metadata,
such as material type, biome, sample type, or collection site,
is frequently available even in sparse or small-scale studies.
Traditional models struggle to generalize on metadata-only
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settings. This challenge is exacerbated in small-sample
settings or when datasets differ in label expressions or struc-
ture. These models are limited by their dependence on
exact string matches and lack of semantic understanding,
which reduces robustness across domains. Even differential
abundance methods often yield inconsistent results across
datasets, raising reproducibility concerns (Nearing et al.,
2022).

Recent advances in large language models (LLMs) present
a new opportunity to reason over natural language metadata.
Without requiring fine-tuning or manual feature engineering,
LLMs can interpret the semantic meaning of metadata fields
and align labels across studies. This makes them particularly
effective in zero-shot and few-shot classification settings.
We adopt these settings to simulate real-world cases where
model fine-tuning is not feasible due to sparse or missing
sequencing data.

In this work, we investigate whether LLMs can perform two
key tasks using environmental metadata alone: classifying
microbial samples into ontology categories such as EMPO 3,
and predicting pathogen contamination risk, specifically the
presence of E. Coli. These tasks reflect both ecological char-
acterization and health-related biosurveillance, illustrating
the broad utility of LLMs in biological inference.

We evaluate several state-of-the-art LLMs, including
ChatGPT-4o (OpenAI et al., 2023), Claude 3.7 Sonnet (An-
thropic, 2025), Grok-3 (xAI, 2025), and LLaMA 4 (Meta
AI, 2025), under zero-shot and few-shot settings. Their per-
formance is compared to that of traditional models across
multiple real-world datasets. Our results show that LLMs
not only outperform baselines in ontology classification
but also demonstrate strong predictive accuracy for E. Coli
contamination across varied metadata distributions. These
findings highlight the potential of LLMs as metadata-only
predictors in microbiome research and environmental health
monitoring.

2. Related Work
Traditional microbiome classification relies heavily on tax-
onomic features derived from high-throughput sequencing
data, such as 16S rRNA gene or shotgun metagenomic pro-
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MODEL ACCURACY MACRO PREC. MACRO REC. MACRO F1

CHATGPT-4O (ZS) 0.96 0.69 0.75 0.71
CLAUDE 3.7 (ZS) 0.85 0.80 0.83 0.71
GROK-3 (ZS) 0.96 0.69 0.75 0.71
LLAMA 4 (ZS) 0.59 0.44 0.40 0.40

CHATGPT-4O (FS) 0.96 0.69 0.75 0.71
CLAUDE 3.7 (FS) 0.96 0.69 0.75 0.71
GROK-3 (FS) 0.96 0.69 0.75 0.71
LLAMA 4 (FS) 1.00 1.00 1.00 1.00

RANDOM FOREST 0.11 0.03 0.25 0.05

Table 1. Zero-shot and Few-shot inference on Study 15573. In few-shot inference, LLMs receive support examples from Study 1728 (a
different domain) as prompt context, enabling cross-study generalization evaluation. LLMs are frozen (no parameter updates), and only
Random Forest is trained on Study 1728.

files (Knights et al., 2011; Pasolli et al., 2016). These meth-
ods offer accurate microbial characterization but require
sequencing resources and may not be feasible in low-cost
or metadata-only settings.

In contrast, studies that rely exclusively on environmental
metadata for microbiome prediction remain scarce. While
there has been growing interest in metadata curation and
standardization (Vangay et al., 2021), and recent work high-
lights reproducibility issues in reusing metadata from 16S
studies (Kang et al., 2021), yet few models directly leverage
such metadata for ontology or pathogen risk classification.

Recent advancements in large language models (LLMs)
have enabled strong zero-shot and few-shot reasoning ca-
pabilities across a range of tasks (Brown et al., 2020). In
the biomedical domain, LLMs have been used to encode
clinical knowledge (Singhal et al., 2023) and integrate multi-
modal signals such as images and text for medical prediction
tasks (Zhang et al., 2024). However, their application to
microbiome-related classification using only sparse meta-
data remains largely unexplored. Moreover, traditional mod-
els are highly sensitive to normalization and compositional
characteristics of microbiome data, which limits robustness
across datasets (Weiss et al., 2017).

Our work bridges this gap by applying foundation models
to infer microbial ontology and pathogen contamination
risk solely from environmental metadata, demonstrating
effective generalization across studies without access to
genomic sequences.

3. Method
We use pre-trained large language models (LLMs), includ-
ing ChatGPT-4o, Claude 3.7 Sonnet, Grok-3, and LLaMA 4,
to perform microbiome-related classification and regression
tasks using environmental metadata as input. Specifically,
we investigate two types of inference problems: (1) clas-

sification of microbial samples into standardized ontology
categories and related biological labels, and (2) prediction
of pathogen contamination risk based on contextual envi-
ronmental features.

Model Acc. Prec. Rec. F1

Random Forest 0.47 0.33 0.27 0.30
ChatGPT-4o (ZS) 1.00 1.00 1.00 1.00
Claude 3.7 (ZS) 1.00 1.00 1.00 1.00
Grok-3 (ZS) 1.00 1.00 1.00 1.00

Table 2. Zero-shot inference on Study 1728. Only Random Forest
is trained on Study 15573; LLMs are zero-shot prompted.

3.1. Prompting Strategy for LLM-Based Inference

All models are accessed in a frozen setting without fine-
tuning. We construct prompts in natural English using struc-
tured metadata fields as context. Each prompt queries the
model about the most likely label or value associated with a
given sample.

Zero-shot classification. In zero-shot settings, a sample
x is represented by its metadata fields (e.g., env material,
sample type, scientific name, geo loc name). We format a
multiple-choice prompt that asks whether sample x corre-
sponds to a candidate label y ∈ Y . The model selects the
label with highest likelihood:

ŷ = argmax
y∈Y

LLMθ(P (x, y))

Few-shot classification. In few-shot settings, the prompt
includes a small number of labeled support examples
Dsupport = {(xi, yi)}ki=1, prepended to the test sample x′.
The model selects the most probable label as:

ŷ = argmax
y∈Y

LLMθ(P (Dsupport, x
′, y))
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MODEL ACCURACY MACRO PREC. MACRO REC. MACRO F1

CHATGPT-4O (ZS) 0.7500 0.7084 0.7210 0.7135
CLAUDE 4SONET (ZS) 0.8036 0.7841 0.7262 0.7441
GROK-3 (ZS) 0.7679 0.7366 0.7670 0.7443
LLAMA 4 (ZS) 0.7143 0.6621 0.6621 0.6621
GEMINI 2.5FLASH (ZS) 0.7857 0.7480 0.7300 0.7375

CHATGPT-4O (FS) 0.8214 0.8202 0.7391 0.7619
CLAUDE 4SONET (FS) 0.7500 0.7044 0.7044 0.7044
GROK-3 (FS) 0.8036 0.8022 0.7097 0.7316
LLAMA 4 (FS) 0.7500 0.7024 0.6878 0.6937
GEMINI 2.5FLASH (FS) 0.7857 0.7825 0.6802 0.6995

Table 3. Zero-shot and Few-shot E. Coli level binary prediction on the 2005 Huntington Beach dataset. In the few-shot setting, LLMs
receive support examples from 2006 samples, enabling evaluation of cross-year generalization across temporally shifted metadata
distributions.

To evaluate cross-study generalization, the support examples
are drawn from a different dataset than the test set (e.g.,
Study 1728 as support for Study 15573 and vice versa),
and no model parameters are updated. Similarly, in the E.
Coli contamination prediction task, we evaluate cross-year
generalization by using 2005 Huntington Beach data for
testing and 2006 samples as support examples in few-shot
prompting.

Binary contamination prediction. For E. Coli contami-
nation risk, we cast the task as binary classification using a
prompt that asks whether the microbial contamination level
exceeds a threshold such as 126 CFU/100mL as per EPA
guidelines(United States Environmental Protection Agency,
2012; 2021). We evaluate LLM responses against ground-
truth labels derived from measured E. Coli levels.

Regression prediction. We additionally evaluate whether
LLMs can perform numeric regression by prompting for the
predicted concentration of E. Coli based on a sample’s envi-
ronmental metadata. The model’s free-text numeric output
is extracted and compared to ground-truth concentrations
using standard regression metrics such as MAE and R2.

3.2. Prompt Format and Standardization

All prompts follow a fixed structure, include consistent field
ordering, and avoid ambiguous phrasing. We use prompt
templates that include direct natural language questions
(e.g., ”Given the following metadata, what is the most likely
EMPO 3 category for this sample?”). For regression tasks,
prompts explicitly ask for a numerical estimate (e.g., ”Esti-
mate the E. Coli concentration (in CFU/100mL) based on
the following metadata.”). Examples of all prompt templates
are included in Appendix C.

4. Experiments
We evaluate large language models (LLMs) on two tasks
using only environmental metadata: (1) microbial context
classification and (2) E. Coli contamination risk prediction.
We consider zero-shot and few-shot prompting with no fine-
tuning, and compare LLMs to traditional machine learning
models such as Random Forest and XGBoost. Details of
environmental metadata are in Appendix A

Model Acc. Prec. Rec. F1

ChatGPT-4o (ZS) 0.6721 0.6482 0.6424 0.6445
Claude 4sonet (ZS) 0.7049 0.6872 0.6602 0.6652
Grok-3 (ZS) 0.7049 0.6889 0.6945 0.6909
LLaMA 4 (ZS) 0.7377 0.7398 0.7551 0.7342
Gemini 2.5flash (ZS) NA NA NA NA

Table 4. Zero-shot E. Coli binary prediction on 2006 Huntington
Beach data.

4.1. Microbial Context Classification

We begin with EMPO 3 classification using metadata fields
such as ‘env material‘ and ‘sample type‘ in study 1728 and
15573(Hewson et al., 2022; Baum & Ackerman, 2022). Ta-
ble 2 shows that all LLMs achieve perfect accuracy on Study
1728 in zero-shot prompting, while Random Forest trained
on Study 15573 fails (47%). This highlights LLMs’ abil-
ity to generalize across studies using metadata alone. On
Study 15573, which contains a more diverse set of envi-
ronments and labels, zero-shot performance remains high
for ChatGPT-4o and Grok-3 (96% accuracy), while Claude
3.7 trails slightly (85%) and LLaMA 4 struggles at 59%
(Table 1). This indicates LLMs’ ability to perform seman-
tic alignment between metadata and ontology labels across
domains. When given few-shot prompts using Study 1728
samples (Table 1), all models improve or maintain strong
performance, with LLaMA 4 jumping to 100% accuracy.
Additional results on ‘sample type‘ and ‘scientific name‘
classification appear in Tables 8–10 in Appendix B.

3



Predicting Microbial Ontology and Pathogen Risk from Environmental Metadata with Large Language Models

4.2. E. Coli Contamination Prediction

Model Acc. Prec. Rec. F1

ChatGPT-4o (FS) NA NA NA NA
Claude 4sonet (FS) 0.6885 0.6866 0.6985 0.6831
Grok-3 (FS) 0.7705 0.7567 0.7643 0.7596
LLaMA 4 (FS) NA NA NA NA
Gemini 2.5flash (FS) 0.8033 0.7906 0.7906 0.7906

Table 5. Few-shot E. Coli binary prediction on 2006 Huntington
Beach data.

We next evaluate binary classification of E. Coli risk
(above/below regulatory threshold). As shown in the table 1
on 2005 Huntington Beach data, zero-shot prompting shows
strong performance. For instance, Claude 4 Sonnet reaches
80.4% accuracy and 0.7441 macro F1, followed closely by
Grok-3 and Gemini 2.5Flash. Few-shot prompting further
boosts ChatGPT-4o to 82.1% accuracy and 0.7619 F1, out-
performing all others. This setup mirrors realistic scenarios
where prior year data is used to inform current year risk,
enabling cross-year generalization without sequence data.

On 2006 data(Francy et al., 2021), LLaMA 4 surprisingly
leads in zero-shot performance (73.8% accuracy), while
Claude and Grok-3 also perform well (Table 4). Gemini
fails to return predictions. In the few-shot setting (Table 5),
Gemini achieves the highest overall score (80.3% accuracy),
followed by Grok-3 and Claude. This suggests LLMs gen-
eralize reasonably well across yearly shifts in metadata and
environment.
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Figure 1. Accuracy and F1 Score distributions across 10 repeated
trials for each LLM in E. Coli level binary prediction using the
2005 Huntington Beach dataset.

4.3. Robustness and Regression Results

We repeat binary classification over 10 random trials on
the 2005 dataset. Figure 1 and Table 11 in Appendix B
show that Grok-3 and Claude 4 Sonnet exhibit the most
stable performance. LLaMA 4 displays high variance due to
limited valid outputs (N=3), and Gemini’s single-run result
suggests limited robustness.

For numeric prediction of E. Coli concentration, zero-shot
regression fails for most LLMs (Table 6). Claude 4 Sonnet
returns highly unstable estimates with R2 = −7.71. In

Model MAE RMSE MSE R2

ChatGPT-4o 287.56 577.70 333733.36 -0.0673
Claude 4sonet 347.20 1650.71 2724857.43 -7.7145
LLaMA 4 N/A N/A N/A N/A
Grok-3 261.32 564.57 318737.63 -0.0194
Gemini 2.5flash N/A N/A N/A N/A

Table 6. Zero-shot regression performance on 2006 Huntington
beach E. Coli data (MAE, RMSE, MSE, R2).

Model MAE RMSE MSE R2

ChatGPT-4o 259.14 612.07 374632.53 -0.1981
Claude 4sonet 190.96 435.10 189310.24 0.3946
LLaMA 4 N/A N/A N/A N/A
Grok-3 190.67 493.97 244002.06 0.2196
Gemini 2.5flash 232.34 478.71 229159.20 0.2671

Random Forest 224.69 459.03 210709.20 0.3261
XGBoost 251.89 542.17 293954.79 0.0599
Logistic Reg. 220.76 524.28 274872.34 0.1209

Table 7. Few-shot regression performance on 2006 Huntington
beach E. Coli data (MAE, RMSE, MSE, R2).

contrast, in the few-shot setting (Table 7), Claude achieves
R2 = 0.3946, outperforming all traditional models, includ-
ing Random Forest (0.3261). However, other LLMs such as
ChatGPT-4o and Grok-3 still underperform, and variance
remains high. This suggests that while LLMs are effective
for classification, they are still unreliable for quantitative
microbial estimation.

5. Results and Discussion
LLMs consistently outperform traditional models in ontol-
ogy classification, even when tested on out-of-distribution
samples. Cross-study generalization is especially strong for
ChatGPT-4o and Grok-3.

While zero-shot prompting already achieves strong binary
classification of E. Coli presence, few-shot examples further
enhance accuracy and F1. Claude and Grok-3 are the most
robust models across years.

Despite some success from Claude 4 Sonnet in few-shot
settings, LLMs are not yet competitive with traditional re-
gressors for numeric estimation. Prediction variance and
output formatting remain issues.

6. Conclusion
We show that large language models (LLMs) can accurately
classify microbial ontology labels and predict pathogen con-
tamination risk using only environmental metadata. Across
diverse datasets and tasks, LLMs demonstrate strong zero-
shot and few-shot performance, often outperforming tra-
ditional models without requiring fine-tuning. These re-
sults highlight the capacity of LLMs to semantically reason
over heterogeneous metadata fields, enabling generaliza-
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tion across studies and label variations. While LLM-based
regression remains less reliable, classification results sug-
gest that foundation models offer a promising sequence-free
approach for microbiome analysis and environmental bio-
surveillance.
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A. Dataset Details
Study 1728 (Baum asphalt 1st submission)(Baum & Ackerman, 2022) involved bacterial metagenomic sequencing of
samples collected from various asphalt sites as well as nearby water and soil locations. Additionally, three samples (2H, 2L,
and 2O) were cultured in LB broth before being included in the overall analysis. This study comprises a total of 17 samples,
categorized into two EMPO 3 labels: 10 samples as Solid (non-saline) and 7 samples as Aqueous (non-saline).

The metadata for this study includes five primary features: env material, env biome, env feature, sample type, and
scientific name. The feature values are relatively simple and consistent. For env material, the categories include water, soil,
and anthropogenic environmental material. The env biome is exclusively desert biome. All samples are associated with the
env feature road. The sample type includes water filter, water and LB broth, soil, and asphalt. The scientific name consists
of freshwater metagenome, soil metagenome, and outdoor metagenome. This study does not include geographic information
such as geo loc name, and the overall structure of metadata is constrained and minimal.

Study 15573 (Detection of the Diadema antillarum scuticociliatosis Philaster clade on sympatric metazoa, plankton, and
abiotic surfaces and assessment for its potential reemergence) (Hewson et al., 2022) is an investigation into the distribution
and persistence of a scuticociliate pathogen (DaScPc) that caused mass mortality of long-spined sea urchins throughout
the eastern Caribbean in 2022. A total of 27 samples were analyzed, collected from coral species, turf algae, and sponges,
particularly near the original outbreak site. The EMPO 3 label distribution includes 17 samples as Animal (saline), 6 as
Plant (saline), 3 as Solid (non-saline), and 1 as Aqueous (saline), indicating greater label diversity compared to Study 1728.

The metadata for Study 15573 contains six features: env material, env biome, env feature, sample type, scientific name,
and geo loc name. The env material includes organic material and anthropogenic environmental material. The env biome
consists of marine biome and urban biome. The env feature spans coral reef, animal-associated habitat, plant-associated
habitat, anthropogenic environmental feature, and research facility. The sample type includes categories such as Turf
Algae, coral, hydrozoans, sponge, Boat Hull, Mangrove Leaf, and control swab. The scientific name categories include
algae metagenome, coral metagenome, sponge metagenome, and plant metagenome. The geo loc name feature provides
geographic labels such as US Virgin Islands and Aruba, offering richer contextual information.

Overall, Study 15573 features more complex metadata with greater categorical diversity across multiple fields and includes
detailed geographic context. In comparison, Study 1728 is more constrained in terms of both label space and feature variety.
These differences contribute to substantial domain shift, which presents a challenge for conventional machine learning
models trained on one study and evaluated on the other.

We also utilize a subset of the dataset released by the U.S. Geological Survey as part of the Great Lakes NowCast
project (Francy et al., 2021), specifically the calibration data collected at Huntington Beach, Ohio, during the 2005 and 2006
recreational seasons. The dataset contains seven variables. Date indicates the sampling date. EcoliAve CFU represents
the average concentration of Escherichia coli (E. Coli), measured in colony-forming units (CFU). Lake Temp C denotes
the lake water temperature in degrees Celsius, while Lake Turb NTRU captures the turbidity of the lake, measured in
Nephelometric Turbidity Units (NTU). WaveHt Ft indicates the height of waves in feet at the time of sampling. LL PreDay
refers to the change in lake level compared to the previous day. Lastly, AirportRain48W in measures the cumulative rainfall
over the past 48 hours as recorded at a nearby airport, expressed in inches.

B. Addtional Results

MODEL ACCURACY MACRO PREC. MACRO REC. MACRO F1

CHATGPT-4O (ZS) 1.0 1.0 1.0 1.0
CLAUDE 3.7 (ZS) 1.0 1.0 1.0 1.0
GROK-3 (ZS) 1.0 1.0 1.0 1.0
LLAMA 4 (ZS) 1.0 1.0 1.0 1.0

Table 8. Zero-shot sample type prediction on Study 15573.

We present additional zero-shot classification results on Study 15573 to further evaluate the robustness of LLMs under
different label and feature configurations.
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MODEL ACCURACY MACRO PREC. MACRO REC. MACRO F1

CHATGPT-4O (ZS) 1.0 1.0 1.0 1.0
CLAUDE 3.7 (ZS) 1.0 1.0 1.0 1.0
GROK-3 (ZS) 1.0 1.0 1.0 1.0
LLAMA 4 (ZS) 1.0 1.0 1.0 1.0

Table 9. Zero-shot scientific name prediction on Study 15573.

MODEL ACCURACY MACRO PREC. MACRO REC. MACRO F1

CHATGPT-4O (ZS) 0.4074 0.3824 0.5000 0.4091
CLAUDE 3.7 (ZS) 0.4074 0.3824 0.5000 0.4091
GROK-3 (ZS) 0.4074 0.3824 0.5000 0.4091
LLAMA 4 (ZS) 0.4074 0.3824 0.5000 0.4091

Table 10. Zero-shot scientific name prediction on Study 15573 without sample type feature.

Sample type prediction. As shown in Table 8, all LLMs achieved perfect accuracy when predicting the sample type field
using available metadata. This confirms that even simple categorical labels can be reliably inferred by LLMs in zero-shot
settings without fine-tuning.

Scientific name prediction. Table 9 reports results for predicting scientific name labels. Again, all LLMs achieved perfect
accuracy, indicating strong semantic reasoning over metadata features that are biologically descriptive.

Impact of removing sample type. To assess the importance of the features, we removed the sample type field and
repeated the scientific name classification. As seen in Table 10, accuracy drops significantly to 40.7% for all models, with
macro F1 around 0.41. This suggests that sample type is a critical contextual cue for correctly identifying scientific labels
and that LLMs are sensitive to the availability of relevant metadata features.

MODEL METRIC MEAN STD MIN MAX VALID N

CHATGPT-4O

ACCURACY 0.7070 0.0173 0.6721 0.7377 8
PRECISION 0.6892 0.0204 0.6482 0.7231 8
RECALL 0.6779 0.0182 0.6424 0.7037 8
F1 0.6802 0.0175 0.6445 0.7095 8

CLAUDE 4 SONET

ACCURACY 0.7067 0.0143 0.6885 0.7377 9
PRECISION 0.6877 0.0157 0.6659 0.7208 9
RECALL 0.6693 0.0223 0.6384 0.7208 9
F1 0.6731 0.0213 0.6420 0.7208 9

LLAMA 4

ACCURACY 0.7104 0.0205 0.6885 0.7377 3
PRECISION 0.6933 0.0225 0.6681 0.7228 3
RECALL 0.6874 0.0375 0.6384 0.7294 3
F1 0.6860 0.0341 0.6420 0.7252 3

GROK-3

ACCURACY 0.7085 0.0129 0.6885 0.7377 9
PRECISION 0.6943 0.0186 0.6681 0.7398 9
RECALL 0.6974 0.0283 0.6384 0.7551 9
F1 0.6924 0.0226 0.6420 0.7342 9

GEMINI 2.5 FLASH

ACCURACY 0.6885 0.0000 0.6885 0.6885 1
PRECISION 0.6950 0.0000 0.6950 0.6950 1
RECALL 0.7071 0.0000 0.7071 0.7071 1
F1 0.6855 0.0000 0.6855 0.6855 1

Table 11. Detailed statistics of LLM performance across 10 repeated runs (or fewer if response failures occurred) in Zero-shot E. Coli
level binary prediction based on the Data collected in 2006 from Huntington Beach, Ohio. We report the mean, standard deviation,
minimum, and maximum values, as well as the number of valid runs (Valid N) for each metric.
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To assess the robustness of each LLM, we repeated the zero-shot E. Coli classification task 10 times using the 2006
Huntington Beach dataset. Table 11 summarizes the mean, standard deviation, and range of evaluation metrics across
repeated runs. Notably, Claude 4 Sonnet and Grok-3 exhibited the most consistent performance, while models like LLaMA
4 and Gemini 2.5 Flash showed higher variance or failed to return valid predictions in multiple runs. These findings highlight
the varying stability and reliability of LLMs in structured binary classification tasks.

C. Prompt
C.1. Zero-shot EMPO 3 classification prompt example
Could you predict the "empo_3" values below(which is now in ’?’) with Animal (saline) or
Plant (saline) or Solid (non-saline) or Aqueous (saline) ?

env_material env_biome env_feature sample_type scientific_name geo_loc_name empo_3
0 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
1 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
2 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
3 organic material marine biome plant-associated habitat Mangrove Leaf plant metagenome US Virgin Islands ?
4 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
5 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
6 organic material marine biome animal-associated habitat hydrozoans hydrozoan metagenome Aruba ?
7 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
8 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
9 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
10 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
11 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
12 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
13 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
14 organic material marine biome anthrogenic environmental feature Boat Hull metagenome US Virgin Islands ?
15 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
16 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
17 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
18 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
19 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
20 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
21 organic material marine biome plant-associated habitat Mangrove Leaf plant metagenome US Virgin Islands ?
22 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
23 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
24 organic material marine biome coral reef Turf Algae algae metagenome Aruba ?
25 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
26 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?

C.2. Few-shot EMPO 3 classification prompt example

Based on this study:

env_material env_biome env_feature sample_type scientific_name empo_3
0 water desert biome road water filter freshwater metagenome Aqueous (non-saline)
1 water desert biome road water filter freshwater metagenome Aqueous (non-saline)
2 soil desert biome road soil soil metagenome Solid (non-saline)
3 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
4 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
5 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
6 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
7 water desert biome road water and LB broth freshwater metagenome Aqueous (non-saline)
8 soil desert biome road soil soil metagenome Solid (non-saline)
9 water desert biome road water and LB broth freshwater metagenome Aqueous (non-saline)
10 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
11 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
12 water desert biome road water and LB broth freshwater metagenome Aqueous (non-saline)
13 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
14 anthropogenic environmental material desert biome road asphalt outdoor metagenome Solid (non-saline)
15 water desert biome road water filter freshwater metagenome Aqueous (non-saline)
16 water desert biome road water filter freshwater metagenome Aqueous (non-saline)

env_material env_biome env_feature sample_type scientific_name geo_loc_name empo_3
0 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
1 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
2 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
3 organic material marine biome plant-associated habitat Mangrove Leaf plant metagenome US Virgin Islands ?
4 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
5 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
6 organic material marine biome animal-associated habitat hydrozoans hydrozoan metagenome Aruba ?
7 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
8 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
9 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
10 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
11 organic material marine biome coral reef Turf Algae algae metagenome US Virgin Islands ?
12 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
13 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
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14 organic material marine biome anthrogenic environmental feature Boat Hull metagenome US Virgin Islands ?
15 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?
16 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
17 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
18 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
19 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
20 anthropogenic environmental material urban biome research facility control swab metagenome US Virgin Islands ?
21 organic material marine biome plant-associated habitat Mangrove Leaf plant metagenome US Virgin Islands ?
22 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
23 organic material marine biome animal-associated habitat coral coral metagenome US Virgin Islands ?
24 organic material marine biome coral reef Turf Algae algae metagenome Aruba ?
25 organic material marine biome animal-associated habitat coral coral metagenome Aruba ?
26 organic material marine biome animal-associated habitat sponge sponge metagenome US Virgin Islands ?

Could you predict the "empo_3" values(which is now in ’?’) with Animal (saline) or Plant (saline) or Solid (non-saline) or Aqueous (saline) ?

C.3. Zero-shot E. Coli risk binary classification prompt example

Could you classify the following 56 rows using the Ecoli_binary label,
where 1 indicates non-safe freshwater and 0 indicates safe freshwater?

Date Lake_Temp_C Lake_Turb_NTRU WaveHt_Ft LL_PreDay AirportRain48W_in
2005-05-25 13.3 58.0 1.00 -0.099 0.0
2005-05-26 14.4 11.5 1.00 -0.256 0.0
2005-05-31 17.8 3.2 0.00 0.027 0.1
2005-06-01 17.8 3.5 0.50 0.045 0.0
2005-06-02 17.2 8.4 1.00 -0.062 0.0
2005-06-06 18.3 7.1 0.33 0.184 0.1
2005-06-07 20.0 9.3 0.50 -0.328 0.1
2005-06-08 20.0 3.0 0.00 0.108 0.0
2005-06-09 23.3 1.9 0.00 0.026 0.0
2005-06-13 24.4 2.9 0.00 0.079 0.1
2005-06-14 21.7 5.2 1.00 -0.069 0.3
2005-06-15 21.1 18.5 1.00 -0.148 1.1
2005-06-16 20.0 54.5 1.50 0.184 1.3
2005-06-20 22.2 32.5 0.50 -0.217 0.0
2005-06-21 21.7 26.0 0.50 -0.029 0.0
2005-06-22 22.8 23.0 0.50 0.029 0.2
2005-06-23 22.8 25.5 0.50 0.027 0.1
2005-06-27 24.4 9.8 0.00 -0.075 0.0
2005-06-28 23.9 4.2 0.00 0.049 0.0
2005-06-29 24.4 7.0 0.50 0.072 0.3
2005-06-30 24.4 3.6 0.00 -0.144 0.3
2005-07-05 24.4 6.2 1.00 0.069 0.0
2005-07-06 23.3 16.0 1.50 0.036 0.0
2005-07-07 24.4 12.0 1.00 -0.099 0.0
2005-07-11 24.4 3.8 0.50 0.004 0.0
2005-07-12 24.4 3.0 0.50 -0.073 0.0
2005-07-13 25.6 4.7 0.50 -0.009 0.0
2005-07-14 24.4 4.4 0.50 0.006 0.1
2005-07-18 25.0 4.4 0.50 -0.014 0.2
2005-07-19 24.4 4.3 0.50 0.050 0.4
2005-07-20 26.1 1.7 0.50 0.013 0.2
2005-07-21 23.9 6.1 0.50 -0.138 1.5
2005-07-25 25.6 8.3 0.50 -0.053 0.5
2005-07-26 25.6 2.3 0.50 -0.236 0.3
2005-07-27 24.4 62.5 5.00 0.857 2.9
2005-07-28 22.2 14.7 2.00 -0.584 1.9
2005-08-01 26.1 4.7 0.00 -0.003 0.0
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2005-08-02 26.7 3.0 0.50 -0.053 0.0
2005-08-03 27.2 2.0 0.00 0.007 0.0
2005-08-04 26.1 1.6 0.50 -0.089 0.0
2005-08-08 26.7 1.7 1.00 -0.052 0.0
2005-08-09 26.7 1.5 0.00 -0.138 0.0
2005-08-10 26.1 1.9 0.00 0.023 0.0
2005-08-11 26.1 8.0 2.00 0.253 0.3
2005-08-15 25.6 13.5 2.00 0.062 0.3
2005-08-16 24.4 4.8 0.33 -0.095 0.0
2005-08-17 25.6 2.3 0.17 -0.118 0.0
2005-08-18 25.0 2.3 0.66 -0.040 0.0
2005-08-22 24.4 86.5 3.00 0.076 3.6
2005-08-23 24.4 28.5 4.00 0.023 0.1
2005-08-24 24.4 10.2 2.50 -0.050 0.1
2005-08-25 24.4 10.0 2.00 -0.032 0.0
2005-08-29 23.3 2.7 0.50 -0.282 1.2
2005-08-30 23.3 2.4 0.50 0.207 0.0
2005-09-01 22.8 52.0 2.33 -0.167 2.2
2005-09-06 21.7 21.5 1.00 -0.229 0.0

Please show the result in Python list format.

C.4. Few-shot E. Coli risk binary classification prompt example

Based on below study:

Date Lake_Temp_C Lake_Turb_NTRU WaveHt_Ft LL_PreDay AirportRain48W_in Ecoli_binary
2006-06-01 20.0 3.9 0.50 0.040 0.7 0
2006-06-05 18.3 21.8 0.50 -0.010 0.2 0
2006-06-06 18.9 10.0 0.00 0.029 0.0 0
2006-06-07 21.1 3.7 0.00 0.030 0.0 0
2006-06-08 20.0 13.5 0.50 0.010 0.0 1
2006-06-12 18.3 41.1 2.50 0.017 0.0 0
2006-06-13 18.3 27.5 1.50 -0.158 0.0 0
2006-06-14 18.9 6.7 0.50 -0.046 0.0 0
2006-06-15 18.9 22.1 1.00 -0.003 0.0 0
2006-06-19 20.0 11.9 0.50 0.217 1.6 1
2006-06-20 20.6 7.3 1.00 0.092 1.9 0
2006-06-21 21.7 3.8 0.00 -0.325 0.6 0
2006-06-22 21.1 17.2 0.00 0.203 4.6 1
2006-06-23 20.0 5.6 0.00 0.105 3.7 0
2006-06-24 21.1 35.0 2.50 -0.062 0.8 1
2006-06-25 22.8 9.8 0.00 0.148 0.1 1
2006-06-26 21.1 11.2 0.50 -0.017 0.0 0
2006-06-27 21.1 14.5 0.00 0.105 0.7 1
2006-07-01 22.8 5.0 0.00 -0.053 0.0 0
2006-07-02 22.8 5.0 0.00 -0.269 0.0 0
2006-07-03 23.3 5.9 0.50 0.158 0.2 0
2006-07-04 21.7 9.1 0.00 0.095 1.1 0
2006-07-05 21.1 57.5 2.50 0.128 0.6 1
2006-07-11 23.9 7.6 0.50 0.214 0.2 1
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2006-07-12 22.8 4.7 0.00 -0.161 1.3 1
2006-07-13 22.2 16.7 1.00 0.272 0.8 1
2006-07-14 22.8 4.2 0.50 -0.085 0.1 0
2006-07-15 23.3 19.4 0.00 0.065 1.0 1
2006-07-16 23.9 4.0 0.00 -0.121 0.5 0
2006-07-18 26.1 5.8 0.50 -0.174 0.0 1
2006-07-22 25.6 23.1 3.00 0.180 0.6 1
2006-07-24 25.6 5.1 0.00 -0.124 0.1 0
2006-07-25 25.0 3.8 0.50 -0.142 0.0 0
2006-07-26 25.6 2.9 0.00 0.119 0.6 0
2006-07-27 24.4 4.4 0.50 0.101 1.1 1
2006-07-28 24.4 9.9 1.00 0.315 2.7 1
2006-07-29 26.1 2.5 0.00 -0.246 1.1 0
2006-07-30 26.7 4.4 0.00 0.063 0.0 0
2006-07-31 26.7 2.7 0.00 -0.112 0.9 0
2006-08-01 27.2 2.0 0.00 -0.023 0.5 0
2006-08-02 27.2 3.2 0.00 0.026 0.0 0
2006-08-03 26.7 7.8 0.50 0.296 0.0 1
2006-08-04 25.6 40.6 3.50 -0.122 0.2 1
2006-08-05 26.1 40.1 3.00 -0.003 0.1 1
2006-08-06 25.6 13.3 0.67 -0.141 0.0 0
2006-08-07 26.7 4.5 0.00 -0.125 0.1 0
2006-08-14 25.0 6.8 0.00 -0.157 0.0 0
2006-08-15 26.1 28.8 2.50 0.101 0.3 1
2006-08-16 25.0 6.9 0.50 0.020 0.1 0
2006-08-17 26.1 5.3 0.33 0.000 0.0 0
2006-08-18 25.6 6.8 0.00 -0.072 0.0 0
2006-08-19 24.4 3.5 0.00 0.062 0.4 0
2006-08-20 23.9 29.8 2.50 0.013 0.5 1
2006-08-21 23.3 32.9 1.50 -0.105 0.1 0
2006-08-22 25.0 9.0 0.00 -0.009 0.0 0
2006-08-23 25.0 6.2 0.50 0.085 0.0 0
2006-08-24 24.4 5.9 0.00 0.006 0.0 0
2006-08-28 24.4 32.2 1.50 0.069 0.4 0
2006-08-29 24.4 258.0 5.00 0.640 2.6 1
2006-08-30 23.3 162.8 2.50 -0.558 1.4 1
2006-08-31 23.3 83.0 4.00 0.229 0.0 1

Could you classify the following 56 rows using the Ecoli_binary label, where 1 indicates non-safe freshwater and 0 indicates safe freshwater?

Date Lake_Temp_C Lake_Turb_NTRU WaveHt_Ft LL_PreDay AirportRain48W_in
2005-05-25 13.3 58.0 1.00 -0.099 0.0
2005-05-26 14.4 11.5 1.00 -0.256 0.0
2005-05-31 17.8 3.2 0.00 0.027 0.1
2005-06-01 17.8 3.5 0.50 0.045 0.0
2005-06-02 17.2 8.4 1.00 -0.062 0.0
2005-06-06 18.3 7.1 0.33 0.184 0.1
2005-06-07 20.0 9.3 0.50 -0.328 0.1
2005-06-08 20.0 3.0 0.00 0.108 0.0
2005-06-09 23.3 1.9 0.00 0.026 0.0
2005-06-13 24.4 2.9 0.00 0.079 0.1
2005-06-14 21.7 5.2 1.00 -0.069 0.3
2005-06-15 21.1 18.5 1.00 -0.148 1.1
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2005-06-16 20.0 54.5 1.50 0.184 1.3
2005-06-20 22.2 32.5 0.50 -0.217 0.0
2005-06-21 21.7 26.0 0.50 -0.029 0.0
2005-06-22 22.8 23.0 0.50 0.029 0.2
2005-06-23 22.8 25.5 0.50 0.027 0.1
2005-06-27 24.4 9.8 0.00 -0.075 0.0
2005-06-28 23.9 4.2 0.00 0.049 0.0
2005-06-29 24.4 7.0 0.50 0.072 0.3
2005-06-30 24.4 3.6 0.00 -0.144 0.3
2005-07-05 24.4 6.2 1.00 0.069 0.0
2005-07-06 23.3 16.0 1.50 0.036 0.0
2005-07-07 24.4 12.0 1.00 -0.099 0.0
2005-07-11 24.4 3.8 0.50 0.004 0.0
2005-07-12 24.4 3.0 0.50 -0.073 0.0
2005-07-13 25.6 4.7 0.50 -0.009 0.0
2005-07-14 24.4 4.4 0.50 0.006 0.1
2005-07-18 25.0 4.4 0.50 -0.014 0.2
2005-07-19 24.4 4.3 0.50 0.050 0.4
2005-07-20 26.1 1.7 0.50 0.013 0.2
2005-07-21 23.9 6.1 0.50 -0.138 1.5
2005-07-25 25.6 8.3 0.50 -0.053 0.5
2005-07-26 25.6 2.3 0.50 -0.236 0.3
2005-07-27 24.4 62.5 5.00 0.857 2.9
2005-07-28 22.2 14.7 2.00 -0.584 1.9
2005-08-01 26.1 4.7 0.00 -0.003 0.0
2005-08-02 26.7 3.0 0.50 -0.053 0.0
2005-08-03 27.2 2.0 0.00 0.007 0.0
2005-08-04 26.1 1.6 0.50 -0.089 0.0
2005-08-08 26.7 1.7 1.00 -0.052 0.0
2005-08-09 26.7 1.5 0.00 -0.138 0.0
2005-08-10 26.1 1.9 0.00 0.023 0.0
2005-08-11 26.1 8.0 2.00 0.253 0.3
2005-08-15 25.6 13.5 2.00 0.062 0.3
2005-08-16 24.4 4.8 0.33 -0.095 0.0
2005-08-17 25.6 2.3 0.17 -0.118 0.0
2005-08-18 25.0 2.3 0.66 -0.040 0.0
2005-08-22 24.4 86.5 3.00 0.076 3.6
2005-08-23 24.4 28.5 4.00 0.023 0.1
2005-08-24 24.4 10.2 2.50 -0.050 0.1
2005-08-25 24.4 10.0 2.00 -0.032 0.0
2005-08-29 23.3 2.7 0.50 -0.282 1.2
2005-08-30 23.3 2.4 0.50 0.207 0.0
2005-09-01 22.8 52.0 2.33 -0.167 2.2
2005-09-06 21.7 21.5 1.00 -0.229 0.0

Please show the result in Python list format.
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