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ABSTRACT

In this work, we tackle a challenging and extreme form of subpopulation shift,
which is termed compositional shift. Under compositional shifts, some combina-
tions of attributes are totally absent from the training distribution but present in
the test distribution. We model the data with flexible additive energy distributions,
where each energy term represents an attribute, and derive a simple alternative to
empirical risk minimization termed compositional risk minimization (CRM). We
first train an additive energy classifier to predict the multiple attributes and then
adjust this classifier to tackle compositional shifts. We provide an extensive theo-
retical analysis of CRM, where we show that our proposal extrapolates to special
affine hulls of seen attribute combinations. Empirical evaluations on benchmark
datasets confirms the improved robustness of CRM compared to other methods
from the literature designed to tackle various forms of subpopulation shifts.

1 INTRODUCTION

The ability to make sense of the rich complexity of the sensory world by decomposing it into sets of
elementary factors and recomposing these factors in new ways is a hallmark of human intelligence.
This capability is typically grouped under the umbrella term compositionality (Fodor & Pylyshyn,
1988; Montague, 1970). Compositionality underlies both semantic understanding and the imaginative
prowess of humans, enabling robust generalization and extrapolation. For instance, human language
allows us to imagine situations we have never seen before, such as “a blue elephant riding a bicycle
on the Moon.” While most works on compositionality have focused on its generative aspect, i.e.,
imagination, as seen in diffusion models (Yang et al., 2023a), compositionality is equally important
in discriminative tasks. In these tasks, the goal is to make predictions in novel circumstances that
are best described as combinations of circumstances seen before. In this work, we dive into this
less-explored realm of compositionality in discriminative tasks.

We work with multi-attribute data, where each input (e.g., an image) is associated with multiple
categorical attributes, and the task is to predict an attribute or multiple attributes. During training,
we observe inputs from only a subset of all possible combinations of individual attributes, and
during test we will see novel combinations of attributes never seen at training. Following, Liu et al.
(2023), we refer to this distribution shift as compositional shift. These distribution shifts can also
be viewed as an extreme case of subpopulation shift (Yang et al., 2023b). Towards the goal of
tackling these compositional shifts, we develop an adaptation of naive discriminative Empirical
Risk Minimization (ERM) tailored for multi-attribute data under compositional shifts. We term our
approach Compositional Risk Minimization (CRM). The foundations of CRM are built on additive
energy distributions that are studied in generative compositionality (Liu et al., 2022a), where each
energy term represents one attribute. In CRM, we first train an additive energy classifier to predict all
the attributes jointly, and then we adjust this classifier for compositional shifts.

Our main contributions are as follows:

• Theory of discriminative compositional shifts: For the family of additive energy distributions,
we prove that additive energy classifiers generalize compositionally to novel combinations
of attributes represented by a special mathematical object, which we call discrete affine
hull. Our characterization of extrapolation is sharp, i.e., we show that it is not possible to
generalize beyond discrete affine hull. We show that the volume of discrete affine hull grows
fast in the number of training attribute combinations thus generalizing to many attribute
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Figure 1: The additive energy classifier trained in CRM computes the logits for each group z = (y, a)
by adding the energy components of each attribute via boradcasting. For the train logits, we add the
log of the prior probabilities and a learned bias B(y, a) for the groups present in train data. At test
time, the log prior term is replaced with the log of the test prior (if available, otherwise assumed to
be uniform), and the biases for novel test groups, B⋆(y, a), are extrapolated using Eq.10. Finally,
we obtain p(y, a|x) by applying softmax function on the adjusted logits. This adaptation from train
to test is possible because of the additive energy distribution p(x|y, a), which allows the model to
factorize the distribution into distinct components associated with each attribute.

combinations. The proofs developed in this work are quite different from existing works on
distribution shifts and hence may be of independent interest.

• A practical method: CRM is a simple algorithm for training classifiers, which first trains an
additive energy classifier and then adjusts the trained classifier for tackling compositional
shifts. We empirically validate the superiority of the CRM algorithm to other algorithms
previously proposed for robustness to various forms of subpopulation shifts.

2 RELATED WORKS

Compositional Generalization Compositionality has long been seen as an essential capability
(Fodor & Pylyshyn, 1988; Hinton, 1990; Plate et al., 1991; Montague, 1970) on the path to building
human-level intelligence. The history of compositionality being too long to cover in detail here, we
refer the reader to these surveys (Lin et al., 2023; Sinha et al., 2024). Most prior works have focused
on generative aspect of compositionality, where the model needs to recombine individual distinct
factors/concepts and generate the final output in the form of text (Gordon et al., 2019; Lake & Baroni,
2023) or image. For image generation in particular, a fruitful line of work is rooted in additive energy
based models (Du et al., 2020; 2021; Liu et al., 2021; Nie et al., 2021), which translates naturally
to additive diffusion models (Liu et al., 2022a; Su et al., 2024). Our present work also leverages an
additive energy form, but our focus is on learning classifiers robust under compositional shifts, rather
than generative models.

On the theoretical side, recently, there has been a growing interest in building provable approaches
for compositional generalization (Dong & Ma, 2022; Wiedemer et al., 2023; 2024; Brady et al.,
2023; Lachapelle et al., 2024). These works study models where the labeling function or the
decoder is additive over individual features, and prove generalization guarantees over the Cartesian
product of the support of individual features. While these works take promising and insightful first
steps for provable compositional guarantees, the assumption of additive deterministic decoders may
come as quite restrictive. In particular a given attribute combination can then only correspond to a
unique observation, produced by a very limited interaction between generative factors, not to a rich
distribution of observations. By contrast an additive energy model can associate an almost arbitrary
distribution over observations to a given set of attributes. Based on this more realistic assumption of
additive energy, our goal is to develop an approach that provably enables zero-shot compositional
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generalization in discriminative tasks, where the model needs to robustly predict never seen before
factor combinations that the input is composed of.

Domain Generalization Generalization under subpopulation shifts, where certain groups or combi-
nations of attributes are underrepresented in the training data, is a well-known challenge in machine
learning. Group Distributionally Robust Optimization (GroupDRO) (Sagawa et al., 2019) is a promi-
nent method that minimizes the worst-case group loss to improve robustness across groups. Invariant
Risk Minimization (IRM) (Arjovsky et al., 2019) encourages the model to learn invariant representa-
tions that perform well across multiple environments. Perhaps the simplest methods are SUBG and
RWG (Idrissi et al., 2022), which focus on constructing a balanced subset or reweighting examples
to minimize or eliminate spurious correlations. There are many other interesting approaches that
were proposed, see the survey (Zhou et al., 2022) for details. The theoretical guarantees developed
for these approaches (Rosenfeld et al., 2020; Arjovsky et al., 2019; Ahuja et al., 2020) require a
large diversity in terms of the environments seen at the training time. In our setting, we incorporate
inductive biases based on additive energy distributions that help us arrive at provable generalization
with limited diversity in the environments.

Closely related to our proposed method are the logit adjustment methods Kang et al. (2019); Menon
et al. (2020); Ren et al. (2020) used in robust classification. Kang et al. (2019) introduced Label-
Distribution-Aware Margin (LDAM) loss for long-tail learning, proposing a method that adjusts the
logits of a classifier based on the class frequencies in the training set to counteract bias towards
majority classes. Closest to our work are the Logit Correction (LC) (Liu et al., 2022b) and Super-
vised Logit Adjustment (sLA) (Tsirigotis et al., 2024) methods that use logit adjustment for group
robustness. LC adjusts logits based on the joint distribution of environment and class label, reducing
reliance on spurious features in imbalanced training sets. Supervised Logit Adjustment (sLA) adjusts
logits according to the conditional distribution of classes given the environment.

3 PROBLEM SETTING

3.1 GENERALIZING UNDER COMPOSITIONAL DISTRIBUTION SHIFT

In compositional generalization, we aim to build a classifier that performs well in new contexts that
are best described as a novel combination of seen contexts. Consider an input x (e.g., image), this
input belongs to a group that is characterized by an attribute vector z = (z1, . . . , zm) (e.g., class
label, background label), where zi corresponds to the value of ith attribute. There are m attributes
and each attribute zi can take d possible values. So z ∈ Z with Z = {1, . . . , d}m.

We use the Waterbirds dataset as the running example (Sagawa et al., 2019). Each image x has two
attributes summarized in the attribute vector z = (y, a), where y tells the class of the bird – Waterbird
(WB) or Landbird (LB), and a tells the type of the background – Water (W) or Land (L). Our training
distribution consists of data from three groups – (WB,W), (LB,L), (LB,W). Our test distribution
also consists of points from the remaining group (WB,L) as well. We seek to build class predictors
that perform well on such test distributions that contain new groups. This problem setting differs from
the standard problem studied in (Sagawa et al., 2019; Kirichenko et al., 2022), where we observe data
from all the groups but some groups present much more data than the others.

Formally, let p(x, z) = p(z)p(x|z) denote the train distribution, and q(x, z) = q(z)q(x|z) the test
distribution. We denote the support of each attribute component zi under training distribution as
Ztrain

i and the support of z under training distribution as Ztrain. The corresponding supports for the
test distribution are denoted as Ztest

i and Ztest. We define the Cartesian product of marginal support
under training as Z× := Ztrain

1 ×Ztrain
2 × · · · Ztrain

m .

In this work, we study compositional shifts that are characterized by:

1. p(x|z) = q(x|z),∀z ∈ Z×.

2. Ztest ̸⊆ Ztrain but Ztest ⊆ Z×.

The first point states that the conditional density of inputs conditioned on attributes remains invariant
from train to test, which can be understood as the data generation mechanism from attributes to
the inputs remains invariant. What changes between train and test is thus due to only shifting prior
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probabilities of attributes from p(z) to q(z). The second point specifies how these differ in their
support: at test we observe novel combinations of individual attributes but not a completely new
individual attribute. The task of compositional generalization is then to build classifiers that are
robust to such compositional distribution shifts. Also, we remark that the above notion should remind
the reader of the notion of Cartesian Product Extrapolation (CPE) from Lachapelle et al. (2024).
Specifically, if a model succeeds on test distributions q(z) that have a support equal to the full
Cartesian product, i.e., Ztest = Z×, then it is said to achieve CPE.

3.2 ADDITIVE ENERGY DISTRIBUTION

We assume that p(x|z) is of the form of an additive energy distribution (AED):

p(x|z) = 1

Z(z)
exp

(
−

m∑
i=1

Ei(x, zi)
)

(1)

where Z(z) :=
∫

exp
(
−
∑m

i=1Ei(x, zi)
)
dx is the partition function that ensures that the probability

density p(x|z) integrates to one. Also, the support of p(x|z) is assumed to be Rn, ∀z ∈ Z×.

We thus have one energy termEi associated to each attribute zi. Note that we do not make assumptions
on Ei except Z(z) <∞, leaving the resulting p(x|z) very flexible. This form is a natural choice to
model inputs that must satisfy a conjunction of characteristics (such as being a natural image of a
landbird AND having a water background), corresponding to our attributes.

There are two lines of work that inspire the choice of additive energy distributions. Firstly, these
distributions have been used to enhance compositionality in generative tasks (Du et al., 2020; 2021;
Liu et al., 2021) but they have not been used in discriminative compositionality. Secondly, for
readers from the causal machine learning community, it may be useful to think of additive energy
distributions from the perspective of the independent mechanisms principle (Janzing & Schölkopf,
2010; Parascandolo et al., 2018). The principle states that the data distribution is composed of
independent data generation modules, where the notion of independence refers to algorithmic
independence and not statistical independence. In these distributions, we think of energy functions of
different attributes as independent functions.

Recall z = (z1, . . . , zm) is a vector of m categorical attributes that can each take d possible values.
We will denote as σ(z) the representation of this attribute vector as a concatenation of m one-hot
vectors, i.e.

σ(z) = [onehot(z1), . . . , onehot(zm)]⊤

Thus σ(z) will be a sparse vector of length md containing m ones.

We also define a vector valued mapE(x) = [E1(x, 1), . . . , E1(x, d), . . . , Em(x, 1), . . . , Em(x, d)]⊤

where Ei(x, zi) is the energy term for ith attribute taking the value zi.

This allows us to reexpress equation 1 using a simple dot product, denoted ⟨·, ·⟩:

p(x|z) = 1

Z(z)
exp

(
− ⟨σ(z), E(x)⟩

)
, (2)

where Z(z) =
∫

exp
(
− ⟨σ(z), E(x)⟩

)
dx is the partition function.

4 PROVABLE COMPOSITIONAL GENERALIZATION

Our goal is to learn a distribution q̂(z|x) that matches the test distribution q(z|x) and predict the
attributes at test time in a Bayes optimal manner. If we successfully learn the distribution q(z|x),
then we can also predict the individual attributes q(zi|x), e.g., the bird class in Waterbirds dataset,
by marginalizing over the rest of the attributes, e.g., the background in Waterbirds dataset. Observe
that q(z|x) differs from the training p(z|x), which can be estimated through standard ERM with
cross-entropy loss. Since some attributes z observed at test time are never observed at train time, the
distribution learned via ERM assigns a zero probability to these attributes and thus it cannot match
the test distribution q(z|x).
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In what follows, we first introduce a novel mathematical object termed Discrete Affine Hull over the set
of attributes. We then describe a generative approach for classification that requires us to learn p(x|z)
including the partition function, which is not practical. Next, we describe a purely discriminative
approach that circumvents the issue of learning p̂(x|z) and achieves the same extrapolation guarantees.
We present the generative approach as it allows to understand the results more easily. Building
generative models based on our theory is out of scope of this work but is an exciting future work.

4.1 DISCRETE AFFINE HULL

We define the discrete affine hull of a set of attribute vectors A = {z(1), . . . , z(k)} where z(i) ∈ Z ,
as:

DAff(A) =
{
z ∈ Z | ∃ α ∈ Rk, σ(z) =

k∑
i=1

αiσ
(
z(i)
)
,

k∑
i=1

αi = 1
}

In other words, the discrete affine hull of A is the set of all possible attribute vectors whose one-hot
encoding is in the (regular) affine hull of the one-hot encodings of the attribute vectors of A. This
construct will be used to characterize what new combinations of attributes we can extrapolate to. We
now give a simple example to illustrate discrete affine hull.

Let us revisit the Waterbirds dataset. Suppose we observe data from three out of the four groups. In
one-hot encoding, we represent WB as [1, 0] and LB as [0, 1]. We represent Water as [1, 0] and Land
as [0, 1]. Below we show that the attribute vector WB on L represented as [1 0 0 1] can be expressed
as an affine combination of the remaining three attribute vectors. Based on this, we can conclude that
the discrete affine hull of three one-hot concatenated vectors contains all the four possible one-hot
concatenations.

(+1) ·

010
1

 + (−1) ·

011
0

 + (+1) ·

101
0

 =

100
1

 (3)

In Section B.4, we generalize the above finding and develop a mathematical characterization of
discrete affine hulls that leads to an easy recipe to visualize these sets. In the remainder whenever we
use affine hull it means discrete affine hull.

4.2 EXTRAPOLATION OF CONDITIONAL DENSITY

We learn a set of conditional probability densities p̂(x|z) = 1
Ẑ(z) exp

(
−⟨σ(z), Ê(x)⟩

)
,∀z ∈ Ztrain

by maximizing the likelihood over the training distribution, where Ê denotes the estimated energy
components and Ẑ denotes the estimated partition function. Under perfect maximum likelihood
maximization p̂(x|z) = p(x|z) for all the training groups z ∈ Ztrain. We can define p̂(x|z) for all
z ∈ Z× beyond Ztrain in a natural way as follows. For each z ∈ Z×, we have estimated the energy
for every individual component zi denoted Êi(x, zi). We set Ẑ(z) =

∫
exp

(
− ⟨σ(z), Ê(x)⟩

)
dx

and the density for each z ∈ Z×, p̂(x|z) = 1
Ẑ(z) exp

(
− ⟨σ(z), Ê(x)⟩

)
.

Theorem 1. If the true and learned distribution (p(·|z) and p̂(·|z)) are additive energy distributions,
then p̂(·|z) = p(·|z),∀z ∈ Ztrain =⇒ p̂(·|z′) = p(·|z′),∀z′ ∈ DAff(Ztrain).

The result above argues that so long as the group z′ is in the discrete affine hull ofZtrain, the estimated
density extrapolates to it.

Proof sketch: Under perfect maximum likelihood maximization p̂(x|z) = p(x|z),∀z ∈ Ztrain.
Replacing these densities by their expressions and taking their log we obtain

⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩+ C(z),∀z ∈ Ztrain (4)

where C(z) = log
(
Z(z)/Ẑ(z)

)
.

For any z′ ∈ DAff(Ztrain), by definition there exists α such that σ(z′) =
∑

z∈Ztrain αzσ(z). Thus
⟨σ(z′), Ê(x)⟩ =

∑
z∈Ztrain αz ⟨σ(z), Ê(x)⟩, by linearity of the dot product. Substituting the expres-

sion for ⟨σ(z), Ê(x)⟩ from equation 4, this becomes

5
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⟨σ(z′), Ê(x)⟩ =
∑

z∈Ztrain

αz

(
⟨σ(z), E(x)⟩+ C(z)

)
= ⟨σ(z′), E(x)⟩+

∑
z∈Ztrain

αzC(z), (5)

From equation 5, we can conclude that ⟨σ(z′), Ê(x)⟩ estimates ⟨σ(z′), E(x)⟩ perfectly up to a
constant error that does not depend on x. This difference of constant is absorbed by the partition
function and hence the conditional densities match: p̂(x|z′) = p(x|z′).

Using extrapolation of conditional density for compositional generalization of classification.
If, on data from training distribution p, we were able to train a good conditional density estimate
p̂(x|z),∀z ∈ Ztrain, then Theorem 1 implies that p̂(x|z′) will also be a good estimate of p(x|z′) for
new unseen attributes z′ ∈ DAff(Ztrain). Provided Ztest ⊆ DAff(Ztrain), it is then straightforward to
obtain a classifier that generalizes to compositionally-shifted test distribution q. Indeed, we have

q(z′|x) = q(x|z′)q(z′)∑
z′′∈Ztest q(x|z′′)q(z′′)

=
p(x|z′)q(z′)∑

z′′∈Ztest p(x|z′′)q(z′′)
≈ p̂(x|z′)q(z′)∑

z′′∈Ztest p̂(x|z′′)q(z′′)

where we used the property of compositional shifts q(x|z) = p(x|z). If we know test group prior
q(z′) (or e.g. assume it to be uniform), we can directly use the expression in RHS to correctly
compute the test group probabilities q(z|x), even those for attribute combinations never seen at
training.

4.3 EXTRAPOLATION OF DISCRIMINATIVE MODEL

In Section 4.2, we saw how we could, in principle, obtain a classifier that generalizes under compo-
sitional shift, by first training conditional probability density models p̂(x|z). But high dimensional
probability density modeling remains very challenging, and involves dealing with intractable partition
functions. It is typically deemed much simpler to learn a discriminative classifier.

Can we achieve the same extrapolation without having to estimate the entire distribution of x
conditional on z? This question brings us to our method, which we refer to as Compositional Risk
Minimization (CRM).

Observe that if we apply Bayes rule to the AED p(x|z) in equation 2, we get

p(z|x) = p(x|z)p(z)∑
z′∈Ztrain p(x|z′)p(z′)

=
exp

(
− ⟨σ(z), E(x)⟩+ log p(z)− logZ(z)

)
∑

z′∈Ztrain exp
(
− ⟨σ(z′), E(x)⟩+ log p(z′)− logZ(z′)

)
We thus define our additive energy classifier as follows. To guarantee that we can model this p(z|x),
we use a model with the same form. For each z ∈ Ztrain

p̃(z|x) =
exp

(
− ⟨σ(z), Ẽ(x)⟩+ log p̂(z)− B̃(z)

)
∑

z′∈Ztrain exp

(
− ⟨σ(z′), Ẽ(x)⟩+ log p̂(z′)− B̃(z′)

) , (6)

where p̂(z) is the empirical estimate of the prior over z, i.e., p(z), Ẽ : Rn → Rmd is a function to
be learned, bias B̃ is a lookup table containing a learnable offset for each combination of attribute.
Given a data point (x, z), loss ℓ(z, p̃(·|x)) = − log p̃(z|x) measures the prediction performance of
p̃(·|x). The risk is defined as the expected loss as follows

R(p̃) = E(x,z)∼p

[
ℓ(z, p̃(·|x))

]
= E(x,z)∼p

[
− log p̃(z|x)

]
. (7)
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In the first step of CRM, we minimize the risk R.

Ê, B̂ ∈ argmin
Ẽ,B̃

R(p̃). (8)

If the minimization is over arbitrary functions, then p̂(·|x) = p(·|x),∀x ∈ Rn. In the second step
of CRM, we compute our final predictor q̂(z|x) as follows. Let q̂(z) be an estimate of the marginal
distribution over the attributes q(z) with support Ẑtest. We define, for each z ∈ Ztest,

q̂(z|x) =
exp

(
− ⟨σ(z), Ê(x)⟩+ log q̂(z)−B⋆(z)

)
∑

z′∈Ẑtest exp

(
− ⟨σ(z′), Ê(x)⟩+ log q̂(z′)−B⋆(z′)

) , (9)

where, B⋆ is the extrapolated bias defined as

B⋆(z) = log

(
Ex∼p(x)

[
exp

(
− ⟨σ(z), Ê(x)⟩

)
∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]) (10)

where Ê, B̂ are the solutions from optimization equation 8. Each of these steps is easy to operational-
ize. We explain the process and provide pseudocode in Section 5 .
Theorem 2. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, the test distribution q
satisfies compositional shift characterization and Ztest ⊆ DAff(Ztrain). If p̂(z|x) = p(z|x),∀z ∈
Ztrain,∀x ∈ Rn and q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM (equation 9) matches the test
distribution, i.e., q̂(z|x) = q(z|x),∀z ∈ Ztest,∀x ∈ Rn.

A complete proof is provided in the Appendix. Observe that p̂(·|x) = p(·|x) is a condition that even
a model trained via ERM can satisfy (with sufficient capacity and data) but it cannot match the true
q(·|x). In contrast, CRM optimally adjusts the additive-energy classifier for the compositional shifts.
CRM requires the knowledge of q(·) but the choice of uniform distribution over all possible groups is
a safe one to make in the absence of knowledge of q(·). Notice how learned bias B̂(z) can only be
fitted for z ∈ Ztrain, remaining undefined for z′ /∈ Ztrain. But we can compute the extrapolated bias
B⋆(z′), ∀z′ ∈ Ztest, based remarkably on only data from the training distribution.

In the discussion so far, we have relied on a crucial assumption that the attribute combinations in
the test distribution are in the affine hull. Is this also a necessary condition? Can we generalize to
attributes outside the affine hull? We consider the task of learning p(·|z) from Theorem 1 and the
task of learning q(·|x) from Theorem 2. In Section B.5 in the Appendix, we show that the restriction
to affine hulls is indeed necessary.

Under the assumption of compositional shifts, we know that the support of q(z), Ztest is only
restricted to be a subset of the Cartesian product set Z×, but our results so far have required us to
restrict the support further by confining it to the affine hull, i.e., Ztest ⊆ DAff(Ztrain) ⊆ Z×. This
leads us to a natural question. If the training groups that form Ztrain are drawn at random, then how
many groups do we need such that the affine hull captures Z×, i.e., DAff(Ztrain) = Z×, at which
point CRM can achieve Cartesian Product Extrapolation. Another way to think about this is to say,
how fast does the affine hull grow and capture the Cartesian product set Z×?

Consider the the setting withm = 2 attribute dimensions, where each attribute takes d possible values.
In such a case, we have d2 possible attribute combinations. Suppose we sample s attribute vectors z
that comprise the support Ztrain uniformly at random (with replacement) from these d2 possibilites.
In the next theorem, we show that if the number of sampled attribute vectors exceeds 8cd log(d), then
the affine hull of Ztrain contains all the possible d2 combinations with a high probability and as a
result CRM achieves CPE.
Theorem 3. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, Ztrain comprises of s attribute
vectors z drawn uniformly at random from Z×, and the test distribution q satisfies compositional
shift characterization. If s ≥ 8cd log(d/2), where d is sufficiently large, p̂(z|x) = p(z|x),∀z ∈
Ztrain,∀x ∈ Rn, q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM (equation 9) matches the test
distribution, i.e., q̂(z|x) = q(z|x), ∀z ∈ Ztest,∀x ∈ Rn, with probability greater than 1− 1

c .
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For the more general setting of m attributes, we conjecture that a polynomial growth in md, i.e.,
O(poly(md)), groups suffice to generalize to distributions whose support span dm groups. To support
this conjecture, we conduct numerical experiments (described in the Appendix D.4), where we show
that a random z′ ∈ Z× is in the affine span of a random set of O(md) training groups z with a high
probability. To summarize, these results point to a surprising fact that, we need to see data from a
much smaller number of groups to achieve extrapolation to an exponentially large set.

5 ALGORITHM FOR COMPOSITIONAL RISK MINIMIZATION (CRM)

In a nutshell, CRM consists of: a) training a model of the form of equation 6 by maximum likelihood
(equation 8) for trainset group prediction; b) compute extrapolated biases (equation 10); c) infer group
probabilities on compositionally shifted test distribution using equation 9. For the case where we have
2 attributes z = (y, a), Figure 1 illustrates a basic architecture using a deep network backbone ϕ(x; θ)
followed by a linear mapping (matrix W ), and Algorithm 1 provides the associated pseudo-code.1

Algorithm 1: Compositional Risk Minimization (CRM)

Input: training set Dtrain with examples (x, y, a), where y is the class to predict and a is an
attribute spuriously correlated with y

Output: classifier parameters θ, W , B⋆.
• Let L,B ∈ Rdy×da be the log prior and the bias terms.
• Define logits: FL,B(x) := −((W · ϕ(x; θ))1:dy

+ (W · ϕ(x; θ))⊤dy+1:dy+da
) + L−B

• Define log probabilities: log p(y, a|x; θ,W,L,B) := (FL,B(x)− logsumexp(FL,B(x)))y,a

Training:
• Estimate log prior Ltrain from Dtrain; Ltrain

y,a ← −∞ if (y, a) absent from Dtrain.

• Optimize θ, W , and B to maximize the log-likelihood over Dtrain:
θ,W,B ← argmaxθ,W,B

∑
(x,y,a)∈Dtrain log p(y, a|x; θ,W,Ltrain, B)

• Extrapolate bias: B⋆ ← log
(
1
n

∑
x∈Dtrain exp(F0,0(x)− logsumexp(FLtrain,B(x)))

)
Inference on test point x:

• Compute group probabilities, using B⋆, and Lunif = log 1
dyda

aiming for shift to uniform prior:
q(y, a|x)← exp(log p(y, a|x; θ,W,Lunif , B⋆))

• Marginalize over a to get class probabilities: q(y|x)←
∑

a q(y, a|x)

6 EXPERIMENTS

6.1 SETUP

We evaluate CRM on widely recognized benchmarks for subpopulation shifts (Yang et al., 2023b),
that have 2 attributes z = (y, a), where y denotes the class label and a denotes the spurious attribute
(y and a are correlated). However, the standard split between train and test data mandated in these
benchmarks does not actually evaluate robustness to compositional shifts, because both train and test
datasets contain all the groups (Ztrain = Ztest = Z×). Therefore, we repurpose these benchmarks
for compositional shifts by discarding samples from one of the groups (z) in the train (and validation)
dataset; but we don’t change the test dataset, i.e., z ̸∈ Ztrain but z ∈ Ztest. Let us denote the data
splits from the standard benchmarks as (Dtrain,Dval,Dtest). Then we generate multiple variants
of compositional shifts {(D¬z

train,D¬z
val ,Dtest) | z ∈ Z×}, where D¬z

train and D¬z
val are generated by

discarding samples from Dtrain and Dval that belong to the group z.

Following this procedure, we adapted Waterbirds (Wah et al., 2011), CelebA (Liu et al., 2015),
MetaShift (Liang & Zou, 2022), MultiNLI (Williams et al., 2017), and CivilComments Borkan et al.

1The figure’s architecture computes the logits FL,B(x) as implemented in the pseudocode. Alternatively
to a single linear head whose output we split, we could use separate arbitrary (non-linear) heads to obtain the
components for each attribute. Architecture and code can easily be generalized to handle more than 2 attributes.
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(2019) for experiments. We also experiment with the NICO++ dataset (Zhang et al., 2023), where we
already have Ztrain ⊊ Ztest = Z× as some groups were not present in the train dataset. However,
these groups are still present in the validation dataset (Zval = Z×). Hence, the only transformation
we apply to NICO++ is to drop samples from the validation dataset such that Ztrain = Zval.

For baselines, we train classifiers via Empirical Risk Minimization (ERM), GroupDRO (Sagawa et al.,
2019), Logit Correction (LC) (Liu et al., 2022b), and supervised logit adjustment (sLA) (Tsirigotis
et al., 2024). In all cases we employ a pretrained architecture as the representation network ϕ,
followed by a linear layer W to get class predictions, and fine-tune them jointly (see Appendix C.3
for details). For evaluation metrics, we report the average accuracy, group balanced accuracy, and
worst-group accuracy on the test dataset. Due to imbalances in group distribution, a method can obtain
good average accuracy despite having bad worst-group accuracy. Therefore, the worst-group accuracy
is a more indicative metric of robustness to spurious correlations (more details in Appendix C.2).

6.2 RESULTS

Table 1 shows the results of our experiment. For each dataset, we report the average accuracy over
its various compositional shift scenarios {(D¬z

train,D¬z
val ,Dtest) | z ∈ Z×} (detailed results for all

scenarios are in Appendix D.1). In all cases, CRM either outperforms or is competitive with the
baselines in terms of worst group accuracy (WGA). Further, for Waterbirds and MultiNLI, while the
logit adjustment baselines appear competitive with CRM on average, if we look more closely at the
worst case compositional shift scenario, we find that logit adjustment baselines fare much worse than
CRM. For Waterbirds, LC obtains 69.0% worst group accuracy while CRM obtains 73.0% worst
group accuracy for the worst case scenario of dropping the group (0, 1) (Table 5). Similarly, for the
MultiNLI benchmark, sLA obtains 19.7% worst group accuracy while CRM obtains 31.0% worst
group accuracy for the worst case scenario of dropping the group (0, 0) (Table 8).

We also report the worst group accuracy (other metrics in Table 11) for the original benchmark
(Dtrain,Dval,Dtrain) which was not transformed for compositional shifts, denoted WGA (No Groups
Dropped). WGA (No Groups Dropped) can be interpreted as the “oracle” performance for that
benchmark, and we can compare methods based on the performance drop in WGA due to discarding
groups in compositional shifts. ERM and GroupDRO appear the most sensitive to compositional
shifts, and the logit adjustment baselines also show a sharp drop for the CelebA benchmark; while
CRM is more robust to compositional shifts.

Importance of extrapolating the bias. We conduct an ablation study for CRM where we test a
variant that uses the learned bias B̂ (e.q. 8) instead of the extrapolated bias B⋆ (e.q. 10). Results are
presented in Table 2. They show a significant drop in worst-group accuracy if we use the learned bias
instead of the extrapolated one. Hence, our theoretically grounded bias extrapolation step is crucial
to generalize under compositional shifts. In Appendix D.1 (Table 10) we conduct further ablation
studies, showing the impact of different choices of the test log prior.

7 CONCLUSION

We provide a novel approach based on flexible additive energy models for compositionality in
discriminative tasks. Our proposed CRM approach can provably extrapolate to novel attribute
combinations within the discrete affine hull of the training support, where the affine hull grows
quickly with the training groups to cover the Cartesian product extension of the training support.
Our empirical results demonstrate that the additive energy assumption is sufficiently flexible to
yield good classifiers for high-dimensional images, and that the proposed CRM estimator is able
to extrapolate to novel combinations in DAff(Ztrain), without having to model high-dimensional
p(x|z) nor having to estimate their partition function. CRM is a simple and efficient algorithm that
empirically proved consistently more robust to compositional shifts than approaches based on other
logit-shifting schemes and GroupDRO.
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Dataset Method Average Acc WGA WGA
(No Groups Dropped)

Waterbirds

ERM 77.9 (0.1) 43.0 (0.1) 62.3 (1.2)
G-DRO 77.9 (0.6) 42.3 (2.5) 87.3 (0.3
LC 88.3 (0.7) 75.5 (0.8) 88.7 (0.3)
sLA 89.3 (0.4) 77.3 (0.5) 89.7 (0.3)
CRM 87.1 (0.7) 78.7 (1.6) 86.0 (0.6)

CelebA

ERM 85.8 (0.3) 39.0 (0.6) 52.0 (1.0)
G-DRO 89.2 (0.5) 67.7 (1.3) 91.0 (0.6)
LC 91.1 (0.2) 57.4 (0.6) 90.0 (0.6)
sLA 90.9 (0.1) 57.4 (0.3) 86.7 (1.9)
CRM 91.1 (0.2) 81.8 (1.2) 89.0 (0.6)

MetaShift

ERM 85.7 (0.4) 60.5 (0.6) 63.0 (0.0)
G-DRO 86.0 (0.4) 63.8 (0.6) 80.7 (1.3)
LC 88.5 (0.0) 68.2 (0.5) 80.0 (1.2)
sLA 88.4 (0.1) 63.0 (0.5) 80.0 (1.2)
CRM 87.6 (0.2) 73.4 (0.7) 74.7 (1.5)

MultiNLI

ERM 69.1 (0.7) 7.2 (0.6) 68.0 (1.7)
G-DRO 70.4 (0.1) 34.3 (0.5) 57.0 (2.3)
LC 75.9 (0.1) 54.3 (0.5) 74.3 (1.2)
sLA 76.4 (0.5) 55.0 (1.8) 71.7 (0.3)
CRM 74.6 (0.5) 57.7 (3.0) 74.7 (1.3)

CivilComments

ERM 80.4 (0.1) 55.8 (0.4) 61.0 (2.5)
G-DRO 80.1 (0.2) 61.6 (0.4) 64.7 (1.5)
LC 80.7 (0.1) 65.7 (0.5) 67.3 (0.3)
sLA 80.6 (0.1) 65.6 (0.1) 66.3 (0.9)
CRM 83.7 (0.1) 68.1 (0.5) 70.0 (0.6)

NICO++

ERM 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)
G-DRO 84.0 (0.0) 36.7 (0.7) 33.7 (1.2)
LC 85.0 (0.0) 35.3 (2.3) 35.3 (2.3)
sLA 85.0 (0.0) 33.0 (0.0) 35.3 (2.3)
CRM 84.7 (0.3) 40.3 (4.3) 39.0 (3.2)

Table 1: Robustness under compositional shift. We compare the proposed Compositional Risk Min-
imization (CRM) method to baseline Expected Risk Minimization (ERM) classifier training with no
group information, and to robust methods that leverage group labels: Group-DRO (G-DRO) (Sagawa
et al., 2019), Logit Correction (LC) (Liu et al., 2022b) and Supervised Logit Adjustment (sLA)
(Tsirigotis et al., 2024). We report test Average Accuracy and Worst Group Accuracy (WGA),
averaged as a group is dropped from training and validation sets. Last column is WGA under the
dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All methods have a
harder time to generalize when groups are absent from training, but CRM appears consistently more
robust (standard error based on 3 random seeds).

Method Waterbirds CelebA MetaShift MulitNLI CivilComments NICO++

CRM (B̂) 55.7 (1.0) 58.9 (0.4) 58.7 (0.6) 29.2 (2.1) 51.9 (1.0) 31.0 (1.0)
CRM 78.7 (1.6) 81.8 (1.2) 73.4 0.7) 57.7 (3.0) 68.1 (0.5) 40.3 (4.3)

Table 2: Importance of bias extrapolation. We report Worst Group Accuracy, averaged as a group
is dropped from training and validation (standard error based on 3 random seeds). CRM (B̂) is an
ablated version of CRM where we use the trained bias B̂ instead of the extrapolated biasB⋆ mandated
by our theory. The extrapolation step appears crucial for robust compositional generalization. Merely
adjusting logits based on shifting group prior probabilities does not suffice.
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A FURTHER DISCUSSION ON RELATED WORKS

In this section, we provide a more detailed discussion on the related works.

Compositional Generalization Compositionality has long been seen as an important capability
on the path to building (Fodor & Pylyshyn, 1988; Hinton, 1990; Plate et al., 1991; Montague, 1970)
human-level intelligence. The history of compositionality is very long to cover in detail here, refer to
these surveys (Lin et al., 2023; Sinha et al., 2024) for more detail. Compositionality is associated
with many different aspects, namely systematicity, productivity, substitutivity, localism, and overgen-
eralization (Hupkes et al., 2020). In this work, we are primarily concerned with systematicity, which
evaluates a model’s capability to understand known parts or rules and combine them in new contexts.
Over the years, several popular benchmarks have been proposed to evaluate this systematicity aspect
of compositionality, Lake & Baroni (2018) proposed the SCAN dataset, Kim & Linzen (2020)
proposed the COGS dataset. These works led to development of several insightful approaches to
tackle the challenge of compositionality (Lake & Baroni, 2023; Gordon et al., 2019). Most of these
works on systematicity have largely focused on generative tasks, (Liu et al., 2022a; Lake & Baroni,
2023; Gordon et al., 2019; Wang et al., 2024), i.e., where the model needs to recombine individual
distinct factors/concepts and generate the final output in the form of image or text. There has been
lesser work on discriminative tasks (Nikolaus et al., 2019), i.e., where the model is given an input
composed of a novel combination of factors and it has to predict the underlying novel combination.
In this work, our focus is to build an approach that can provably solve these discriminative tasks.

On the theoretical side, recently, there has been a growing interest to build provable approaches for
compositional generalization (Wiedemer et al., 2023; 2024; Brady et al., 2023; Dong & Ma, 2022;
Lachapelle et al., 2024). In Dong & Ma (2022), the authors seek to understand the inductive biases
that enable generalization of a predictor beyond the support of the training distribution. The authors
target generalization to the Cartesian product of the support of individual features. The ability of
a predictor to generalize to Cartesian products of the individual features is an important form of
compositionality, which checks the model’s capability to correctly predict in novel circumstances
described as combination of contexts seen before. Dong & Ma (2022) developed results for additive
models, i.e., labeling function is additive over individual features. In (Wiedemer et al., 2023), the
authors considered a more general model class in comparison to Dong & Ma (2022). The labeling
function in (Wiedemer et al., 2023) takes the form f(x1, · · · , xn) = C(ψ1(x1), · · · , ψn(xn)).
However, they require a strong assumption, where the learner needs to know the function C that
is used to generate the data. Lachapelle et al. (2024); Brady et al. (2023) extend the results from
Dong & Ma (2022) to the unsupervised setting. Lachapelle et al. (2024); Brady et al. (2023) are
inspired by the success of object-centric models and show additive decoders enable generative models
(autoencoders) to achieve Cartesian product extrapolation. While these works take promising and
insightful first steps for provable compositional guarantees, the assumption of additive labeling
function may come as a bit restrictive. In our setting, we take inspiration independent mechanisms
principle Janzing & Schölkopf (2010); Parascandolo et al. (2018). In the spirit of this principle,
we think of each factor impacting the final distribution through an independent function, where
independence is in the algorithmic sense and not the statistical sense. Hence, we model the data
generation with additive energy distributions. These additive energy distributions have also been used
in generative compositionality Liu et al. (2022a) but not in discriminative compositionality. Finally,
in another line of work Schug et al. (2023), the authors consider compositionality in the task space
and develop an approach that achieves provable compositional guarantees over this task space and
empirically outperforms meta-learning approaches such as MAML and ANIL. Specifically, they
operate in a student-teacher framework, where each task has a latent code that specifies the weights
for different modules that are active for that task.

Domain Generalization Generalization under subpopulation shifts, where certain groups or combi-
nations of attributes are underrepresented in the training data, is a well-known challenge in machine
learning. Group Distributionally Robust Optimization (GroupDRO) (Sagawa et al., 2019) is a promi-
nent method that minimizes the worst-case group loss to improve robustness across groups. Invariant
Risk Minimization (IRM) Arjovsky et al. (2019) encourages the model to learn invariant representa-
tions that perform well across multiple environments. Perhaps the simplest methods are SUBG and
RWG Idrissi et al. (2022), which focus on constructing a balanced subset or reweighting examples
to minimize or eliminate spurious correlations. There are many other interesting approaches that
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were proposed, see the survey for details Zhou et al. (2022). The theoretical guarantees developed
for these approaches (Rosenfeld et al., 2020; Arjovsky et al., 2019; Ahuja et al., 2020) require a
large diversity in terms of the environments seen at the training time. In our setting, we incorporate
inductive biases based on additive energy distributions that help us arrive at provable generalization
with limited diversity in the environments.

Closely related to our proposed method are the logit adjustment methods Kang et al. (2019); Menon
et al. (2020); Ren et al. (2020) used in robust classification. Kang et al. (2019) introduced Label-
Distribution-Aware Margin (LDAM) loss for long-tail learning, proposing a method that adjusts the
logits of a classifier based on the class frequencies in the training set to counteract bias towards
majority classes. Similarly, Menon et al. (2020) and Ren et al. (2020) (Balanced Softmax), modify
the standard softmax cross-entropy loss to account for class imbalance by shifting the logits according
to the prior distribution over the classes. Closest to our work are the Logit Correction (LC) (Liu
et al., 2022b) and Supervised Logit Adjustment (sLA) (Tsirigotis et al., 2024) methods that use logit
adjustment for group robustness. LC adjusts logits based on the joint distribution of environment and
class label, reducing reliance on spurious features in imbalanced training sets. When environment
annotations are unknown, a second network infers them. Supervised Logit Adjustment (sLA) adjusts
logits according to the conditional distribution of classes given the environment. In the absence
of environment annotations, Unsupervised Logit Adjustment (uLA) uses self-supervised learning
(SSL) to pre-train a model for general feature representations, then derives a biased network from
this pre-trained model to infer the missing environment annotations.
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B PROOFS

Remark on proofs We want to emphasize that the proofs developed here are quite different from
related works on compositionality (Dong & Ma, 2022; Wiedemer et al., 2023). The foundation
of proofs is built on a new mathematical object, discrete affine hull. The proof of Theorem 2
cleverly exploits properties of softmax and discrete affine hulls to show how we can learn the correct
distribution without involving the intractable partition function in learning. The proof of Theorem 3,
uses fundamental ideas from randomized algorithms to arrive at the probabilistic extrapolation
guarantees.

We start with a basic lemma.
Lemma 1. If z′ ∈ DAff(Ztrain), i.e., σ(z′) =

∑
z∈Ztrain αzσ(z), where ⟨1, αz⟩ = 1, then

⟨σ(z′), E(x)⟩ =
∑

z∈Ztrain αz ⟨σ(z), E(x)⟩.

Proof. ⟨σ(z′), E(x)⟩ = ⟨
∑

z∈Ztrain αzσ(z), E(x)⟩ =
∑

z∈Ztrain αz ⟨σ(z), E(x)⟩ .

B.1 PROOF FOR THEOREM 1: EXTRAPOLATION OF CONDITIONAL DENSITY

Theorem 1. If the true and learned distribution (p(·|z) and p̂(·|z)) are additive energy distributions,
then p̂(·|z) = p(·|z),∀z ∈ Ztrain =⇒ p̂(·|z′) = p(·|z′),∀z′ ∈ DAff(Ztrain).

Proof. We start by expanding the expressions for true and estimated log densities below

− log
[
p(x|z)

]
= ⟨σ(z),E(x)⟩+ log(Z(z)),

− log
[
p̂(x|z)

]
= ⟨σ(z), Ê(x)⟩+ log(Ẑ(z)).

(11)

We equate these densities for the training attributes z ∈ Ztrain. For a fixed z ∈ Ztrain, we obtain that
for all x ∈ Rn

⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩+ C(z), (12)

where C(z) = log
(
Z(z)/Ẑ(z)

)
. Since z′ ∈ DAff(Ztrain), we can write z′ =

∑
z∈Ztrain αzz,

⟨1, αz⟩ = 1. From Lemma 1, we know that ⟨σ(z′), E(x)⟩ =
∑

z∈Ztrain αz ⟨σ(z), Ê(x)⟩.
We use this decomposition and equation 12 to arrive at the key identity below. For all x ∈ Rn

⟨σ(z′), Ê(x)⟩ =
∑

z∈Ztrain

αz ⟨σ(z), Ê(x)⟩

=
∑

z∈Ztrain

αz(⟨σ(z), E(x)⟩+ C(z))

=
( ∑

z∈Ztrain

αz(⟨σ(z), E(x)⟩
)
+
( ∑

z∈Ztrain

αzC(z)
)

= ⟨σ(z′), E(x)⟩+
∑

z∈Ztrain

αzC(z)

(13)

From this we can infer that

p̂(x|z′) = 1

Ẑ(z′)
exp

(
− ⟨σ(z′), Ê(x)⟩

)
=

1

Ẑ(z′)
exp

(
− ⟨σ(z′), E(x)⟩ −

∑
z∈Ztrain

αzC(z)
) (14)
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We now use the fact that density integrates to one for continuous random variables (or alternatively
the probability sums to one for discrete random variables). Thus∫

p̂(x|z′)dx = 1∫
1

Ẑ(z′)
exp

(
− ⟨σ(z′), E(x)⟩ −

∑
z∈Ztrain

αzC(z)
)
dx = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)∫

exp
(
− ⟨σ(z′), E(x)⟩

)
dx = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)
Z(z′) = 1

1

Ẑ(z′)
exp

(
−

∑
z∈Ztrain

αzC(z)
)
=

1

Z(z′)
(15)

We substitute equation 15 into equation 14 to obtain

p̂(x|z′) = 1

Z(z′)
exp

(
− ⟨σ(z′), E(x)⟩

)
= p(x|z′),∀x ∈ Rn (16)

B.2 PROOF FOR THEOREM 2: EXTRAPOLATION OF CRM

Theorem 2. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, the test distribution q
satisfies compositional shift characterization and Ztest ⊆ DAff(Ztrain). If p̂(z|x) = p(z|x),∀z ∈
Ztrain,∀x ∈ Rn and q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM (equation 9) matches the test
distribution, i.e., q̂(z|x) = q(z|x),∀z ∈ Ztest,∀x ∈ Rn.

Proof. Since q follows compositional shifts,

log q(x|z) = log p(x|z) = −⟨σ(z), E(x)⟩ − logZ(z) (17)

We can write it as −⟨σ(z), E(x)⟩ = log p(x|z) + logZ(z).

Consider z′ ∈ DAff(Ztrain). We can express z′ as σ(z′) =
∑

z∈Ztrain αzσ(z), where ⟨1, αz⟩ = 1.

We use equation 17 and show that the partition function at z′ can be expressed as affine combination
of partition of the individual points and a correction term. We obtain the following condition.
∀z′ ∈ Ztest, where recall Ztest ⊆ DAff(Ztrain),

log
(
Z(z′)

)
= log

(
Ex

[
exp

(
− ⟨σ(z′), E(x)⟩

)])
,

= log
(
Ex

[
exp

(
−

∑
z∈Ztrain

αz ⟨σ(z), E(x)⟩
)])

,

= log
(
Ex

[
exp

( ∑
z∈Ztrain

αz

(
log p(x|z) + logZ(z)

))])

=
∑

z∈Ztrain

αz logZ(z) + log

(
Ex

[
exp

( ∑
z∈Ztrain

αz log p(x|z)
)])

,

(18)

where Ex[f ] =
∫
x̃∈Rn f(x̃)dx̃.

Denote the latter term in the above expression as

R({αz}z∈Ztrain) = log
(
Ex

[
exp

( ∑
z∈Ztrain

αz log p(x|z)
)])

(19)
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We now simplify log
(
q(x|z′)

)
using the property of partition function from equation 18 below.

∀z′ ∈ Ztest,

log
(
q(x|z′)

)
= −⟨σ(z′), E(x)⟩ − logZ(z′)

=
∑

z∈Ztrain

αz

(
log p(x|z) + logZ(z)

)
− logZ(z′)

=
∑

z∈Ztrain

αz log p(x|z) +
∑

z∈Ztrain

αz logZ(z)−
∑

z∈Ztrain

αz logZ(z)−R
(
{αz}z∈Ztrain

)
=

∑
z∈Ztrain

αz log p(x|z)−R
(
{αz}z∈Ztrain

)
(20)

We now simplify the first term in the above expression, i.e.,
∑

z∈Ztrain αz log p(x|z), in terms of
p(z|x).

∑
z∈Ztrain

αz

(
log
(
p(x|z)

)
=

∑
z∈Ztrain

αz log

(
p(z|x)p(x)

p(z)

)

=
∑

z∈Ztrain

αz

(
log p(z|x)− log p(z)

)
+ log p(x)

(21)

Similarly, R({αz}z∈Ztrain) can be phrased in terms of p(z|x) as follows.

R
(
{αz}z∈Ztrain

)
= log

(
Ex

[
exp

( ∑
z∈Ztrain

αz log p(x|z)
)])

= −
∑

z∈Ztrain

αz log p(z) + log
(
Ex∼p(x)

[
exp

( ∑
z∈Ztrain

αz log p(z|x)
)])

= −
∑

z∈Ztrain

αz log p(z) + S
(
{αz}z∈Ztrain

)
,

(22)

where S
(
{αz}z∈Ztrain

)
= log

(
Ex∼p(x)

[
exp

(∑
z∈Ztrain αz log p(z|x)

)])
and Ex∼p(x) is the ex-

pectation w.r.t distribution p(x). We use equation 21, equation 22 to simplify equation 20 as
follows.∀z′ ∈ Ztest,

log q(x|z′) =
∑

z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

)
+ log p(x)

log
(q(z′|x)q(x)

q(z′)

)
=

∑
z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

)
+ log p(x)

log
(
q(z′|x)

)
=

∑
z∈Ztrain

αz

(
q(z′) + log p(z|x)

)
− S

(
{αz}z∈Ztrain

)
+ log

(p(x)
q(x)

) (23)

We use translation invariance of softmax to obtain

q(z′|x) = Softmax
(
log q(z′) +

∑
z∈Ztrain

αz log p(z|x)− S
(
{αz}z∈Ztrain

))
q(z′|x) = Softmax

(
log q(z′) +

∑
z∈Ztrain

αz log p(z|x)− log
(
Ex∼p(x)

[
exp

( ∑
z∈Ztrain

αz log p(z|x)
)]))

(24)
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To avoid cumbersome notation, we took the liberty to show only one input to softmax, other inputs
bear the same parametrization, they are computed at other z’s. From the above equation it is clear
that if the learner knows the marginal distribution over the groups at test time, i.e., q(z) and estimates
p(z|x) for all z’s in the training distribution’s support, i.e., Ztrain, then the learner can successfully
extrapolate to q(z′|x).
Let us now use the additive energy classifier of the form we defined in equation 6 and whose energy
Ê and bias B̂ we optimized (equation 8) to match p(z|x), so that:

p(z|x) =
exp

(
− ⟨σ(z), Ê(x)⟩+ log p̂(z)− B̂(z)

)
∑

z̃∈Ztrain exp

(
− ⟨σ(z̃), Ê(x)⟩+ log p̂(z̃)− B̂(z̃)

) ,
Consequently∑
z∈Ztrain

αz log p(z|x)

=

( ∑
z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
− log

( ∑
z̃∈Ztrain

exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

))
(25)

where we used the property that ⟨1, αz⟩ = 1.

Let us use this to simplify the last term of equation 24:

log

(
Ex∼p(x)

[
exp

( ∑
z∈Ztrain

αz log p(z|x)
)])

= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

) ]
= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)] exp( ∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

))
= log

Ex∼p(x)

[
exp

(∑
z∈Ztrain αz

(
− ⟨σ(z), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
+

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)

= log

Ex∼p(x)

[
exp

(
− ⟨σ(z′), Ê(x)⟩

)
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

)]
+

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)
= B⋆(z′) +

∑
z∈Ztrain

αz

(
log p(z)− B̂(z)

)
(26)

where we used Lemma 1, and B⋆ is as defined in equation 10.

Let us also define c(x) = log
(∑

z̃∈Ztrain exp
(
− ⟨σ(z̃), Ê(x)⟩+ log p(z̃)− B̂(z̃)

))
so that we can

reexpress equation 25 as:

∑
z∈Ztrain

αz log p(z|x) =

( ∑
z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

))
− c(x) (27)
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Subtracting equation 26 from equation 27 we get:∑
z∈Ztrain

αz log p(z|x)− log

(
Ex∼p(x)

[
exp

( ∑
z∈Ztrain

αz log p(z|x)
)])

=
∑

z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩+ log p(z)− B̂(z)

)
− c(x)

−B⋆(z′)−
∑

z∈Ztrain

αz

(
log p(z)− B̂(z)

)
=
∑

z∈Ztrain

αz

(
− ⟨σ(z), Ê(x)⟩

)
− c(x)−B⋆(z′)

=− ⟨σ(z′), Ê(x)⟩ − c(x)−B⋆(z′) (28)

Substituting this inside equation 24 yields

q(z′|x) = Softmax
(
log q(z′)− ⟨σ(z′), Ê(x)⟩ − c(x)−B⋆(z′)

)
= Softmax

(
− ⟨σ(z′), Ê(x)⟩+ log q(z′)−B⋆(z′)

) (29)

where we removed the c(x) term as softmax is invariant to addition of terms that do not depend on z′.

If q̂(z′) = q(z′),∀z′ ∈ Ztest, then the expression in RHS corresponds to q̂(z′|x), as we had defined
it in equation 9, before stating our theorem. Thus q(z′|x) = q̂(z′|x). This completes the proof.

B.3 PROOF FOR THEOREM 3: EXTRAPOLATION FROM A SMALL SET OF ATTRIBUTE
COMBINATIONS TO ALL ATTRIBUTE COMBINATIONS

In order to prove Theorem 3 we first establish some basic lemmas. In the first lemma below, we
consider a setting with two attributes, where each attribute takes two possible values, i.e., m = 2 and
d = 2. In this setting there are four possible one-hot vectors z1, z2, z3, z4. We first show that each zi
can be expressed as an affine combination of the remaining three.
Lemma 2. If m = 2, d = 2, then there are four possible concatenated one-hot vectors z denoted
z1, z2, z3, z4. Each zi can be expressed as an affine combination of the remaining.

Proof. Below we explicitly show how each zi can be expressed in terms of other zj’s.

(+1) ·

010
1

 + (−1) ·

011
0

 + (+1) ·

101
0

 =

100
1

 (30)

(−1) ·

010
1

 + (+1) ·

011
0

 + (+1) ·

100
1

 =

101
0

 (31)

(+1) ·

101
0

 + (+1) ·

010
1

 + (−1) ·

100
1

 =

011
0

 (32)

(−1) ·

101
0

 + (+1) ·

011
0

 + (+1) ·

100
1

 =

010
1

 (33)
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1 2

1

2

z2
z1

Figure 2: Setting of two attributes and two possible values per attribute. Illustration of extrapolation
from three groups to the remaining fourth group. Three dark colored groups indicate the observed
groups and the light colored shaded group indicates the group that is the affine combination of the
three observed groups.

We illustrate the setting of Lemma 2 in Figure 2. We now understand an implication of
Lemma 2. Let us consider the setting where m = 2 and d > 2. Consider a subset of
four groups {(i, j), (i′, j), (i, j′), (i′, j′)}. Under one-hot concatenations these groups are de-
noted as z1 = [0, · · · , 1i, · · · 0︸ ︷︷ ︸

first attribute

, 0, · · · , 1j , · · · 0︸ ︷︷ ︸
second attribute

], z2 = [0, · · · , 1i′ , · · · 0, 0, · · · , 1j , · · · 0], z3 =

[0, · · · , 1i, · · · 0, 0, · · · , 1j′ , · · · 0], and z4 = [0, · · · , 1i′ , · · · 0, 0, · · · , 1j′ , · · · 0]. Observe that us-
ing Lemma 2, we get z4 = z2 + z3 − z1. Similarly, we can express every other zi in terms of rest of
zj’s in the the set {(i, j), (i′, j), (i, j′), (i′, j′)}.
In the setting when m = 2 and d ≥ 2, the total number of possible values z takes is d2. Each group
recall is associated with attribute vector z = [z1, z2], where z1 ∈ {1, · · · , d} and z2 ∈ {1, · · · d}.
The set of all possible values of z be visualized as d× d grid in this notation. We call this d× d grid
as G. We will first describe a specific approach of selecting observed groups z for training, which
shows that with just 2d− 1 it is possible to affine span all the possible d2 groups in the grid G. We
leverage the insights from this approach and show that with a randomized approach of selecting
groups, we can continue to affine span d2 groups with O(d log(d)) groups.

Denote the set of observed groups as N . Suppose that their affine hull contains all the points in
a subgrid S ⊆ G of size m × n. Let the subgrid S = {x1, · · · , xm} × {y1, · · · , yn}. Without
loss of generality, we can permute the points and make the subgrid contiguous as follows S =
{1, · · · ,m} × {1, · · · , n}. Next, we add a new point g = (gx, gy) ∈ G but g ̸∈ S. We argue that
if gx ∈ {1, · · · ,m}, then the affine hull of N ∪ {g} contains a larger subgrid of size m× (n+ 1).
Similarly, we want to argue that if gy ∈ {1, · · · , n}, then the affine hull of N ∪ {g} contains a larger
subgrid of size (m + 1) × n. Define Cx as the Cartesian product of {gx} with {1, · · · , n}, i.e.,
Cx = {(gx, 1), (gx, 2), · · · , (gx, n)}. Define Cy as the Cartesian product of {1, · · · ,m} with {gy},
i.e., Cy = {(1, gy), (2, gy), · · · , (m, gy)}.

Theorem 4. Suppose the affine hull of the observed set N contains a subgrid S of size m× n. If the
new point g = (gx, gy) shares the x-coordinate with a point in S, and g ̸∈ S, then the the affine hull
of N ∪ {g} contains S ∪ Cy .

Proof. We write the set of observed groups N as N = {zθj}j . The affine hull of N contains
S = {1, · · · ,m} × {1, · · · , n}. We observe a new group g ̸∈ S, which shares its x coordinate with
one of the points in S. Without loss of generality let this point be g = (1, n+ 1) (if this were not the
case, then we can always permute the columns and rows to achieve such a configuration). Consider
the triplet – (z1, z2, z3) =

(
(1, n), (2, n), (1, n+1)

)
. Observe that z1, z2, z3, z4 form a 2×2 subgrid,

where z4 = (2, n+ 1). We use Lemma 2 to infer that the fourth point z4 = (2, n+ 1) on this 2× 2
subgrid can be obtained as an affine combination of this triplet, i.e., z4 = αz1 + βz2 + γz3. Since
z1, z2 are in the affine hull of N , they can be written as an affine combination of seen points in N as
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 3: Illustration of steps of the deterministic sampling procedure for a 4× 4 grid. (a) shows the
base set, (b) add a group in orange and the affine hull extends to include all the orange cells, (c) add
of a group in green and the affine hull extends to include all green cells.

follows z1 =
∑

k∈N akz
θk , z2 =

∑
k∈N bkz

θk . As a result, we obtain

z4 = αz1 + βz2 + γz3 = α
(∑

akz
θk
)
+ β

(∑
bkz

θk
)
+ γz3

=
∑
k∈N

(
αak + βbk

)
zθk + γz3

(34)

Observe that
∑

k(αak + βbk) = (α
∑

k ak + β
∑

k bk) = α + β. Since α + β + γ = 1, z4
is an affine combination of points in N ∪ {g}. Thus we have shown the claim for the point
(2, n + 1). We can repeat this claim for point (3, n + 1) and so on until we reach (m,n + 1)
beyond which there would be no points in S that are expressed as affine combination of N . We
can make this argument formal through induction. We have already shown the base case above.
Suppose all the points (j, n+ 1) in j ≤ i < m are in the affine hull of N ∪ {g}. Consider the point
z4 = (i+ 1, n+ 1). Construct the triplet (z1, z2, z3) =

(
(i, n), (i, n+ 1), (i+ 1, n)

)
. Again from

Lemma 2, it follows that z4 = αz1+βz2+γz3. We substitute z1, z2 and z3 with their corresponding
affine combinations. z4 = α

∑
k∈N∪{g} akz

θk + β
∑

k∈N∪{g} bkz
θk + γ

∑
k∈N∪{g} ckz

θk . Since∑
k∈N∪{g} αak + βbk + γck = 1, it follows that z4 is an affine combination of z1, z2 and z3. This

completes the proof.

We now describe a simple deterministic procedure that helps us understand how many groups
we need to see before we are guaranteed that the affine hull of seen points span the whole grid
G = {1, · · · , d} × {1, · · · , d}.

• We start with a base set of three points – B = {(1, 1), (1, 2), (2, 1)}. From Lemma 2, the
affine hull contains (2, 2).

• For each i ∈ {2, · · · , d−1} add the points (1, i+1), (i+1, 1) to the setB. From Theorem 4,
it follows that affine hull of B ∪ {(1, i+1)} ∪ {(i+1, 1)} contains (i+1× i+1) subgrid
{1, · · · , i+1}×{1, · · · , i+1} (here we apply Theorem 4 in two steps once for the addition
of (1, i+ 1) and then for the addition of (i+ 1, 1).

At the end of the above procedure B contains 2d− 1 points and its affine hull contains the grid G.
We illustrate this procedure in Figure 3.

We now discuss a randomized procedure that also allows us to span the entire gridG withO(d log(d))
groups. The idea of the procedure is to start with a base set of groups and construct their affine hull S.
Then we wait to sample a group g that is outside this affine hull. If this sampled group shares the
x coordinate with affine hull of B denoted as S, then we expand the subgrid by one along with y
coordinate. Similarly, we also wait for a point that shares a y coordinate and then we expand the
subgrid by one along the x coordinate.
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We use Sx to denote the distinct set of x-coordinates that appear in S and same goes for Sy . We write
g = (gx, gy). The procedure goes as follows.

Set S = ∅, B = ∅ and Flag = x.

• Sample a group g from G uniform at random. Update B = B ∪ {g}, S = S ∪ {g}.
• While S ̸= G, sample a group g from G uniform at random.

– If Flag == x, gx ∈ Sx, g ̸∈ S, then update B = B ∪ {g}, S = S ∪ (Sx × {gy}) and
Flag = y.

– If Flag == y, gy ∈ Sy, g ̸∈ S, then update B = B ∪ {g}, S = S ∪ ({gx} × Sy) and
Flag = x.

In the above procedure, in every step in the while loop a group g is sampled. Whenever the Flag
flips from x to y, then following Theorem 4, the updated set S belongs to the affine hull of B. We
can say the same when Flag flips from y to x. In the next theorem, we will show that the while loop
terminates after 8cd log(d) steps with a high probability and the affine hull of B contains the entire
grid G. We follow this strategy. We count the time it takes for Flag to flip from x to y (from y to x) as
it grows the size of S from a k× k subgrid to k× (k+1) (k× (k+1) subgrid to (k+1)× (k+1))
subgrid.

Theorem 5. Suppose we sample the groups based on the randomized procedure described above.
If the number of sampled groups is greater than 8cd log(d), then G ⊆ DAff(B) with a probability
greater than equal to 1− 1

c .

Proof. We take the first group g that is sampled. Without loss of generality, we say this group is
(1, 1).

Suppose the Flag is set to x. Define an event Ak
1 : newly sampled g = (gx, gy) shares x-coordinate

with a point in S (size k × k), g ̸∈ S. Under these conditions Flag flips from x to y. To compute the
probability of this event let us count the number of scenarios in which this happens. If gx takes one
of the k values in Sx and gy takes one of the remaining (d− k), then the event happens. As a result,
the probability of this event is P (Ak

1) =
(k)(d−k)

d2 .

Suppose the Flag is set to y. Define an event Ak
2 : newly sampled g = (gx, gy) shares y-coordinate

with a point in S (size k × (k + 1)) and g ̸∈ S. Under these conditions Flag flips from y to x. The
probability of this event isP (Ak

2) =
(k+1)(d−k)

d2 .

Define T k
1 as the number of groups that need to be sampled before Ak

1 occurs. Define T k
2 as the

number of groups that need to be sampled before Ak
2 occurs. Observe that after T k

1 + T k
2 number

of sampled groups the size of the current subgrid S, which is in the affine hull of B, grows to
(k + 1)× (k + 1).

Define Tsum =
∑d−1

k=1(T
k
1 + T k

2 ). Tsum is the total number of groups sampled before the affine span
of the observed groups B contains the grid G.

We compute

E[Tsum] =
d−1∑
k=1

(E[T k
1 ] + E[T k

2 ])

d∑
k=1

E[T k
1 ] =

d−1∑
k=1

d2/(k(d− k)) = 2

(d−1)/2∑
k=1

d2/(k(d− k))

2

(d−1)/2∑
k=1

d2/(k(d− k)) = 2d

(d−1)/2∑
k=1

[1
k
+

1

d− k

]
≈ 4d log((d− 1)/2)

(35)

Similarly, we obtain a similar bound for
∑d−1

k=1 E[T k
2 ].
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d∑
k=1

(E[T k
2 ] =

d−1∑
k=1

d2/((k + 1)(d− k)) = 2

(d−1)/2∑
k=1

d2/((k + 1)(d− k))

2

(d−1)/2∑
k=1

d2/((k + 1)(d− k)) ≤ 2d

(d−1)/2∑
k=1

[ 1

k + 1
+

1

d− k

]
≈ 4d log((d− 1)/2)

(36)

Overall E[Tsum] ≈ 8d log(d/2). From Markov inequality, it immediately follows that P (Tsum ≤
8cd log(d/2)) ≥ 1− 1

c . In the above approximations, we use
∑d

i=1
1
i ≈ log d+γ, where γ is Euler’s

constant. We drop γ as its a constant, which can always be absorbed by adapting the constant c.

Theorem 3. Consider the setting where p(.|z) follows AED ∀z ∈ Z×, Ztrain comprises of s attribute
vectors z drawn uniformly at random from Z×, and the test distribution q satisfies compositional
shift characterization. If s ≥ 8cd log(d/2), where d is sufficiently large, p̂(z|x) = p(z|x),∀z ∈
Ztrain,∀x ∈ Rn, q̂(z) = q(z),∀z ∈ Ztest, then the output of CRM (equation 9) matches the test
distribution, i.e., q̂(z|x) = q(z|x), ∀z ∈ Ztest,∀x ∈ Rn, with probability greater than 1− 1

c .

Proof. Suppose the support of training distribution p(z) contains s groups. We know that these s
groups are drawn uniformly at random. From Theorem 5, it is clear that if s grows as O(d log d),
then with a high probability the entire grid of d2 combinations is contained in the affine span of
these observed groups. This can be equivalently stated as Z× ⊆ DAff(Ztrain) with a probability
greater than equal to 1 − 1

c . If Z× ⊆ DAff(Ztrain), then from the assumption of compositional
shifts, it follows that Ztest ⊆ DAff(Ztrain). We can now use Theorem 2 and arrive at our result. This
completes the proof.

B.4 DISCRETE AFFINE HULL: A CLOSER LOOK

In the next result, we aim to give a characterization of discrete affine hull that helps us give a
two-dimensional visualization of DAff(Ztrain). Before we even state the result, we illustrate discrete
affine hull of a 6× 6 grid. Consider the 6× 6 grid shown in Figure 4. The attribute combinations
corresponding to the observed groups are shown as solid colored cells (blue and yellow). The light
shaded elements (blue and yellow) denote the set of groups that belong to the affine hull of the solid
colored groups. We now build the characterization that helps explain this visualization.

We introduce a graph on the attribute vectors observed. Each vertex corresponds to the attribute
vector, i.e., [z1, z2]. There is an edge between two vertices if the Hamming distance between the
attribute vectors is one. A connected component is a subgraph in which all vertices are connected,
i.e., between every pair in the subgraph there exists a path. Let us start by making an observation
about the connected components in this graph.

We consider a partition of observed groups into K maximally connected components, {C1, · · · , CK}.
Define Cij as the set of values the jth component takes in the ith connected component. Observe
that Cij ∩ Clj = ∅ for i ̸= l. Suppose this was not that case and Cij ∩ Clj ̸= ∅. In such a case, there
exists a point in Ci and another point in Cl that share the jth component. As a result, the two points
are connected by an edge and hence that would connect Ci and Cj . This contradicts the fact that Ci

and Cj are maximally connected, i.e., we cannot add another vertex to the graph while maintaining
that there is a path between any two points in the component. In what follows, we will show that
the afine hull of Cj is Cj1 × Cj2, which is the Cartesian product extension of set Cj . Next, we give
some definitions and make a simple observation that allows us to think of sets Cj1 ×Cj2 as subgrids,
which are easier to visualize.
Definition 1. Contiguous connected component: For each coordinate j ∈ {1, 2}, consider the
smallest value and the largest value assumed by it in the connected component C and call it
minj and maxj . We say that the connected component C is contigous if each value in the set
{minj ,minj +1, · · · ,maxj −1,maxj} is assumed by some point in C for all j ∈ {1, 2}.

Smallest subgrid containing a contigous connected component C: The range of values assumed
by jth coordinate in C, where j ∈ {1, 2}, are {minj , · · · ,maxj}. The subgrid {min1, · · ·max1} ×
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1

2

3

4

5

6

z2

z1

Cartesian 
Product for C1

Cartesian 
Product for C2

Observed 
Combinations

Steps for completing the Cartesian product 
via small connected components of size three:

Unobserved combinations 
to which we generalize

Figure 4: Illustration of the discrete affine hull. Each cell in the 6 × 6 grid represents an attribute
combination, where observed combinations are solid-colored. The elements in blue form one
connected component, C1, and the elements in yellow form another connected component, C2.
Extrapolation is possible for unobserved combinations, represented by the crosshatched cells, as long
as the test distribution samples from the Cartesian products of the connected components. The steps
for completing the Cartesian product visually shows the intuition behind the extrapolation process.

{min2, · · ·max2} is the smallest subgrid containing C. Observe that this subgrid is the smallest grid
containing C because if we drop any column or row, then some point taking that value in C will not
be in the subgrid anymore.

The groups observed at training time can be divided into K maximally connected components
{C1, · · · , CK}. We argue that without any loss of generality each of these components are contiguous.
Suppose some of the components in {C1, · · · , CK} are not contiguous. We relabel the first coordinate
as π(cri1) =

∑
j<i |Cj1|+ r, where cri1 is the rth point in Ci1. We can similarly relabel the second

coordinate as well. Under the relabeled coordinates, each component is maximally connected and
contiguous. Also, under this relabeling the Cartesian products Cj1 × Cj2 correspond to the smallest
subgrid containing Cj . Let us go back to the setting of Figure 4. The sets of observed groups
shown in solid blue and solid yellow form two connected components C1 and C2 respectively. Their
Cartesian product extensions are shown as well in the Figure 4. Since the connected components
were contiguous the Cartesian product extensions correspond to smallest subgrids containing the
respective connected component.

Theorem 6. Given the partition of training support as Ztrain = {C1, · · · , CK}, we have:

• The affine span of a contiguous connected component C is the smallest subgrid that contains
that connected component C.

• The affine span of the union over disjoint contiguous connected components is the union of
the smallest subgrids that contain the respective connected components.

Proof. C denotes the connected component under consideration and the smallest subgrid containing
it is S. Denote the affine span of C as A. We first show that the subgrid S ⊆ A.

We start with a target point t = (t1, t2) inside S. We want show that the one-hot concatention of this
point t can be expressed as an affine combination of the points in C.

Firstly, if t is already in C, then the point is trivially in the affine span. If that is not the case, then let
us proceed to more involved cases. Consider the shortest path joining a point of the form (t1, s2) ∈ C,
where s2 ̸= t2, and a point of the form (s1, t2) ∈ C, where s1 ̸= t1. If such points do not exist, then
t cannot be in S, which is a contradiction.

We assign a weight of (+1) to the concatenation of one-hot encodings of the point (t1, s2). We then
traverse the path until we encounter a point where s2 changes, note that such a point has to occur
because of existence of (s1, t2) on the path. We call this point v = (s̃

′

1, s
′

2). The point before v on
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the path is w = (s̃
′

1, s2). We assign a weight of (−1) to w. We summarize the path seen so far below.
We also write the weights assigned to the points

s = (t1, s2) (+1)

u = (s
′

1, s2)

...

w = (s̃
′

1, s2) (−1)

v = (s̃
′

1, s
′

2)

(37)

After w, we have a weight of +1 assigned to t1, −1 assigned to s̃
′

1 (note that s̃
′

1 cannot be t1, this
follows from the fact that we are on shortest path between points of the form (t1, s2) and (s1, t2)).
We call this state S1. After w, we wait for a point on the path where s̃

′

1 changes or we reach the
terminal state (s1, t2). The latter can happen if s̃

′

1 = s1. In the latter case, we assign a weight (+1)
to the terminal state and thus the final weights are (+1) for t1 and t2 and zero for everything else.
This leads to the desired affine combination. We call this state T1, corresponding to terminal state.

Now suppose we were in a situation where we reach a point q = (s+1 , s̃
′

2). The point before q is
r = (s̃

′

1, s̃
′

2). We assign a weight of (+1) to r. We summarize the path seen after encountering w
below.

v = (s̃
′

1, s
′

2)

...

r = (s̃
′

1, s̃
′

2) (+1)

q = (s+1 , s̃
′

2)

(38)

After r, we have a weight of +1 assigned to t1 and a weight of +1 assigned to s̃
′

2. We call this state
S2. After r, we wait for a point where s̃

′

2 changes. It could be that s̃
′

2 changes to t2. The state before
it is say u = (s1, s̃

′

2) and last state e = (s1, t2). Assign a weight of −1 to u and assign a weight of
+1 to e. Thus we achieve the target as affine combination of points on the path. We call this state T2,
corresponding to the terminal state.

Now let us consider the other possibility that the terminal state has not been reached. We call such a
point m = (s̃+1 , s̃

+
2 ). The point that occurs before this point is l = (s̃+1 , s̃

′

2). We assign a weight of
(−1) to l. We summarize the path taken below.

q = (s+1 , s̃
′

2)

...

l = (s̃+1 , s̃
′

2) (−1)
m = (s̃+1 , s̃

+
2 )

(39)

After l, t1 is assigned a weight of +1 and s̃+1 is assigned a weight of −1. We reach the state S1 again.
From this point on, the same steps repeat. We keep cycling between S1 and S2 until we reach the
terminal state from either S1 or S2 at which point we achieve the desired affine combination. The
cycling of states only goes on for a finite number of steps as the entire path we are concerned with
has a finite length. We show the process in Figure 5. Thus S ⊆ A.

We now make an observation about the set A, which is the affine hull of set C. Suppose the
first coordinate takes values between {min1, · · · ,max1}. The corresponding one-hot encod-
ings of the first coordinate are written as {onehot(min1), · · · , onehot(max1)}. Now consider
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S1 S2T1 T2

Figure 5: Illustration of state transition in proof of Theorem 6.

a value c which is not in {min1, · · · ,max1}. We claim that no affine combination of vectors
in {onehot(min1), · · · , onehot(max1)} can lead to onehot(c). We justify this claim as fol-
lows. Observe that no vector in {onehot(min1), · · · , onehot(max1)} has a non-zero entry in
the same coordinate where onehot(c) is also non-zero. Hence, any affine combination of vec-
tors in {onehot(min1), · · · , onehot(max1)} will always have a zero weight in the entry where
onehot(c) is non-zero. It is now clear that the first component of affine hull of A is always be-
tween {min1, · · · ,max1}. Similarly, the second component of affine hull of A is always between
{min2, · · · ,max2}. Therefore, A ⊆ S. As a result, A = S. Another way to say this is that
DAff(Cj) = Cj1 × Cj2.

We now move to the second part of the theorem. We have already shown that DAff(Cj) = Cj1×Cj2.
We now want to show that

DAff
( K⋃
j=1

Cj

)
=

K⋃
j=1

(
Cj1 × Cj2

)
Observe that DAff(A) ⊆ DAff(A ∪ B) and DAff(B) ⊆ DAff(A ∪ B), which implies DAff(A) ∪
DAff(B) ⊆ DAff(A ∪ B). Therefore, from the first part and this observation it follows that⋃K

j=1

(
Cj1 × Cj2

)
⊆ DAff

(⋃K
j=1 Cj

)
. We now show DAff

(⋃K
j=1 Cj

)
⊆
⋃K

j=1

(
Cj1 × Cj2

)
.

Take the K maximally connected components {C1, · · · , CK} and let the set of respective smallest
subgrids containing them be {S1, · · · , SK}. Define a point z′ as the affine combination of points
across these components as z′ =

∑K
i=1

∑Ni

j=1 αijzij , where zij is the jth point in Ci, which

contains Ni points. We can also write z′ as z′ =
∑K

i=1

(∑Ni

j=1 αij

)∑Ni

j=1
αij∑Ni

j=1 αij

zij . Define

z′i =
∑Ni

j=1
αij∑Ni

j=1 αij

zij . Observe that z′i is in the affine combination of points in Ci and hence z′i

is a point in Si. Let α̃i =
∑Ni

j=1 αij . In this notation, we can see z′ is an affine combination of

z′i’s denoted as
∑K

i=1 α̃iz
′
i. In this representation, there is at most one point per Si in the affine

combination. There are two cases to consider. In the first case, exactly one component α̃i is non-zero
and rest all components are zero. In the second case, at least two components α̃i’s are non-zero. In
this setting, we can only keep the non-zero α̃i’s in the sum denoted as

∑
i α̃iz

′
i. Suppose z′i = (ep, eq)

(without loss of generality), where ep is one-hot vector that is one on the pth coordinate. Observe
that no other point in the sum

∑
i α̃iz

′
i will have a non-zero contribution on the pth coordinate. As

a result, in the final vector the pth coordinate of the first attribute will take the value 0 < α̃i < 1.
This point is not a valid point in the set of all possible one-hot concatenations Z and hence it does
not belong to the affine hull DAff

(⋃K
j=1 Cj

)
. Thus we are left with the first case. Observe that

in the first case, we will always generate a point in one of the DAff(Cj), where j ∈ {1, · · · ,K}.
Thus DAff

(⋃K
j=1 Cj

)
⊆
⋃K

j=1 DAff(Cj), which implies DAff
(⋃K

j=1 Cj

)
⊆
⋃K

j=1 Cj1 ×Cj2. This
completes the proof.

B.5 NO EXTRAPOLATION BEYOND DISCRETE AFFINE HULL: PROOF FOR THEOREM 7

In this section, we rely on the characterization of discrete affine hulls shown in the previous section in
Theorem 6. Suppose we learn an additive energy model to estimate p̂(x|z) and estimate the density
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p(x|z) for all training groups using maximum likelihood. In this case, we know that p̂(x|z) = p(x|z)
for all z ∈ DAff(Ztrain). In the next theorem, we show that such densities that satisfy p̂(x|z) = p(x|z)
for all z ∈ DAff(Ztrain) may not match the true density outside the affine hull. In the next result, we
assume that ∀z ∈ Z×, p(·|z) is not uniform.
Theorem 7. Suppose we learn an additive energy model to estimate p̂(x|z) and estimate the density
p(x|z) for all training groups. There exist densities that maximize likelihood and exactly match the
training distributions but do not extrapolate to distributions outside the affine hull of Ztrain, i.e.,
∃z ∈ Z×, where p̂(·|z) ̸= p(·|z).

Proof. We first take Ztrain and partition the groups into K maximally connected components denoted
{C1, · · · , CK}. From Theorem 6, we know that the affine hull of Ztrain is the union of subgrids
{S1, · · · , SK}, where each subgrid Sj is the Cartesian product Cj1 × Cj2.

Let us consider all points (z̃1, z̃2) in some subgrid Sk. For each such (z̃1, z̃2) ∈ Sk, define
Ê1(x, z̃1) = E1(x, z̃1) + αk(x), Ê2(x, z̃2) = E(x, z̃2) − αk(x). Note that regardless of choice
of αk the density, p̂(x|z) = 1

Z(z)e
−⟨σ(z),Ê(x)⟩ matches the true density p(x|z) for all groups z in⋃K

i=1 Si.

Select any group zref = (z1, z2) that is not in the union of subgrids. From the definition of Z×, it
follows that there are points of the form (z1, z

′
2) in one of the subgrid Sj and points of the form

(z′1, z2) are in some subgrid Sr. Let αj(x) = −E1(x,z1)+E2(x,z2)
2 and αr(x) =

E1(x,z1)+E2(x,z2)
2 .

Observe that Ê1(x, z1)+ Ê2(x, z2) = E1(x, z1)+E2(x, z2)+αj(x)−αr(x) = 0. Thus this choice
of αj(x)− αr(x) ensures that p̂(x|z1, z2) is uniform and hence cannot match the true p(x|z1, z2).
This completes the proof.

Based on the above proof, we now argue that there exist solutions to CRM that do not extrapolate
outside the affine hull. Let us consider solutions to CRM denoted Ê, B̂, which satisfies the property
that ⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩ , B̂(z) = B(z)∀z ∈ Ztrain. Following the proof above, we can
choose Ê′s in such a way that the sum of energies at a certain reference point outside the affine hull is
zero and at all points inside the affine hull the sum of energies achieve a perfect match. For the group
zref = (z1, z2) not in the affine hull of Ztrain, we set Ê1(x, z1) + Ê2(x, z2) = ⟨σ(z), Ê(x)⟩ = 0.

Suppose q̂(z|x) = q(z|x),∀z ∈ DAff(Ztrain)
⋃
{zref}. We now compute the likelihood ratio at zref

and a point z ∈ Ztrain. We obtain

q̂(zref |x)
q̂(z|x)

=
q(zref |x)
q(z|x)

=⇒

− log
( q̂(zref |x)
q̂(z|x)

)
= − log

(q(zref |x)
q(z|x)

)
=⇒

⟨σ(zref), Ê(x)⟩ − ⟨σ(z), Ê(x)⟩ = ⟨σ(zref), E(x)⟩ − ⟨σ(z), E(x)⟩ − (θ(z)− θ(zref))

(40)

where θ(z) corresponds to collection of all terms that only depend on z. We already know that
⟨σ(z), Ê(x)⟩ = ⟨σ(z), E(x)⟩ and ⟨σ(zref), Ê(x)⟩ = 0. Substituting these into the above expression
we obtain

⟨σ(zref), E(x)⟩ = θ(z)− θ(zref) (41)

From the above condition, it follows that q(x|zref) is uniform. This implies that p(x|zref) is also uni-
form, which contradicts the condition that p(x|zref) is not uniform. Therefore, q̂(z|x) = q(z|x),∀z ∈
Ztrain

⋃
{zref} cannot be true.
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C EXPERIMENTS SETUP

C.1 DATASET DETAILS

Waterbirds (Wah et al., 2011). The task is to classify land birds (y = 0) from water birds (y = 1),
where the spurious attributes are land background (a = 0) and water background (a = 1). Hence, we
have a total of 4 groups z = (y, a) in the dataset.

CelebA (Liu et al., 2015). The task is to classify blond hair (y = 1) from non-blond hair (y = 0),
where the spurious attribute is gender, female (a = 0) and male (a = 1). Hence, we have a total of 4
groups z = (y, a) in the dataset.

MetaShift (Liang & Zou, 2022). The task is to classify cats (y = 0) from dogs (y = 1), where the
spurious attribute is background, indoor (a = 0) and outdoor (a = 1). Hence, we have a total of 4
groups z = (y, a) in the dataset.

MultiNLI (Williams et al., 2017). The task is to classify the relationship between the premise and
hypothesis in a text document into one of the 3 classes: netural (y = 0), contradiction (y = 1), and
entailment (y = 2). The spurious attribute are words like negation (binary attribute a), which are
correlated with the contradiction class. Hence, we have a total of 6 groups z = (y, a) in the dataset.

CivilComments (Borkan et al., 2019). The task is to classify whether a text document contains toxic
language (y = 0) versus it doesn’t contain toxic language (y = 1), where the spurious attribute a
corresponds to 8 different demographic identities (Male, Female, LGBTQ, Christian, Muslim, Other
Religions, Black, and White). Hence, we have a total of 16 groups z = (y, a) in the dataset.

NICO++ (Zhang et al., 2023). This is a a large scale (60 classes with 6 spurious attributes) domain
generalization benchmark, and we follow the procedure in Yang et al. (2023b) where all the groups
with less than 75 samples were dropped from training. This leaves us with 337 groups during training,
however, the validation set still has samples from all the 360 groups. Hence, we additionally discard
these groups from the validation set as well to design the compositional shift version.

Dataset Total Classes Total Groups Train Size Val Size Test Size

Waterbirds 2 4 4795 1199 5794
CelebA 2 4 162770 19867 19962

MetaShift 2 4 2276 349 874
MultiNLI 3 6 206175 82462 123712

CivilComments 2 16 148304 24278 71854
NICO++ 60 360 62657 8726 17483

Table 3: Statitics for the different benchmarks used in our experiments.

C.2 METRIC DETAILS

Given the test distributions z = (y, a) ∼ q(z) and x ∼ q(x|z), lets denote the corresponding class
predictions as ŷ = M̂(x) as per the method M̂ . Then average accuracy is defined as follows:

Average Acc := E(y,a)Ex∼q(x|z)
[
1[y == M̂(x)]

]
Hence, this denotes the mean accuracy with groups drawn as per the test distribution q(z). However,
if certain (majority) groups have a higher probability of being sampled than others (minority groups)
as per the distribution q(z|x), then the average accuracy metric is more sensitive to mis-classifications
in majority groups as compared to the minority groups. Hence, a method can achieve high average
accuracy even though its accuracy for the minority groups might be low.

Therefore, we use the worst group accuracy metric, defined as follows.

Worst Group Acc := min(y,a)∈ZtestEx∼q(x|z)
[
1[y == M̂(x)]

]
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Essentially we compute the accuracy for each group (y, a) ∼ q(z) as Ex∼q(x|z)
[
1[y == M̂(x)]|

]
and then report the worst performance over all the groups. This metrics has been widely used for
evaluating methods for subpopulation shifts (Sagawa et al., 2019; Yang et al., 2023b).

Similarly, we define the group balanced accuracy (Tsirigotis et al., 2024) as follows, where we
compute the average of all per-group accuracy Ex∼q(x|z)

[
1[y == M̂(x)]

]
.

Group Balanced Acc :=
1

|Ztest|
∑

(y,a)∈Ztest

Ex∼q(x|z)
[
1[y == M̂(x)]

]
C.3 METHOD DETAILS

For all the methods we have a pre-trained representation network backbone with linear classifier
heads. We use ResNet-50 (He et al., 2016) for the vision datasets (Waterbirds, CelebA, MetaShift,
NICO++) and BERT (Devlin et al., 2018) for the text datasets (MultiNLI, CivilComments). The
parameters of both the representation network and linear classifier are updated with the same learning
rate, and do not employ any special fine-tuning strategy for the representation network. For vision
datasets we use the SGD optimizer (default values for momemtum 0.9), while for the text datasets we
use the AdamW optimizer (Paszke et al., 2017) (default values for beta (0.9, 0.999) ).

Hyperparameter Selection. We rely on the group balanced accuracy on the validation set to
determine the optimal hyperparameters. We specify the grids for each hyperparameter in Table 4,
and train each method with 5 randomly drawn hyperparameters. The grid sizes for hyperparameter
selection were designed following Pezeshki et al. (2023).

Dataset Learning Rate Weight Decay Batch Size Total Epochs

Waterbirds 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 5000
CelebA 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 10000

MetaShift 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 5000
MulitNLI 10Uniform(−6,−4) 10Uniform(−6,−3) 2Uniform(4,6) 10000

CivilComments 10Uniform(−6,−4) 10Uniform(−6,−3) 2Uniform(4,6) 10000
NICO++ 10Uniform(−5,−3) 10Uniform(−6,−3) 2Uniform(5,7) 10000

Table 4: Details about the grids for hyperparameter selection. The choices for grid sizes were taken
from Pezeshki et al. (2023).
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D ADDITIONAL RESULTS

D.1 RESULTS FOR ALL THE COMPOSITIONAL SHIFT SCENARIOS

Table 5, Table 6, Table 7, Table 8, and Table 9 present the results for the Waterbirds, CelebA,
MetaShift, MultiNLI, and CivilComments benchmark respectively. Here we do not aggregate over
the multiple compositional shift scenarios of a benchmark, and provide a more detailed analysis with
results for each scenario. For each method, we further highlight the worst case scenario for it, i.e, the
scenario with the lowest worst group accuracy amongst all the compositional shift scenarios. This
helps us easily compare the performance of methods for the respective worst case compositional shift
scenario, as opposed to the average over all scenarios in Table 1. An interesting finding is that CRM
outperforms all the baselines in the respective worst case compositional shift scenarios.

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 74.0 (0.0) 82.3 (0.3) 67.0 (0.0)
G-DRO 77.3 (0.7) 83.0 (0.6) 59.7 (1.9)
LC 85.7 (0.3) 88.7 (0.3) 82.0 (0.6)
sLA 86.0 (0.0) 89.0 (0.0) 82.3 (0.3)
CRM 86.7 (0.9) 88.7 (0.3) 83.0 (1.5)

(0, 1)

ERM 67.3 (0.3) 71.7 (0.3) 28.0 (1.2)
G-DRO 58.3 (3.2) 70.7 (2.0) 11.7 (4.6)
LC 82.7 (3.2) 86.0 (1.7) 72.0 (5.8)
sLA 86.3 (1.7) 88.0 (1.0) 78.7 (3.3)
CRM 86.0 (2.1) 86.7 (0.7) 73.0 (4.2)

(1, 0)

ERM 84.0 (0.0) 78.0 (0.0) 38.3 (0.3)
G-DRO 90.0 (0.0) 86.0 (0.6) 67.0 (3.6)
LC 93.0 (0.0) 89.0 (0.6) 79.0 (1.2)
sLA 93.0 (0.0) 89.0 (0.6) 79.3 (1.5)
CRM 86.7 (0.3) 89.0 (0.0) 83.7 (0.3)

ERM 86.3 (0.3) 69.3 (0.3) 38.7 (0.7)
G-DRO 86.0 (0.6) 75.7 (2.2) 31.0 (9.2)

(1, 1) LC 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)
sLA 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)
CRM 89.0 (0.6) 86.7 (0.7) 75.0 (3.2)

Table 5: Results for the various compositional shift scenarios for the Waterbirds benchmark. For
each metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight
the worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst
group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in
the respective worst case compositional shift scenarios.
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Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 68.7 (0.3) 74.0 (0.0) 37.7 (0.3)
G-DRO 85.0 (0.6) 88.0 (0.0) 75.0 (1.2)
LC 88.0 (0.0) 90.3 (0.3) 82.3 (0.3)
sLA 87.7 (0.3) 90.3 (0.3) 82.3 (0.7)
CRM 91.7 (0.3) 89.3 (0.3) 81.0 (2.0)

(0, 1)

ERM 91.3 (0.9) 91.0 (0.6) 86.7 (1.3)
G-DRO 85.0 (1.5) 88.7 (0.7) 72.7 (3.7)
LC 93.0 (0.6) 87.7 (0.9) 71.0 (1.7)
sLA 92.7 (0.3) 88.0 (0.0) 71.3 (0.9)
CRM 88.3 (0.9) 91.0 (0.6) 85.0 (2.0)

ERM 87.0 (0.0) 59.3 (0.3) 4.0 (0.0)
G-DRO 91.7 (0.3) 86.3 (0.7) 71.7 (0.9)

(1, 0) LC 88.3 (0.3) 70.7 (0.7) 21.0 (2.1)
sLA 88.3 (0.3) 71.0 (0.6) 21.3 (1.9)
CRM 93.0 (0.0) 85.7 (0.3) 73.3 (1.8)

(1, 1)

ERM 96.0 (0.0) 78.0 (0.6) 27.7 (2.0)
G-DRO 95.0 (0.0) 84.3 (0.3) 51.7 (1.2)
LC 95.0 (0.0) 85.3 (0.3) 55.3 (1.9)
sLA 95.0 (0.0) 85.0 (0.6) 54.7 (2.3)
CRM 91.3 (0.3) 91.0 (0.0) 88.0 (0.6)

Table 6: Results for the various compositional shift scenarios for the CelebA benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 84.3 (0.3) 84.0 (0.6) 80.3 (0.9)
G-DRO 84.0 (0.6) 83.3 (0.7) 78.0 (0.6)
LC 89.0 (0.0) 85.7 (0.3) 74.3 (1.8)
sLA 90.0 (0.0) 85.0 (0.0) 67.3 (1.9)
CRM 87.3 (0.3) 84.3 (0.3) 73.3 (0.7)

(0, 1)

ERM 85.0 (0.0) 79.0 (0.0) 49.0 (0.0)
G-DRO 86.0 (1.0) 81.7 (0.3) 55.3 (3.2)
LC 86.0 (0.0) 84.0 (0.0) 63.7 (0.3)
sLA 86.0 (0.0) 84.0 (0.0) 64.0 (0.6)
CRM 88.3 (0.3) 85.7 (0.3) 78.0 (1.0)

ERM 90.0 (0.0) 82.0 (0.0) 48.3 (0.3)
G-DRO 90.3 (0.3) 82.7 (0.9) 52.7 (2.3)

(1, 0) LC 90.0 (0.0) 84.3 (0.3) 62.0 (0.0)
sLA 88.7 (0.3) 81.0 (0.0) 46.7 (0.7)
CRM 87.0 (1.2) 83.3 (0.7) 70.0 (1.0)

(1, 1)

ERM 83.3 (1.2) 81.7 (0.9) 64.3 (1.2)
G-DRO 83.7 (0.9) 82.7 (0.9) 69.3 (2.0)
LC 89.0 (0.0) 86.0 (0.0) 72.7 (0.7)
sLA 89.0 (0.0) 86.0 (0.0) 74.0 (0.0)
CRM 87.7 (0.3) 85.3 (0.3) 72.3 (1.7)

Table 7: Results for the various compositional shift scenarios for the MetaShift benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.
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Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

ERM 62.7 (0.3) 66.7 (0.3) 0.7 (0.3)
G-DRO 63.3 (0.3) 68.0 (0.0) 1.7 (0.7)

(0, 0) LC 68.0 (0.0) 72.0 (0.0) 20.0 (0.0)
sLA 67.7 (0.3) 72.0 (0.0) 19.7 (1.5)
CRM 64.7 (0.9) 70.7 (0.9) 31.0 (5.6)

(0, 1)

ERM 77.7 (0.3) 71.7 (0.3) 14.0 (1.0)
G-DRO 80.7 (0.7) 80.7 (0.7) 74.0 (1.0)
LC 81.0 (0.0) 81.0 (0.0) 75.3 (0.3)
sLA 81.3 (0.3) 80.7 (0.3) 69.0 (0.6)
CRM 80.0 (0.6) 78.0 (1.2) 62.3 (8.2)

(1, 0)

ERM 58.0 (0.0) 67.0 (0.0) 0.0 (0.0)
G-DRO 57.7 (0.3) 67.7 (0.3) 0.0 (0.0)
LC 70.7 (0.9) 74.3 (0.3) 47.3 (4.3)
sLA 73.3 (2.7) 76.3 (1.7) 58.3 (9.7)
CRM 69.5 (0.5) 74.0 (0.0) 63.5 (0.5)

(1, 1)

ERM 82.0 (0.2) 73.0 (0.2) 20.0 (1.2)
G-DRO 80.3 (0.3) 79.3 (0.3) 72.7 (0.9)
LC 81.7 (0.3) 81.3 (0.3) 74.3 (1.5)
sLA 82.0 (0.0) 81.0 (0.0) 75.3 (0.7)
CRM 81.3 (0.3) 80.7 (0.3) 71.3 (1.8)

(2, 0)

ERM 62.0 (0.0) 68.3 (0.3) 0.0 (0.0)
G-DRO 60.0 (0.0) 67.7 (0.3) 0.0 (0.0)
LC 72.3 (0.3) 74.7 (0.3) 48.7 (0.7)
sLA 72.7 (0.7) 74.3 (0.3) 48.3 (0.9)
CRM 68.7 (0.3) 72.7 (0.3) 50.0 (0.6)

(2, 1)

ERM 81.3 (0.3) 74.3 (0.3) 17.3 (2.4)
G-DRO 80.7 (0.3) 79.0 (0.0) 57.3 (2.2)
LC 82.0 (0.0) 80.7 (0.3) 60.0 (1.2)
sLA 81.7 (0.3) 80.3 (0.3) 59.3 (0.9)
CRM 81.3 (0.3) 80.0 (0.6) 72.7 (0.9)

Table 8: Results for the various compositional shift scenarios for the MultiNLI benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.
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Discarded Group (y, a) Method Average Acc Balanced Acc Worst Group Acc

(0, 0)

ERM 79.0 (0.6) 78.7 (0.3) 61.3 (1.5)
G-DRO 79.3 (1.2) 79.0 (0.0) 64.7 (3.0)
LC 79.7 (0.3) 79.0 (0.0) 64.3 (0.9)
sLA 79.7 (0.3) 79.3 (0.3) 66.7 (1.8)
CRM 84.0 (0.0) 78.7 (0.3) 67.0 (2.5)

(0, 1)

ERM 78.0 (0.6) 78.3 (0.3) 64.3 (1.2)
G-DRO 78.0 (0.6) 78.7 (0.3) 64.3 (1.5)
LC 79.3 (0.3) 79.0 (0.0) 64.3 (0.9)
sLA 79.7 (0.3) 79.0 (0.0) 65.3 (0.3)
CRM 83.3 (0.7) 78.7 (0.3) 71.0 (1.5)

ERM 78.3 (0.3) 77.7 (0.3) 38.0 (1.0)
(0, 2) G-DRO 79.0 (0.6) 78.3 (0.3) 43.7 (0.3)

LC 79.0 (0.6) 79.0 (0.0) 53.7 (2.3)
sLA 79.3 (0.3) 79.0 (0.0) 55.0 (2.1)
CRM 83.3 (0.3) 78.7 (0.3) 68.0 (1.0)

(0, 3)

ERM 80.5 (0.5) 79.0 (0.0) 66.0 (2.0)
G-DRO 80.0 (0.6) 79.0 (0.0) 67.3 (2.7)
LC 81.3 (0.3) 79.0 (0.0) 69.0 (1.2)
sLA 80.7 (0.7) 79.0 (0.0) 66.7 (2.7)
CRM 83.7 (0.3) 78.7 (0.3) 69.7 (0.3)

(0, 4)

ERM 78.0 (0.0) 77.7 (0.3) 38.0 (0.6)
G-DRO 78.7 (0.9) 78.7 (0.3) 52.0 (3.2)
LC 79.0 (0.0) 79.0 (0.0) 60.7 (1.5)
sLA 78.3 (0.3) 79.0 (0.0) 62.0 (1.0)
CRM 83.7 (0.3) 79.0 (0.0) 69.7 (1.9)

(0, 5)

ERM 80.0 (0.0) 79.0 (0.0) 61.0 (0.6)
G-DRO 80.0 (0.6) 79.0 (0.0) 67.3 (1.8)
LC 79.3 (0.9) 79.0 (0.0) 65.7 (2.3)
sLA 80.0 (0.0) 79.7 (0.3) 66.7 (0.3)
CRM 84.0 (0.0) 78.7 (0.3) 71.0 (1.0)

(0, 6)

ERM 78.7 (0.3) 78.0 (0.0) 36.3 (1.2)
G-DRO 78.3 (0.3) 78.3 (0.3) 46.3 (1.2)
LC 80.7 (0.3) 79.0 (0.0) 58.7 (2.3)
sLA 79.7 (0.9) 79.0 (0.0) 57.0 (3.1)
CRM 83.3 (0.7) 78.7 (0.3) 70.0 (1.0)

(0, 7)

ERM 79.0 (0.0) 77.7 (0.3) 40.0 (1.2)
G-DRO 77.7 (0.3) 78.7 (0.3) 49.7 (0.3)
LC 79.7 (0.3) 79.0 (0.0) 60.0 (2.3)
sLA 78.7 (0.3) 79.0 (0.0) 56.3 (1.3)
CRM 83.3 (0.3) 78.3 (0.3) 64.0 (1.2)

(1, 0)

ERM 81.3 (0.3) 79.0 (0.0) 60.3 (0.3)
G-DRO 82.3 (0.7) 79.0 (0.0) 69.7 (1.3)
LC 81.3 (0.3) 79.0 (0.0) 71.0 (0.6)
sLA 81.3 (0.9) 79.0 (0.0) 70.0 (1.2)
CRM 84.0 (0.0) 78.0 (0.0) 68.3 (0.9)

(1, 1)

ERM 81.7 (0.3) 77.7 (0.3) 60.3 (1.2)
G-DRO 82.0 (0.6) 79.0 (0.0) 67.3 (0.9)
LC 80.7 (0.3) 79.0 (0.0) 69.3 (0.9)
sLA 81.3 (0.3) 79.0 (0.0) 71.0 (1.2)
CRM 84.0 (0.0) 78.3 (0.3) 70.0 (0.6)

(1, 2)

ERM 81.3 (0.3) 78.7 (0.3) 61.3 (0.7)
G-DRO 80.7 (0.3) 79.0 (0.0) 63.7 (2.4)
LC 82.0 (0.6) 79.0 (0.0) 70.0 (2.1)
sLA 82.0 (0.6) 79.0 (0.0) 69.7 (1.8)
CRM 83.7 (0.3) 78.3 (0.3) 63.7 (3.2)

(1, 3)

ERM 82.3 (0.9) 78.0 (0.0) 59.0 (1.5)
G-DRO 81.0 (0.6) 79.0 (0.0) 67.3 (2.6)
LC 82.0 (0.0) 79.0 (0.0) 70.0 (1.5)
sLA 82.7 (0.9) 79.3 (0.3) 69.0 (1.5)
CRM 83.7 (0.3) 78.0 (0.0) 71.0 (1.5)

(1, 4)

ERM 82.3 (0.3) 78.7 (0.3) 58.3 (1.8)
G-DRO 80.3 (0.3) 79.0 (0.0) 68.0 (0.6)
LC 82.0 (0.0) 79.3 (0.3) 70.7 (0.3)
sLA 82.0 (0.6) 79.3 (0.3) 70.0 (0.6)
CRM 83.7 (0.3) 78.3 (0.3) 60.0 (1.5)

(1, 5)

ERM 82.0 (0.0) 78.7 (0.3) 63.7 (0.3)
G-DRO 81.7 (0.3) 79.0 (0.0) 64.7 (1.3)
LC 81.3 (0.3) 79.3 (0.3) 68.3 (0.7)
sLA 82.0 (0.6) 79.0 (0.0) 71.3 (0.9)
CRM 83.7 (0.3) 78.3 (0.3) 70.0 (1.0)

(1, 6)

ERM 82.0 (0.6) 79.0 (0.0) 65.3 (2.4)
G-DRO 81.0 (0.0) 79.3 (0.3) 66.0 (1.2)
LC 81.7 (0.7) 79.0 (0.0) 69.7 (2.3)
sLA 80.7 (0.3) 79.0 (0.0) 66.7 (0.3)
CRM 84.0 (0.0) 78.3 (0.3) 70.0 (1.5)

(1, 7)

ERM 82.0 (1.2) 78.7 (0.3) 63.3 (1.8)
G-DRO 81.0 (0.0) 79.0 (0.0) 64.3 (0.3)
LC 81.7 (0.3) 79.0 (0.0) 66.0 (1.5)
sLA 82.3 (0.3) 79.0 (0.0) 67.0 (1.5)
CRM 84.0 (0.3) 77.0 (0.0) 65.0 (1.0)

Table 9: Results for the various compositional shift scenarios for the CivilComments benchmark.
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D.2 CHOICE OF TEST PRIOR AND IMPORTANCE OF EXTRAPOLATED BIAS

In the implementation of CRM Algorithm 1, we have the following two choices; 1) we use the
extrapolated bias B⋆ (equation 10); 2) we set q̂(z) as the uniform distribution, i.e, q̂(z = (y, a)) =

1
dy×da

. We now conduct ablation studies by varying these components as follows.

• Bias B⋆ + Emp Prior: We still use the extrapolated bias B⋆ but instead of uniform q̂(z), we
use test dataset to obtain the counts of each group, denoted as the empirical prior. Note that
this approach assumes the knowledge of test distribution of groups, hence we expect this to
improve the average accuracy but not the necessarily the worst group accuracy.

• Bias B̂ + Unf Prior: We still use the uniform prior for q̂(z) but instead of the extrapolated
bias B⋆, we use the learned bias B̂ (equation 8). This ablation helps us to understand
whether extrapolated bias B⋆ are crucial for CRM to generalize to compositional shifts.

• Bias B̂+ Emp Prior: Here we change both aspects of CRM as we use the learned bias B̂
and empirical prior from the test dataset for q̂(z).

Table 10 presents the results of the ablation study. We find that extrapolated bias is crucial for CRM
as the worst group accuracy with learned bias is much worse! Further, using empirical prior instead
of the uniform prior leads to improvement in average accuracy at the cost of worst group accuracy.

Further discussion on choice of test prior:
Our algorithm allows the flexibility at test time to choose the prior over test groups as we see fit.
That choice should be informed by what we might know or guess about the distribution over test
groups, as well as what the metric of interest is. If we assume we can know nothing about the test
group distribution, and we care about robust metrics invariant to changes in that distribution, such
as balanced-group accuracy or worst-group-accuracy (WGA), then it makes sense to use a uniform
prior over groups. This is what we did in most of our experiments. On the other extreme, if we can
estimate the test group distribution and what we care about is average test accuracy, then we should
use that estimate (which we call empirical prior) as the test prior. We explore these alternatives and
show the results in Table 10. As expected from the theory, the empirical prior achieves better average
test accuracy, while the uniform prior performs better in terms of worst group accuracy.

Other choices of test prior are possible, depending on what we know and care about. For e.g. if we
know some attribute combinations are impossible at test time, we can set their prior probability to 0,
while e.g. keeping it uniform over all other possible combinations. Or if we assume that the marginal
test distribution of each attribute will be close to its marginal train distribution, we can estimate these
marginals on the training set and define an independent test prior as their product. Exploration of the
practical usefulness of such alternatives is left as future work.
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Dataset Ablation Average Acc Balanced Acc Worst Group Acc

CRM 87.1 (0.7) 87.8 (0.1) 78.7 (1.6)

Waterbirds
Bias B⋆ + Emp Prior 91.6 (0.2) 87.4 (0.3) 75.2 (1.3)

Bias B̂ + Unf Prior 81.2 (0.6) 82.7 (0.2) 55.7 (1.0)

Bias B̂ + Emp Prior 84.3 (0.6) 81.6 (0.3) 51.3 (1.0)

CRM 91.1 (0.2) 89.2 (0.3) 81.8 (1.2)

CelebA
Bias B⋆ + Emp Prior 94.3 (0.1) 75.8 (0.4) 34.1 (1.0)

Bias B̂ + Unf Prior 83.6 (0.1) 84.7 (0.2) 58.9 (0.4)

Bias B̂ + Emp Prior 90.9 (0.1) 77.2 (0.3) 35.4 (0.7)

CRM 87.6 (0.2) 84.7 (0.1) 73.4 (0.7)

MetaShift
Bias B⋆ + Emp Prior 89.2 (0.2) 84.0 (0.4) 65.1 (1.4)

Bias B̂ + Unf Prior 87.2 (0.3) 82.9 (0.4) 58.7 (0.6)

Bias B̂ + Emp Prior 88.1 (0.1) 82.1 (0.1) 56.1 (0.4)

CRM 74.6 (0.5) 76.1 (0.4) 57.7 (3.0)

MultiNLI
Bias B⋆ + Emp Prior 75.0 (0.5) 72.2 (0.4) 39.7 (3.2)

Bias B̂ + Unf Prior 72.9 (0.9) 74.0 (0.4) 28.9 (2.1)

Bias B̂ + Emp Prior 73.6 (0.9) 70.8 (0.4) 20.2 (0.2)

CRM 83.7 (0.1) 78.4 (0.1) 68.1 (0.5)

CivilComments
Bias B⋆ + Emp Prior 87.0 (0.0) 74.1 (0.3) 48.0 (1.2)

Bias B̂ + Unf Prior 76.8 (0.2) 77.8 (0.0) 51.9 (1.0)

Bias B̂ + Emp Prior 83.5 (0.1) 78.0 (0.0) 62.2 (0.6)

CRM 84.7 (0.3) 84.7 (0.3) 40.3 (4.3)

NICO++
Bias B⋆ + Emp Prior 85.0 (0.0) 85.0 (0.0) 41.0 (4.9)

Bias B̂ + Unf Prior 85.0 (0.0) 85.0 (0.0) 31.0 (1.0)

Bias B̂ + Emp Prior 85.0 (0.0) 85.0 (0.0) 27.7 (3.9)

Table 10: Ablation study with CRM. We consider the average performance over the different
compositional shift scenarios for each benchmark, and report the mean (standard error) over 3 random
seeds on the test dataset. CRM corresponds to the usual implementation with extrapolated bias
B⋆ and uniform prior for q̂(z). CRM obtains better worst group accuracy than all the ablations,
highlighting the importance of both extrapolated bias and uniform prior! Extrapolated bias is critical
for generalization to compositional shifts as the performance with learned bias is much worse.
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D.3 RESULTS FOR THE ORIGINAL BENCHMARKS

We present results for the original benchmarks (Dtrain,Dval,Dtrain) in Table 11, which corresponds
to the standard subpopulation shift case for these benchmarks. For Waterbirds, CelebA, MetaShift,
and MultiNLI, subpopulation shift implies all the groups z = (y, a) are present in both the train and
test dataset (Ztrain = Ztest = Z×), however, the groups sizes change from train to test, inducing a
spurious correaltion between class labels y and attributes a. For the NICO++ dataset, we have a total
of 360 groups in the test dataset but only 337 of them are present in the train dataset. But still this is
not a compositional shift as the validation dataset contains all the 360 groups. We find that CRM is
still competitive to the baselines for the standard subpopulation shift scenario of each benchmark!

Dataset Method Average Acc Balanced Acc Worst Group Acc

Waterbirds

ERM 87.3 (0.3) 84.0 (0.0) 62.3 (1.2)
G-DRO 91.7 (0.3) 91.0 (0.0) 87.3 (0.3)
LC 92.0 (0.0) 91.0 (0.0) 88.7 (0.3)
sLA 92.3 (0.3) 91.0 (0.0) 89.7 (0.3)
CRM 91.3 (0.9) 91.0 (0.0) 86.0 (0.6)

CelebA

ERM 95.7 (0.3) 84.0 (0.0) 52.0 (1.0)
G-DRO 92.0 (0.6) 93.0 (0.0) 91.0 (0.6)
LC 92.0 (0.6) 92.0 (0.0) 90.0 (0.6)
sLA 92.3 (0.3) 91.7 (0.3) 86.7 (1.9)
CRM 93.0 (0.0) 92.0 (0.0) 89.0 (0.6)

MetaShift

ERM 90.0 (0.0) 84.0 (0.0) 63.0 (0.0)
G-DRO 90.3 (0.3) 88.3 (0.3) 80.7 (1.3)
LC 89.7 (0.3) 87.7 (0.3) 80.0 (1.2)
sLA 90.0 (0.6) 87.7 (0.3) 80.0 (1.2)
CRM 88.3 (0.7) 85.7 (0.3) 74.7 (1.5)

MultiNLI

ERM 81.7 (0.3) 80.7 (0.3) 68.0 (1.7)
G-DRO 80.7 (0.3) 78.0 (0.0) 57.0 (2.3)
LC 82.0 (0.0) 82.0 (0.0) 74.3 (1.2)
sLA 82.0 (0.0) 82.0 (0.0) 71.7 (0.3)
CRM 81.7 (0.3) 81.7 (0.3) 74.7 (1.3)

CivilComments

ERM 80.3 (0.3) 79.0 (0.0) 61.0 (2.5)
G-DRO 79.7 (0.3) 79.0 (0.0) 64.7 (1.5)
LC 80.7 (0.3) 79.7 (0.3) 67.3 (0.3)
sLA 80.3 (0.3) 79.0 (0.0) 66.3 (0.9)
CRM 83.3 (0.3) 78.0 (0.0) 70.0 (0.6)

NICO++

ERM 85.3 (0.3) 85.0 (0.0) 35.3 (2.3)
G-DRO 83.7 (0.3) 83.3 (0.3) 33.7 (1.2)
LC 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)
sLA 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)
CRM 85.0 (0.0) 84.7 (0.3) 39.0 (3.2)

Table 11: Results for the standard subpopulation shift case for each benchmark. Here we do not
transform the datasets for compositional shifts, hence all the groups are present in both the train and
the test dataset (except the NICO++ benchmark). CRM is still competitive with the baselines for this
scenario where no groups were discarded additionally.
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D.4 NUMERICAL EXPERIMENT FOR DISCRETE AFFINE HULL

(m = 5, d = 5) (m = 10, d = 10) (m = 20, d = 20)

1.0 1.0 0.986

Table 12: Numerical experiments to check the probability that the affine hull of randomO(poly(m∗d))
one-hot concatenations span the entire set Z . We sample random 3 ∗m ∗ d one-hot vectors and report
the frequency of times out of 1000 runs a random one-hot concatenation is in the affine hull of the
selected set of vectors.
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E REBUTTAL EXPERIMENTS

E.1 MULTI-ATTRIBUTE EXPERIMENTS

We augment the CelebA dataset (Liu et al., 2015) with another binary spurious attribute (a2), which
determines whether the person is wearing eyeglasses or not. Hence, we have a total of 8 groups
with three binary attributes (y, a1, a2); with y denoting blond hair and a1 denoting the gender, same
as in our prior experiments with CelebA. Since CRM model each attribute with a different energy
component, we incorporate an additional energy layer as compared to our prior experiments with
two attributes. However, all the baselines would treat the two spurious attributes (a1, a2) as a single
”meta” spurious attribute a′ that takes 4 possible values, and aim to predict y.

Table 13 presents the results for the multi-attribute CelebA dataset, where we generate multiple
benchmarks with compositional shift by dropping one of the 8 groups from the training & validation
dataset (similar to the setup for our prior experiments). We find that CRM outperforms all the
baselines w.r.t worst group accuracy and balanced accuracy, hence, remains superior for the case of
multiple attributes as well.

Method Average Acc Balanced Acc Worst Group Acc WGA
(No Groups Dropped)

ERM 94.1 (0.1) 77.4 (0.3) 21.6 (0.6) 19.0 (0.0)
G-DRO 91.2 (0.5) 87.3 (0.3) 61.0 (2.1) 66.7 (2.3)
LC 92.8 (0.0) 89.8 (0.1) 75.0 (1.3) 77.0 (2.0)
sLA 93.0 (0.1) 89.7 (0.1) 76.0 (0.7) 77.0 (4.0)
CRM 92.3 (0.2) 91.6 (0.0) 84.0 (0.3) 86.3 (1.2)

Table 13: CelebA with Multiple Spurious Attributes. We compare CRM to baselines on CelebA
dataset with 3 attribute. Similar to the prior setup (Table 1), we report the Average Accuracy, Group
Balanced Accuracy, and Worst Group Accuracy (WGA), averaged as a group is dropped from the
training and validation sets. Last column is WGA under the standard subpopulation shift scenario
where no groups were dropped. CRM is the best approach w.r.t the worst group accuracy as well as
the balanced group accuracy.

E.2 ADDITIONAL BASELINES AND MACRO F1 SCORE

We incorporate additional baselines, IRM (Arjovsky et al., 2019) and VREx (Krueger et al., 2021),
and benchmark it against the other baselines and CRM in Table 14. Note that for the other baselines
and CRM, the results are essentially the same as in Table 1, and we have repeated them for the
convenience of the reader. Additionally, we add the macro F1 metric, which akin to the group
balanced accuracy computes the average of all per-group F1 scores.

Macro F1 :=
1

|Ztest|
∑

(y,a)∈Ztest

F1(y, M̂(x))

We find that CRM is far more than effective the new baselines introduced, and obtains superior
performance w.r.t macro F1 metric as well for most of the datasets. Given that we have many metrics
now, to summarize these findings in a better manner we also compute rankings of the method w.r.t a
test metric and then report the average ranking across the different datasets (and their corresponding
compositional shift scenarios). We report the average rank of each method in Table 15. We find that
CRM obtains the best rank (lower the better) w.r.t group balanced accuracy, macro F1, and worst
group accuracy, followed by the logit adjustment baselines, thus effectively tackling compositional
shifts. Note that on average accuracy CRM ranks second to logit adjustment methods, however, note
that the choice of test prior affects the average accuracy performance. As shown in the ablation study
of CRM (Table 10), utilizing the empirical test prior can improve the average accuracy as opposed to
the case of uniform prior in CRM. We find that CRM with empirical test prior obtains the best rank
w.r.t the average accuracy, however, its worse than CRM w.r.t other metrics.
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Dataset Method Average Acc Balanced Acc Macro F1 Worst Group Acc

Waterbirds

ERM 77.9 (0.1) 75.3 (0.1) 83.2 (0.1) 43.0 (0.2)
G-DRO 77.9 (0.9) 78.8 (0.7) 85.2 (0.8) 42.3 (2.6)
LC 88.3 (0.9) 86.9 (0.6) 92.6 (0.3) 75.5 (1.8)
sLA 89.3 (0.4) 87.5 (0.4) 92.9 (0.2) 77.3 (1.4)
IRM 73.6 (0.8) 70.4 (0.3) 75.8 (0.4) 28.7 (2.2)
VREx 81.0 (0.6) 80.0 (0.5) 86.8 (0.4) 45.6 (1.1)
CRM 87.1 (0.7) 87.8 (0.1) 93.2 (0.1) 78.7 (1.0)

CelebA

ERM 85.8 (0.3) 75.6 (0.1) 81.5 (0.1) 39.0 (0.3)
G-DRO 89.2 (0.5) 86.8 (0.1) 92.5 (0.1) 67.8 (0.8)
LC 91.1 (0.2) 83.5 (0.0) 89.2 (0.2) 57.4 (0.5)
sLA 90.9 (0.2) 83.6 (0.3) 89.4 (0.4) 57.4 (1.3)
IRM 80.4 (1.3) 76.7 (1.1) 84.2 (0.9) 40.1 (2.4)
VREx 86.2 (0.3) 82.8 (0.5) 88.8 (0.5) 49.2 (2.1)
CRM 91.1 (0.2) 89.2 (0.0) 94.2 (0.1) 81.8 (0.5)

MetaShift

ERM 85.7 (0.4) 81.7 (0.3) 88.8 (0.2) 60.5 (0.5)
G-DRO 86.0 (0.3) 82.6 (0.2) 89.6 (0.2) 63.8 (1.1)
LC 88.5 (0.0) 85.0 (0.0) 91.5 (0.1) 68.2 (0.5)
sLA 88.4 (0.1) 84.0 (0.0) 90.7 (0.1) 63.0 (0.5)
IRM 83.7 (0.3) 80.3 (0.4) 87.9 (0.3) 55.8 (1.0)
VREx 84.9 (0.4) 81.7 (0.3) 89.2 (0.1) 59.9 (0.2)
CRM 87.6 (0.3) 84.7 (0.2) 91.4 (0.1) 73.4 (0.4)

NICO++

ERM 85.0 (0.0) 85.0 (0.0) 91.3 (0.3) 35.3 (2.3)
G-DRO 84.0 (0.0) 83.7 (0.3) 91.0 (0.0) 36.7 (0.7)
LC 85.0 (0.0) 85.0 (0.0) 91.0 (0.0) 35.3 (2.3)
sLA 85.0 (0.0) 85.0 (0.0) 91.0 (0.0) 33.0 (0.0)
IRM 64.0 (0.6) 62.7 (0.3) 71.3 (0.3) 0.0 (0.0)
VREx 86.0 (0.0) 86.0 (0.0) 92.0 (0.0) 37.3 (4.3)
CRM 84.7 (0.3) 84.7 (0.3) 91.0 (0.0) 40.3 (4.3)

MultiNLI

ERM 69.1 (0.7) 69.8 (0.2) 77.0 (0.2) 7.2 (0.6)
G-DRO 70.4 (0.1) 73.7 (0.2) 81.7 (0.2) 34.3 (0.5)
LC 75.9 (0.1) 77.3 (0.2) 86.3 (0.1) 54.3 (0.5)
sLA 76.4 (0.5) 77.4 (0.2) 86.3 (0.2) 55.0 (1.8)
IRM 65.7 (0.1) 63.7 (0.4) 73.3 (0.3) 8.1 (0.8)
VREx 69.0 (0.0) 68.8 (0.2) 76.8 (0.1) 4.1 (0.3)
CRM 74.6 (0.5) 76.2 (0.6) 85.8 (0.4) 57.7 (3.0)

CivilComments

ERM 80.4 (0.2) 78.4 (0.0) 87.5 (0.1) 55.9 (0.2)
G-DRO 80.1 (0.1) 78.9 (0.0) 87.9 (0.0) 61.6 (0.5)
LC 80.7 (0.1) 79.0 (0.0) 88.0 (0.0) 65.7 (0.5)
sLA 80.6 (0.1) 79.1 (0.0) 88.1 (0.0) 65.6 (0.2)
IRM 79.7 (0.2) 78.0 (0.0) 87.2 (0.1) 53.5 (0.5)
VREx 79.8 (0.1) 78.7 (0.1) 87.8 (0.0) 57.5 (0.4)
CRM 83.7 (0.1) 78.4 (0.0) 87.8 (0.0) 68.1 (0.5)

Table 14: Extra Baselines and macro F1 score. In addition to the baselines and metrics in Table 1,
we compare CRM with additional baselines IRM and VREx, and report the macro F1 metric as well.
Similar to the prior setup, all the metrics are averaged as a group is dropped from the training and
validation sets. We find that CRM outperforms IRM and VREx on all the test metrics, with significant
gains w.r.t the worst group accuracy. Also, the gains with CRM over the baselines are consistent w.r.t
the macro F1 metric as well.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Method Average Acc Balanced Acc Macro F1 Worst Group Acc

ERM 3.60 3.60 3.29 4.78
G-DRO 3.60 2.87 2.49 3.75
LC 2.27 1.84 1.78 2.81
sLA 2.28 1.92 1.86 3.10
IRM 4.89 4.56 4.02 5.67
VREx 3.61 3.10 2.96 4.69
CRM (Emp Prior) 1.51 3.06 2.65 4.02
CRM 2.46 1.80 1.56 1.96

Table 15: Ranking each method w.r.t test metrics (Lower the better). For each test metric, we
report the relative rank of all the methods, which is averaged over the 3 random seed per scenario,
different discarded group scenarios for each dataset, and all the datasets as well. We find the CRM
obtains the best rank as compared to the baselines w.r.t the group balanced accuracy, macro F1,
and worst group accuracy. Further, the implementation of CRM with empirical test prior obtains the
best rank w.r.t the average accuracy, which is similar to the findings in the ablation study of CRM
(Table 10).
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E.3 SAMPLE COMPLEXITY ANALYSIS AS FUNCTION OF d
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(b) d = 20
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Figure 6: Sample Complexity Analysis. We analyze the rate of growth of total groups required to
achieve cartesian-product extrapolation as a function of total categories d for each attribute. For each
scenario, we evaluate CRM’s generalization capabilities as we discard more groups from the training
dataset. X-axis denotes the percentage of total groups available for training, and y-axis denotes the
test average accuracy (mean & standard error over 3 random seeds) obtained by CRM. We find that
observing at least 20% of total train groups is sufficient for good generalization.

Setup. We conduct experiments to understand the rate of growth of total groups required in order
to achieve Cartesian-Product extrapolation, as we vary the total number of categories (d) for each
attribute. We consider the case of two attributes z = (z1, z2) and sample data from the following
(additive) energy function.

E(x, z) = ||x− µ(z1)||2 + ||x− µ(z2)||2

where x, µ(z1), µ(z2) ∈ Rn for all z1, z2 ∈ {1, · · · , d}. Note that the energy function can be
rewritten as follows:

E(x, z) =
1

2
(x− µ(z))TΣ−1(x− µ(z)) + C(z1, z2)

with µ(z) = µ(z1)+µ(z2)
2 and Σ−1 = 4In. Hence, the resulting distribution is essentially a multi-

variate gaussian distribution p(x|z) = 1

Z(z)
exp

(
− E(x, z)

)
= N

(
x|µ(z),Σ

)
.

To generate data from a particular configuration (d, n) we first sample 2 ∗ d orthogonal vectors
to get mean vector for each attribute (µ(z1), µ(z2)). Then we sample x from the resulting normal
distribution x ∼ N

(
µ(z),Σ

)
to create a dataset with support over all the d2 groups. We fix the

data dimension as n = 100 and vary the total categories per attribute d in the following range
[10, 20, 30, 40, 50]. Then for each scenario (n, d) we analyze how the performance of CRM degrades
as we discard more groups from the training dataset. Note that the test dataset contains samples
from all the groups and there are no group imbalances. Hence, average accuracy in itself is a good
indicator of generalization performance.

Results. Figure 6 presents the results of our analysis. We find that CRM trained with 20% of the
total groups (0.2d2) still shows good generalization (∼ 90% test accuracy), and the drop in test
accuracy as compared to the oracle case of no groups dropped is within 10%.
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E.4 RESULTS WITH MIXUP BASELINE

Dataset Method Average Acc Balanced Acc Macro F1 Worst Group Acc

Waterbirds

ERM 77.9 (0.1) 75.3 (0.1) 83.2 (0.1) 43.0 (0.2)
G-DRO 77.9 (0.9) 78.8 (0.7) 85.2 (0.8) 42.3 (2.6)
LC 88.3 (0.9) 86.9 (0.6) 92.6 (0.3) 75.5 (1.8)
sLA 89.3 (0.4) 87.5 (0.4) 92.9 (0.2) 77.3 (1.4)
IRM 73.6 (0.8) 70.4 (0.3) 75.8 (0.4) 28.7 (2.2)
VREx 81.0 (0.6) 80.0 (0.5) 86.8 (0.4) 45.6 (1.1)
Mixup 81.6 (0.1) 79.9 (0.1) 86.7 (0.1) 52.2 (0.4)
CRM 87.1 (0.7) 87.8 (0.1) 93.2 (0.1) 78.7 (1.0)

CelebA

ERM 85.8 (0.3) 75.6 (0.1) 81.5 (0.1) 39.0 (0.3)
G-DRO 89.2 (0.5) 86.8 (0.1) 92.5 (0.1) 67.8 (0.8)
LC 91.1 (0.2) 83.5 (0.0) 89.2 (0.2) 57.4 (0.5)
sLA 90.9 (0.2) 83.6 (0.3) 89.4 (0.4) 57.4 (1.3)
IRM 80.4 (1.3) 76.7 (1.1) 84.2 (0.9) 40.1 (2.4)
VREx 86.2 (0.3) 82.8 (0.5) 88.8 (0.5) 49.2 (2.1)
Mixup 84.9 (0.2) 77.9 (0.2) 84.4 (0.3) 42.8 (0.9)
CRM 91.1 (0.2) 89.2 (0.0) 94.2 (0.1) 81.8 (0.5)

MetaShift

ERM 85.7 (0.4) 81.7 (0.3) 88.8 (0.2) 60.5 (0.5)
G-DRO 86.0 (0.3) 82.6 (0.2) 89.6 (0.2) 63.8 (1.1)
LC 88.5 (0.0) 85.0 (0.0) 91.5 (0.1) 68.2 (0.5)
sLA 88.4 (0.1) 84.0 (0.0) 90.7 (0.1) 63.0 (0.5)
IRM 83.7 (0.3) 80.3 (0.4) 87.9 (0.3) 55.8 (1.0)
VREx 84.9 (0.4) 81.7 (0.3) 89.2 (0.1) 59.9 (0.2)
Mixup 86.8 (0.0) 82.8 (0.1) 89.6 (0.1) 62.8 (0.7)
CRM 87.6 (0.3) 84.7 (0.2) 91.4 (0.1) 73.4 (0.4)

NICO++

ERM 85.0 (0.0) 85.0 (0.0) 91.3 (0.3) 35.3 (2.3)
G-DRO 84.0 (0.0) 83.7 (0.3) 91.0 (0.0) 36.7 (0.7)
LC 85.0 (0.0) 85.0 (0.0) 91.0 (0.0) 35.3 (2.3)
sLA 85.0 (0.0) 85.0 (0.0) 91.0 (0.0) 33.0 (0.0)
IRM 64.0 (0.6) 62.7 (0.3) 71.3 (0.3) 0.0 (0.0)
VREx 86.0 (0.0) 86.0 (0.0) 92.0 (0.0) 37.3 (4.3)
Mixup 85.0 (0.0) 84.7 (0.3) 91.0 (0.0) 33.0 (0.0)
CRM 84.7 (0.3) 84.7 (0.3) 91.0 (0.0) 40.3 (4.3)

Table 16: Results with Mixup. In addition to the baselines and metrics in Table 1 & 14, we compare
CRM with Mixup as well. Similar to the prior setup, all the metrics are averaged as a group is dropped
from the training and validation sets. We find that CRM outperforms Mixup across all datasets, with
significant gains w.r.t the worst group accuracy.

45


	Introduction
	Related works
	Problem Setting
	Generalizing under Compositional Distribution Shift
	Additive Energy Distribution

	Provable Compositional Generalization
	Discrete Affine Hull
	Extrapolation of conditional density
	Extrapolation of discriminative model

	Algorithm for Compositional Risk Minimization (CRM)
	Experiments
	Setup
	Results

	Conclusion
	Further Discussion on Related works
	Proofs
	Proof for Theorem 1: Extrapolation of Conditional Density
	Proof for Theorem 2: Extrapolation of CRM
	Proof for Theorem 3: Extrapolation from a Small Set of Attribute Combinations to All Attribute Combinations
	Discrete Affine Hull: A Closer Look
	No Extrapolation beyond Discrete Affine Hull: Proof for Theorem 7

	Experiments Setup
	Dataset Details
	Metric Details
	Method Details

	Additional Results
	Results for all the Compositional Shift Scenarios
	rebuttaltext Choice of test prior and importance of extrapolated bias
	Results for the Original Benchmarks
	Numerical Experiment for Discrete Affine Hull

	 rebuttaltext Rebuttal Experiments
	rebuttaltext Multi-Attribute Experiments
	rebuttaltext Additional Baselines and Macro F1 Score
	rebuttaltext Sample Complexity Analysis as Function of d
	rebuttaltext Results with Mixup Baseline


