
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HEX: MERGING HEAVY-HITTERS AND EXPANDERS
FOR ADAPTIVE KV CACHE OPTIMIZATION IN LONG-
CONTEXT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Key–Value (KV) caching accelerates large-language model inference but grows
linearly with sequence length, quickly exhausting GPU memory. Existing com-
pression strategies such as quantization, pruning, or sparsification shrink this foot-
print, but often degrade performance. Most pruning methods discard crucial con-
nections and disrupt information flow, while dynamic heuristics often lack theoret-
ical basis. We propose HEX, a cache compression strategy that is both structurally
efficient and adaptive. HEX constructs a sparse backbone using expander graphs
with spectral guarantees on connectivity, and augments it with heavy-hitter and re-
cent tokens to capture input-specific context. The selected entries are stored in full
precision, while the remaining cache is quantized to retain information at low cost.
The expander masks are precomputed and static, thus significantly reducing com-
putational overhead and aiding sparse implementations. Experiments on GSM8k,
CoQA, TruthfulQA, and LongBench across models of varying sizes show that
HEX consistently outperforms existing methods at higher compression rates with-
out retraining. These results illustrate how principled eviction layouts grounded in
graph structure and input dynamics can yield stronger accuracy–efficiency trade-
offs for long-context inference even for limited cache budgets.

1 INTRODUCTION

Efficient inference in Large Language Models (LLM) is an important research challenge as de-
ployment moves into resource-constrained and real-time environments. An essential optimization
during inference is Key-Value (KV) caching, which stores the intermediate attention states of previ-
ously processed tokens and reduces the computational cost per token from O(n2) to O(n), where
n is the total sequence length. Although caching enables fast generation, the cache itself grows
linearly with sequence length, creating severe memory bottlenecks that limit throughput and prevent
practical deployment in long-context tasks such as chain-of-thought reasoning, code generation, and
document-level question answering.

In order to address this, prior work compresses KV caches using techniques like quantization (Liu
et al., 2024d; Sheng et al., 2023), low rank representations (Chang et al., 2025; Lin et al.,
2025), layer-wise and head-wise compression (Liu et al., 2024a; Ge et al., 2024c), and prun-
ing/eviction (Xiao et al., 2024). Hybrid frameworks such as GEAR (Kang et al., 2024) combine
these strategies, storing most entries in ultra-low precision, recovering residuals with a low-rank
approximation, and preserving outliers through sparse masks.

Channel significance and the magnitude of attention weights are generally considered when pruning
the cache (Xu et al., 2025; Lv et al., 2025); for instance, GEAR’s sparse component relies on mag-
nitude pruning, which introduces unstructured sparsity. Although effective in some inference tasks
(Joo et al., 2025), unstructured pruning can remove crucial connections and degrade performance.

Structured sparsity methods address this by network aware pruning of the attention blocks at the
depth (Liu et al., 2024b) or layer (Zhang et al., 2025b) level. These often lack principled theo-
retical guarantees. Viewed as a graph, the attention matrix represents connections among context
tokens. Preserving connectivity in this graph is essential for proper information flow. In this work,
we propose KV cache pruning using structured sparsity via expander graphs, which ensures that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

each channel and token maintains multiple well-distributed connections throughout the network.
Expander-based sparsity offers strong spectral guarantees of the masked attention matrix, improv-
ing connectivity, and preserving informative patterns even under aggressive compression. The prun-
ing masks are precomputed using expander graph synthesis algorithms and do not have a run-time
computational overhead.

While the expander mask provides a structured and theoretically grounded backbone, it is static and
cannot adapt to the dynamic nature of input sequences. To address this, HEX augments the expander
backbone with input-aware token selection. Among dynamic strategies, H2O (Zhang et al., 2023) is
particularly suitable because of its simplicity and complementarity. H2O selects additional tokens
using two intuitive principles: (i) heavy hitters, i.e., tokens that consistently receive high attention
and are therefore more influential for downstream generation (Xu et al., 2025; Lv et al., 2025), and
(ii) recency, i.e., the most recent tokens, which are empirically shown to play a dominant role in
autoregressive decoding (Liu et al., 2024c; Xiao et al., 2024). By augmenting the static expander
mask with these dynamically chosen tokens, HEX captures both long-range structural connectivity
and short-term contextual relevance. These selected tokens are retained in full precision, while the
remaining cache entries are quantized, allowing information to be preserved at minimal cost.

Experiments on GSM8k, TruthfulQA and LongBench benchmarks show that HEX outperforms ex-
isting baselines while achieving higher compression, without any retraining. Our experiments show
that HEX achieves SOTA resutlts for reasoning tasks under very heavy compression (3 bit) and for
long context tasks surpasses the full precision (Fp16) framework under 4 bit quantization.

2 RELATED WORK

KV cache compression: Reducing the memory footprint of the Key-Value (KV) cache has at-
tracted significant attention as context length scales in LLM inference. Quantization-based methods
reduce memory by storing cache tensors in low-bit formats. KIVI (Liu et al., 2024d) applies tuning-
free 2-bit quantization with asymmetric treatment of keys/values. FLEXGEN (Sheng et al., 2023)
formulates tensor placement as a linear programming problem, while KVTUNER (Li et al., 2025)
searches for optimal precisions per layer. Pruning and eviction approaches discard less important
tokens to maintain bounded cache sizes. STREAMINGLLM (Xiao et al., 2024) and H2O (Zhang
et al., 2023) evict stale tokens, while TREEKV (He et al., 2025) and SNAPKV (Li et al., 2024) score
importance via distance or attention statistics. SEPLLM (Chen et al., 2025) compresses between
separators, and FASTGEN (Ge et al., 2024c) profiles heads for adaptive eviction.

KV states often admit compact bases. Low-rank approximations (PALU (Chang et al., 2025), MA-
TRYOSHKAKV (Lin et al., 2025)) down-project hidden dimensions; LOKI (Singhania et al., 2024)
scores tokens in a low-dimensional space. Sparse representations like dictionary-based methods
(CSR (Zhang et al., 2025a), LEXICO (Kim et al., 2025)) achieve sparsity via learned or universal
codebooks. Finally, hybrid frameworks combine multiple strategies. GEAR (Kang et al., 2024)
integrates quantization, sparse outliers, and low-rank correction. LEANKV (Zhang et al., 2024),
ROCKETKV (Behnam et al., 2025) mix eviction, sparse attention, and quantization. While hybrids
achieve stronger trade-offs, they often lack proper guarantees and rely on heuristic allocations.

Structured sparsity: Most KV cache methods rely on magnitude pruning, which prioritizes ex-
treme values but can overlook structurally important entries. Prior work in pruning and compression
has shown that structured sparsity often yields better accuracy and hardware efficiency compared to
unstructured pruning, due to its more balanced and regular coverage patterns (Wen et al., 2016; Evci
et al., 2020).

Expander graphs are particularly attractive: they preserve connectivity under extreme sparsity, sup-
ported by well-established spectral guarantees (Marcus et al., 2015; Hoory et al., 2006). Recent work
such as XoRA (Amaljith et al., 2025) has demonstrated their utility for efficient LLM finetuning,
though their application to KV cache compression remains unexplored.

Our Contribution: We summarize our two core contributions below:

(i) Precomputed expander-backed KV pruning: We introduce a practical KV-cache pruning
scheme based on precomputed d-regular expander-graph masks. The masks impose structural spar-
sity while provably preserving connectivity among token and channel coordinates, ensuring uniform

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

information flow under aggressive downsampling. The construction is theoretically grounded (spec-
tral/sampling guarantees) and composes cleanly with existing compression primitives, providing a
stable pruning backbone even for very long contexts.

(ii) Augmentation of expander with a dynamic component: To capture input-specific signal,
we augment the static expander backbone with a light-weight dynamic policy that retains a small
set of input-aware tokens (heavy-hitters and recent tokens). The resulting hybrid combines provable
structural safety with adaptive fidelity, yielding a compression strategy that is both robust and precise
in practice.

3 METHOD

We present our approach for compressing the key-value (KV) cache in transformer architectures by
combining three complementary techniques: quantization, static structural sparsity via expander-
based selection, and dynamic heavy-hitter selection with recency bias (H2O). The central idea
is to treat the KV cache as a heterogeneous memory where a small fraction of critical entries are
preserved in full precision, while the remaining majority are aggressively compressed using low-bit
quantization. This balances memory efficiency, retention of important context, and connectivity of
tokens with a low overhead during decoding.

3.1 PROBLEM SETUP

We begin by formalizing the setting of interest: multi-head attention (MHA) and its grouped-query
variant (GQA). For an input sequence of length n with embeddings X ∈ Rn×d, queries, keys, and
values are obtained via

Q = XWQ, K = XWK , V = XWV ,

with learned projections WQ,WK ,WV ∈ Rd×d. The hidden dimension d is split across h attention
heads, each of size dh = d/h (MHA) or across fewer key–value heads (GQA).

For a query qt ∈ Rdh at position t, attention output is

Attn(qt,K, V) = softmax
(
qtK

⊤
√
dh

)
V,

where K,V ∈ Rn×dh are the cached keys and values of the preceding n tokens. During autoregres-
sive decoding, these matrices accumulate over time to form the KV cache, which dominates memory
usage for long contexts.

Compression problem: We seek a compression operator C that acts jointly on the key and value
matrices:

C : (K,V) 7→ (K̂, V̂),

where K,V ∈ Rn×d are the original cache matrices and K̂, V̂ ∈ Rn×d are the compressed outputs.
The operator C reduces storage while ensuring that, for each query qt, the deviation remains small.

ϵt =
∥∥Attn(qt,K, V)− Attn(qt, K̂, V̂)

∥∥
2

Assumptions: (i) Autoregressive decoding is assumed, but the formulation is not tied to causality.

(ii) Compression is applied directly to K and V in their native (n, d) form. The operator does not
modify the attention weight pattern.

Problem statement: Given key and value matrices (K,V) ∈ Rn×d from attention, design a com-
pression operator C that reduces storage while preserving attention fidelity, i.e., ensuring ϵt is small
for all queries.

3.2 STATIC STRUCTURAL SPARSITY VIA EXPANDERS

KV cache compression requires removing most entries while still preserving connectivity across
tokens and channels. Unstructured pruning often produces highly clustered supports, so we use ex-
pander graph-based masks—sparse yet highly connected structures with strong spectral guarantees.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Background: We view the cache matrix K ∈ Rn×d as the biadjacency of a bipartite graph G =
(U, V,E), where U indexes the d channel coordinates and V indexes the n token positions. A
(d1, d2)-biregular expander is one where each token node in V connects to exactly d1 channels, and
each channel node in U connects to exactly d2 tokens. This guarantees uniform coverage across
both axes of the cache.

The quality of an expander is governed by its spectral gap: the difference between the largest and
second-largest eigenvalues of its adjacency matrix. Intuitively, a larger gap means that no subset of
tokens or channels can become isolated, ensuring that information flows evenly across the sparse
structure. Near-optimal expansion is achieved by Ramanujan graphs, which satisfy the celebrated
bound (Hoory et al., 2006; Marcus et al., 2015):

λ2 ≤
√

d1 − 1 +
√

d2 − 1,

where λ2 is the second-largest eigenvalue. This condition certifies that expander-based masks
achieve the best possible trade-off between sparsity and connectivity. Additional details on spec-
tral expansion and constructions of Ramanujan graphs are provided in Appendix A.1.

Key properties for KV caching: Expander-based masks provide three structural guarantees that
are directly relevant to compression. We give the intuition here and defer full spectral statements
and proofs to Appendix A.1.

(i) Uniform retention: Expanders ensure that no subset of tokens or channels is disproportionately
discarded. In practice, this means every region of the cache maintains a balanced share of active
entries, avoiding “holes” where entire segments of context would otherwise vanish.

(ii) Spectral contraction: The spectral gap of expanders guarantees that any perturbation introduced
by masking or quantization is damped rather than amplified when propagated through attention. For
the cache, this provides a uniform stability guarantee: errors remain bounded even under aggressive
compression.

(iii) Rapid mixing: Expanders distribute information evenly: any local error or loss of detail is
quickly spread across the cache rather than remaining confined to a single region. For KV com-
pression, this means quantization noise or sparsity artifacts are smoothed out, making the resulting
cache more robust for downstream attention.

Hardware Efficiency: Expanders produce structured n:m sparsity patterns where each row and
column retains exactly the same number of non-zeros owing to the d-regularity property of the mask
matrix. This balanced coverage is attractive for modern accelerators that favor regular memory
access and block-sparse kernels (Narang et al., 2017; Gale et al., 2019; Frantar & Alistarh, 2023).

Implementation Details: Expander masks Maskexp ∈ {0, 1}n×d are static: they depend only on
the sequence length n, hidden dimension d, and sparsity ρ. To make them practical, we precompute
Ramanujan expanders (for their optimal spectral guarantees) and store the resulting masks in com-
pressed sparse row (CSR) format1, thus addding no runtime overhead in mask computation unlike
most other pruning techniques. Because datasets often contain queries of similar length, we keep a
small LRU cache of recently used masks in memory, which avoids repeated disk access. If a new
(n, d, ρ) configuration is encountered, an expander is generated on the fly using a lightweight con-
structive routine (details in the Appendix A.1). In practice, this yields efficiently retrievable masks
that integrate seamlessly into the compression pipeline.

3.3 DYNAMIC SELECTION OF HEAVY HITTERS (H2O)

While static expander masks guarantee structural coverage, they remain agnostic to the actual distri-
bution of attention at inference time. To adaptively preserve the most predictive parts of the context,
we introduce a framework similar to Heavy Hitter Oracle(H2O) (Zhang et al., 2023). H2O com-
plements the static structure by dynamically identifying tokens that are either highly influential or
recently generated.

1CSR is preferred over COO/CSC since it allows both compact storage and fast row access when converting
to device tensors.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Heavy hitters: A natural measure of token importance is the attention mass it attracts, a criterion
widely used in prior work on importance-based compression and pruning (e.g. Michel et al., 2019).
Given attention weights A

(q)
i,t from head i at query position q, we define the cumulative score for

token t as

st =

h∑
i=1

Q∑
q=1

A
(q)
i,t .

Unlike the original H2O, which selects heavy hitters separately per head, our approach identifies
the most important tokens globally, ensuring that the KV cache preserves the dominant context for
downstream predictions.

Recency: Autoregressive decoding exhibits a strong locality bias: the most recent tokens often
dominate the prediction of the next token. Retaining a small fixed window of the latest r tokens is
therefore a widely adopted strategy in long-context compression (Ge et al., 2024a). We denote this
window-based retention as Masklocal, which guarantees coverage of immediate local context.

Combined mask: The final dynamic mask is obtained as the union

MaskH2O = Maskhh ∨Masklocal.

3.4 COARSE GRAINED QUANTIZATION

After selecting entries with the static expander and dynamic H2O masks, the remaining KV cache
entries can be compressed to reduce memory usage. We adopt an asymmetric, coarse-grained Key-
Channel / Value-Token (KCVT) quantization strategy (Liu et al., 2024d; Ge et al., 2024b).

Asymmetric quantization: Attention matrices contain both small and extreme values, and sym-
metric quantization can bias zeros or truncate extremes, degrading attention quality. Asymmetric
min–max quantization maps values to a discrete range based on the actual minimum and maximum
of each group, ensuring that zeros and large values are preserved:

X̃i,j = round
(
(Xi,j −min

g
X)/∆g

)
·∆g +min

g
X,

where ∆g is the dynamic range of group g.

Role-aware grouping: keys vs. values: Keys determine attention affinities across channels, while
values carry the information to be aggregated over tokens. To preserve their respective roles, keys
are quantized along the channel dimension and values along the token dimension (Liu et al., 2024d).
This coarse-grained grouping captures the most critical variations while allowing aggressive com-
pression, and is simpler and more hardware-efficient than fine-grained alternatives that split groups
into multiple smaller blocks.

3.5 INFERENCE PIPELINE

Figure 1 illustrates the complete KV cache compression and inference workflow. Given the query,
key, and value matrices (Q,K, V) for a new input token, HEX proceeds in three steps:

1. Static Structural Masking: A precomputed expander mask Maskexp identifies a subset of
cache entries that preserve connectivity across channels and tokens. These entries are retained in
full precision to ensure robust information flow.

2. Dynamic Input-Aware Selection: The H2O mechanism dynamically selects tokens that are
either heavy hitters—accumulating high attention mass across heads and query positions—or among
the most recent tokens. This produces the mask MaskH2O, whose entries are also retained in full
precision to capture input-specific context.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 1: The complete KV cache compression and inference workflow for HEX.

3. Quantization: The masks Maskexp and MaskH2O are combined using a logical OR. Entries
indicated by the combined mask are stored in full precision, while all remaining entries are quantized
using coarse-grained KCVT with asymmetric min–max scaling. Keys are quantized along channels,
and values along tokens, reflecting their distinct roles in attention computation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate our method, HEX, on four open-weight models: LLaMA-3 8B, Mistral-7B, LLaMA-2
13B, and LLaMA-2 7B. Three reasoning and QA benchmarks are considered—GSM8k (mathe-
matical reasoning), TruthfulQA (factual consistency), and CoQA (conversational QA)—alongside
LongBench (long-context evaluation). GSM8k is evaluated with the standard 8-shot prompt, report-
ing exact match accuracy. TruthfulQA is evaluated in the generation setting of lm-eval-harness with
its default 6-shot prompt, reporting BLEU-based accuracy. CoQA is also evaluated using lm-eval-
harness with exact match accuracy on the test split. LongBench is evaluated in its default zero-shot
setting with per-subset metrics as recommended in its benchmark suite (further details are provided
in the Appendix). All experiments are run on an NVIDIA H100 GPU (80GB). We simulate KV
cache compression without modifying the underlying model parameters.

Streaming Inference Setup: We adopt a streaming inference setup for applying KV cache com-
pression during decoding. Let the streaming block size be denoted by nb = 96. The prefix prompt is
first partitioned into the largest multiple of nb, which is immediately compressed, while any remain-
der is placed in a residual buffer. During generation, newly decoded tokens first fill this residual
buffer until it reaches length nb. Once full, the block is compressed and merged into the KV cache,
after which decoding proceeds in blocks of size nb. This design ensures that both the prompt and the
generated tokens are consistently aligned to block boundaries, avoiding repeated mask resizing and
yielding a more efficient pipeline. Tokens inside the residual buffer are maintained in full precision
(fp16) until the block fills, at which point they are compressed. For compressing each block, we
consider two update strategies:

(i) Append mode: each new compressed block is appended to the existing compressed KV cache
without reprocessing earlier blocks.
(ii) Full mode: the entire KV cache is recompressed at the end of each block.

In our ablation experiments, we found that append mode achieves virtually identical accuracy to
full mode for generation lengths up to 512 tokens, while requiring substantially less computation.
Therefore, append mode is adopted as the default setting. For longer generations, full mode or
hybrid approaches (e.g., periodic recompression after several blocks) can be used if desired.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Results of Reasoning and QA Benchmarks. Here, KV Size is the average % of the re-
maining size of compressed KV caches with respect to the size in FP16. TruQA here represents the
TruthfulQA dataset. The best results are shown in bold.

Model LLaMA3-8B LLaMA2-13B Mistral-7B

Method Bit Ave. GSM8k CoQA TruQA GSM8k CoQA TruQA GSM8k CoQA TruQA
b KV size Acc Acc BLEU Acc Acc BLEU Acc Acc BLEU

FP16 16 100% 53.98 67.35 43.45 29.64 66.37 30.23 42.61 67.30 41.00

KCVT Quant 3 20.75% 32.22 64.28 32.68 17.97 62.27 32.80 34.87 63.27 35.01
GEAR(KCVT)

s=2%,r=4 4 31.00% 54.44 68.00 42.35 29.57 66.88 30.84 41.85 67.67 40.39

HEX-3 3 25.35% 55.42 66.97 42.47 29.64 65.22 29.50 41.62 65.00 42.72
HEX-4 4 31.50% 55.34 66.98 40.88 28.96 66.23 29.87 41.92 66.83 41.37

4.2 RESULTS OF REASONING AND QA BENCHMARKS

We first evaluate HEX on three reasoning and QA tasks: GSM8k, TruthfulQA, and CoQA, using
LLaMA-3 8B, LLaMA-2 13B, and Mistral-7B (v0.1). Baselines include the uncompressed FP16
model, KCVT quantization (3-bit coarse-grained KIVI), and GEAR (combining quantization, low-
rank, and magnitude pruning). HEX operates in streaming append mode with a block size of 96
tokens: each block is stored in FP16 until filled, then compressed. Unless otherwise stated, HEX
uses 3.125% expander sparsity, 2% heavy hitters, and a small recent window (8, 16 tokens). Datasets
like GSM8k which require reasoning benefit from a longer recent window, while with all remain-
ing entries quantized to 3 bits(HEX-3) or 4 bits(HEX-4). For GSM8k and CoQA, performance is
measured by exact match accuracy; for TruthfulQA, we follow LM-Eval Harness and report BLEU-
based accuracy. To contextualize accuracy relative to efficiency, we also report the effective KV
cache size for all methods.

From Table 1 we observe that both HEX-3 and HEX-4 match or surpass the FP16 and GEAR base-
lines across multiple datasets. Notably, HEX-3—despite operating at an aggressive 3-bit compres-
sion—outperforms all baselines on 4 of 9 tasks and exceeds KCVT (3-bit) in most cases, demon-
strating the effectiveness of HEX for reasoning and QA tasks under stringent sparsity constraints.

Table 2: Comparison of HEX with KIVI 2-bit and 4-bit compression on LLaMA-2 13B across
GSM8k, CoQA, and TruthfulQA.

Method Bit b Ave. KV size GSM8k Acc CoQA Acc TruQA BLEU

FP16 16 100% 29.64 66.37 30.23

KCVT Quant 3 20.75% 62.27 32.80 32.68
KIVI-4 4 34.20% 23.65 66.38 29.49
KIVI-2 2 21.70% 20.77 66.23 29.84

HEX3(KCVT) 3 25.35% 29.64 65.22 29.50
HEX4(KCVT) 4 31.50% 28.96 66.23 29.87

4.3 RESULTS ON LONG-CONTEXT BENCHMARKS

In our second set of experiments, we evaluate HEX on LongBench, a suite of long-context under-
standing tasks, using LLaMA-2 7B. All evaluations are conducted in the streaming inference setup
(Section 3.1). We primarily compare against the FP16 model to establish the upper bound, and re-
port the results for both HEX-3 and HEX-4 with expander sparsity 4.69% and heavy hitter ratio 2%.
We follow the default LongBench evaluation protocol and provide task-specific details and dataset
statistics in the Appendix 5. This evaluation highlights how HEX performs in settings with substan-
tially longer input and output sequences, demonstrating its robustness beyond standard reasoning
and QA tasks.
Table 3 summarizes performance on the LongBench suite. As expected, HEX-3 (3-bit quantiza-
tion) exhibits a larger performance gap relative to the FP16 baseline on long-context tasks than it
does on the reasoning and QA benchmarks. This degradation aligns with the increased difficulty
of preserving information over very long contexts under aggressive compression. Even so, HEX-3

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: The results of Llama-3-8B-Instruct with HEXon LongBench.

KV(%) NarrQA Qasper MFQA-en MFQA-zh HotpotQA 2WikiMQA MuSiQue

FP16 100 17.30 9.08 22.37 19.33 8.24 10.00 4.27
w./ HEX3 26.45 18.90 7.50 18.21 17.52 8.02 8.03 3.66
w./ HEX4append 32.70 17.18 8.76 22.74 20.61 8.02 10.00 4.74
w./ HEX4full 32.70 17.54 8.95 22.15 20.78 7.76 10.47 4.74

DuReader GovReport QMSum MultiNews VCSUM TRec TriviaQA

FP16 23.16 26.82 20.66 5.82 9.91 63.00 84.92
w./ HEX3 21.37 19.39 20.66 8.09 6.85 54.50 83.19
w./ HEX4append 23.59 26.90 21.11 6.80 8.46 60.50 85.17
w./ HEX4full 22.33 26.85 21.19 6.76 9.59 62.50 84.83

SAMSum LSHT PCount PR-en PR-zh LCC RBench Avg

FP16 41.46 20.25 1.50 5.77 8.00 58.70 62.30 24.90
w./ HEX3 42.29 18.50 2.75 4.92 7.50 54.78 58.86 23.12
w./ HEX4append 40.62 20.00 1.10 5.92 10.12 58.11 62.00 24.88
w./ HEX4full 42.26 20.00 2.50 5.58 7.75 57.92 61.98 24.97

delivers a competitive trade-off: given its high compression ratio, the absolute drop in average ac-
curacy is modest, and on a number of individual datasets HEX-3 surprisingly matches or exceeds
the FP16 baseline and outperforms HEX-4, an outcome we attribute to dataset-specific attention
patterns where a compact, well-chosen set of preserved entries suffices for prediction.

HEX-4 (4-bit quantization) is substantially more robust: in our experiments it preserves average
accuracy close to FP16 in the streaming append setting and exceeds FP16 when run in the full
recompression mode. We interpret this behavior as follows. The append mode compresses each
block once when it fills, which can break some cross-block connectivity; the full mode periodically
recompresses the entire cache and therefore better preserves the expander backbone and its cross-
block connections. Because expander-based masks are designed to maintain distributed connectivity,
their benefit is most apparent when the cache is recompressed as a whole, which explains why HEX-
4 gains relative to FP16 are largest in the full mode. Together, these results show that marginally
higher bit-width (4 bits) plus a connectivity-preserving recompression schedule recovers nearly all
task performance while still providing substantial memory savings.

4.4 ABLATION STUDIES

To better understand the contributions of different components of HEX, we conduct a set of ablation
studies and hyperparameter sensitivity analyses on LLaMA-3 8B evaluated on the GSM8k bench-
mark. For the ablations, we test both 3-bit and 4-bit variants of HEX after selectively removing
key components in order to quantify the impact of each mechanism on accuracy and compression.
Beyond ablations, we study the sensitivity of HEX to different hyperparameter choices in appendix
A.5. Specifically, we vary the streaming gap size and compare append vs. full recompression modes,
evaluate the effect of different quantization bit-widths, explore different H2O configurations (heavy
hitter ratio and recent window size), and vary the expander sparsity levels.

Ablations: We first perform ablations on both the 3-bit and 4-bit variants of HEX. In each case,
we selectively remove one or more components: (i) without the expander, (ii) without H2O, and (iii)
without both expander and H2O. This setup allows us to quantify the relative contribution of each
mechanism to overall accuracy and memory savings. Results are summarized in Table 4, showing
that both components provide measurable improvements, and that removing both leads to the largest
degradation.

The ablation results clearly show that all components of HEX are necessary and complementary.
At both 3-bit and 4-bit, the full HEX consistently achieves the best accuracy, while removing either
the expander or H2O causes notable drops. Expander-only struggles, especially at 3-bit, proving
that static structure alone is insufficient, while H2O-only improves over expander-only but still falls

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation studies on GSM8k with LLaMA-3 8B. All experiments use streaming append
mode with block size nb = 96. “HEX (full)” denotes Expander + H2O active. “–” indicates that
the corresponding component was not used. Rows marked with EO (Equal Overhead) indicate that
the expander-only and H2O-only settings were tuned so that the overall fraction of FP16-preserved
tokens approximately matches that of HEX, ensuring a fair comparison.

Quant bits Expander sparsity (%) Heavy hitters (%) Recent window Accuracy (%)

3-bit

HEX (full) 3.125 2 8 55.42
Expander only 3.125 – – 34.95

H2O only – 2 8 53.82
Quant only – – – 32.60

4-bit

HEX (full) 4.6875 2 8 54.66
Expander only 4.6875 – – 50.76
Expander (EO) 7.8125 – – 50.64

H2O only – 2 8 53.98
H2O only (EO) – 5 16 53.53

Quant only – – – 51.78

short of HEX, showing that dynamic selection benefits from structural safety. Quantization-only
performs worst, confirming the need for guided preservation. The EO (Equal Overhead) results
further demonstrate that HEX’s gains are not due to token budget but to the synergy of expander
guarantees with dynamic token retention.

5 CONCLUSIONS, LIMITATIONS AND FUTURE DIRECTIONS

Our study demonstrates that expander graphs provide a principled and robust backbone for KV cache
compression. Their spectral guarantees confer structural advantages over unstructured magnitude
pruning, and our experiments show that this approach achieves competitive or improved accuracy
while maintaining significant memory savings.

Despite these benefits, our approach has two main limitations. First, while we provide analytical
estimates of KV-cache savings, empirical results on inference latency and throughput are not yet
included; these will be incorporated in the revised version. Second, the achievable sparsity levels
of expanders are tied to the underlying matrix dimensions, which restricts flexibility in selecting
arbitrary sparsity targets. While the available levels are sufficiently granular for most practical ap-
plications, this constraint may limit fine-grained tuning.

Looking ahead, a promising direction is hardware acceleration. Expander masks exhibit highly reg-
ular connectivity patterns, unlike unstructured pruning, making them well suited for parallelization
on modern accelerators. Custom kernels or sparsity-aware compilers could exploit this regularity
to reduce memory access overheads and improve throughput. Hardware-friendly implementations
of HEX could therefore unlock larger gains in both efficiency and scalability, particularly for long-
context inference.

REFERENCES

E.Ṽ. Amaljith, Arindam Biswas, Suryam Arnav Kalra, Pabitra Mitra, and Biswajit Basu. Xora:
Expander adapted lora finetuning. In ICLR 2025, 2025. URL https://openreview.net/
forum?id=uBnVA7SeWv.

Payman Behnam, Yaosheng Fu, Ritchie Zhao, Po-An Tsai, Zhiding Yu, and Alexey Tumanov. Rock-
etKV: Accelerating long-context LLM inference via two-stage KV cache compression. In Forty-
second International Conference on Machine Learning, 2025. URL https://openreview.
net/forum?id=RyOpooIxDF.

9

https://openreview.net/forum?id=uBnVA7SeWv
https://openreview.net/forum?id=uBnVA7SeWv
https://openreview.net/forum?id=RyOpooIxDF
https://openreview.net/forum?id=RyOpooIxDF

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S. Abdelfattah, and Kai-Chiang Wu. Palu: KV-cache
compression with low-rank projection. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=LWMS4pk2vK.

Guoxuan Chen, Han Shi, Jiawei Li, Yihang Gao, Xiaozhe Ren, Yimeng Chen, Xin Jiang, Zhenguo
Li, Weiyang Liu, and Chao Huang. SepLLM: Accelerate large language models by compressing
one segment into one separator. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=MhVJCxYEEi.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the International Conference on Machine Learning,
2020.

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned
in one-shot. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 10323–10337.
PMLR, 23–29 Jul 2023.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. In Kama-
lika Chaudhuri and Ruslan Salakhutdinov (eds.), International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pp. 3730–3739. PMLR, 2019.
URL https://proceedings.mlr.press/v97/gale19a.html.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms (fastgen). In ICLR 2024, 2024a. URL
https://openreview.net/forum?id=uNrFpDPMyo. Oral presentation.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for LLMS. In 12th International Conference on
Learning Representations, ICLR 2024, 2024b.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive KV cache compression for LLMs. In The Twelfth International Confer-
ence on Learning Representations, 2024c. URL https://openreview.net/forum?id=
uNrFpDPMyo.

Ziwei He, Jian Yuan, Haoli Bai, Jingwen Leng, and Bo Jiang. Treekv: Smooth key-value cache
compression with tree structures. In arXiv preprint arXiv:2501.04987, 2025. URL https:
//arxiv.org/abs/2501.04987. Submitted Jan 2025.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. Bulletin
of the American Mathematical Society, 43(4):439–561, 2006.

Donghyeon Joo, Helya Hosseini, Ramyad Hadidi, and Bahar Asgari. Mustafar: Promoting unstruc-
tured sparsity for kv cache pruning in llm inference, 2025. URL https://arxiv.org/abs/
2505.22913.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. GEAR: An efficient error reduction framework for KV cache compression in LLM infer-
ence. In Mehdi Rezagholizadeh, Peyman Passban, Soheila Samiee, Vahid Partovi Nia, Yu Cheng,
Yue Deng, Qun Liu, and Boxing Chen (eds.), Proceedings of The 4th NeurIPS Efficient Natural
Language and Speech Processing Workshop, volume 262 of Proceedings of Machine Learning
Research, pp. 305–321. PMLR, 14 Dec 2024. URL https://proceedings.mlr.press/
v262/kang24a.html.

Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Extreme KV
cache compression via sparse coding over universal dictionaries. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
Yh9vxlxnjA.

10

https://openreview.net/forum?id=LWMS4pk2vK
https://openreview.net/forum?id=MhVJCxYEEi
https://proceedings.mlr.press/v97/gale19a.html
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://arxiv.org/abs/2501.04987
https://arxiv.org/abs/2501.04987
https://arxiv.org/abs/2505.22913
https://arxiv.org/abs/2505.22913
https://proceedings.mlr.press/v262/kang24a.html
https://proceedings.mlr.press/v262/kang24a.html
https://openreview.net/forum?id=Yh9vxlxnjA
https://openreview.net/forum?id=Yh9vxlxnjA

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xing Li, Zeyu XING, Yiming Li, Linping Qu, Hui-Ling Zhen, Yiwu Yao, Wulong Liu, Sinno Jialin
Pan, and Mingxuan Yuan. KVTuner: Sensitivity-aware layer-wise mixed-precision KV cache
quantization for efficient and nearly lossless LLM inference. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
zDwipF6h06.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. SnapKV: LLM knows what you are looking for before
generation. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024. URL https://openreview.net/forum?id=poE54GOq2l.

Bokai Lin, Zihao Zeng, Zipeng Xiao, Siqi Kou, TianQi Hou, Xiaofeng Gao, Hao Zhang, and Zhi-
jie Deng. MatryoshkaKV: Adaptive KV compression via trainable orthogonal projection. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=BQwsRy1h3U.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: KV cache compression in depth dimension for large language models. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024a. URL https:
//openreview.net/forum?id=sgVOjDqUMT.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Mini-
cache: Kv cache compression in depth dimension for large language models. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neu-
ral Information Processing Systems, volume 37, pp. 139997–140031. Curran Associates, Inc.,
2024b. URL https://proceedings.neurips.cc/paper_files/paper/2024/
file/fd0705710bf01b88a60a3d479ea341d9-Paper-Conference.pdf.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray, Yuyang Huang, Qizheng Zhang, Kuntai Du,
Jiayi Yao, Shan Lu, Ganesh Ananthanarayanan, Michael Maire, Henry Hoffmann, Ari Holtz-
man, and Junchen Jiang. Cachegen: Kv cache compression and streaming for fast large language
model serving. In Proceedings of the ACM SIGCOMM 2024 Conference, ACM SIGCOMM
’24, pp. 38–56, New York, NY, USA, 2024c. Association for Computing Machinery. ISBN
9798400706141. doi: 10.1145/3651890.3672274. URL https://doi.org/10.1145/
3651890.3672274.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. KIVI: A tuning-free asymmetric 2bit quantization for KV cache. In Forty-first
International Conference on Machine Learning, 2024d. URL https://openreview.net/
forum?id=L057s2Rq8O.

Bo Lv, Quan Zhou, Xuanang Ding, Yan Wang, and Zeming Ma. Kvpruner: Structural pruning for
faster and memory-efficient large language models. In ICASSP 2025 - 2025 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2025.

Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite ra-
manujan graphs of all degrees. Ann. Math., 182(1):307–325, 2015.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf.

Sharan Narang, Gregory Diamos, Shubho Sengupta, and Erich Elsen. Block-sparse recurrent neural
networks. In Proceedings of the International Conference on Learning Representations, 2017.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Re, Ion Stoica, and Ce Zhang. FlexGen: High-throughput generative inference of
large language models with a single GPU. In Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning

11

https://openreview.net/forum?id=zDwipF6h06
https://openreview.net/forum?id=zDwipF6h06
https://openreview.net/forum?id=poE54GOq2l
https://openreview.net/forum?id=BQwsRy1h3U
https://openreview.net/forum?id=BQwsRy1h3U
https://openreview.net/forum?id=sgVOjDqUMT
https://openreview.net/forum?id=sgVOjDqUMT
https://proceedings.neurips.cc/paper_files/paper/2024/file/fd0705710bf01b88a60a3d479ea341d9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/fd0705710bf01b88a60a3d479ea341d9-Paper-Conference.pdf
https://doi.org/10.1145/3651890.3672274
https://doi.org/10.1145/3651890.3672274
https://openreview.net/forum?id=L057s2Rq8O
https://openreview.net/forum?id=L057s2Rq8O
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/2c601ad9d2ff9bc8b282670cdd54f69f-Paper.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Research, pp. 31094–31116. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/sheng23a.html.

Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, and Abhinav Bhatele. Loki: Low-rank
keys for efficient sparse attention. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=raABeiV71j.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, 2016.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In The Twelfth International Conference on Learning Rep-
resentations, 2024. URL https://openreview.net/forum?id=NG7sS51zVF.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=n0OtGl6VGb.

Hongxuan Zhang, Yao Zhao, Jiaqi Zheng, Chenyi Zhuang, Jinjie Gu, and Guihai Chen.
Csr:achieving 1 bit key-value cache via sparse representation. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 39(24):25860–25867, 04 2025a. doi: 10.1609/aaai.v39i24.34779.
URL https://ojs.aaai.org/index.php/AAAI/article/view/34779.

Yanqi Zhang, Yuwei Hu, Runyuan Zhao, John C. S. Lui, and Haibo Chen. Unifying kv cache
compression for large language models with leankv. In arXiv preprint arXiv:2412.03131, 2024.
URL https://arxiv.org/abs/2412.03131. Submitted Dec 2024.

Yike Zhang, Zhiyuan He, Huiqiang Jiang, Chengruidong Zhang, Yuqing Yang, Jianyong Wang,
and Lili Qiu. Leank: Learnable k cache channel pruning for efficient decoding, 2025b. URL
https://arxiv.org/abs/2508.02215.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models. In arXiv preprint
arXiv:2306.14048, 2023. URL https://arxiv.org/abs/2306.14048. Submitted June
2023.

A APPENDIX

A.1 EXPANDER GRAPHS

An expander graph is a sparse graph that has strong connectivity properties, quantified using vertex,
edge or spectral expansion. Intuitively, it is is a finite, undirected multigraph in which every subset
of the vertices that is not “too large” has a “large” boundary. This can be quantified using the notion
of Cheeger constants.

Definition 1 (Expander and Cheeger constant). A graph Γ = (V,E) is an ϵ-vertex expander if for
every non-empty subset X ⊂ V with |X| ≤ |V |

2 , we have |δ(X)|
|X| ≥ ϵ, where δ(X) denotes the outer

vertex boundary of X i.e., the set of vertices in Γ which are connected to a vertex in X but do not
lie in X . As X runs over all subsets of V , the infimum of |δ(X)|

|X| satisfying the conditions above is
known as the vertex Cheeger constant and is denoted by hV (Γ).

Given a graph with a large Cheeger constant, it is difficult to “separate,” meaning that it is hard to
isolate any subset of vertices from the rest of the graph without cutting many edges. This property
facilitates the free flow of information across the entire network and is also known as expansion of
a graph and the best expanders are the Ramanujan graphs.

Graphs are said to be spectral expanders if their spectral properties imply strong connectivity and
expansion. Specifically, a graph Γ is considered a spectral expander if the quantities |λ1 − λ2| and

12

https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://openreview.net/forum?id=raABeiV71j
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=n0OtGl6VGb
https://openreview.net/forum?id=n0OtGl6VGb
https://ojs.aaai.org/index.php/AAAI/article/view/34779
https://arxiv.org/abs/2412.03131
https://arxiv.org/abs/2508.02215
https://arxiv.org/abs/2306.14048

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

|λ1 − λk| are bounded away from zero, where k = n − 1 for bipartite graphs and k = n other-
wise. These bounds on the spectral gap ensure that the graph exhibits good expansion properties,
as the eigenvalues provide insight into the graph’s ability to resist being “cut” into disconnected
components.

For a graph to be d-regular implies that all vertices have the same degree, which contributes to its
regular structure. In the special case of bipartite graphs, the graph is said to be d-regular if it consists
of two sets of vertices, where every vertex in each set has exactly D edges connected to vertices in
the other set, maintaining equal degrees across both partitions.

A.2 GENERATION OF EXPANDER MASKS

Given an (n1, n2) complete bipartite graph, we generate a good expander mask for it. According to
the discussion in the previous section, we wish to ensure that this mask has a low degree (in this case
(d1, d2) bi-degree with n1d1 = n2d2 and high Cheeger constant). This brings us to the notion of
Ramanujan masks. A Ramaunjan graph is an extremal expander graph in the sense that its spectral
gap (and hence also the Cheeger constant) is almost as large as possible. Here, we shall be concerned
with bipartite Ramanujan graphs. Recall that a bi-partite graph is said to be balanced if the number
of vertices in each of the partitions are the same and it is said to be unbalanced otherwise.

Definition 2 (Bipartite Ramanujan graphs). Let Γ = (V,E) be a d-regular (d ≥ 3) balanced
bipartite graph. Let the eigenvalues of its adjacency matrix be λn ≤ λn−1 ≤ . . . ≤ λ2 ≤ λ1.
Then Γ is said to be Ramanujan iff |λi| ≤ 2

√
d− 1, for i = 2, . . . , (n − 1). For an unbalanced

(d1, d2)−biregular bipartite graph (d1, d2 ≥ 3), the condition of being Ramanujan changes to
|λi| ≤

√
d1 − 1 +

√
d2 − 1, for i = 2, . . . , (n− 1).

A detailed description of Ramanujan graphs can be found in (Hoory et al., 2006, sec. 5.3). One can
generate the expander (Ramanujan) masks through the following two approaches.

1. Deterministic generation using LPS construction and Ramanujan r-coverings.

2. Random generation of bi-regular bipartite graphs and checking for Ramanujan criteria.

To generate expander masks deterministically, we employ the Lubotzky–Phillips–Sarnak (LPS) con-
struction, which produces Ramanujan graphs known for their optimal expansion properties. The LPS
method constructs (p + 1)-regular graphs using quaternion algebras over number fields, where p is
a prime satisfying certain congruence conditions. These graphs exhibit excellent spectral character-
istics, making them ideal candidates for our masks. Additionally, Ramanujan r-coverings involve
creating larger Ramanujan graphs from smaller ones through covering projections while preserving
their expansion properties. This approach ensures that the resulting bipartite graphs have the desired
bi-degree (d1, d2) and high Cheeger constant, which is crucial for the effectiveness of the masked
weight matrices in transformers.

Alternatively, the random generation method creates bi-regular bipartite graphs by connecting nodes
from two partitions randomly but adhering to the specified degrees (d1, d2) and the condition
n1d1 = n2d2. After constructing such a graph, we compute its adjacency matrix and examine its
eigenvalues to check if it meets the Ramanujan criteria—that all non-trivial eigenvalues lie within
the bound |λi| ≤

√
d1 − 1 +

√
d2 − 1. This stochastic approach allows for flexibility and ease of

implementation, although it may require multiple iterations to find a graph that satisfies the stringent
spectral conditions of a Ramanujan graph. Once a suitable graph is found, its adjacency matrix
serves as an effective expander mask for the transformer layers.

A.3 COMPLEXITY OF MASK GENERATION

Using the notations of the previous section, the computational complexity for generating the Ra-
manujan graph of is O(d1n1n2). For adaptation to language models, when we use the fixed LoRA
rank r, we can substitute r = n1, typically d2 = 2, 3, 4 is very small and d1 = d2

n1
n2, to obtain the

complexity O(n2
2).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.4 LONGBENCH DATASET STATISTICS

Table 5 presents the statistics of the LongBench dataset, including task categories, sources, average
input lengths, evaluation metrics, languages, and the number of examples used in our experiments.
For our experimental setup, the input context length was truncated from the middle to fit within the
models’ maximum context lengths.

Table 5: Overview of LongBench dataset statistics.

Dataset ID Source Avg len Metric Language #data

Single-Document QA
NarrativeQA 1–1 Literature, Film 18,409 F1 English 200
Qasper 1–2 Science 3,619 F1 English 200
MultiFieldQA-en 1–3 Multi-field 4,559 F1 English 150
MultiFieldQA-zh 1–4 Multi-field 6,701 F1 Chinese 200

Multi-Document QA
HotpotQA 2–1 Wikipedia 9,151 F1 English 200
2WikiMultihopQA 2–2 Wikipedia 4,887 F1 English 200
MuSiQue 2–3 Wikipedia 11,214 F1 English 200
DuReader 2–4 Baidu Search 15,768 Rouge-L Chinese 200

Summarization
GovReport 3–1 Government report 8,734 Rouge-L English 200
QMSum 3–2 Meeting 10,614 Rouge-L English 200
MultiNews 3–3 News 2,113 Rouge-L English 200
VCSUM 3–4 Meeting 15,380 Rouge-L Chinese 200

Few-shot Learning
TREC 4–1 Web question 5,177 Accuracy (CLS) English 200
TriviaQA 4–2 Wikipedia, Web 8,209 F1 English 200
SAMSum 4–3 Dialogue 6,258 Rouge-L English 200
LSHT 4–4 News 22,337 Accuracy (CLS) Chinese 200

Synthetic Task
PassageCount 5–1 Wikipedia 11,141 Accuracy (EM) English 200
PassageRetrieval-en 5–2 Wikipedia 9,289 Accuracy (EM) English 200
PassageRetrieval-zh 5–3 C4 Dataset 6,745 Accuracy (EM) Chinese 200

Code Completion
LCC 6–1 Github 1,235 Edit Sim Python/C#/Java 500
RepoBench-P 6–2 Github repository 4,206 Edit Sim Python/Java 50

A.5 HYPERPARAMETER SENSITIVITY.

Next, we study the sensitivity of HEX to its hyperparameters:
(i) Streaming gap size and method: we vary the block size used for streaming inference and compare
the default append mode against the full recompression mode.
(ii) H2O parameters: we vary both the heavy-hitter ratio and the size of the recent-token window, to
measure their effect on preserving attention to critical tokens.
(iii) Expander sparsity: we test different sparsity levels to quantify how aggressively the expander
can prune while maintaining accuracy.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Results are presented in Figure 2. Overall, we find that HEX is stable across a wide range of
configurations. Append streaming mode is nearly indistinguishable from full recompression for
moderate sequence lengths, making it a practical default.

(a) Streaming Sensitivity (b) H2O Sensitivity (c) Expander Sensitivity

Figure 2: Hyperparameter studies of HEX with Llama-3 8B on GSM8k under 4-bit compression.

15

	Introduction
	Related Work
	Method
	Problem Setup
	Static structural sparsity via expanders
	Dynamic Selection of Heavy Hitters (H2O)
	Coarse Grained Quantization
	Inference Pipeline

	Experiments
	Experimental Setup
	Results of Reasoning and QA Benchmarks
	Results on Long-Context Benchmarks
	Ablation Studies

	Conclusions, Limitations and Future directions
	Appendix
	Expander Graphs
	Generation Of Expander Masks
	Complexity of Mask Generation
	LongBench Dataset Statistics
	Hyperparameter Sensitivity.

