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Abstract
Autoregressive sequence models have tradition-
ally relied on discrete tokenizations to leverage
cross-entropy training, but this discretization in-
troduces information loss that is costly in high-
dimensional domains such as video. Utilizing
higher capacity tokens enables higher quality gen-
erations, allowing one to use less tokens to repre-
sent a single image, and thus improve training and
inference time. We propose a continuous-token
autoregressive framework that parameterizes each
step’s output distribution as a mixture of Gaus-
sians. A lightweight Mixture of Gaussians (MoG)
head predicts mixture weights, means, and full
covariance factors, and is trained end-to-end by
minimizing the Gaussian negative log-likelihood
of continuous latent tokens. We demonstrate our
approach on conditional video generation from a
single image, comparing against a discrete-token
and a continuous ”mu-only” baseline. Our model
achieves the best Frechet Video Distance (FVD),
and generates frames with greater temporal diver-
sity, as measured by SSIM components, but with
a modest cost to FID.

1. Introduction
Most autoregressive models are trained using discrete to-
kens, primarily due to the simplicity and effectiveness of
cross-entropy loss. However, discrete representations tend
to be more lossy than continuous ones due to informa-
tion bottlenecks. This limitation becomes particularly pro-
nounced in video generation, where even a single frame is
often represented by a large number of tokens. Leveraging
continuous tokens can improve image quality and reduce
the number of required tokens, leading to faster generation.

Diffusion-based models benefit from continuous tokeniza-
tion, offering higher fidelity representations. Yet, they come
with trade-offs, such as limited ability to generate beyond
the training context and, in some cases, slower inference
speeds.

In this paper, we explore an alternative approach: applying
continuous tokenization within a decoder-only autoregres-

sive framework. Specifically, we introduce a method that
uses a mixture of Gaussians to parameterize sampled con-
tinuous tokens. We introduce two variants of sampling from
these Mixture of Gaussians and compare their generations.

2. Methods
Notation. Let x1:T = {x1, . . . ,xT } be a length-T se-
quence of continuous tokens, xt ∈ RD. A decoder-only
backbone with parameters θ produces

zt = fθ(x<t) ∈ Rdz , t = 1, . . . , T.

2.1. Mixture-of-Gaussians output head

From each zt we predict:

πt = softmax
(
Wπzt + bπ

)
∈ ∆K−1,

(1)

µt = reshape
(
Wµzt + bµ, K,D

)
, (2)

ℓt = reshape
(
WΣzt + bΣ, K, D(D+1)

2

)
. (3)

Here ℓt,k ∈ RD(D+1)/2 is unpacked into a lower-triangular
matrix

Ut,k = vec2tril
(
ℓt,k

)
∈ RD×D,

and then turned into a valid Cholesky factor by applying
softplus to the diagonal:

Lt,k = tril
(
Ut,k

)
+ diag

(
softplus

(
diag(Ut,k)

))
,

Σt,k = Lt,k L
⊤
t,k.

The conditional density is therefore

pϕ(xt | zt) =
K∑

k=1

πt,k N
(
xt; µt,k, Σt,k

)
,

with ϕ = {Wπ, bπ,Wµ, bµ,WΣ, bΣ}.

2.2. Training objective

As before, we minimise the Gaussian NLL,

L(θ, ϕ) = −
T∑

t=1

log pϕ
(
xt | fθ(x<t)

)
,

back-propagating through both backbone and mixture head.
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Figure 1. (left) Training Pipeline supervising video generation with Gaussian NLL. π, µ, ℓ are projections of zt. (right) Generation with
prefill on first image, then autoregressive generation for remaining tokens. z‘t is sampled using the Mixture of Gaussian parameters with
either the weighted-average or hard-sampling variants.

2.3. Autoregressive inference

We define two variants for autoregressive inference. Both
start with the generation of the mixture parameters:

1. Compute zt = fθ(x̂<t).

2. Form {πt,k, µt,k, Lt,k}Kk=1 as above.

MoG (Weighted-Average) Inference. We sample a single
standard-Gaussian noise vector once, then form each com-
ponent’s sample using that same noise, and finally take a
π-weighted average. At each generation step t:

3. Sample a shared noise vector ϵ ∼ N
(
0, I

)
.

4. Compute the weighted-average sample x̂t =∑K
k=1 πt,k

(
µt,k + Lt,k ϵ

)
, where each Lt,k is the

lower-triangular Cholesky factor satisfying Σt,k =
Lt,kL

⊤
t,k.

MoG-Hard (Single-Component) Inference. Here we hard
sample a discrete component first, then draw from that Gaus-
sian component. At each generation step t:

3. Sample component k ∼ Categorical(πt).

4. Sample x̂t ∼ N (µt,k, Lt,kL
⊤
t,k).

2.4. Experimental Setup

We experiment with a conditional generation task to gener-
ate a video from a single image input. The 560M trainable
parameter model is composed of a frozen Cosmos discrete
or continuous image (16x16) tokenizers (NVIDIA et al.,
2025) with a trainable hybrid Mamba/Transformer back-
bone and Mixture of Gaussians head. We train on publicly
available driving videos, and evaluate on a held-out vali-
dation set. Models are trained for 600k steps on 8xH100s
with batch size 1. Checkpoints are taken every 100k steps,

the checkpoint with the best FVD score is taken. Input
videos are resized to 25 frames of 512x256 resolution and
are encoded by the Cosmos tokenizers, giving 512 tokens
per image for a total context size of 12,800. Training videos
are 25 frames long and the evaluation task generates 24
frames given a single frame.

3. Experiments
We compare our Mixture of Gaussians autoregressive model
with weighted-average sampling (MoG) and with Hard sam-
pling (MoG-Hard), defined in section 2.3, against a discrete
baseline trained with cross entropy and to a continuous base-
line that simply predicts the next continuous latent (equiv-
alent to predicting a single Gaussian µ with σ = 0) with a
MSE loss. Our Mixture of Gaussians are trained with K=2
components.

3.1. Metrics

Frechet Video Distance (FVD) (Unterthiner et al., 2019)
compares the distribution of generated videos to the distri-
bution of the validation set videos, giving a metric for video
quality. We use VideoMAE (Wang et al., 2023) to calculate
FVD as (Ge et al., 2024) finds the computed features less
content biased compared to I3D features. Similarly, Frechet
Inception Distance (FID) (Heusel et al., 2018) applied to
each generated image and averaged across the temporal axis
gives a metric for individual-frame image quality. We quan-
tify the diversity of frames by calculating the Structural Sim-
ilarity Index Measure (SSIM) (Wang et al., 2004) between
consecutive frames, as well as the Luminance, Contrast, and
Structure components of SSIM. Evaluations are performed
with n=36 videos generated, with the same starting images
across all the models.
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Figure 2. Video roll-outs along the x-axis (with the input frame first). Continuous generations contain more fine details than the discrete
ones. The Mu-only generations have virtually no motion, the Discrete and MoG generations have evident motion, while the MoG-Hard
generations have much more motion but also distortion. This sample shows that the discrete model generates less realistic videos with the
black car going backwards.

3.2. Mixture of Gaussians

Visual Fidelity Consistent with intuition, we find that
continuous generations capture higher fine-details from the
original input frame, compared to the discrete baseline. In
Figure 2, we observe qualitatively that Mu-only, MoG, and
MoG-Hard generate more detailed frames by virtue of using
a continuous tokenizer. Table 1 quantitatively supports this
as Mu-only also achieves the highest FID. In MoG and MoG-
Hard, we see a worse FID score because of compounding
distortion in the long-horizon.

Motion and Temporal Diversity Despite degrading FID
over frame position, MoG delivers the best FVD out of the
models (Table 1), likely a result of the VideoMAE feature
extractor penalizing minimal motion videos in the FVD
calculation. Motionless videos and cars driving backwards
seen in Figure 2 are not very realistic, so worse FVD scores
for Discrete and Mu-only generations is consistent with
evaluating video realism.

Furthermore, we find that the Mu-only generations have
the least diversity of frames as indicated by a high SSIM
score (Table 1). The Discrete and MoG models have lower
SSIM scores indicating more diversity, however not to the
level of the validation reference set of real videos. While
the MoG model has the most variation, even more so than
the reference set. To control for the luminance and contrast
changes, we factor out the individual components of SSIM
and find that the structure-component of SSIM follows this
analysis similar to the overall SSIM aggregate metric. The
MoG-Hard generations most closely approximate the frame-
by-frame structural diversity of the validation reference set,
however still lacks in the visual consistency.

Long-Horizon Compounding Error Our proposed Mix-
ture of Gaussians training pipeline still faces long-
horizon instability in generation, often finding itself out-
of-distribution with compounding errors over the 12,800
token context window. It is possible that adding recovery
trajectories and training longer may alleviate this issue, espe-
cially since the continuous domain may be more numerically
sensitive and complex than the discrete domain.

Method FVD FID SSIM Lum. Cont. Struc.

Discrete 385 211 0.944 0.993 0.981 0.965
Mu-only 894 205 0.992 0.998 0.998 0.996
MoG 324 251 0.956 0.998 0.987 0.970
MoGHard 359 235 0.808 0.974 0.952 0.861

Val Ref. 0.862 0.989 0.964 0.892

Table 1. (n=36). FVD captures video realism via extracted feature
similarity. FID captures image realism. SSIM across consecutive
frames aggregates changes in Luminance, Contrast, and Structure.
Mu-only has the best image realism, due to its continuous tokenizer
and minimal motion. MoG has the best video realism, despite its
lacking image realism in the later part of generations, but makes
up for it with dynamic motion across frames.

3.3. Analysis of Gaussian Components

With these empirical benefits of the MoG approach, we now
investigate how the mixture of gaussians may be represent-
ing the generative signals. In Figure 3, for the MoG model
Component 2 retains a majority of the weight at around
75%, with some flunctuation across token position, while
Component 1 hovers at around 25%. We observe that the
Mu values are very tightly correlated between Component 1
and 2, although Component 1 has significantly higher vari-
ance from the covariance diagonal (graphs in Appendix A).
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Figure 3. Mixture Weights (π) averaged across generation steps
for MoG model (n=36). Dotted lines indicate boundaries between
frames. Positions 0 to 512 are the prefill for the input image,
and the remaining positions are the generation. Component 2
dominates the mixture weight, averaging about 0.75 of the weight
while Component 1 averages about 0.25 of the weight.

Since the components do not collapse to represent the same
distribution, this suggests there is some useful representa-
tional power to using mixture of Gaussians over a single
Gaussian. However, Table 3 in Appendix A shows that forc-
ing a generation to only use a single Gaussian component
recovers similar or better FVD, FID, and SSIM metrics.
More evaluations need to be done to determine to what ex-
tent multi-modality and diverse generation is enabled by
multiple Gaussian components. Nonetheless, the Mixture of
Gaussian training procedure is necessary for stable training
dynamics as single Gaussian training is unstable.

4. Ablations
Mixture vs Single In ablation experiments, we find that
training single gaussians are unstable in the long-context
NLL setting, with loss NaNs within 50k steps for both the
Multivariate and Univariate settings.

Multivariate vs Univariate Gaussians The Cosmos con-
tinuous tokenizer in this work has 16 dimensions, so we
experiment whether modeling tokens in 16 dimensional
space (and thus 16-dimensional Gaussians) differs from
modeling the Gaussians as independent for each dimension.
Ideal tokenizers may have independent channels for max-
imal information representation, but we find multivariate
gaussian representations outperform univariate Gaussians
when using the Cosmos tokenizer.

4.1. Mu-only + Fixed Sigma

We further evaluate Mu-only sampling with augmented vari-
ants using the learned mu component and naively sample
with a nonzero sigma at generation time. Testing with
σ = {e−5, e−3}, we find that although diversity increases

with lower SSIM when forcing a fixed sigma, generations
still do not have coherent motion and are largely restricted
to luminance and contrast changes. Although MoG has
worse FID than Mu-only with Fixed sigma, MoG improves
on FVD and motion realism, demonstrating the value of
learned covariance parameters (Figure 2).

Method FVD FID SSIM Lum. Cont. Struc.

σ = 0 894 205 0.992 0.998 0.998 0.996
σ = e−5 894 204 0.992 0.998 0.998 0.996
σ = e−3 674 214 0.984 0.996 0.996 0.992
MoG 324 251 0.956 0.998 0.987 0.970
MoGHard 359 235 0.808 0.974 0.952 0.861

Val Ref. 0.862 0.989 0.964 0.892

Table 2. (n=36). Increasing levels of fixed sigma with a Mu-only
trained model improves FVD, but still falls short of MoG, showing
the utility of learning covariance.

5. Related Works
Our work builds off of a rich history of work in both gen-
erative modeling of videos as well as explicit distribution
modeling using neural networks.

Video Generation: High quality video generation often
relies on diffusion-based models (Ho et al., 2022b;a). Due
to the success of large scale next-token predictive LLMs,
discrete-token autoregressive (AR) models using vision tok-
enizers has also emerged (Yan et al., 2021; Yu et al., 2023;
Van Den Oord et al., 2017). Furthermore, beyond next-token
prediction alone, coarse-to-fine or multi-scale generation
strategies offer enhanced long-horizon coherence and sam-
pling speed (Tian et al., 2024; Deng et al., 2024), marking
a shift from diffusion to autoregression across image and
video tasks. However, because vision is a very dense signal,
discrete tokenization presents a significant loss of quality;
thus recent approaches for AR modeling attempt to incor-
porate continuous latent spaces and eliminate quantization
for improved fidelity and efficiency (Li et al., 2024; Agar-
wal et al., 2025) by combining AR with diffusion based
losses, with some integrating causal and bidirectional frame
modeling for speed and coherence (Deng et al., 2024).

Distribution Learning: Beyond diffusion losses for im-
plicit modeling of distributions, a large body of work also
exists for explicit parametric modeling of a distributions via
maximum likelihood estimation. Classic mixture density
networks parameterize predictions (Bishop, 1994), while
AR models in multimodal domains predict structured dis-
tributions with better probabilistic modeling. The learned
densities have been shown to be effective in modalities such
as audio (Van Den Oord et al., 2016), pixels (Theis et al.,
2012; Salimans et al., 2017), graphs (Errica et al., 2021),
and robotic control (Amini et al., 2019).
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A. Gaussian Components Analysis

Method FVD FID SSIM Lum. Cont. Struc.

MoG 324 251 0.956 0.998 0.987 0.970
MoG Force Component 1 308 254 0.951 0.997 0.985 0.967
MoG Force Component 2 322 251 0.956 0.998 0.987 0.910

Table 3. (n=36). Forcing Gaussian Components uncovers similar performance.
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Figure 4. Mu averaged across generation steps (n=36). Dotted lines indicate boundaries between frames. Positions 0 to 512 are the prefill
for the input image, and the remaining positions are the generation.
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Figure 5. Mixture Weights (π) averaged across generation steps (n=36). Dotted lines indicate boundaries between frames. Positions 0 to
512 are the prefill for the input image, and the remaining positions are the generation.
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Figure 6. Mixture Weights (π) averaged across generation steps (n=36). Dotted lines indicate boundaries between frames. Positions 0 to
512 are the prefill for the input image, and the remaining positions are the generation.
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