
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NODE-BASED MULTIPLE GRAPH LEARNING WITH
THEORETICAL GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

In many applications, inferring graph topology, i.e., learning the graph structure
from a given set of nodal observations, is a significant task. Existing approaches
are mostly limited to learning a single graph assuming that the observed data are
homogeneous. In many applications, data sets are heterogeneous and involve mul-
tiple related graphs, i.e., multiview graphs. Recent work on learning multiview
graphs ensures the similarity of learned view graphs through edge-based similar-
ity between the graphs. In this paper, we take a node-based approach instead of
assuming that similarities and differences between networks are driven by individ-
ual edges, providing a more intuitive interpretation of network differences. More-
over, unlike existing methods that employ Gaussian Graphical Models (GGM),
which learn precision matrices rather than the actual graph structures, we charac-
terize the graph using a Laplacian matrix. Thus, the approach is expected to work
broadly beyond Gaussian graphical learning. We develop an optimization frame-
work to learn the individual graphical structures, assuming that the differences are
due to individual nodes that are perturbed across views. The proposed optimiza-
tion framework is presented for the special case of two views. Furthermore, we
derive the upper bound on the estimation error of the proposed graph estimator
and characterize the impact of the sample size, number of nodes, and the spec-
trum of the graph Laplacians on estimation errors. The approach is evaluated on
synthetic graph data for robustness against noise, graph density, and sample size.
Finally, the proposed framework is applied to two-view real-world graph data for
graph learning and clustering.

1 INTRODUCTION

Many real-world data are represented through the relations between data samples, i.e., a graph struc-
ture (Newman (2018)). Although many datasets, including social networks and traffic networks,
come with a known graph structure, there are a lot of applications where a graph is not readily avail-
able. For example, in many biological systems, e.g., gene regulatory networks (Li & Gui, 2006), the
underlying graph structure is not directly observable. In such cases, inferring the topology of the
graph is essential to analyze the data and model the relations.

Existing graph inference approaches are mostly limited to homogeneous datasets, where observed
graph signals are assumed to be identically distributed and defined on a single graph. In many
applications, the data may be heterogeneous or mixed and come from multiple related graphs, i.e.,
multiview graphs. In these situations, learning the topology of the views jointly by incorporating
the relationships between views can improve performance (Tsai et al., 2022; Danaher et al., 2014;
Navarro et al., 2022).

Traditional joint graphical structure inference methods are primarily based on Gaussian Graphical
Models. These methods extend graphical lasso (Friedman et al. (2008)) to a joint learning setup,
where they learn the precision matrices of multiple related Gaussian graphical models. They em-
ploy various penalties in the likelihood framework to exploit the common characteristics shared by
different views (Guo et al. (2011); Danaher et al. (2014); Lee & Liu (2015); Mohan et al. (2014); Ma
& Michailidis (2016); Huang & Chen (2015)). One prominent example of this approach is the joint
graphical lasso (Danaher et al. (2014)), where fused or group lasso penalties are used to encour-
age topological similarity between views. However, these methods are limited by the assumption

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

that the observed graph signals are Gaussian, which is usually not true for real-world applications.
Furthermore, they learn the precision matrices without imposing graph structure constraints on the
learned views. These joint learning approaches have recently been extended to learn multiple graph
Laplacian matrices instead of precision matrices (Yuan et al. (2023a); Zhang & Wang (2024a);
Karaaslanli & Aviyente (2024)). However, all of these methods quantify the pairwise similarity
between the views based on edge similarity. In many settings, such as gene regulatory networks
(Mohan et al. (2014)), the differences between views may be better explained through the changes
in the connectivity of a few nodes. This way of modeling the differences imposes a structure and
provides an intuitive interpretation of the network differences.

In this paper, we introduce a joint graph Laplacian learning framework where the differences across
the views are assumed to be driven by the perturbation to the individual nodes’ connectivity across
views. Based on this assumption, we introduce a Laplacian learning framework using the smooth-
ness criterion, i.e., the graph signals are smooth or low frequency with respect to the underlying
graph structure, with a regularization term that captures the node-based similarity across views. We
focus on learning graphs for the case of two views where each view is assumed to be a perturbed
version of the other by changing the connectivity of r nodes with r << n. The corresponding opti-
mization problem is solved using the Alternating Direction Method of Multipliers (ADMM). Finally,
theoretical results are provided to quantify the upper bounds on the error between the estimated and
true graph Laplacians as a function of the number of signals and nodes.

The main contributions of the proposed framework are:

• Extending structured multiview graph learning from GGM to smooth graph signals, where
a valid graph topology instead of precision matrices is learned. Using smoothness, our
framework is not restricted to GGMs and can handle different types of smooth graph sig-
nals.

• Introducing structure-based multiview graph learning, particularly a node perturbation
model, in the context of smooth graph learning.

• Providing theoretical analysis and upper bounds on the estimation error of two-view Lapla-
cian learning in terms of the graph size, sample size, and the radius around the true Lapla-
cians, as the problem is non-convex. This estimation bound also suggests that the estimated
values will not converge to the true values merely by increasing the sample size; rather,
convergence also depends on the topology of the true graph structure.

2 BACKGROUND

2.1 RELATED WORK

Prior work in multiview graph learning has been mostly based on statistical models. These meth-
ods extend graphical lasso (Friedman et al. (2008)) to the joint learning case, where the precision
matrices of multiple related GGMs are learned using various penalties in the likelihood framework
to exploit the common characteristics shared by different views (Guo et al. (2011); Danaher et al.
(2014); Lee & Liu (2015); Mohan et al. (2014); Ma & Michailidis (2016); Huang & Chen (2015)).
The most notable among these is the joint graphical lasso (Danaher et al. (2014)), where fused or
group lasso penalties are used to encourage topological similarity between views. However, these
methods are limited by the assumption that the observed graph signals are Gaussian, suffer from
increased computational complexity in the case of pairwise penalties and learn conditional depen-
dencies instead of inferring the graph structure, which may not be suitable for subsequent learning
tasks. Recently, these joint learning approaches have been extended to multiple graph Laplacian ma-
trices (Yuan et al. (2023a)). However, this approach is still limited to Gaussian data and edge-based
similarities across views.

The graph signal processing (GSP) community has recently addressed the problem of learning mul-
tiview graphs from heterogeneous data. This work can be divided into two categories, depending on
whether one knows the association of the observed signals with the views a priori. In the first setup,
multiple datasets are given and each dataset is defined in a view (Navarro et al. (2022); Navarro &
Segarra (2022)). On the other hand, the second setup deals with the mixture of graph signals, where
a single data set is given and the association of graph signals to the views is not known (Maretic

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

& Frossard (2020); Araghi et al. (2019); Karaaslanli & Aviyente (2022)). The focus of this paper
is the first category. This problem setting has been studied most extensively to infer the topology
of time-varying networks (Kalofolias et al. (2017); Yamada et al. (2019); Baingana & Giannakis
(2016); Sardellitti et al. (2019)), where the aim is to learn graphs at multiple time points and to
track changes in the structure of the graph over time. This problem can be posed as multiview graph
learning with a regularization term that promotes pre-specified changes between consecutive graphs.
More recently, the problem of multiview graph learning has been formulated with the assumption
of graph stationarity (Navarro et al. (2022)). In this formulation, the signals are assumed to be sta-
tionary, and pairwise similarity between all graphs is used to regularize the optimization. In (Zhang
& Wang (2024a)), the authors propose a multiview graph learning method based on the smoothness
assumption. However, all of this prior work in GSP quantifies the similarity across views through
edge-based similarity without considering the structure of the differences between views explicitly.

2.2 NOTATIONS

We represent a vector with bold lower case notation x and matrix of size m × n as A ∈ Rm×n

with the (i, j) th entry of the matrix A as Aij ∀ i, j. The trace of a square matrix A ∈ Rn×n is
denoted as tr(A) =

∑
iAii. The Frobenius norm ∥ · ∥F of a matrix A, is defined as ∥A∥F =√∑

i,j A
2
ij . ∥ · ∥2,1 is the ℓ2,1 norm which is the the sum of ℓ2 norms of the rows of a matrix A,

i.e., ∥A∥2,1 =
∑
i

√∑
j A

2
ij .∥A∥2 is the spectral norm of matrix A, that is the maximum sigular

value of A.The operator vec(.) is used for vectorization of matrix. The symbol ⊙ is the Hadamard
product (element-wise) product of two matrices and ⊗ is the Kronecker product of two matrices.
Br(A) is the open ball of radius r, with respect to the metric induced by Frobenius norm centered
at the matrix A. The all-one and all-zero vectors and matrices are denoted by 1 and 0, respectively.
|S| denotes the cardinality of a set S.

An undirected graph is defined as G = (V,E), where V is a set of n nodes, i.e., |V | = n, and E ⊆
V × V is a set of edges. An edge connecting nodes i and j is represented as Eij , with an associated
weight wij . The graph G can be algebraically represented using an n × n symmetric adjacency
matrix W ∈ Rn×n. Each element Wij is defined as Wij = Wji = wij if eij ∈ E, and Wij = 0 if
there is no edge between nodes i and j. The graph Laplacian is represented as L = D−W, where
D is the diagonal degree matrix, with each diagonal entry Dii calculated as Dii =

∑n
j=1 Wij . The

eigendecomposition of L is given by L = U⊤ΛU, with U containing eigenvectors as columns and
Λ is a diagonal matrix with diagonal elements 0 = Λ11 ≤ Λ22 ≤ · · · ≤ Λnn.

3 SMOOTHNESS BASED GRAPH LEARNING

A graph signal defined on G is a function x : V → R and can be represented as a vector x ∈ Rn
where xi is the signal value on node i. Eigenvectors and eigenvalues of the Laplacian of G can be
used to define the graph Fourier transform (GFT), i.e., x̂ = U⊤x where x̂i is the Fourier coefficient
at the ith frequency component Λii. x is referred to as a smooth graph signal if most of the energy
of x̂ lies in low frequency components. The smoothness of x can then be quantified using the total
variation of x measured in terms of the spectral density of its Fourier transform as:

tr(x̂⊤Λx̂) = tr(x⊤UΛUTx) = tr(x⊤Lx). (3.1)

3.1 SINGLE VIEW GRAPH LEARNING

An unknown graph G can be learned from a set of graph signals defined on it based on some as-
sumptions about the relation between the observed graph signals and the underlying graph structure.
One such assumption is the smoothness of the observations with respect to G, which can be quan-
tified using total variation equation 3.1. Total variation offers a natural criterion for finding the best
topology in which observed signals have the desired smoothness property (Dong et al., 2019; Mateos
et al., 2019).

Dong et. al. (Dong et al., 2016) proposed to learn G by assuming the graph signals are smooth with
respect to G. Given X ∈ Rn×p as the data matrix with the columns corresponding to the observed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

graph signals, G can be learned by minimizing smoothness with respect to the Laplacian matrix of
G:

minimize
L

tr(X⊤LX) + α∥L∥2F s.t. L ∈ L and tr(L) = 2n, (3.2)

where the first term quantifies the total variation of graph signals and the second term controls the
density of the learned graph such that larger values of hyperparameter α result in a denser graph. L
is constrained to be in L = {L : L ⪰ 0, Lij = Lji ≤ 0 ∀i ̸= j, L1 = 0}, which is the set of valid
Laplacians. The second constraint is added to prevent the trivial solution L = 0.

4 PROBLEM FORMULATION: PERTURBED NODE MODEL FOR TWO-VIEW
LEARNING (PN-TVL)

Given a set of signal samples for each view, X(k) = [x
(k)
1 , . . . ,x

(k)
dk

] where x
(k)
i ∈ Rn and X(k) ∈

Rn×dk , with n being the number of nodes, k ∈ {1, 2} the number of views and dk the number
of signal samples in view k, the goal is to learn the individual graph structures, i.e., the graph
Laplacians, L(k). Assuming that the individual views differ due to particular nodes that are perturbed
across the two views, thus have a completely different connectivity pattern, the problem of learning
the individual graph Laplacians, L(k), with the smoothness assumption can be expressed as

min
L(k),V

2∑
k=1

[
tr(X(k)⊤L(k)X(k)) + γ1∥L(k) − I⊙ L(k)∥2F − γ2 tr(log(I⊙ L(k)))

]
+ γ3∥V∥2,1

s.t. L(k) ∈ L, L(1) − L(2) = V +V⊤,
(4.1)

where the first term quantifies the total variation of the observed signal, X(k), with respect to the
underlying graph Laplacian L(k) similar to equation 3.2, the second term controls the sparsity of
the learned graphs, the third term applies a logarithmic penalty to the degree of the learned graphs,
(I⊙L(k)), to ensure connectivity (Kalofolias et al., 2017) and the last term penalizes the difference
between the two views, V, using the row-column overlap norm (RCON) (Mohan et al., 2014). L(k)
is constrained to be in L = {L : L ⪰ 0, Lij = Lji ≤ 0 ∀i ̸= j, L1 = 0}, which is the set of valid
Laplacians. In general, RCON applies ℓq,p-norm to the difference of views, the primary objective
being to identify nonzero rows and columns, with each row or column representing a perturbed
node. In this work, we use ℓ2,1-norm such that the number of columns of V with non-zero ℓ2-norm
corresponding to the perturbed nodes’ connectivity is minimized.

The optimization problem in equation 4.1 is nonconvex due to the constraints. To deal with the
nonconvex constraints, we present an equivalent form of the constraints L(k) ⪰ 0,L(k) · 1 = 0
following (Zhao et al., 2019):

L(k) ⪰ 0,L(k) · 1 = 0 ⇐⇒ PE(k)P⊤, E(k) ⪰ 0, (4.2)

where P ∈ Rn×(n−1) is the orthogonal complement of the vector 1, i.e., P⊤P = I and P⊤1 = 0,
and E(k) ∈ R(n−1)×(n−1) is a positive semi-definite matrix for the kth view. Note that the choice of
P is nonunique. The equivalent objective function can be written as follows:

min
E(k),V

2∑
k=1

[
tr(X(k)⊤PE(k)P⊤X(k)) + γ1∥PE(k)P⊤ − I⊙PE(k)P⊤∥2F − γ2 tr(log(I⊙PE(k)P⊤))

]
+ γ3∥V∥2,1
s.t. PE(1)P⊤ −PE(2)P⊤ = V +V⊤.

(4.3)

The optimization problem in equation 4.3 can then be solved using ADMM. The update steps for
solving the PN-TVL optimization are given in Appendix A and the pseudocode is given in Algorithm
1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 PN-TVL Optimization Algorithm

Input: γ1, γ2, γ3, µ, P, X(k).
Output: Laplacian matrices L(k)

1: Initialize: Set E(k), V, and the auxiliary variables and dual variables to the zero matrix.
2: while not converged do
3: Update E(k)

l+1 by equation A.4.

4: Update Z
(k)
l+1 by equation A.6.

5: Update C
(k)
l+1 by equation A.8.

6: Update H
(1)
l+1 and H

(2)
l+1 by equation A.10 and equation A.12 respectively.

7: Update Vl+1 by equation A.14.
8: Update Ql+1 by equation A.16.
9: Update Wl+1 by equation A.18.

10: Update the Lagrange multipliers and penalty parameter by equation A.19.
11: end while

5 THEORETICAL ANALYSIS

To facilitate a unified analysis of multiple graph Laplacians, we define the parameter space as the
set of block diagonal matrices in R3n×3n, where each diagonal block corresponds to the graph
Laplacians L1, L2, and the matrix V following the same type of formulations of (Yuan et al., 2023b).
For the simplicity of analysis, we consider d1 = d2 = d throughout this section. To analyze the
estimation error let us write down equation 4.1 after rescaling as follows,

2∑
k=1

[
1

d
tr(X(k)⊤L(k)X(k)) + γ1d∥L(k) − I⊙ L(k)∥2F − γ2d tr(log(I⊙ L(k)))

]
+ γ3d∥V∥2,1,

(5.1)

subject to the constraints L(1),L(2) ∈ L = {L ∈ Rn×n : L ⪰ 0, Lij = Lji ≤ 0,L · 1 = 0} and
L(1),L(2),C ∈ C =

{
L(1),L(2),V ∈ Rn×n : L(1) − L(2) = V +V⊤}. From Lemma B.7 we

know that L is convex but the set of the constraints C is non-convex. Since the problem is inherently
non-convex due to the constraint L1 − L2 = V + V⊤, we aim to derive estimation error bounds
for local optima. To address this, we consider an additional restriction that the local minimizer
L̂γ ∈ R3n×3n is confined to a small neighborhood around the true solution L∗ ∈ R3n×3n. The

block diagonals corresponding to L̂γ and L∗ are
(
L̂
(1)
γ , L̂

(2)
γ , V̂γ

)
and

(
L(1∗),L(2∗),V∗).

We make the following assumptions to derive the theoretical results.

(A1) We assume that the optimization is constrained to a local neighborhood defined by an open
ball of radius r > 0 centered at the true 3n× 3n matrix L∗ similar to the idea presented in
(Loh, 2017). Mathematically, this can be expressed as the set:

Br(L∗) =
{
L ∈ R3n×3n : ∥L− L∗∥F < r

}
.

Additionally we also assume that there exists r(1), r(2), r(3) > 0, such that a constant

Kr = min
{
r(1), r(2), r(3) :

∥∥∥L(k) − L(k)∗
∥∥∥
F
< r(k), ∥V −V∗∥F < r(3), r(1) + r(2) + r(3) < r

}
.

(5.2)

(A2) The set of signals
{
x
(k)
j

}d
j=1

is assumed to follow a sub-Gaussian distribution (see B.1

for details) with mean 0 and covariance matrix Σ(k) for k = 1, 2. Using the sub-Gaussian
assumption enhances the flexibility of the analysis, as it encompasses a broader range of
distributions beyond the Gaussian case, while still retaining important concentration prop-
erties that make it suitable for statistical analysis.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(A3) Additionally, we assume that the maximum Frobenius norm of the true covariance matrices
Σ(1)∗ and Σ(2)∗ is bounded by a positive constant CΣ∗ . Formally, this can be expressed as:

max
k∈{1,2}

∥∥∥Σ(k)∗
∥∥∥
F
≤ CΣ∗ .

This constraint ensures that the true covariance matrices do not exhibit extreme values which could
otherwise lead to numerical instability. To state the theorem let us first define the matrix Eii ∈ Rn×n
as an indicator matrix for the i-th diagonal element, defined as:

(Eii)kl =

{
1, if k = l = i,

0, otherwise.

Theorem 5.1. Under the assumptions (A1), (A2), (A3) with the regularization parameters
γ1d, γ2d, γ3d > 0,∥∥∥L̂γ − L∗

∥∥∥
F
≤ 4nr2C2

r

λ̃γd
√
d

max
k∈{1,2}

C(k) +
2r2C2

r

λ̃γd

{
n2γ3d + 2CΣ∗ + γ̃dCL

}
, (5.3)

with probability at least 1 − 2
{

exp
(
−c(1)(

√
d− 2c(1)

√
n)2
)
+ exp

(
−c(2)(

√
d− 2c(2)

√
n)2
)}

and d > 4nmax
{
c(1)

2

, c(2)
2
}

where λ̃γd is the minimum eigenvalue of the matrix

M =

[
n∑
i=1

γ2dL
(k)∗

−2

ii Eii ⊗Eii + 2γ1d

(
In ⊗ In −

n∑
i=1

Eii ⊗Eii

)]
,

γ̃d = 4γ1d + 2γ2d , the constant Cr satisfies Cr ≥ 1
2Kr

and the constant CL is dependent on the
true graph structures as,

CL = max

{
max
k∈{1,2}

∥∥∥L(k)∗ − I⊙ L(k)∗
∥∥∥
F
, max
k∈{1,2}

∥∥∥∥(I⊙ L(k)∗
)−1

∥∥∥∥
F

}
,

and c(1), c(2), C(1), C(2) > 0 are the constants that depend on the sub-Gaussian norms
∥∥x(1)

∥∥
ψ

and
∥∥x(2)

∥∥
ψ

of a random vector taken from this distribution.

The derived estimation error bound shows that the accuracy of the estimated L̂γ is significantly
influenced by the number of nodes n, the number of samples d, and the choice of regularization
parameters. Similar to the results of Zhang & Wang (2024a) and Zhang & Wang (2024b), the
upper bound has two parts where the first part is data dependent and the second part is completely
dependent on the regularization parameters and on the topology of the true graph. Furthermore,
the minimum eigenvalue λ̃γd of the matrix M plays a critical role in controlling the bound—small
values can drastically increase the error, highlighting the importance of ensuring a well-conditioned
matrix through appropriate selection of γ1d, γ2d, and γ3d. Thus, balancing these factors is essential
for achieving reliable estimation accuracy.The upper bound of the estimation error is also dependent
on the radius r around true L∗as there is a factor of r2 is present in the numerator along with
the constant Cr. Also, in this setup as the sets L and C have special properties, the projected
unconstrained estimator will have the same estimation error bound as for the constrained estimator
(For details see B.6 of the Appendix).

6 EXPERIMENTAL RESULTS

6.1 SIMULATED NETWORKS

We considered two random network models: Erdős-Rényi (ER) random network and random geo-
metric graph (RGG). In ER graphs, node pairs are independently connected with probability 0.1. For
RGG, we used the setup from (Kalofolias, 2016), where 100 two-dimensional points are randomly
drawn from [0, 1]2 and they are connected to each other with weight exp(−∥xi − xj∥22/σ2) where
xi is the coordinates of ith point and σ = 0.25. Weights smaller than 0.6 are set to 0, while the
remaining ones are set to 1 to generate binary graphs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

For each network model, we duplicated the adjacency matrix, A, into two matrices A(1) and A(2).
We selected r nodes at random for perturbation. For each selected node, we set the elements of the
corresponding row and column of either A(1) or A(2) (chosen at random) to be i.i.d. drawn from a
Bernoulli distribution. This results in r perturbed nodes.

6.1.1 DATA GENERATION

Given the two view graphs, each Xk ∈ Rn×dk is generated from Gk using the smooth graph filter
h(Li) (Kalofolias, 2016). In particular, each column of Xk is generated as Xk

·j = h(Lk)x0; where
x0 ∼ N (0, I). In this paper, we considered three different types of graph filters: 1) Gaussian filter
(h(L) = L†); 2) Heat filter (h(L) = exp(−αL), α = 5 in this paper); and 3) Tikhonov filter
(h(L) = (I + αL)−1, α = 20 in this paper). In the case of the Gaussian filter, the resulting signals
are Gaussian distributed and the graph Laplacian and the precision matrix are equivalent to each
other. We finally add η% noise (in ℓ2 norm sense) to each generated Xi. For each simulation, the
average performance over 10 realizations is reported.

We evaluated the performance of our method for the two random graph models and three signal
generation methods with respect to different simulation parameters. In particular, we evaluated the
robustness of our method with respect to the number of signal samples (dk), number of perturbed
nodes (r) and noise level (η). In the first case, we fixed the number of nodes at n = 100, and the
number of perturbed nodes at r = 3, and noise level η = 0.1, and varied the number of signal
samples. For the second case, we fixed the number of nodes at n = 100, the number of samples at
dk = 700, and noise level η = 0.1, and varied the number of perturbed nodes. Finally, we fixed
the number of nodes at n = 100, the number of samples at dk = 700, and the number of perturbed
nodes r = 3, and varied the noise level η.

6.1.2 BENCHMARK MODELS

We compare the proposed method with respect to the following methods:

• SV: Single view graph learning approach in (Dong et al., 2016) which learns the graph
topology corresponding to each view independently by assuming that the signals are
smooth with respect to each view’s graph.

• MVGL: Multiview graph learning approach in (Karaaslanli & Aviyente, 2024) which
jointly learns multiple graph Laplacians assuming the signals are smooth with respect to
each view graph and the similarity between the views is enforced by minimizing the ℓ1-
norm error between the view and the learned consensus graph.

• PNJGL: Perturbed node joint graph learning in (Mohan et al., 2014) that jointly learns
precision matrices assuming a GGM where the similarity between the views is enforced by
minimizing the row column overlap norm of the difference.

The performance of the methods is quantified by computing the average F1 score with respect to the
ground truth graphs across runs.

6.2 RESULTS

Figure 1 displays the results for ER network under three different types of graph filter with varying
numbers of samples, number of perturbed nodes, and the percentage of noise level. For all methods,
the performance increases with increasing number of signal samples as expected with PN-TVL
performing the best. While MVGL performs better than SV and PNJGL, its performance is lower
than PN-TVL as the learning algorithm does not take the perturbation model into account. For
small sample sizes, PNJGL performs better than SV illustrating the advantage of joint learning.
However, as the sample size increases the improvement in PNJGL performance does not increase
at the same rate with the other methods. This may be due to the difficulty of estimating larger size
precision matrices. Similarly, the performance drops with a growing number of perturbed nodes
and noise levels. While MVGL is robust against noise, it is not robust to increase in the number
of perturbed nodes. This is because MVGL tries to maximize edge similarity. As the number of
perturbed nodes increases, the number of dissimilar edges increases at a polynomial rate. Thus, the
difference between the views becomes less sparse. PNJGL performs better than MVGL in these

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Comparison of performance for ER network model with three different graph filters for
varying signal parameters: (a)-(c) varying number of samples (dk), number of perturbed nodes (r),
and noise level (η), for Gaussian filter; (d)-(f) varying number of samples (dk), number of perturbed
nodes (r), and noise level (η), for heat filter, (g)-(i) varying number of samples (dk), number of
perturbed nodes (r), and noise level (η), for Tikhonov filter.

situations as it is based on the assumption that the view differences are driven by node connectivity.
For the different graph filters, the performance of PN-TVL does not vary much showing that it is not
sensitive to the distribution of the data but rather to the smoothness with respect to the graph. On the
other hand, PNJGL is more robust to noise and performs better than MVGL and SV for Gaussian
signal model (top row), while its performance is inferior to MVGL for non-Gaussian signals (middle
and bottom rows in Figure 1). This is due to the fact PNJGL cannot accurately estimate precision
matrices for non-Gaussian data.

The results for the RGGs are given in Appendix C.

6.2.1 SCALABILITY OF THE PROPOSED APPROACH

To evaluate the scalability of the proposed PN-TVL method, we generated a set of simulated net-
works with the number of nodes increasing from 50 to 800. The two view networks were generated
using an ER model with dk = 700, r = 0.02n and p = 0.1. As shown in Figure 2, SV is the
fastest method as it solves a simpler optimization problem with less added constraints. The run
time for PN-TVL is comparable to the MVGL model and less than the PNJGL model since PNJGL
uses Singular Value Decomposition (SVD) in every step of the solution. Despite the longer runtime
compared to SV, PN-TVL provides the highest accuracy in graph learning.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: The scalability analysis of the PN-TVL model compared with other existing models as the
number of nodes raised.

(a) (b) (c)

Figure 3: Sensitivity of the PN-TVL model in terms of NMI to the regularization parameters (a)
vary γ1, γ2 and fix γ3, (b) vary γ1, γ3 and fix γ2, and (c) vary γ2, γ3 and fix γ1.

6.2.2 SENSITIVITY TO HYPERPARAMETERS

In the proposed objective function 4.1, there are three parameters that are tuned, (γ1, γ2, γ3), where
γ1 controls the sparsity of the learned Laplacian matrices, γ2 regulates the degree distribution (or
connectivity) of the learned graphs, and γ3 controls the norm of the difference between the views,
i.e., the perturbation. In our implementation, we optimize the values of (γ1, γ2, γ3) using a grid
search approach.

To assess the sensitivity of the PN-TVL model to these parameters, γ1, γ2, and γ3 were varied from
5 to 50 in increments of 5, and the effect of adjusting two parameters at a time was analyzed while
keeping the third fixed. As shown in Figure 3, the performance of the learning algorithm is most
sensitive to the value of γ1 which controls the sparsity of the learned graphs as when γ1 is fixed, the
performance does not change much for γ2 and γ3. This is expected since the sparsity of the learned
graphs affect the accuracy of estimating V in addition to each view. Moreover, the optimal range
for these parameters is found to be between 25 and 35.

6.3 REAL DATA ANALYSIS

In this section, we use a dataset of 2000 handwritten digit images from the UCI Machine Learning
Repository (Dua et al., 2017) to demonstrate the performance of PN-TVL method in learning the
graph structure and the cluster membership. The dataset includes samples from 10 distinct classes
(digits 0−9) with 6 features. We utilized two features: Fourier coefficients with dimension d1 = 76
and Karhunen-Loève coefficients with dimension d2 = 64 , both derived from character shapes.

We learn each view graph from the corresponding features using PN-TVL and then apply spectral
clustering to obtain the clustering labels. To assess the performance of the PN-TVL model, we
use the commonly adopted evaluation metric, Normalized Mutual Information (NMI), and compare
the results with other existing methods. Figure 4 shows average clustering accuracy across the two

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4: Average NMI results of spectral clustering applied to the graphs learned by different
methods.

views for PN-TVL model compared to the other models. PN-TVL achieved an NMI of 0.73 while
the MVGL model has an NMI of 0.67. This difference is because the MVGL model is designed to
learn graphs based on edge-based similarity and may not learn the cluster structure well. In contrast,
the SV model resulted in an average NMI of 0.61 as it learns each view independently and does not
consider the similarities between the views. Lastly, the PNJGL model has an average NMI of 0.57,
as it is designed to learn precision matrices rather than Laplacian matrices, so spectral clustering
cannot accurately identify the clusters.

7 CONCLUSIONS

In this paper, we introduced a graph signal processing-based approach for learning graph Laplacians
of two closely related graphs. The proposed approach is based on the assumptions that the observed
graph signals are smooth with respect to the underlying graph structures, and that the differences
between the two views are driven by the perturbation of a few nodes’ connectivity. A cost function
that enforces these two objectives is proposed and the corresponding optimization algorithm is pre-
sented. Theoretical results are presented on the upper bound of the estimation error for the inferred
Laplacian as well as the view difference matrices. The proposed method is applied to both simulated
and real graph-based data and compared to the state-of-the-art graph inference methods. The results
show that PN-TVL is more robust regarding the increase in the number of perturbed nodes and added
noise. Moreover, PN-TVL works well for various signal models, i.e., Gaussian and non-Gaussian,
while graphical lasso-based methods like PNJGL’s performance drops for non-Gaussian signals.

Future work will consider extending the proposed framework to multiple views. To keep computa-
tional complexity linear with respect to the number of views, we will develop consensus graph-based
similarity constraints. Future work will also consider extending the proposed work to other node-
based structural similarities, such as the co-hub model, where the views are assumed to have the
same hub nodes.

REFERENCES

Hesam Araghi, Mohammad Sabbaqi, and Massoud Babaie-Zadeh. k-graphs: An algorithm for
graph signal clustering and multiple graph learning. IEEE Signal Process. Lett., 26(10):1486–
1490, 2019.

Brian Baingana and Georgios B Giannakis. Tracking switched dynamic network topologies from
information cascades. IEEE Trans. Signal Process., 65(4):985–997, 2016.

Patrick Danaher, Pei Wang, and Daniela M Witten. The joint graphical lasso for inverse covariance
estimation across multiple classes. J. Roy. Stat. Soc. B., 76(2):373–397, 2014.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning Laplacian
matrix in smooth graph signal representations. IEEE Trans. Signal Process., 64(23):6160–6173,
2016.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiaowen Dong, Dorina Thanou, Michael Rabbat, and Pascal Frossard. Learning graphs from data:
A signal representation perspective. IEEE Signal Process. Mag., 36(3):44–63, 2019.

Dheeru Dua, Casey Graff, et al. Uci machine learning repository. 2017.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3):432–441, 2008.

Jian Guo, Elizaveta Levina, George Michailidis, and Ji Zhu. Joint estimation of multiple graphical
models. Biometrika, 98(1):1–15, 2011.

Feihu Huang and Songcan Chen. Joint learning of multiple sparse matrix gaussian graphical models.
IEEE Trans. Neural Netw. Learn. Syst., 26(11):2606–2620, 2015.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial intelligence and statis-
tics, pp. 920–929. PMLR, 2016.

Vassilis Kalofolias, Andreas Loukas, Dorina Thanou, and Pascal Frossard. Learning time varying
graphs. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2826–2830. Ieee, 2017.

Abdullah Karaaslanli and Selin Aviyente. Simultaneous graph signal clustering and graph learning.
In International Conference on Machine Learning, pp. 10762–10772. PMLR, 2022.

Abdullah Karaaslanli and Selin Aviyente. Multiview graph learning with consensus graph. arXiv
preprint arXiv:2401.13769, 2024.

Wonyul Lee and Yufeng Liu. Joint estimation of multiple precision matrices with common struc-
tures. J. Mach. Learn. Res., 16(1):1035–1062, 2015.

Hongzhe Li and Jiang Gui. Gradient directed regularization for sparse gaussian concentration
graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302–317, 2006.

Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong Yu, and Yi Ma. Robust recovery
of subspace structures by low-rank representation. IEEE transactions on pattern analysis and
machine intelligence, 35(1):171–184, 2012.

Po-Ling Loh. Statistical consistency and asymptotic normality for high-dimensional robust M -
estimators. The Annals of Statistics, 45(2):866 – 896, 2017. doi: 10.1214/16-AOS1471. URL
https://doi.org/10.1214/16-AOS1471.

Jing Ma and George Michailidis. Joint structural estimation of multiple graphical models. J. Mach.
Learn. Res., 17(1):5777–5824, 2016.

Hermina Petric Maretic and Pascal Frossard. Graph Laplacian mixture model. IEEE Trans. Signal
Inf. Process. Netw., 6:261–270, 2020.

Gonzalo Mateos, Santiago Segarra, Antonio G Marques, and Alejandro Ribeiro. Connecting the
dots: Identifying network structure via graph signal processing. IEEE Signal Process. Mag., 36
(3):16–43, 2019.

Karthik Mohan, Palma London, Maryam Fazel, Daniela Witten, and Su-In Lee. Node-based learning
of multiple gaussian graphical models. J. Mach. Learn. Res., 15(1):445–488, 2014.

Madeline Navarro and Santiago Segarra. Joint network topology inference via a shared graphon
model. IEEE Trans. Signal Process., 70:5549–5563, 2022.

Madeline Navarro, Yuhao Wang, Antonio G Marques, Caroline Uhler, and Santiago Segarra. Joint
inference of multiple graphs from matrix polynomials. J. Mach. Learn. Res., 23(1):3302–3336,
2022.

Mark Newman. Networks. Oxford university press, 2018.

11

https://doi.org/10.1214/16-AOS1471

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stefania Sardellitti, Sergio Barbarossa, and Paolo Di Lorenzo. Enabling prediction via multi-layer
graph inference and sampling. In 2019 13th International Conference on Sampling Theory and
Applications (SampTA), pp. 1–4. IEEE, 2019.

Katherine Tsai, Oluwasanmi Koyejo, and Mladen Kolar. Joint gaussian graphical model estimation:
A survey. Wiley Interdiscip. Rev. Comput. Stat., 14(6):e1582, 2022.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices, 2011. URL
https://arxiv.org/abs/1011.3027.

Koki Yamada, Yuichi Tanaka, and Antonio Ortega. Time-varying graph learning based on sparseness
of temporal variation. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 5411–5415. IEEE, 2019.

Yanli Yuan, Kun Guo, Zehui Xiong, Tony QS Quek, et al. Joint network topology inference via
structural fusion regularization. IEEE Trans. Knowl. Data Eng., 2023a.

Yanli Yuan, De Wen Soh, Kun Guo, Zehui Xiong, and Tony Q. S. Quek. Joint network topol-
ogy inference via structural fusion regularization. IEEE Transactions on Knowledge and Data
Engineering, 35(10):10351–10364, 2023b. doi: 10.1109/TKDE.2023.3264971.

Xiang Zhang and Qiao Wang. A graph-assisted framework for multiple graph learning. IEEE Trans.
Signal Inf. Process. Netw., 2024a.

Xiang Zhang and Qiao Wang. Graph learning across data silos, 2024b. URL https://arxiv.
org/abs/2301.06662.

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P Palomar. Optimization algorithms for
graph laplacian estimation via admm and mm. IEEE Transactions on Signal Processing, 67(16):
4231–4244, 2019.

12

https://arxiv.org/abs/1011.3027
https://arxiv.org/abs/2301.06662
https://arxiv.org/abs/2301.06662

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A UPDATE STEPS FOR THE OPTIMIZATION ALGORITHM

In order to solve the optimization problem introduced in equation 4.1, we first introduce the auxil-
iary variables, W, H(1), H(2), Z(k), and Q, to decouple the variables in the different terms. The
optimization problem will be reformulated as follows:

min
V,W,C(k),E(k),

Z(k),Q,H(k)

2∑
k=1

[
tr(K(k)E(k)) + γ1∥PE(k)P⊤ − Z(k)∥2F − γ2 tr(log(Z

(k)))
]
+ γ3∥Q∥2,1

s.t. C(k) = PE(k)P⊤,H(1) −H(2) = V +W,V = W⊤,H(k) = C(k),V = Q, I⊙C(k) = Z(k),
(A.1)

where K(k) = P⊤X(k)X(k)⊤P. The augmented Lagrangian corresponding to equation A.1 can be
written as follows:

min
V,W,C(k),E(k),

Z(k),Q,H(k)

2∑
k=1

[
tr(K(k)E(k)) + γ1∥PE(k)P⊤ − Z(k)∥2F − γ2 tr(log(Z

(k))) +
α

2
∥C(k) −PE(k)P⊤ +

Y(k)

α
∥2F

+
α

2
∥H(k) −C(k) +

M(k)

α
∥2F +

α

2
∥Z(k) − I⊙C(k) +

U(k)

α
∥2F + γ3∥Q∥2,1

+
α

2
∥H(1) −H(2) − (V +W) +

F

α
∥2F +

α

2
∥V −W⊤ +

G

α
∥2F +

α

2
∥V −Q+

R

α
∥2F ,

(A.2)

where Y(k), F, G, M(k), R, U(k) are the Lagrangian multipliers and α is the penalty parameter.

Equation A.2 can be solved by breaking it into multiple subproblems and optimizing each variable
while keeping the others constant, as follows:

• Subproblem E(k): To update E(k), we fix all the other variables and consider the terms
with E(k) only as follows:

E(k)
l+1 = min

E(k)
l

2∑
k=1

[
tr(K(k)E(k)

l) + γ1∥PE(k)
l P⊤ − Z

(k)
l ∥2F +

α

2
∥C(k)

l −PE(k)
l P⊤ +

Y
(k)
l

α
∥2F

]
.

(A.3)

By taking the gradient with respect to E(k), the solution of equation A.3 can be found as
follows:

E(k)
l+1 =

2γ1P
⊤Z

(k)
l P + αP⊤C

(k)
l P+P⊤Y

(k)
l P−K(k)⊤

2γ1 + α
. (A.4)

• Subproblem Z(k): The solution of Z(k) can be found by solving the following problem:

Z
(k)
l+1 = min

Z
(k)
l

γ1∥Z(k)
l −PE(k)

l+1P
⊤∥2F − γ2 tr(log(Z

(k)
l)) +

α

2
∥Z(k)

l − I⊙C
(k)
l +

U
(k)
l

α
∥2F .

(A.5)

Similar to E(k) subproblem, the solution of equation A.6 can be found as follows:

Z(k) =
B

(k)
l +

√
(B

(k)
l)2 + 4(2γ1 + α)γ2I

2(2γ1 + α)
, (A.6)

where B
(k)
l = 2γ1PE(k)

l+1P
⊤ + αI⊙C

(k)
l −U

(k)
l .

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• Subproblem C(k): The solution of C(k) can be found by solving the following problem:

C
(k)
l+1 = min

C
(k)
l

α

2
∥C(k)

l −PE(k)
l+1P

⊤ +
Y

(k)
l

α
∥2F +

α

2
∥C(k)

l −H
(k)
l +

M
(k)
l

α
∥2F

+ ∥I⊙C
(k)
l − Z

(k)
l +

U
(k)
l

α
∥2F .

(A.7)

The problem in equation A.7 will update the diagonal and off-diagonal parts of the matrices,
separately. To find the solution, the gradient with respect to C(k) is taken and set to zero.
The resulting solution can be expressed as follows:

[
C

(k)
l+1

]
ij
=

α[PE(k)P⊤]ii−Y (k)

ii +αH
(k)
ii +M

(k)
ii +Z

(k)
ii −U(k)

ii

3α , for i = j
α[PE(k)P⊤]ij−Y (k)

ij +αH
(k)
ij +M

(k)
ij

2α , for i ̸= j.
(A.8)

• Subproblem H(1) and H(2): In order to update H(1), we fix all the other variables and
consider the terms with H(1) only as follows:

H
(1)
l+1 = min

H
(1)
l

α

2
∥H(1)

l −H
(2)
l − (Vl +Wl) +

Fl
α
∥2F +

α

2
∥H(1)

l −C
(1)
l+1 +

M
(1)
l

α
∥2F .

(A.9)

By taking the gradient of equation A.9 and setting it to zero, the solution of H(1) can be
written as follows:

[
H

(1)
l+1

]
ij
=

[
Γ
(1)
h ⊙ I

]
+
, for i = j[

Γ
(1)
h ⊙ (11⊤ − I)

]
−
, for i ̸= j,

(A.10)

where Γ(1)
h =

αH
(2)
l +αVl+αWl−Fl+αC

(1)
l+1−M

(1)
l

2α . The term
[
Γ
(1)
h ⊙I

]
+

represents a diago-

nal matrix in which all elements are non-negative, where positive elements are retained and
negative elements are set to zero. The term

[
Γ
(1)
h ⊙(11⊤−I)

]
−

represents an off-diagonal

matrix where only negative elements are kept, and positive elements are replaced by zeros.
This ensures that H(1) is a valid Laplacian matrix.
The solution of H(2) can be found by solving the following problem:

H
(2)
l+1 = min

H
(2)
l

α

2
∥H(1)

l+1 −H
(2)
l − (Vl +Wl) +

Fl
α
∥2F +

α

2
∥H(2)

l −C
(2)
l+1 +

M
(2)
l

α
∥2F .

(A.11)

Similar to H(1), the solution of H(2) can then be written as follows:

[
H

(2)
l+1

]
ij
=

[
Γ
(2)
h ⊙ I

]
+
, for i = j[

Γ
(2)
h ⊙ (11⊤ − I)

]
−
, for i ̸= j,

(A.12)

where Γ
(2)=
h

αH(1)−αVl−αWl+Fl+αC
(2)
l+1−M

(2)
l

2α .
• Subproblem V: In order to update V, we fix all the other variables and consider the terms

with V only as follows:

Vl+1 = min
Vl

α

2
∥H(1)

l+1 −H
(2)
l+1 − (Vl +Wl) +

Fl
α
∥2F +

α

2
∥Vl −Ql +

Rl

α
∥2F

+
α

2
∥Vl −W⊤

l +
Gl

α
∥2F .

(A.13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

By taking the derivative and setting it to zero, the solution of equation A.13 can be found
as follows:

Vl+1 =
αH

(1)
l+1 − αH

(2)
l+1 − αWl + Fl + αQl −Rl + αW⊤

l −Gl

3α
. (A.14)

• Subproblem Q: In order to update Q, we fix all the other variables and consider the terms
with Q only as follows:

Ql+1 = min
Ql

γ3∥Ql∥2,1 +
α

2
∥Ql −Vl+1 +

Rl

α
∥2F . (A.15)

The solution of equation A.15 can be found by using the proximal operator for ℓ2,1-norm
as follows (Liu et al., 2012):

Ql+1 = T2,1(Vl+1 +
Rl

α
,
γ3
α
). (A.16)

• Subproblem W: The solution of Wl+1 can be found by solving the follows minimization
problem:

Wl+1 = min
Wl

α

2
∥Vl+1 +Wl+1 − (H

(1)
l+1 −H

(2)
l+1) +

Fl
α
∥2F +

α

2
∥W⊤

l+1 −Vl+1 +
Gl

α
∥2F .

(A.17)
Similar to the V subproblem, the solution of equation A.17 can be found as follows:

Wl+1 =
αH

(1)
l+1 − αH

(2)
l+1 − αVl+1 − Fl + αV⊤

l+1 −G⊤
l

2α
. (A.18)

Finally, the Lagrangian multipliers and the penalty parameters can be updated as follows:

Y
(k)
l+1 = Y

(k)
l + αl(C

(k)
l+1 −PE(k)

l+1P
⊤),

U
(k)
l+1 = U

(k)
l + αl(Z

(k)
l+1 − I⊙C

(k)
l+1),

M
(k)
l+1 = M

(k)
l + αl(H

(k)
l+1 −C

(k)
l+1),

Fl+1 = Fl + αl(H
(1)
l+1 −H

(2)
l+1 − (Vl+1 +Wl+1)),

Gl+1 = Gl + αl(Vl+1 −W⊤
l+1),

Rl+1 = Rl + αl(Vl+1 −Ql+1),

αl+1 = µαl, µ > 1.

(A.19)

B APPENDIX PART FOR THEORETICAL ANALYSIS

B.1 SOME DEFINITIONS

Sub-Gaussian Random Vector: A random vector x ∈ Rn is called sub-Gaussian if all of its one-
dimensional marginals are sub-Gaussian. Specifically, x is sub-Gaussian if there exists a constant
K > 0 such that, for any unit vector u ∈ Rn,

E
[
etu

⊤(x−E[x])
]
≤ e

K2t2

2 , ∀t ∈ R.

Sub-Gaussian Norm of a Random Vector: The sub-Gaussian norm of a random vector x ∈ Rn,
denoted as ∥x∥ψ2

, is defined as:

∥x∥ψ2 = sup
u∈Sn−1

∥u⊤x∥ψ2 ,

where Sn−1 is the unit sphere in Rp.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B.2 SOME IMPORTANT RESULTS ON MATRICES

Lemma B.1. The matrix M ∈ Rn2×n2

is positive definite if γ1d > 0 and γ2d > 0 when M is as the
following.

M =

n∑
i=1

γ2dL
(k)∗

−2

ii Eii ⊗Eii + 2γ1d

(
In ⊗ In −

n∑
i=1

Eii ⊗Eii

)
. (B.1)

Proof. For any non-zero vector y ∈ Rn2

y⊤My =
∑
i

γ2dL
(k)∗

−2

ii y2ii + 2γ1d
∑
i ̸=j

y2ij .

Since both γ2d > 0 and γ1d > 0, the quadratic form is strictly positive for any non-zero vector y.
So, M is positive definite matrix.

Lemma B.2. For any two symmetric matrices A,B ∈ Rn×n ,

tr(AB) ≤ ∥A∥F ∥B∥F .

Proof. Since A and B are symmetric, AT = A and BT = B. Thus,

⟨A,B⟩ = tr(AB).

Using Cauchy-Schwarz inequality and the sub-multiplicative property of Frobenius norm, we have,

⟨A,B⟩ ≤ ∥AB∥F ≤ ∥A∥F ∥B∥F .

Hence, the proof.

Lemma B.3. Suppose A,B ∈ Rn×n then for the ℓ2,1 norm of the product of matrices, the following
inequality holds.

∥AB∥2,1 ≤ n∥A∥F ∥B∥1.

Proof. We can write the l2,1 norm of AB matrix by expanding it as,

∥AB∥2,1 =

n∑
i=1

 n∑
j=1

(
n∑
k=1

aikbkj

)2
1/2

≤
n∑
i=1

n∑
j=1

∣∣∣∣∣
n∑
k=1

aikbkj

∣∣∣∣∣
= ∥AB∥1 ≤ ∥A∥1∥B∥1 ≤ n∥A∥F ∥B∥1. (B.2)

Lemma B.4. For a square matrix A ∈ Rn×n,

∥A∥F ≤
√
n · ∥A∥2 . (B.3)

Proof. Let σ1, σ2, . . . , σn be the singular values of the matrix A. Then, the Frobenius norm can be
expressed as,

∥A∥F =

√√√√ n∑
i=1

σ2
i .

Similarly, the operator norm (spectral norm) is given by the largest singular value:

∥A∥2 = σ1 (assuming σ1 ≥ σ2 ≥ · · · ≥ σn).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The rest of the proof is as follows,

∥A∥F =

√√√√ n∑
i=1

σ2
i ≤

√
n · σ2

1 =
√
nσ1 =

√
n∥A∥2. (B.4)

Lemma B.5. Given two symmetric positive semi-definite matrices A and B of order n×n we have,

tr(AB) ≥ λmin(A) · tr(B).

where λmin(A) is the minimum eigenvalue of the matrix A

Proof. Let A be a symmetric matrix with eigenvalues λ1, λ2, . . . , λn, and let λmin(A) denote the
smallest eigenvalue of A. Now, since A and B both are positive semi-definite and symmetric we
have,

tr(AB) = tr(
√
A
√
A⊤B) = tr(

√
AB

√
A⊤) =

n∑
i=1

e⊤i
√
AB

√
A⊤ei ≤ 0. (B.5)

where ei is the n-dimensional vector with i-th element equal to 1 and other elements are zero. Now,
we can decompose A as follows,

A = λmin(A)In + (A− λmin(A)In).

So, using B.5 we have the following,

tr(AB) = λmin(A) tr(B) + tr((A− λmin(A)In)B) ≥ λmin(A) tr(B). (B.6)

as (A− λmin(A)In) is a positive semi definite matrix.

B.3 AN IMPORTANT RESULT ON THE ERROR BOUND OF SAMPLE COVARIANCE AND THE
TRUE COVARIANCE

Lemma B.6. Assume that A is an N × n matrix whose rows Ai are independent sub-gaussian
random vectors in Rn with second moment matrix Σ. Then for every t ≥ 0, the following inequality
holds with probability at least 1− 2 exp(−ct2):

∥∥∥∥ 1

N
A⊤A− Σ

∥∥∥∥
2

≤ max(δ, δ2) where δ = C

√
n

N
+

t√
N

.

Here, as before, C = CK , c = cK > 0 depend only on the sub-gaussian norm K = maxi ∥Ai∥ψ2

of the rows.

Proof. For the proof of this Lemma on the estimation error bound of sample covariance matrix from
the true covariance matrix, see the theorem 5.39 of (Vershynin, 2011).

B.4 ANALYSIS OF THE SETS OF CONSTRAINTS

Lemma B.7.
L =

{
L ∈ Rn×n : L ⪰ 0, Lij = Lji ≤ 0 ∀ i ̸= j, L · 1 = 0

}
is convex and closed set.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof. CONVEXITY OF THE SET L

A set S is convex if for any two matrices L1,L2 ∈ S and any scalar λ ∈ [0, 1], the convex com-
bination λL1 + (1 − λ)L2 is also in S. That is, for any L1,L2 ∈ L, we need to check whether
λL1 + (1− λ)L2 ∈ L.

At first, to prove that the set of positive semi-definite matrices is convex that is if L1 ⪰ 0 and
L2 ⪰ 0, then for any λ ∈ [0, 1],

λL1 + (1− λ)L2 ⪰ 0.

Therefore, the positive semi-definiteness constraint is preserved under convex combinations. For the
constraint Lij = Lji ≤ 0 ∀ i ̸= j is convex. This is because if L(1)

ij ≤ 0 and L
(2)
ij ≤ 0 for all i ̸= j,

then for any λ ∈ [0, 1],
Lij = λL

(1)
ij + (1− λ)L

(2)
ij ≤ 0.

Hence, this constraint is preserved under convex combinations. The constraint L · 1 = 0 (i.e., each
row sums to zero) is linear, and the set of matrices whose rows sum to zero is an affine subspace,
which is convex. That is, if L1 · 1 = 0 and L2 · 1 = 0, then for any λ ∈ [0, 1],

(λL1 + (1− λ)L2) · 1 = λ(L1 · 1) + (1− λ)(L2 · 1) = 0.

Thus, the zero row sum constraint is also preserved under convex combinations. Since each of the
individual constraints is convex, the intersection of these constraints is also convex. Therefore, the
set L is convex.

CLOSEDNESS OF THE SET L

To show that L is closed, we need to check whether it contains all its limit points. That is, if we have
a sequence of matrices {Lm} ⊂ L such that Lm → L (in some matrix norm, such as the Frobenius
norm), we need to check whether L ∈ L. If Lm ⪰ 0 and Ln → L, then L ⪰ 0. This is because the
eigenvalues of Ln (which are non-negative) converge to the eigenvalues of L, ensuring that L ⪰ 0.
If L(m)

ij = L
(m)
ji ≤ 0 for all i ̸= j, and Lm → L, then by continuity of the matrix entries, we

have Lij = Lji ≤ 0 ∀ i ̸= j. If Lm · 1 = 0 for all m, and Lm → L, then by the continuity of
matrix-vector multiplication, L ·1 = 0. Since each of the individual constraints defines a closed set,
and the intersection of closed sets is closed, the set L is closed.

Lemma B.8.
C =

{
L(1),L(2),V ∈ Rn×n : L(1) − L(2) = V +V⊤

}
is closed.

Proof. We want to show that the set

C =
{
L(1),L(2),V ∈ Rn×n : L(1) − L(2) = V +V⊤

}
is closed. The set C consists of triplets (L(1),L(2),V) ∈ Rn×n that satisfy the constraint:

L(1) − L(2) = V +V⊤.

This is a linear equality constraint that must hold between L(1), L(2), and V. Suppose we have a
sequence {(L(1)

m ,L
(2)
m ,Vm)} ⊂ C, which converges to a limit (L(1),L(2),V). That is, as m → ∞,

L(1)
m → L(1), L(2)

m → L(2), Vm → V

in some norm (e.g., the Frobenius norm). Since (L
(1)
m ,L

(2)
m ,Vm) ∈ C, for each m, the constraint

L
(1)
m − L

(2)
m = Vm +V⊤

m holds. That is:

L(1)
m − L(2)

m = Vm +V⊤
m ∀m.

Now, taking the limit as m → ∞, and using the continuity of matrix addition and transposition, we
get:

lim
m→∞

(L(1)
m − L(2)

m) = lim
m→∞

(Vm +V⊤
m).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since both sides of the equality converge (because the sequence converges), we can exchange the
limit with the operations of addition and transposition:

L(1) − L(2) = V +V⊤.

The limit point (L(1),L(2),V) satisfies the same constraint as the elements of the sequence, which
means that the limit point belongs to the set C. Therefore, the set C contains all its limit points, and
hence it is closed.

B.5 PROOF OF THE THEOREM 5.1

Proof. Since L̂γ is a local minimizer around the small neighborhood of L∗, then for any L ∈
Br(L∗),

2∑
k=1

[
1

d
tr(X(k)⊤L̂(k)

γ X(k)) + γ1d∥L̂(k)
γ − I⊙ L̂(k)

γ ∥2F − γ2d tr(log(I⊙ L̂(k)
γ))

]
+ γ3d∥V̂γ∥2,1

≤
2∑
k=1

[
1

d
tr(X(k)⊤L(k)X(k)) + γ1d∥L(k) − I⊙ L(k)∥2F − γ2d tr(log(I⊙ L(k)))

]
+ γ3d∥V∥2,1 .

(B.7)

We define Σ̂(k) = 1
dX

(k)X(k)⊤ , and then rewrite the above inequality as,

2∑
k=1

tr((L̂(k)
γ − L(k))Σ̂(k)) + γ1d∥L̂(k)

γ − I⊙ L̂(k)
γ ∥2F − γ2d tr(log(I⊙ L̂(k)

γ))− γ1d∥L(k) − I⊙ L(k)∥2F

+ γ2d tr(log(I⊙ L(k))) ≤ γ3d

{
∥V∥2,1 − ∥V̂γ∥2,1

}
.

If Σ(k) is the covariance matrix corresponding to L(k) then, we further have,

2∑
k=1

tr((L̂(k)
γ − L(k))Σ(k)) + γ1d∥L̂(k)

γ − I⊙ L̂(k)
γ ∥2F − γ2d tr(log(I⊙ L̂(k)

γ))− γ1d∥L(k) − I⊙ L(k)∥2F

+ γ2d tr
(
log
(
I⊙ L(k)

))
≤ γ3d

(
∥V∥2,1 − ∥V̂γ∥2,1

)
+

2∑
k=1

tr
(
(L(k) − L̂(k))

(
Σ̂(k) −Σ(k)

))
.

(B.8)

We consider the real-valued functions G : R3n×3n → R and g : Rn×n → R such that for any
L ∈ Br(L∗) , we have the Taylor’s expansion up to second order as follows,

G(L)−G(L∗) =

2∑
k=1

g(L̂(k)
γ)− g(L(k)∗)

=

2∑
k=1

⟨∇g(L(k)∗),∆(k)⟩+ 1

2

2∑
k=1

tr
(
vec(∆(k))⊤

[
∇2g(L(k)∗)

]
vec(∆(k))

)
≥ −

2∑
k=1

∥∇g(L(k)∗)∥F ∥∆(k)∥F +
1

2

2∑
k=1

λmin

(
∇2g(L(k)∗)

)
tr(vec(∆(k))⊤ vec(∆(k))).

(B.9)

The last inequality follows from Lemmas B.2 and B.5 with ∆(1) = L(1) − L(1)∗ and ∆(2) =

L(2) −L(2)∗ . Now, ∇g(L(k)∗) = 2γ1d
(
L(k)∗ − In ⊙ L(k)∗

)
− γ2d

(
In ⊙ L(k)∗

)−1
and thus using

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

triangle inequality for Frobenius norm we have,
2∑
k=1

∥∇g(L(k)∗)∥F ≤ 2γ1d

2∑
k=1

∥∥∥L(k)∗ − In ⊙ L(k)∗
∥∥∥
F
+ γ2d

2∑
k=1

∥∥∥∥(I⊙ L(k)∗
)−1

∥∥∥∥
F

≤ 4γ1d max
k∈{1,2}

∥∥∥L(k)∗ − I⊙ L(k)∗
∥∥∥
F
+ 2γ2d max

k∈{1,2}

∥∥∥∥(I⊙ L(k)∗
)−1

∥∥∥∥
F

≤ (4γ1d + 2γ2d)max

{
max
k∈{1,2}

∥∥∥L(k)∗ − In ⊙ L(k)∗
∥∥∥
F
, max
k∈{1,2}

∥∥∥∥(In ⊙ L(k)∗
)−1

∥∥∥∥
F

}
= γ̃dCL . (B.10)

For the term consisting of the second derivative we have,
2∑
k=1

λmin

(
∇2g(L(k)∗)

)
tr(∆(k)⊤∆(k)) ≥ min

k∈{1,2}
λmin

(
∇2g(L(k)∗)

) 2∑
k=1

tr(vec(∆(k))⊤ vec(∆(k)))

≥ 1

Cr
2r2

min
k∈{1,2}

λmin

(
∇2g(L(k)∗)

)
≥ 1

Cr
2r2

λ̃γd ∥∆∥2F
(B.11)

where Cr is a constant with Cr ≥ 1
2Kr

. Since both the inequalities B.10 and B.11 hold for any
L ∈ Br(L∗), we have he following,

G(L̂γ)−G(L∗) ≥ −γ̃dCL

2∑
k=1

∥∆(k)∥F +
1

C2
r r

2
λ̃γd ∥∆∥2F ≥ −γ̃dCL ∥∆∥F +

1

2C2
r r

2
λ̃γd ∥∆∥2F .

(B.12)

For the penalizing term let us define P : R3n×3n → R and using lemma B.3 with B = In we have,

P(L)− P(L̂γ) = γ3d

(
∥Vγ∥2,1 − ∥V̂γ∥2,1

)
≤ γ3d

∥∥∥V̂γ −Vγ

∥∥∥
2,1

≤ n2γ3d

∥∥∥V̂γ −Vγ

∥∥∥
F

≤ n2γ3d

∥∥∥L̂γ − L
∥∥∥
F

. (B.13)

Since the above relations hold for any L ∈ Br(L∗) ∈, then it will also hold for L∗. For the
term dependent on the data using inequality in B.4 and lemmaB.6 with t =

√
d − 2c(1)

√
n and

t =
√
d− 2c(2)

√
n respectively twice, we have,

2∑
k=1

tr
((

L(k)∗ − L̂(k)
γ

)(
Σ̂(k) − Σ(k)∗

))
≤

2∑
k=1

∥∥∥L̂(k)
γ − L(k)∗

∥∥∥
F

∥∥∥Σ̂(k) − Σ(k)∗
∥∥∥
F

≤
√
d
∥∥∥L̂(k)

γ − L(k)∗
∥∥∥
2

∥∥∥Σ̂(k) − Σ(k)∗
∥∥∥
F

≤ n√
d

2∑
k=1

C(k)
∥∥∥L̂(k)

γ − L(k)∗
∥∥∥
F

≤ 2n√
d

max
k∈{1,2}

C(k)
∥∥∥L̂γ − L∗

∥∥∥
F

. (B.14)

with probability at least 1 − 2
{

exp
(
−c(1)(

√
d− 2c(1)

√
n)2
)
+ exp

(
−c(2)(

√
d− 2c(2)

√
n)2
)}

using Bonferroni’s inequality on the probability of intersection of the events. Using lemma B.2 ,
2∑
k=1

tr((L̂(k)
γ − L(k)∗)Σ(k)∗) ≥ −

2∑
k=1

∥∥∥L̂(k)
γ − L(k)∗

∥∥∥
F

∥∥∥Σ(k)∗
∥∥∥
F
≥ −2

∥∥∥L̂γ − L∗
∥∥∥
F

max
k∈{1,2}

∥∥∥Σ(k)∗
∥∥∥
F

.

(B.15)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Combining the above inequalities in B.8 we have,

−2
∥∥∥L̂γ − L∗

∥∥∥
F

max
k∈{1,2}

∥∥∥Σ(k)∗
∥∥∥
F
− γ̃dCL

∥∥∥L̂γ − L∗
∥∥∥
F
+

1

2r2C2
r

λ̃γd

∥∥∥L̂γ − L∗
∥∥∥2
F
≤ 2n√

d
max
k∈{1,2}

C(k)
∥∥∥L̂γ − L∗

∥∥∥
F

+ n2γ3d

∥∥∥L̂γ − L
∥∥∥
F
.

(B.16)
Finally, we obtain,∥∥∥L̂γ − L∗

∥∥∥
F
≤ 4nr2C2

r

λ̃γd
√
d

max
k∈{1,2}

C(k) +
2r2C2

r

λ̃γd

{
n2γ3d + 2CΣ∗ + γ̃dCL

}
. (B.17)

B.6 WELL-DEFINEDNESS OF THE PROJECTION WITH COERCIVE FUNCTION AND CLOSED
SET

1. SOME DEFINITIONS

Coercive Function: A function f : Rn → R is defined as coercive if it satisfies the condition:
lim

∥x∥→∞
f(x) = ∞.

In simpler terms, as the norm of x increases without bound, the value of f(x) also tends to infinity.
This indicates that the function’s value becomes arbitrarily large as its input moves farther from the
origin.

Projection: Given a point x′ ∈ Rn, the projection onto a set S refers to finding the point x∗ ∈ S
that has the shortest distance to x′. Formally, the projection solves the following minimization
problem:

x∗ = argmin
x∈S

f(x),

where f(x) = ∥x− x′∥2 represents the squared Euclidean distance between x and x′.
Lemma B.9. The following projection

x∗ = argmin
x∈S

f(x),

is well-defined when S is closed and f is coercive.

Proof. Let’s consider the following minimization problem:

x∗ = argmin
x∈S

f(x),

where f : Rn → R is a coercive function and S is a closed set. Because f is coercive, for any
sequence {xn} where ∥xn∥ → ∞, we have f(xn) → ∞. This implies that the function grows
without bound as xn moves far from the origin. Consequently, the minimizer must be located in a
bounded region.

Furthermore, since S is closed, any convergent sequence {xn} ⊆ S will have its limit point inside
S. This guarantees that there is at least one point within S that minimizes f . Hence, the minimizer
x∗ exists in S, ensuring that the projection is well-defined.

ERROR BOUND IS PRESERVED FROM UNCONSTRAINED TO CONSTRAINED
CASE USING PROJECTION

Let L̃(1), L̃(2), and Ṽ represent the unconstrained estimates of the true matrices L(1)∗ , L(2)∗ , and
V∗, respectively. In the unconstrained setting, we assume the following error bounds hold:

∥L̃(1) − L(1)∗∥F ≤ ϵ1, ∥L̃(2) − L(2)∗∥F ≤ ϵ2, ∥Ṽ −V∗∥F ≤ ϵV .

for some ϵ1, ϵ2, ϵV > 0

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PROJECTION ONTO C ∩ L

The goal is to show that, after projecting onto the combined set C∩L, the error bounds are preserved.

STEP-BY-STEP PROJECTION PROCESS

1. Projection onto Convex Set L:

Since L is convex and closed, the projection onto this set is non-expansive with respect to the Frobe-
nius norm. This means that for any matrix X and its projection PL(X) onto the set L, the following
inequality holds:

∥PL(X)−Y∥F ≤ ∥X−Y∥F .

2. Projection onto Non-Convex Set C:

The set C imposes a non-convex constraint on L(1), L(2), and V. Even though this constraint is
non-convex, the projection can still be non-expansive in a local region, which is typically achieved
through methods like alternating minimization or proximal methods.

After projecting onto C, the Frobenius norm of the error does not increase, which implies that:

∥PC(PL(L̃
(k)))− L(k)∗∥F ≤ ∥PL(L̃

(k))− L(k)∗∥F ,

for k = 1, 2, and similarly for V.

3. Combined Projection onto C ∩ L:

The combined projection first projects onto L (convex) and then onto C (non-convex). Since both
projections are non-expansive, the total error after the projection remains bounded. Therefore, we
conclude that:

∥PC∩L(L̃
(1))− L(1)∗∥F ≤ ∥L̃(1) − L(1)∗∥F ≤ ϵ1,

∥PC∩L(L̃
(2))− L(2)∗∥F ≤ ∥L̃(2) − L(2)∗∥F ≤ ϵ2,

∥PC∩L(Ṽ)−V∗∥F ≤ ∥Ṽ −V∗∥F ≤ ϵV .

CONCLUSION

After applying the combined projection onto the set C ∩ L, the error bounds for the matrices L(1),
L(2), and V are preserved.

C RESULTS FOR RGG

Figure 5 presents the results for the RGG network using three types of graph filters, varying the
number of samples, perturbed nodes, and noise levels. As the number of signal samples increases,
all methods show improvement, with PN-TVL achieving the best results. However, the performance
declines as the number of perturbed nodes and noise increases. While MVGL is resilient to noise, it
becomes less effective with more perturbed nodes due to its emphasis on maximizing edge similarity.
In particular, its performance becomes worse than PNJGL and SV. PNJGL outperforms MVGL in
these scenarios by assuming node connectivity drives view differences. It is also interesting to note
that for RGG networks PNGL’s performance deteriorates for non-Gaussian signal models (rows 2
and 3) compared to the Gaussian signal model (row 1). In particular, while PNJGL performs better
than SV for increasing number of perturbed nodes in the Gaussian case, it performs worse for the
non-Gaussian case. This illustrates the limitations of GMMs for graph inference.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Comparison of performance for RGG network model with three different graph filters for
varying signal parameters: (a)-(c) varying number of samples (dk), number of perturbed nodes (r),
and noise level (η), for Gaussian filter, (d)-(f) varying number of samples (dk), number of perturbed
nodes (r), and noise level (η), for heat filter, (g)-(i) varying number of samples (dk), number of
perturbed nodes (r), and noise level (η), for Tikhonov filter.

23

	Introduction
	Background
	Related Work
	Notations

	Smoothness Based Graph Learning
	Single View Graph Learning

	Problem Formulation: Perturbed node model for two-view learning (PN-TVL)
	Theoretical Analysis
	Experimental Results
	Simulated Networks
	Data Generation
	Benchmark Models

	Results
	Scalability of the Proposed Approach
	Sensitivity to Hyperparameters

	Real Data Analysis

	Conclusions
	Update Steps for the Optimization Algorithm
	Appendix Part for Theoretical Analysis
	Some Definitions
	Some Important Results on Matrices
	An Important Result on the Error Bound of Sample Covariance and the True Covariance
	Analysis of the Sets of Constraints
	Proof of the Theorem 5.1
	Well-Definedness of the Projection with Coercive Function and Closed Set

	Results for RGG

