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ABSTRACT

In many applications, inferring graph topology, i.e., learning the graph structure
from a given set of nodal observations, is a significant task. Existing approaches
are mostly limited to learning a single graph assuming that the observed data are
homogeneous. In many applications, data sets are heterogeneous and involve mul-
tiple related graphs, i.e., multiview graphs. Recent work on learning multiview
graphs ensures the similarity of learned view graphs through edge-based similar-
ity between the graphs. In this paper, we take a node-based approach instead of
assuming that similarities and differences between networks are driven by individ-
ual edges, providing a more intuitive interpretation of network differences. More-
over, unlike existing methods that employ Gaussian Graphical Models (GGM),
which learn precision matrices rather than the actual graph structures, we charac-
terize the graph using a Laplacian matrix. Thus, the approach is expected to work
broadly beyond Gaussian graphical learning. We develop an optimization frame-
work to learn the individual graphical structures, assuming that the differences are
due to individual nodes that are perturbed across views. The proposed optimiza-
tion framework is presented for the special case of two views. Furthermore, we
derive the upper bound on the estimation error of the proposed graph estimator
and characterize the impact of the sample size, number of nodes, and the spec-
trum of the graph Laplacians on estimation errors. The approach is evaluated on
synthetic graph data for robustness against noise, graph density, and sample size.
Finally, the proposed framework is applied to two-view real-world graph data for
graph learning and clustering.

1 INTRODUCTION

Many real-world data are represented through the relations between data samples, i.e., a graph struc-
ture (Newman| (2018))). Although many datasets, including social networks and traffic networks,
come with a known graph structure, there are a lot of applications where a graph is not readily avail-
able. For example, in many biological systems, e.g., gene regulatory networks (Li & Guil [2006), the
underlying graph structure is not directly observable. In such cases, inferring the topology of the
graph is essential to analyze the data and model the relations.

Existing graph inference approaches are mostly limited to homogeneous datasets, where observed
graph signals are assumed to be identically distributed and defined on a single graph. In many
applications, the data may be heterogeneous or mixed and come from multiple related graphs, i.e.,
multiview graphs. In these situations, learning the topology of the views jointly by incorporating
the relationships between views can improve performance (Tsai et al., [2022; |Danaher et al., 2014;
Navarro et al.| |[2022)).

Traditional joint graphical structure inference methods are primarily based on Gaussian Graphical
Models. These methods extend graphical lasso (Friedman et al.| (2008))) to a joint learning setup,
where they learn the precision matrices of multiple related Gaussian graphical models. They em-
ploy various penalties in the likelihood framework to exploit the common characteristics shared by
different views (Guo et al.|(2011); Danaher et al.|(2014);|Lee & Liu/(2015); Mohan et al.|(2014); Ma
& Michailidis| (2016)); [Huang & Chen| (2015)). One prominent example of this approach is the joint
graphical lasso (Danaher et al.| (2014)), where fused or group lasso penalties are used to encour-
age topological similarity between views. However, these methods are limited by the assumption
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that the observed graph signals are Gaussian, which is usually not true for real-world applications.
Furthermore, they learn the precision matrices without imposing graph structure constraints on the
learned views. These joint learning approaches have recently been extended to learn multiple graph
Laplacian matrices instead of precision matrices (Yuan et al| (2023a); Zhang & Wang| (2024a);
Karaaslanli & Aviyente (2024)). However, all of these methods quantify the pairwise similarity
between the views based on edge similarity. In many settings, such as gene regulatory networks
(Mohan et al.|(2014)), the differences between views may be better explained through the changes
in the connectivity of a few nodes. This way of modeling the differences imposes a structure and
provides an intuitive interpretation of the network differences.

In this paper, we introduce a joint graph Laplacian learning framework where the differences across
the views are assumed to be driven by the perturbation to the individual nodes’ connectivity across
views. Based on this assumption, we introduce a Laplacian learning framework using the smooth-
ness criterion, i.e., the graph signals are smooth or low frequency with respect to the underlying
graph structure, with a regularization term that captures the node-based similarity across views. We
focus on learning graphs for the case of two views where each view is assumed to be a perturbed
version of the other by changing the connectivity of r nodes with » << n. The corresponding opti-
mization problem is solved using the Alternating Direction Method of Multipliers (ADMM). Finally,
theoretical results are provided to quantify the upper bounds on the error between the estimated and
true graph Laplacians as a function of the number of signals and nodes.

The main contributions of the proposed framework are:

» Extending structured multiview graph learning from GGM to smooth graph signals, where
a valid graph topology instead of precision matrices is learned. Using smoothness, our
framework is not restricted to GGMs and can handle different types of smooth graph sig-
nals.

* Introducing structure-based multiview graph learning, particularly a node perturbation
model, in the context of smooth graph learning.

» Providing theoretical analysis and upper bounds on the estimation error of two-view Lapla-
cian learning in terms of the graph size, sample size, and the radius around the true Lapla-
cians, as the problem is non-convex. This estimation bound also suggests that the estimated
values will not converge to the true values merely by increasing the sample size; rather,
convergence also depends on the topology of the true graph structure.

2 BACKGROUND

2.1 RELATED WORK

Prior work in multiview graph learning has been mostly based on statistical models. These meth-
ods extend graphical lasso (Friedman et al.| (2008))) to the joint learning case, where the precision
matrices of multiple related GGMs are learned using various penalties in the likelihood framework
to exploit the common characteristics shared by different views (Guo et al.| (2011); |Danaher et al.
(2014); |Lee & Liul (2015); Mohan et al.| (2014)); Ma & Michailidis| (2016); [Huang & Chen| (2015)).
The most notable among these is the joint graphical lasso (Danaher et al.| (2014)), where fused or
group lasso penalties are used to encourage topological similarity between views. However, these
methods are limited by the assumption that the observed graph signals are Gaussian, suffer from
increased computational complexity in the case of pairwise penalties and learn conditional depen-
dencies instead of inferring the graph structure, which may not be suitable for subsequent learning
tasks. Recently, these joint learning approaches have been extended to multiple graph Laplacian ma-
trices (Yuan et al.|(2023a))). However, this approach is still limited to Gaussian data and edge-based
similarities across views.

The graph signal processing (GSP) community has recently addressed the problem of learning mul-
tiview graphs from heterogeneous data. This work can be divided into two categories, depending on
whether one knows the association of the observed signals with the views a priori. In the first setup,
multiple datasets are given and each dataset is defined in a view (Navarro et al.| (2022)); Navarro &
Segarra|(2022)). On the other hand, the second setup deals with the mixture of graph signals, where
a single data set is given and the association of graph signals to the views is not known (Maretic
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& Frossard| (2020); |Araghi et al| (2019); [Karaaslanli & Aviyente| (2022)). The focus of this paper
is the first category. This problem setting has been studied most extensively to infer the topology
of time-varying networks (Kalofolias et al.| (2017); Yamada et al.| (2019); Baingana & Giannakis
(2016); Sardellitti et al.| (2019)), where the aim is to learn graphs at multiple time points and to
track changes in the structure of the graph over time. This problem can be posed as multiview graph
learning with a regularization term that promotes pre-specified changes between consecutive graphs.
More recently, the problem of multiview graph learning has been formulated with the assumption
of graph stationarity (Navarro et al.|(2022)). In this formulation, the signals are assumed to be sta-
tionary, and pairwise similarity between all graphs is used to regularize the optimization. In (Zhang
& Wang|(2024a))), the authors propose a multiview graph learning method based on the smoothness
assumption. However, all of this prior work in GSP quantifies the similarity across views through
edge-based similarity without considering the structure of the differences between views explicitly.

2.2 NOTATIONS

We represent a vector with bold lower case notation x and matrix of size m x n as A € R™*"
with the (4, j) th entry of the matrix A as A;; V ¢,j. The trace of a square matrix A € R™*" is
denoted as tr(A) = >, A;;. The Frobenius norm || - || of a matrix A, is defined as |A|p =

\/22i; A% - |l - [l2,1 s the £2 1 norm which is the the sum of £ norms of the rows of a matrix A,

e, [[Allzn =224/ AZ;.||All2 is the spectral norm of matrix A, that is the maximum sigular

value of A.The operator vec(.) is used for vectorization of matrix. The symbol ® is the Hadamard
product (element-wise) product of two matrices and ® is the Kronecker product of two matrices.
B,.(A) is the open ball of radius r, with respect to the metric induced by Frobenius norm centered
at the matrix A. The all-one and all-zero vectors and matrices are denoted by 1 and O, respectively.
|S| denotes the cardinality of a set S.

An undirected graph is defined as G = (V, E), where V is a set of n nodes, i.e., |V| = n,and E C
V' x V is a set of edges. An edge connecting nodes 7 and j is represented as F;;, with an associated
weight w;;. The graph G can be algebraically represented using an n X n symmetric adjacency
matrix W € R™*", Each element W;; is defined as W;; = W,; = w;; if e;; € E, and W;; = 0 if
there is no edge between nodes ¢ and j. The graph Laplacian is represented as L = D — W, where
D is the diagonal degree matrix, with each diagonal entry D;; calculated as D;; = 2?21 Wi;;. The

eigendecomposition of L is given by L = U " AU, with U containing eigenvectors as columns and
A is a diagonal matrix with diagonal elements 0 = Aj; < Agp <+ < Ay,

3 SMOOTHNESS BASED GRAPH LEARNING

A graph signal defined on G is a function x : V' — R and can be represented as a vector x € R"
where z; is the signal value on node 4. Eigenvectors and eigenvalues of the Laplacian of G' can be
used to define the graph Fourier transform (GFT), i.e., Z = U« where &; is the Fourier coefficient
at the ith frequency component A;;. x is referred to as a smooth graph signal if most of the energy
of Z lies in low frequency components. The smoothness of « can then be quantified using the total
variation of & measured in terms of the spectral density of its Fourier transform as:

tr(z" AZ) = tr(x ' UAU T z) = tr(z " Lx). 3.1

3.1 SINGLE VIEW GRAPH LEARNING

An unknown graph G can be learned from a set of graph signals defined on it based on some as-
sumptions about the relation between the observed graph signals and the underlying graph structure.
One such assumption is the smoothness of the observations with respect to G, which can be quan-
tified using total variation equation [3.1] Total variation offers a natural criterion for finding the best
topology in which observed signals have the desired smoothness property (Dong et al.,2019;Mateos
et al.,[2019).

Dong et. al. (Dong et al.,[2016) proposed to learn G by assuming the graph signals are smooth with
respect to G. Given X € R"*P as the data matrix with the columns corresponding to the observed
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graph signals, G can be learned by minimizing smoothness with respect to the Laplacian matrix of
G:

miniLrnize tr(X LX) + a||L||% s.t. L € L and tr(L) = 2n, (3.2)

where the first term quantifies the total variation of graph signals and the second term controls the
density of the learned graph such that larger values of hyperparameter « result in a denser graph. L
is constrainedtobein L = {L : L = 0,L;; = Lj; < 0Vi # j, L1 = 0}, which is the set of valid
Laplacians. The second constraint is added to prevent the trivial solution L = 0.

4 PROBLEM FORMULATION: PERTURBED NODE MODEL FOR TWO-VIEW
LEARNING (PN-TVL)

Given a set of signal samples for each view, X(¥) = [wgk), .. ,mgz)] where mgk) € R™ and X(¥) ¢
R™*4x with n being the number of nodes, k& € {1,2} the number of views and dj, the number
of signal samples in view k, the goal is to learn the individual graph structures, i.e., the graph
Laplacians, L(*). Assuming that the individual views differ due to particular nodes that are perturbed
across the two views, thus have a completely different connectivity pattern, the problem of learning

the individual graph Laplacians, L(*), with the smoothness assumption can be expressed as

2

. T X X
min [tr(X““) LEX®) 45 |[L® — 1o L® |12 — 55 tr(log(T © LW))| + 45V
' k=1

st. LWerL, LO_L®=v4vVvT,

2,1

4.1)

where the first term quantifies the total variation of the observed signal, X(¥), with respect to the
underlying graph Laplacian L) similar to equation the second term controls the sparsity of
the learned graphs, the third term applies a logarithmic penalty to the degree of the learned graphs,
(Io L(’“)), to ensure connectivity (Kalofolias et al.,[2017) and the last term penalizes the difference
between the two views, V, using the row-column overlap norm (RCON) (Mohan et al., 2014). L(k)
is constrainedtobeinL = {L : L = 0,L;; = Lj; < 0Vi # j, L1 = 0}, which is the set of valid
Laplacians. In general, RCON applies ¢, ,-norm to the difference of views, the primary objective
being to identify nonzero rows and columns, with each row or column representing a perturbed
node. In this work, we use ¢ 1-norm such that the number of columns of V with non-zero £5-norm
corresponding to the perturbed nodes’ connectivity is minimized.

The optimization problem in equation [4.1] is nonconvex due to the constraints. To deal with the
nonconvex constraints, we present an equivalent form of the constraints L&) = 0, LK .1 =0
following (Zhao et al., 2019):

L -0, L% .1=0 = PEWPT W, (4.2)

where P € R™"*(n=1) ig the orthogonal complement of the vector 1, i.e., P'P=IandPT1=0,
and £(F) e R("»=Dx(n=1) j5 a positive semi-definite matrix for the kth view. Note that the choice of
P is nonunique. The equivalent objective function can be written as follows:

2
min [tr(X(k)TPE(k)PTX(k)) +|[PEPPT — 10 PEWPT|2 — ~y tr(log(I® PE(’“)PT))}
MV
+ 73l V2,1

s.t. PEOPT _pPe@PT = v VT,
(4.3)

The optimization problem in equation 4.3] can then be solved using ADMM. The update steps for
solving the PN-TVL optimization are given in Appendix[A]and the pseudocode is given in Algorithm

m
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Algorithm 1 PN-TVL Optimization Algorithm

InplIt: Y1s V25 V35 My P, X(k)'

Output: Laplacian matrices L(¥)
1: Initialize: Set £*), V, and the auxiliary variables and dual variables to the zero matrix.
2: while not converged do

3:  Update Sl(f)l by equation

A A

Update Zl(_]i)l by equation
Update c® by equation m

I+1

Update Hl(_l‘_)1 and Hl(i)l by equation|A.10{and equation respectively.
Update V. by equation|A.14]
Update Q1 by equation|A.16

9:  Update Wy by equation |A.18]
10:  Update the Lagrange multipliers and penalty parameter by equation
11: end while

5 THEORETICAL ANALYSIS

To facilitate a unified analysis of multiple graph Laplacians, we define the parameter space as the
set of block diagonal matrices in R3"*3" where each diagonal block corresponds to the graph
Laplacians L, Lo, and the matrix V following the same type of formulations of (Yuan et al.,2023b).
For the simplicity of analysis, we consider d; = ds = d throughout this section. To analyze the
estimation error let us write down equation after rescaling as follows,

k=1

1
D [d tr(X® LEXE) 41| L — 16 L3 - wzdtraoga@v“))] + 3l Vil

6D

subject to the constraints LOLO® L = {LeR""™:L*>0,L;; =Lj; <0,L-1=0} and
LW L@ C e C = {LW LA, VeR™ LW L@ =V +VT} From Lemma we
know that L is convex but the set of the constraints C is non-convex. Since the problem is inherently
non-convex due to the constraint L; — Lo = V + VT, we aim to derive estimation error bounds
for local optima. To address this, we consider an additional restriction that the local minimizer

fpy € R37X37 s confined to a small neighborhood around the true solution L* € R37*3" The

block diagonals corresponding to IAJA, and L* are (Ijgl), ﬂf% \77) and (LU, LED, V).

We make the following assumptions to derive the theoretical results.

(AD)

(A2)

We assume that the optimization is constrained to a local neighborhood defined by an open
ball of radius r > 0 centered at the true 3n x 3n matrix L* similar to the idea presented in
(Loh,2017). Mathematically, this can be expressed as the set:

B.(L*) ={L e R : |[L-L*|, <r}.
Additionally we also assume that there exists (1), () 7(3) > 0, such that a constant

K, = min {7‘(1),7‘(2),1"(3) : HL(k) —L®" H <r® |V =V p <r® W 4@ 46 < r} .
F
5.2)

d

The set of signals {xgk)} is assumed to follow a sub-Gaussian distribution (see

j=1
for details) with mean 0 and covariance matrix (%) for k = 1, 2. Using the sub-Gaussian
assumption enhances the flexibility of the analysis, as it encompasses a broader range of
distributions beyond the Gaussian case, while still retaining important concentration prop-
erties that make it suitable for statistical analysis.
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(A3) Additionally, we assume that the maximum Frobenius norm of the true covariance matrices
¥ and £ is bounded by a positive constant Cs-. Formally, this can be expressed as:

max HE(k)*H < Csx=.
ke{1,2} F

This constraint ensures that the true covariance matrices do not exhibit extreme values which could
otherwise lead to numerical instability. To state the theorem let us first define the matrix E;; € R™*"
as an indicator matrix for the ¢-th diagonal element, defined as:

1, ifk=1=1i
(Eii)m = {

0, otherwise.
Theorem 5.1. Under the assumptions (Al),(A2),(A3) with the regularization parameters
Yid V2d ¥3d > 0,
4nr?C? 2r2C2
= " max CW + 21 In2ha, + 205 + 7,0LY 53
P Rod k) . {n*vsq v+ +74CL} (5.3)

with probability at least 1 — 2 {exp (—C(D(\/& - 20(1)\/5)2) + exp (—c@)(\/& - 20(2)\/5)2>}

and d > 4n max {0(1)2, c@? } where ;\w is the minimum eigenvalue of the matrix

HEV—L*

bl

M = [Z 'YQdLZ('f)* E;; @ E;i + 2714 <In ®IL, - Z E;® En)
i=1 i=1

Ya = 4v1d + 27924 , the constant C,. satisfies C, > ﬁ and the constant C, is dependent on the
true graph structures as,
b
F

and ¢V, ¢, CV CR) > 0 are the constants that depend on the sub-Gaussian norms Hw(l) Hw

CL max{ max HL(’“)* fIQL(k)*H , max
ke{1,2} Fke{1,2}

(o)

and Hw@) H " of a random vector taken from this distribution.

The derived estimation error bound shows that the accuracy of the estimated f‘v is significantly
influenced by the number of nodes n, the number of samples d, and the choice of regularization
parameters. Similar to the results of Zhang & Wang| (2024a)) and [Zhang & Wang (2024b)), the
upper bound has two parts where the first part is data dependent and the second part is completely
dependent on the regularization parameters and on the topology of the true graph. Furthermore,
the minimum eigenvalue )\, of the matrix M plays a critical role in controlling the bound—small
values can drastically increase the error, highlighting the importance of ensuring a well-conditioned
matrix through appropriate selection of 14, 724, and y34. Thus, balancing these factors is essential
for achieving reliable estimation accuracy.The upper bound of the estimation error is also dependent
on the radius r around true L*as there is a factor of 72 is present in the numerator along with
the constant C,. Also, in this setup as the sets I and C have special properties, the projected
unconstrained estimator will have the same estimation error bound as for the constrained estimator
(For details see of the Appendix).

6 EXPERIMENTAL RESULTS

6.1 SIMULATED NETWORKS

We considered two random network models: Erdés-Rényi (ER) random network and random geo-
metric graph (RGG). In ER graphs, node pairs are independently connected with probability 0.1. For
RGG, we used the setup from (Kalofoliasl 2016), where 100 two-dimensional points are randomly
drawn from [0, 1]2 and they are connected to each other with weight exp(—||z; — x;||3/0?) where
x; is the coordinates of ith point and 0 = 0.25. Weights smaller than 0.6 are set to 0, while the
remaining ones are set to 1 to generate binary graphs.
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For each network model, we duplicated the adjacency matrix, A, into two matrices AM and A®,
We selected r nodes at random for perturbation. For each selected node, we set the elements of the
corresponding row and column of either A(Y) or A(?) (chosen at random) to be i.i.d. drawn from a
Bernoulli distribution. This results in r perturbed nodes.

6.1.1 DATA GENERATION

Given the two view graphs, each X* € R"*4 is generated from G* using the smooth graph filter
h(L?) (Kalofolias, [2016). In particular, each column of X* is generated as Xf“j = h(LF)xo; where
g ~ N (0, I). In this paper, we considered three different types of graph filters: 1) Gaussian filter
(h(L) = L'); 2) Heat filter (h(L) = exp(—aL), a = 5 in this paper); and 3) Tikhonov filter
(h(L) = (I +aL)™!, a = 20 in this paper). In the case of the Gaussian filter, the resulting signals
are Gaussian distributed and the graph Laplacian and the precision matrix are equivalent to each
other. We finally add 7% noise (in £; norm sense) to each generated X*. For each simulation, the
average performance over 10 realizations is reported.

We evaluated the performance of our method for the two random graph models and three signal
generation methods with respect to different simulation parameters. In particular, we evaluated the
robustness of our method with respect to the number of signal samples (dy,), number of perturbed
nodes () and noise level (). In the first case, we fixed the number of nodes at n = 100, and the
number of perturbed nodes at » = 3, and noise level n = 0.1, and varied the number of signal
samples. For the second case, we fixed the number of nodes at n = 100, the number of samples at
dy, = 700, and noise level = 0.1, and varied the number of perturbed nodes. Finally, we fixed
the number of nodes at n = 100, the number of samples at d;, = 700, and the number of perturbed
nodes r = 3, and varied the noise level 7.

6.1.2 BENCHMARK MODELS

We compare the proposed method with respect to the following methods:

* SV: Single view graph learning approach in (Dong et al., |2016) which learns the graph
topology corresponding to each view independently by assuming that the signals are
smooth with respect to each view’s graph.

* MVGL: Multiview graph learning approach in (Karaaslanli & Aviyentel 2024) which
jointly learns multiple graph Laplacians assuming the signals are smooth with respect to
each view graph and the similarity between the views is enforced by minimizing the /;-
norm error between the view and the learned consensus graph.

* PNJGL: Perturbed node joint graph learning in (Mohan et al.| 2014)) that jointly learns
precision matrices assuming a GGM where the similarity between the views is enforced by
minimizing the row column overlap norm of the difference.

The performance of the methods is quantified by computing the average F1 score with respect to the
ground truth graphs across runs.

6.2 RESULTS

Figure 1| displays the results for ER network under three different types of graph filter with varying
numbers of samples, number of perturbed nodes, and the percentage of noise level. For all methods,
the performance increases with increasing number of signal samples as expected with PN-TVL
performing the best. While MVGL performs better than SV and PNJGL, its performance is lower
than PN-TVL as the learning algorithm does not take the perturbation model into account. For
small sample sizes, PNJGL performs better than SV illustrating the advantage of joint learning.
However, as the sample size increases the improvement in PNJGL performance does not increase
at the same rate with the other methods. This may be due to the difficulty of estimating larger size
precision matrices. Similarly, the performance drops with a growing number of perturbed nodes
and noise levels. While MVGL is robust against noise, it is not robust to increase in the number
of perturbed nodes. This is because MVGL tries to maximize edge similarity. As the number of
perturbed nodes increases, the number of dissimilar edges increases at a polynomial rate. Thus, the
difference between the views becomes less sparse. PNJGL performs better than MVGL in these
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Figure 1: Comparison of performance for ER network model with three different graph filters for
varying signal parameters: (a)-(c) varying number of samples (dj,), number of perturbed nodes (),
and noise level (1), for Gaussian filter; (d)-(f) varying number of samples (d}, ), number of perturbed
nodes (r), and noise level (n), for heat filter, (g)-(i) varying number of samples (dj), number of
perturbed nodes (), and noise level (n), for Tikhonov filter.

situations as it is based on the assumption that the view differences are driven by node connectivity.
For the different graph filters, the performance of PN-TVL does not vary much showing that it is not
sensitive to the distribution of the data but rather to the smoothness with respect to the graph. On the
other hand, PNJGL is more robust to noise and performs better than MVGL and SV for Gaussian
signal model (top row), while its performance is inferior to MVGL for non-Gaussian signals (middle
and bottom rows in Figure 1). This is due to the fact PNJGL cannot accurately estimate precision
matrices for non-Gaussian data.

The results for the RGGs are given in Appendix [C]

6.2.1 SCALABILITY OF THE PROPOSED APPROACH

To evaluate the scalability of the proposed PN-TVL method, we generated a set of simulated net-
works with the number of nodes increasing from 50 to 800. The two view networks were generated
using an ER model with d;, = 700, » = 0.02n and p = 0.1. As shown in Figure 2] SV is the
fastest method as it solves a simpler optimization problem with less added constraints. The run
time for PN-TVL is comparable to the MVGL model and less than the PNJGL model since PNJGL
uses Singular Value Decomposition (SVD) in every step of the solution. Despite the longer runtime
compared to SV, PN-TVL provides the highest accuracy in graph learning.
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Figure 3: Sensitivity of the PN-TVL model in terms of NMI to the regularization parameters (a)
vary v1, 2 and fix vs, (b) vary v1, 3 and fix s, and (c) vary ~s, 3 and fix ;.

6.2.2 SENSITIVITY TO HYPERPARAMETERS

In the proposed objective function there are three parameters that are tuned, (71, y2,y3), Where
v1 controls the sparsity of the learned Laplacian matrices, 7 regulates the degree distribution (or
connectivity) of the learned graphs, and 73 controls the norm of the difference between the views,
i.e., the perturbation. In our implementation, we optimize the values of (71,72, y3) using a grid
search approach.

To assess the sensitivity of the PN-TVL model to these parameters, 71, 2, and 3 were varied from
5 to 50 in increments of 5, and the effect of adjusting two parameters at a time was analyzed while
keeping the third fixed. As shown in Figure [3] the performance of the learning algorithm is most
sensitive to the value of ; which controls the sparsity of the learned graphs as when ~; is fixed, the
performance does not change much for 5 and 3. This is expected since the sparsity of the learned
graphs affect the accuracy of estimating V in addition to each view. Moreover, the optimal range
for these parameters is found to be between 25 and 35.

6.3 REAL DATA ANALYSIS

In this section, we use a dataset of 2000 handwritten digit images from the UCI Machine Learning
Repository to demonstrate the performance of PN-TVL method in learning the
graph structure and the cluster membership. The dataset includes samples from 10 distinct classes
(digits 0 — 9) with 6 features. We utilized two features: Fourier coefficients with dimension d; = 76
and Karhunen-Loeve coefficients with dimension d, = 64 , both derived from character shapes.

We learn each view graph from the corresponding features using PN-TVL and then apply spectral
clustering to obtain the clustering labels. To assess the performance of the PN-TVL model, we
use the commonly adopted evaluation metric, Normalized Mutual Information (NMI), and compare
the results with other existing methods. Figure 4] shows average clustering accuracy across the two
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Figure 4: Average NMI results of spectral clustering applied to the graphs learned by different
methods.

views for PN-TVL model compared to the other models. PN-TVL achieved an NMI of 0.73 while
the MVGL model has an NMI of 0.67. This difference is because the MVGL model is designed to
learn graphs based on edge-based similarity and may not learn the cluster structure well. In contrast,
the SV model resulted in an average NMI of 0.61 as it learns each view independently and does not
consider the similarities between the views. Lastly, the PNJGL model has an average NMI of 0.57,
as it is designed to learn precision matrices rather than Laplacian matrices, so spectral clustering
cannot accurately identify the clusters.

7 CONCLUSIONS

In this paper, we introduced a graph signal processing-based approach for learning graph Laplacians
of two closely related graphs. The proposed approach is based on the assumptions that the observed
graph signals are smooth with respect to the underlying graph structures, and that the differences
between the two views are driven by the perturbation of a few nodes’ connectivity. A cost function
that enforces these two objectives is proposed and the corresponding optimization algorithm is pre-
sented. Theoretical results are presented on the upper bound of the estimation error for the inferred
Laplacian as well as the view difference matrices. The proposed method is applied to both simulated
and real graph-based data and compared to the state-of-the-art graph inference methods. The results
show that PN-TVL is more robust regarding the increase in the number of perturbed nodes and added
noise. Moreover, PN-TVL works well for various signal models, i.e., Gaussian and non-Gaussian,
while graphical lasso-based methods like PNJGL’s performance drops for non-Gaussian signals.

Future work will consider extending the proposed framework to multiple views. To keep computa-
tional complexity linear with respect to the number of views, we will develop consensus graph-based
similarity constraints. Future work will also consider extending the proposed work to other node-
based structural similarities, such as the co-hub model, where the views are assumed to have the
same hub nodes.
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APPENDIX

A UPDATE STEPS FOR THE OPTIMIZATION ALGORITHM

In order to solve the optimization problem introduced in equation we first introduce the auxil-
iary variables, W, HO, H® 7Z®*) and Q, to decouple the variables in the different terms. The
optimization problem will be reformulated as follows:

2

> [EKPED) 491 [PEOPT - 20 [F — 5, tr(log(Z)| + 3 ]1Q

min 2,1
V,W,C(k)f,'(k), 1
Z(k),Q,H(k)
st. CH =pepT HY _HO =v4+W, V=W H® =Cck v=QIeCH =2k,

(A1)

where K(®) = PTX®X® " P The augmented Lagrangian corresponding to equationcan be
written as follows:

2
i . Y (F)
min ) S [n(KOED) 4 PEVPT - I — g trlog(z M) + FICW - PEWRT 4 T
V7W7c(’¢)7g(k’)7k:1 2 «
zZ® QH®)
M) u®
+SIH® =4 = 1 220 — 10 CW + — |} +15Qll2.

o F e G @ R
7H(1)_H(2)_ -2 - _ T 712 hd _ 2
.y Vew B v w S 2y g By,

(A.2)
where Y*) F, G, M®) | R, U®) are the Lagrangian multipliers and « is the penalty parameter.
Equation [A.2] can be solved by breaking it into multiple subproblems and optimizing each variable

while keeping the others constant, as follows:

* Subproblem & (*): To update & (®), we fix all the other variables and consider the terms
with £(*) only as follows:

2 (k)
k . ) ok k k L (k k Y
&y = min 3 Nu(®NEY) 1 [PEVPT 2} 4 SO - PEUPT 4 Z
=1

l

(A.3)
By taking the gradient with respect to £(*), the solution of equation can be found as
follows:
Trz (k) T (k) TvHEp _ 1)
51(_]?1:2%1) Z,”’P+aP C"P+P Y 'P-K . (A4)

2v1 + «
+ Subproblem Z(*): The solution of Z(*) can be found by solving the following problem:

(k)
. o U
zZi)) = r;l&g%llzz(k) —PEPT 3 — 7o tr(log(Z(7)) + §||Zl(k) ~1oc + —— 7
L

+1 ~
(A.5)
Similar to £*) subproblem, the solution of equation can be found as follows:
75 _ B[" + \/(Bz(k))2 +4(271 + o)l (A6)
2271 + @) ’
where Bl(k) = 2’y1Pé'l(f)1PT +al® Cl(k) — Ul(k).
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+ Subproblem C®): The solution of C(¥) can be found by solving the following problem:

(k) (k)
k k k Y, k K M
City = min SICY —PELPT + S+ 0 — Y + S

! “ (A7)
U
k k
+l1oc” -z + L.

The problem in equation[A.7]will update the diagonal and off-diagonal parts of the matrices,
separately. To find the solution, the gradient with respect to C(¥) is taken and set to zero.
The resulting solution can be expressed as follows:

oPEMP T v pa M+ 2 U

[C(k)] _ 30 for =

I+1]45 aPEWPT];—Y P ram ) + M o,
3 , for i #j.
e

¢ Subproblem H® and H®: In order to update H®O, we fix all the other variables and
consider the terms with H(®) only as follows:

(A.8)

(1)
(1) M,
Hl+1 -

.« 1 2 F; « 1
min 5 IHGY —H - (Vi W) + 2+ I - Cl
1
(A9)

By taking the gradient of equation and setting it to zero, the solution of H(Y) can be
written as follows:

[F(l) © I} , for i=3j
m7 _ h n
[Hl+1L‘j = (1) T ) ] (A.10)
[Fh ©@11" - I)} , for i j,
WH® 4aVi+a we® _p®
where ngl) H~ oVt W;aFl+ i ™ The term {FS)@I] represents a diago-
+

nal matrix in which all elements are non-negative, where positive elements are retained and
negative elements are set to zero. The term {FS) o117 - I)} represents an off-diagonal

matrix where only negative elements are kept, and positive elements are replaced by zeros.
This ensures that H() is a valid Laplacian matrix.

The solution of H(®) can be found by solving the following problem:

N
2 1 2)
HY, = min g 1B, - 1Y - (Vi W)+ L3+ S - off) + X
(A.11)
Similar to H(, the solution of H(® can then be written as follows:
(2) o
@ B [Fh ® IL_, for i=j
[Hm}” (A.12)

[F?@(HT—I)} , for i#j,

1) @
(2) aH'YY —aV,;— an+Fl+aC Ml
where I'; 5o .

. Subproblem V: In order to update V, we fix all the other variables and consider the terms
with V only as follows:

F o R
wﬂfmnnm& H? — (Vi+ W)+ 22+ S Vi—Q+ =%
«Q 2 « (A.13)
Gy o ’
+ S IVi= W]+ =
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By taking the derivative and setting it to zero, the solution of equation [A.13] can be found
as follows:

(1) (2)
oH —aH
Vl+1 41 1+1

—aW,;+F; +»a(21—»I{l+—ciVV;_—-(}l (A.14)
3a '

* Subproblem Q: In order to update Q, we fix all the other variables and consider the terms
with Q only as follows:

) o R,
Q1= H(SH'YBHQZHZJ + §HQ1 — Vi + EH% (A.15)
l

The solution of equation can be found by using the proximal operator for {5 ;-norm
as follows (Liu et al.,[2012):

R
Qi+1=T21(Vip1 + ;l, %) (A.16)
* Subproblem W: The solution of W ; can be found by solving the follows minimization
problem:
. (1) (2) Firoo o or Gi o
Wi = n‘;;{lglle + Wi — (Hy, —H )+ E”F + §||Wl+1 - Vi + E”F-
(A.17)
Similar to the V subproblem, the solution of equation[A.17|can be found as follows:
(1) ()
Wi, = aHy /)y — ol —aVi —Fi + aV;:_l — GZT. (A.18)

2a
Finally, the Lagrangian multipliers and the penalty parameters can be updated as follows:

Y =Y 4t - PR P,

1 I+1 141
Ul =0 + (2, 1o C),
M, =M 0@ Y, — ),
Fioo = F+o(HY —HE, = (Vi + W), (A.19)

G =G+ a(Vigr —W/)),
Rijyi =R+ a(Vigr — Qi)
a1 = pag, p > 1

B APPENDIX PART FOR THEORETICAL ANALYSIS

B.1 SOME DEFINITIONS
Sub-Gaussian Random Vector: A random vector & € R is called sub-Gaussian if all of its one-

dimensional marginals are sub-Gaussian. Specifically, « is sub-Gaussian if there exists a constant
K > 0 such that, for any unit vector u € R”,

. {etuT(m_E[m])} <™ VieR

Sub-Gaussian Norm of a Random Vector: The sub-Gaussian norm of a random vector x € R,
denoted as |||y, is defined as:

I2lly, = sup [u@|y,,
uesn—1!

where S”~! is the unit sphere in RP.
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B.2 SOME IMPORTANT RESULTS ON MATRICES

Lemma B.1. The matrix M € R <" jg positive definite if y14 > 0 and 24 > 0 when M is as the
following.

n L2 n
M ="l Bi © B+ 274 <In ©L,~> E;® E) . (B.1)
i=1 =1

Proof. For any non-zero vectory € R
—2
o)*
y My =3 1l 2 214> vl
i i#j

Since both 24 > 0 and ;4 > 0, the quadratic form is strictly positive for any non-zero vector y.
So, M is positive definite matrix.

O
Lemma B.2. For any two symmetric matrices A,B € R"*"

tr(AB) < [|A[[¢|B] F-
Proof. Since A and B are symmetric, AT = A and BT = B. Thus,

(A,B) = tr(AB).
Using Cauchy-Schwarz inequality and the sub-multiplicative property of Frobenius norm, we have,
(A,B) < [|AB|[r < [|All¢|B] -
Hence, the proof. ]

Lemma B.3. Suppose A, B € R"*"™ then for the {31 norm of the product of matrices, the following
inequality holds.
[ABl2,1 < n|[Allp|Bl:.

Proof. We can write the I3 ; norm of AB matrix by expanding it as,

o\ 1/2
[AB|j2,1 = Z Z ( aikbkj>
i=1 \j=1 \k=1
<22 |2 aubi
i=1 j=1 k=1
= [[AB|[1 < [[A[1[B[x < n|Allr|B]:. (B.2)
O
Lemma B.4. For a square matrix A € R"*",
Al < V- Al - (B.3)
Proof. Letoy,09,...,0, be the singular values of the matrix A. Then, the Frobenius norm can be

expressed as,

IAllF =

E 2
a;.

i=1

Similarly, the operator norm (spectral norm) is given by the largest singular value:

|Allz2 =01 (assuming oy > g9 > -+ > a,).
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The rest of the proof is as follows,

[AllF =

ZJZZ <\/n-of =+/noy = /n||Al2. (B.4)
i=1

O

Lemma B.5. Given two symmetric positive semi-definite matrices A and B of order n x n we have,

tr(AB) > Amin(A) - tr(B).

where Apin(A) is the minimum eigenvalue of the matrix A

Proof. Let A be a symmetric matrix with eigenvalues A1, Aa, ..., A, and let A\pin(A) denote the
smallest eigenvalue of A. Now, since A and B both are positive semi-definite and symmetric we
have,

tr(AB) = tr(VAVATB) = tr(VABVAT) = zn: e, VABVATe; <0. (B.5)

where e; is the n-dimensional vector with i-th element equal to 1 and other elements are zero. Now,
we can decompose A as follows,
A= nin(A), + (A = Anin(A)LL,).
So, using we have the following,
tr(AB) = Amin(A) tr(B) 4+ tr((A — Amin(A)L,)B) > Anin(A) tr(B). (B.6)

as (A — Amin(A)I,,) is a positive semi definite matrix. O

B.3 AN IMPORTANT RESULT ON THE ERROR BOUND OF SAMPLE COVARIANCE AND THE
TRUE COVARIANCE

Lemma B.6. Assume that A is an N x n matrix whose rows A; are independent sub-gaussian
random vectors in R™ with second moment matrix X.. Then for every t > 0, the following inequality
holds with probability at least 1 — 2 exp(—ct?):

1
—ATA-X
HN

n t
< max(6,6%) where §=C\/—+—.
2 N \/N

Here, as before, C = Ck, ¢ = cx > 0 depend only on the sub-gaussian norm K = max; || A; ||,
of the rows.

Proof. For the proof of this Lemma on the estimation error bound of sample covariance matrix from
the true covariance matrix, see the theorem 5.39 of (Vershynin, 2011)). O

B.4 ANALYSIS OF THE SETS OF CONSTRAINTS

Lemma B.7.
L={LeR™™:L>0, Ljj=L; <0Vi#j L-1=0}

is convex and closed set.
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Proof. CONVEXITY OF THE SET L

A set S is convex if for any two matrices Ly, Lo € S and any scalar A € [0, 1], the convex com-
bination AL; + (1 — A)Ls is also in S. That is, for any L;, Lo € L, we need to check whether
AL; 4+ (1 = MLy € L.

At first, to prove that the set of positive semi-definite matrices is convex that is if L; > 0 and
Lo > 0, then for any A € [0, 1],
AL; + (1 =MLy = 0.
Therefore, the positive semi-definiteness constraint is preserved under convex combinations. For the
constraint L;; = L;; < 0V i # j is convex. This is because if LE;) < (0 and LZ(-JQ-) < 0 forall i # 7,
then for any A € [0, 1],
(1) 2
Lij =AY + (1 - NI <o.

Hence, this constraint is preserved under convex combinations. The constraint L - 1 = 0 (i.e., each

row sums to zero) is linear, and the set of matrices whose rows sum to zero is an affine subspace,
which is convex. That is, if Ly - 1 = 0 and L - 1 = 0, then for any A € [0, 1],

(AL; + (1 = ALg) - 1= ALy - 1) + (1 — A)(Ly - 1) = 0.

Thus, the zero row sum constraint is also preserved under convex combinations. Since each of the
individual constraints is convex, the intersection of these constraints is also convex. Therefore, the
set IL is convex.

CLOSEDNESS OF THE SET LL

To show that I is closed, we need to check whether it contains all its limit points. That is, if we have
a sequence of matrices {L,,} C L such that L,,, — L (in some matrix norm, such as the Frobenius
norm), we need to check whether L € L. If L,,, > 0 and L,, — L, then L > 0. This is because the
eigenvalues of L,, (which are non-negative) converge to the eigenvalues of L, ensuring that L > 0.
If LE;") = LEZ"’) < 0 for all ¢ # j, and L,;, — L, then by continuity of the matrix entries, we
have L;; = L;j; <0V i # j. If L, -1 = O for all m, and L,,, — L, then by the continuity of
matrix-vector multiplication, L - 1 = 0. Since each of the individual constraints defines a closed set,
and the intersection of closed sets is closed, the set LL is closed. O

Lemma B.S.
C= {L“),L(?),V eR™ LMD _LO® = v 4 VT}

is closed.

Proof. We want to show that the set
C= {L<1>,L<2>,V eRY LM _L® — v + VT}
is closed. The set C consists of triplets (L(}), L), V) € R"*" that satisfy the constraint:

LY -—L® =v4VT,

This is a linear equality constraint that must hold between LD, LA and V. Suppose we have a
sequence {(Lﬁ}), LY, V..)} C C, which converges to a limit (L™, L(?) V). That is, as m — oo,

LY -1®  L® 1@ v, -V
in some norm (e.g., the Frobenius norm). Since (L%), L,(i), V..) € C, for each m, the constraint
L% — L% = V,, + V] holds. That is:
LY —1L® =v, +V] vm.
Now, taking the limit as m — oo, and using the continuity of matrix addition and transposition, we

get:
lim (LY —L®) = lim (V,,, + V).

m— 00 m—r oo
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Since both sides of the equality converge (because the sequence converges), we can exchange the
limit with the operations of addition and transposition:

LY -L®=v4+VT
The limit point (L"), L(?), V) satisfies the same constraint as the elements of the sequence, which

means that the limit point belongs to the set C. Therefore, the set C contains all its limit points, and
hence it is closed.

O
B.5 PROOF OF THE THEOREM[3.1]

Proof. Since f‘,y is a local minimizer around the small neighborhood of L*, then for any L €
B.(L*),

M

1 , . . ~ N
[d (X" LOX®) 4 414|LF) — T LE |3 — g tr(logX © Lgk)))] +73al[ Vyll2,1

>
Il

1

2
Z[ r(XP TLOXE) 4y JLE) T LW - mtr(log(I@L““))}+v3d||V|2,1.
=1

(B.7)

We define (%) = %X(k)X(k)T, and then rewrite the above inequality as,

2
> (L = LENE®) 431 [P — 16 LP | — ya tr(log(T © L)) — ya LY — T LO|F
k=1

b

If (%) is the covariance matrix corresponding to L) then, we further have,

+ Yaq tr(log(T© L*M)) < 734 {||V||271 -

2
Yo (@ = LE)E®) 4 |LF - To LY |3 - yaa tr(log(I© L)) — y1af L - To L3
k=1

2
+ 920t (10g (TG LF) ) < 330 (IIVI20 = [Valla ) + 3 tr (@® = L) (S0 - 509)).
k=1
(B.8)
We consider the real-valued functions G : R3*"*3" — R and g : R"*" — R such that for any

L € B,.(L*) , we have the Taylor’s expansion up to second order as follows,

G(L) - G(L*) =Y g(LP) - g(L*")

2
<Vg(L<’€>*)7 ARy 4 % Yt (Vec(A(k))T [vzg(LW)} vec(M)))
k=1

|
>
%) HMM
[N

??'

2
Z IVgLS ) e |A® [ + 5 Z/\mm (V29(L®")) tr(vee(AM) T vee(AM)),

k 1
(B.9)

The last inequality follows from Lemmas and with AW = LM — LM" and A®) =
L® —L®" Now, Vg(L®") = 2714 (LW —1, 0 LK) — 454 (I, ® L(’“)*)_1 and thus using
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triangle inequality for Frobenius norm we have,

2 2 2

* . . A -1
S IVOL ) < 200 30 L9 -1, 0L 90 3 (10
k=1 k=1 k=1

F
< 4viq max HL(’“)* —I@L(WH + 2994 max ‘(I@L(k)*)_
ke{1,2} ke{1,2} F
< (g +2 HL(k I, L% H (L LW")
< (e + 72d)max{kgﬁl§} © F k?ﬁ‘}é} » ©

= 94CL . (B.10)

For the term consisting of the second derivative we have,

2
Z)\min (VQg(L(k)*)> tr(A( )’ A(k)) > min Apin (V2 L") ) Ztr (vec( A(k Vec(A ))

ke{1,2}

Y

1
2 (k)™ >
Co kg{lin Amin (V g(L )> > CTQTQA"M HAHF
(B.11)

where C, is a constant with C, > % . Since both the inequalities and hold for any
L € B,.(L*), we have he fo]lowing,

= « 1 2 - 1 - 2
G(L,) - G(L") > %zCLZ AP g+ —— 2,2 Ma lBlF 2 =7aCL |Allp + 5753 1Bl -

k=1
(B.12)

For the penalizing term let us define 7 : R>"*3" — R and using lemma|[B.3|with B = I,, we have,
P(L) = P(Ly) =154 (IV 21 = V2.1
< |9, =5 ),

<,V

§n2’ygd’f7—LHF . (B.13)

Since the above relations hold for any L € B, (L*) €, then it will also hold for L*. For the
term dependent on the data using inequality in m and lemm with t = d — 2¢1)/n and
t =+vd—2c3 \/n respectively twice, we have,

Ztr(( (k)) (g(k) (k)" )) ZHLW L) Hg(m_g )
F
s¢ﬂ@w N
n 2
< P NT otk Hﬂm_L(k)*H
SRP R A
< (k) Hi L B.14
\fkg}ﬁoé}c K F (B.19)

with probability at least 1 — 2 {exp (—c(l)(\/;i - 2c(1)\/ﬁ)2) + exp (—6(2)(\/;13 - 2c(2)\/ﬁ)2)}
using Bonferroni’s inequality on the probability of intersection of the events. Using lemma[B.2],

2 2
(LF) L0 Y0k > Hﬁ(kLL(m*
k; r((L =) > k; { .

F ke{1,2}
(B.15)
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Combining the above inequalities in[B.§ we have,

o) HIZ7 -

~ . ~ 1 ~ 2 2n
o1, gy [ 3 5 g - 2
K Fkgﬁ,}é} F YaC |[Ly F+2r203 v F- \/;lkgﬁl,}é}
+n*a By - L]
(B.16)
Finally, we obtain,
~ Anr?C? 2r2C?
HLW—L* < U pax 00 4 2T L2000 4 90y + 3,01} (B.17)
F T\, Vd ke{1,2} Ava
O

B.6 WELL-DEFINEDNESS OF THE PROJECTION WITH COERCIVE FUNCTION AND CLOSED
SET

1. SOME DEFINITIONS

Coercive Function: A function f : R™ — R is defined as coercive if it satisfies the condition:

f(@) = oc.

In simpler terms, as the norm of x increases without bound, the value of f () also tends to infinity.
This indicates that the function’s value becomes arbitrarily large as its input moves farther from the
origin.

im
[|||—o0

Projection: Given a point ' € R", the projection onto a set S refers to finding the point z* € S
that has the shortest distance to «’. Formally, the projection solves the following minimization
problem:
¥ .
" = argmin f(),
where f(x) = ||& — ’||? represents the squared Euclidean distance between z and x'.
Lemma B.9. The following projection

. .
" = argmin f(z),

is well-defined when S is closed and f is coercive.

Proof. Let’s consider the following minimization problem:

. .
" = argmin f(z),

where f : R™ — R is a coercive function and S is a closed set. Because f is coercive, for any
sequence {x,} where |x,| — oo, we have f(x,,) — oo. This implies that the function grows
without bound as «,, moves far from the origin. Consequently, the minimizer must be located in a
bounded region.

Furthermore, since S is closed, any convergent sequence {x,,} C S will have its limit point inside
S. This guarantees that there is at least one point within S that minimizes f. Hence, the minimizer
x* exists in S, ensuring that the projection is well-defined.

O

ERROR BOUND IS PRESERVED FROM UNCONSTRAINED TO CONSTRAINED
CASE USING PROJECTION
Let i(l), f;(z), and V represent the unconstrained estimates of the true matrices L™, L3 and
V*, respectively. In the unconstrained setting, we assume the following error bounds hold:

LY LY p <e, JL®-LO7p<e, [V-Vr<er.
for some €1, €9, ey > 0

21

F



Under review as a conference paper at ICLR 2025

PROJECTION ONTO CN L

The goal is to show that, after projecting onto the combined set CNIL, the error bounds are preserved.

STEP-BY-STEP PROJECTION PROCESS

1. Projection onto Convex Set L:

Since L is convex and closed, the projection onto this set is non-expansive with respect to the Frobe-
nius norm. This means that for any matrix X and its projection P, (X) onto the set L, the following
inequality holds:

IPL(X) = YF < [[X =Y.

2. Projection onto Non-Convex Set C:

The set C imposes a non-convex constraint on LD, L®, and V. Even though this constraint is
non-convex, the projection can still be non-expansive in a local region, which is typically achieved
through methods like alternating minimization or proximal methods.

After projecting onto C, the Frobenius norm of the error does not increase, which implies that:

[Pe(Py(L®)) —L*"

¢

P < ||PL(f,(’“)) —1,*)

F
for k = 1,2, and similarly for V.
3. Combined Projection onto C N LL:

The combined projection first projects onto L (convex) and then onto C (non-convex). Since both
projections are non-expansive, the total error after the projection remains bounded. Therefore, we
conclude that: _ _

Per (L) — L < JLO LU Y| <,

),
IPern(L®) = L& ||p < [L® — L@ ||p < e,
IPcAL(V) = VF[p < [V = V*|p < ey

)
)

CONCLUSION

After applying the combined projection onto the set C N IL, the error bounds for the matrices L(!),
L®, and V are preserved.

C RESULTS FOR RGG

Figure [5 presents the results for the RGG network using three types of graph filters, varying the
number of samples, perturbed nodes, and noise levels. As the number of signal samples increases,
all methods show improvement, with PN-TVL achieving the best results. However, the performance
declines as the number of perturbed nodes and noise increases. While MVGL is resilient to noise, it
becomes less effective with more perturbed nodes due to its emphasis on maximizing edge similarity.
In particular, its performance becomes worse than PNJGL and SV. PNJGL outperforms MVGL in
these scenarios by assuming node connectivity drives view differences. It is also interesting to note
that for RGG networks PNGL'’s performance deteriorates for non-Gaussian signal models (rows 2
and 3) compared to the Gaussian signal model (row 1). In particular, while PNJGL performs better
than SV for increasing number of perturbed nodes in the Gaussian case, it performs worse for the
non-Gaussian case. This illustrates the limitations of GMMs for graph inference.
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Figure 5: Comparison of performance for RGG network model with three different graph filters for
varying signal parameters: (a)-(c) varying number of samples (dj,), number of perturbed nodes (r),
and noise level (7)), for Gaussian filter, (d)-(f) varying number of samples (dj, ), number of perturbed
nodes (r), and noise level (n), for heat filter, (g)-(i) varying number of samples (dj), number of
perturbed nodes (), and noise level (7)), for Tikhonov filter.

23



	Introduction
	Background
	Related Work
	Notations

	Smoothness Based Graph Learning
	Single View Graph Learning

	Problem Formulation: Perturbed node model for two-view learning (PN-TVL) 
	Theoretical Analysis
	Experimental Results
	Simulated Networks
	Data Generation
	Benchmark Models

	Results
	Scalability of the Proposed Approach
	Sensitivity to Hyperparameters

	Real Data Analysis

	Conclusions
	Update Steps for the Optimization Algorithm
	Appendix Part for Theoretical Analysis
	Some Definitions
	Some Important Results on Matrices
	An Important Result on the Error Bound of Sample Covariance and the True Covariance
	Analysis of the Sets of Constraints
	Proof of the Theorem 5.1
	Well-Definedness of the Projection with Coercive Function and Closed Set

	Results for RGG 

