DSMokE: Matrix-Partitioned Experts with Dynamic Routing for
Computation-Efficient Dense LLMs

Anonymous ACL submission

Abstract

As large language models continue to scale,
computational costs and resource consumption
have emerged as significant challenges. While
existing sparsification methods like pruning re-
duce computational overhead, they risk los-
ing model knowledge through parameter re-
moval. This paper proposes DSMoE (Dynamic
Sparse Mixture-of-Experts), a novel approach
that achieves sparsification by partitioning pre-
trained FFN layers into computational blocks.
We implement adaptive expert routing using
sigmoid activation and straight-through estima-
tors, enabling tokens to flexibly access differ-
ent aspects of model knowledge based on input
complexity. Additionally, we introduce a spar-
sity loss term to balance performance and com-
putational efficiency. Extensive experiments
on LLaMA models demonstrate that under
equivalent computational constraints, DSMoE
achieves superior performance compared to ex-
isting pruning and MoE approaches across lan-
guage modeling and downstream tasks, partic-
ularly excelling in generation tasks. Analysis
reveals that DSMoE learns distinctive layer-
wise activation patterns, providing new insights
for future MoE architecture design.

1 Introduction

Large Language Models(LLM) have demonstrated
remarkable performance across various down-
stream tasks(Touvron et al., 2023; Dai et al., 2022;
Anil et al., 2023; Biderman et al., 2023). How-
ever, as model sizes continue to expand, computa-
tional costs and resource consumption grow expo-
nentially. How to improve computational efficiency
while maintaining model performance has become
a pressing challenge(Cheng et al., 2024).

At the algorithmic level, approaches to model
efficiency optimization generally follow two
paradigms: post-training compression and ac-
celeration of dense models, or training of Mix-

ture of Experts (MoE) architectures. While com-
pression methods like pruning achieve efficiency
through permanent parameter removal(Ashkboos
et al., 2024; Ma et al., 2023; Frantar and Alis-
tarh, 2023), they may discard valuable knowl-
edge and lack flexibility in handling inputs of
varying complexity. Conversely, although ef-
fective, MoE approaches—whether trained from
scratch(Fedus et al., 2022; Dai et al., 2024; Liu
et al., 2024) or warm-started from dense mod-
els(Jiang et al., 2024)—cannot reduce the compu-
tational cost of the original dense model. Given
that the most widely used and effective foundation
models still maintain dense architectures (such as
LLaMA(Touvron et al., 2023), Qwen(Bai et al.,
2023)), there is a crucial need to optimize these
widely-adopted dense models for better efficiency
without sacrificing their performance

To address these limitations, we propose
DSMoE, which achieves model sparsification by
partitioning pre-trained FFN layers into smaller
computational blocks. Unlike existing approaches,
DSMOoE preserves all model parameters, eliminat-
ing the risk of knowledge loss, while achieving
lower computational overhead than the original
dense model through dynamic routing mechanisms.
This design maintains the model’s complete knowl-
edge while improving computational efficiency.

Extensive experiments conducted on LLaMA-
1B and LLaMA-7B models demonstrate encour-
aging results. Under equivalent computational
constraints, our method achieves significant im-
provements in language modeling perplexity and
downstream task performance compared to exist-
ing pruning and MoE approaches. Notably superior
performance is observed in reasoning and question-
answering tasks, particularly in generation tasks.

The main contributions of this work include:

* proposing a novel approach that enables tran-
sition from dense to dynamically sparse mod-

IO Output Hidden
Chunk
MLP I Mnuxi MLPDTD
% s< -HH- ES HH
Iowe_r - % %
matrix
| T
[T
wover FEFEEEEH e
&
self-attention
OO Input Hidden
DSMoE Architecture

g,le
=
o,
«Q
2
Q

self-attention

OO Input Hidden

Output Hidden Output Hidden

N

E-E—f
z2End= N :
BB /
E-E—f

/
\

Router | softmax

self-attention

f !

OO Input Hidden

Common MoE Architecture

Figure 1: The Overview of DSMoE versus Traditional MoE Framework Architectures. The structure shown in the
figure is a simplified representation of the transformer backbone. We have simplified the MLP layer structure here;
the MLP layer also includes a gating matrix with dimensions matching the upper matrix, which performs Hadamard
multiplication with the upper matrix without affecting our partitioning scheme. In the MLP layer, we partition
matrices along the intermediate dimension, where portions corresponding to the original matrix multiplication form

new expert MLP layers.

els by preserving and partitioning pre-trained
knowledge, enabling different tokens to adap-
tively access varying portions of model knowl-
edge.

* validating the method’s effectiveness across
multiple benchmarks through extensive exper-
imentation, providing new insights for MoE
large model optimization.

2 Related Work

Model pruning is an effective approach to achiev-
ing sparse LLMs while maintaining model func-
tionality. Pruning methods can be categorized into
two main types: unstructured and structured prun-
ing. Unstructured pruning operates at the weight
level, allowing for arbitrary weight removal (Lee
et al., 2018). In large language models, pruned
weights are set to zero (Frantar and Alistarh, 2023;
Sun et al., 2023). However, this method requires
specialized hardware and software support for ac-
celeration(Han et al., 2015; Wen et al., 2016; Fil-
ters’Importance, 2016; Tang et al., 2021). Struc-
tured pruning takes a coarser-grained approach by
removing complete structural units such as convo-
lution kernels, channels, attention heads, or entire
layers (You et al., 2019; Ashkboos et al., 2024; Liu
et al., 2021; Ma et al., 2023; Men et al.). Its main
advantage is the ability to directly produce regu-
lar, narrow model architectures that can achieve
acceleration without specialized sparse computa-

tion libraries (Luo et al., 2017; Liu et al., 2021; Fil-
ters’Importance, 2016; Nonnenmacher et al., 2021).
However, both approaches face a fundamental lim-
itation: achieving efficiency through permanent pa-
rameter removal may discard valuable knowledge
and lose the ability to adapt computation based on
input complexity.

In recent years, there has been growing interest
in exploring sparse computation in large language
models. Mixture-of-Experts (MoE) represents a
pioneering approach that demonstrates how sparse
activation can effectively balance model capacity
and computational efficiency. In MoE architec-
tures, only a subset of FFN modules (experts) are
activated for each input token (Fedus et al., 2022;
Lepikhin et al., 2021; Huang et al., 2024). This
foundational idea of conditional computation has
inspired various innovations in expert activation
strategies. Some works explore heterogeneous ex-
pert architectures (Sun et al., 2024) or introduce
zero-computation experts (Jin et al., 2024) to fur-
ther optimize computational efficiency. These ad-
vances in MoE architectures demonstrate the po-
tential of sparse computation and motivate our ex-
ploration of applying similar principles within indi-
vidual FEN layers.

3 Background

For simplicity, we focus on the prevalent archi-
tecture of generative large language models while
maintaining a concise mathematical formulation.

In autoregressive generation tasks, given a se-
quence X = (x1,x2,...,27) of length T, the
model iteratively produces a probability distribu-
tion over the vocabulary for each position condi-
tioned on preceding tokens. This process can be
formulated as:

P,= softmax(EH_ﬁ)

H% = Transformer(z1, zo, ..., zp_1)

(1

Here, L denotes the number of layers in the
Transformer architecture. For any position ¢, P. ;
represents the probability distribution over the vo-
cabulary, derived from the ¢-th column of the
hidden state matrix h’. Specifically, H" =
(Wl hL, ..., hk_] contains the hidden representa-
tions from the final layer, where hl is the contex-
tual embedding at position ¢. The probability of the
ground-truth token x4 is denoted as P, , ¢+ in
the distribution P-, ¢t. The transformation from hid-
den states to probability distributions is achieved
through a linear projection matrix F, followed by
a softmax operation.

In typical scenarios, we employ cross-entropy
loss for autoregressive learning, which can be ex-
pressed as:

T-1

Lim = — Z log P(z¢41]|z<t))
=1

The Transformer architecture consists of multi-
ple layer-wise submodules, where each layer com-
prises a self-attention module and a Feed-Forward
Network (FFN) module. The simplified mathemat-
ical formulation can be expressed as:

Wl = Aun([pL RS LR (3)

B, = FEN(h{) @

FFN modules typically consist of two matrix
transformations with a non-linear activation func-
tion. In modern language models, the most preva-
lent FFN implementation uses SwiGLU activation,
which involves three essential matrices: the up-
projection matrix Uyp, the down-projection ma-
trix Vgown, and the gate matrix Wgye. The up-
projection matrix transforms the input to a higher
dimensional space for richer feature representation,
the down-projection matrix compresses the infor-
mation back to the original dimension, and the gate
matrix controls information flow through adaptive

feature weighting. The FFN output is computed
through the following operation:

hl = (act(hiWyate) @ (WUup))Vaown (5)

In this formulation, act(-) represents the activa-
tion function and ® denotes Hadamard product.

4 Method

Although our method is termed DSMOE, its train-
ing approach differs from traditional MoE methods
such as Switch Transformer (Fedus et al., 2022)
and DeepSeeKMOoE (Dai et al., 2024). Our ob-
jective is to achieve sparsity through partitioning
pre-trained models, where each expert inherits a
distinct portion of the original model’s knowledge.
Our approach is based on the principle that the
model should learn to selectively utilize different
aspects of pre-trained knowledge based on input
complexity, rather than routing tokens among in-
dependently trained experts. To implement this
insight, we present our method in three modules.

4.1 MLP Partitioning

The widespread adoption of MoE architectures in-
spires our exploration of sparsity in FFN layers,
suggesting that different parts of computation can
be dynamically activated based on input patterns.
Previous work has further revealed that FFN layers
essentially operate as key-value memories, where
different portions of the layer specialize in detect-
ing and processing distinct input patterns(Geva
et al., 2020). Building on these insights, we pro-
pose to directly partition pre-trained FFN layers.
As shown in Equation 5, we partition the matrices
U, V, and W into n groups along the intermedi-
ate dimension, where each group can be viewed as
an “expert” that inherits a portion of the original
transformation capabilities. When summing all ex-
pert outputs, this partitioned form yields identical
results to the original MLP computation:

hl, = (act(h} [Wh W)

W1
(Ri[Ur - Ua]) |
vl ®
= (act(hW1) © hLU)V; + -+ -

+(act(ﬁiWn) ©) l”;ngn)Vn

We can structurally split the original MLP layer
matrix into multiple small MLP matrices. To en-
able dynamic expert activation based on input, we
employ a gating network that determines which
experts should be activated. The expert’s output
is propagated to the subsequent layer only when
the corresponding gating activation value exceeds
a certain threshold 7. This can be formulated as:

0; = (act(htW;) ® hLU;)V;

n

ht = z; 0; * G(o(RVY3)) -

() r ifx>T
:U =
0 others

where Y = [Y1,...,Y,] € R¥" represents the
parameters of the gating network, and o(+) denotes
the sigmoid activation function.

To maintain consistent output norm regardless of
the number of active experts, similar to dropout, we
scale hff by the ratio of total expert count n to the
number of activated experts. This normalization
can be expressed as:

Y
hfg S n Aht 8)
iy Lo (hiYy) > 7]

4.2 Straight-Through Estimator

A key challenge in converting dense models to

sparse ones is maintaining the learning capability

of all experts. During the forward pass, experts

with activation values below the threshold 7 do not

participate in computation, as defined by the gating

function G(z) in Equation 7. However, this thresh-

olding operation creates a critical problem during

backpropagation - experts that are not activated
receive zero gradients:

oh, _ On; _ Ohl

oV, OW,; 0U;

onl

Y;

©))

=0,ifo(hlY;) <7

This gradient blocking prevents non-activated
experts from receiving training signals, leading
to a “dead expert" problem where these experts
become permanently inactive. Unlike traditional
MOoE models that train experts from scratch, our
experts inherit pre-trained knowledge that we wish
to preserve and adapt. To address this issue, we

employ the straight-through estimator technique,
which allows gradient flow through non-activated
experts while maintaining thresholded activation
during the forward pass:

S(x) = sg(G(x)) + 2 — sg(x)

hy =Y o0i-S(o(hiYy))

=1

(10)
(11

where the operator “sg(-)" is the “stop gradient"”
operator to prevent gradient back propagation. The
partial derivatives for experts and their gates below
the threshold are as follows. Let:

a; = act(ﬁéWi)
a} = act' (hYW;)
. (12)
gi = o(hY)
The gradients for expert parameters and their
gates can be derived as:

on. _ Jlai©u)T g ifgi>T
v, — . (13)
’ 0 ifgi <t
onl ()T @d - ((u; ©Vy)-g) ifgi>T
W = t 14
oW {0 ifgi < (19
ohl (M7 - (a; ®V;-g) ifg>7
90, —) (15)
' 0 ifg; <7
Oht . R
L=(h)" (00" (hYy)) (16)

oY;
The gradient dynamics reveal an important prop-
erty: since o’ (hLY;) > 0, an expert that produces
meaningful output o; for an input (h})T will re-
ceive gradients that increase its activation probabil-
ity for similar inputs in future iterations, regardless
of its current activation status. This adaptive mech-
anism ensures that experts can learn to specialize in
processing specific input patterns while maintain-
ing their inherited knowledge from pre-training.

4.3 Sparse Loss

Since our experts inherit from a dense model, the
model naturally tends to activate all experts to ac-
cess complete knowledge. However, this conflicts
with our goal of sparse computation. We introduce
a sparsity loss term that creates an adversarial ef-
fect with expert gate gradients, encouraging the

Model Configuration Params Activated Params FLOPs PPL ({)
LLaMA-1B d=2048, D=8192 1.24B 1.24B 2.53T 5.67
LLaMA-7B d=4096, D=11008 6.74B 6.74B 1353 T 3.40
LLaMA-1B

LLM-Pruner-channel d=1215, D=8192 889M 889M 1.50T 7.51
LLM-Pruner-block d=2048, D=3896.4 735M 735M 1.50T 7.46
SparseGPT d=2048, D=8192 1.24B 1.24B 2.53T 9.82
MoE d=2048, D=1024 X8, topK=3 1.24B 736M 1.50T 7.45
DSMoE(ours) d=2048, D=1024 x8 1.24B 735M 1.50T 7.41
LLaMA-7B

LLM-Pruner-channel d=2401, D=11008 3.95B 3.95B 793 T 4.01
LLM-Pruner-block d=11008, D=6256.5 3.94B 3.94B 793 T 4.01
SparseGPT d=4096, D=11008 6.74B 6.74B 1353 T 3.96
MoE d=2048, D=1376 x8,topK=3 6.74B 3.98B 799 T 4.12
DSMoE(ours) d=2048, D=1376 x8 6.74B 3.93B 791 T 391

Table 1: Results of perplexity (PPL) across different language models. The bold values indicate the best-performing
method among various acceleration approaches. The Configuration column describes the specific model architecture,
where d represents the hidden dimension, D denotes the expansion dimension in MLP layers (for LLM-Pruner-block
method, this represents the average value), X n indicates the use of n parallel MLP layers, and topK specifies the
number of activated experts per layer in the MoE architecture. The Params column shows the total number of model
parameters, while Activated Params indicates the average number of parameters activated during inference. FLOPs
(Floating Point Operations) represents the average number of floating-point operations per sample.

model to learn which knowledge is truly necessary
for different inputs.

L= ELM +)\Lsparse (17)

where Lgparse denotes the sparsity loss term, which
we abbreviate as Ls in subsequent equations. The
hyperparameter A controls the strength of spar-
sity regularization, with larger values encouraging
sparser activation patterns.

A L N A
L=Limt 73 DY LalGlo(iYn)) (18)

We employ L1 norm as the sparsity function L.
Given that our activation function o(x) > 0, our
final loss function becomes:

A L N A
L=Loy+ 73> > GlolYn) (19

=1 n=1

The gradients introduced by this sparse loss term
create an adversarial effect with the gate gradients,
encouraging the model to actively suppress the out-
put of less important experts across different layers.

It is worth noting that our approach differs fun-
damentally from the MoE framework and therefore
does not require auxiliary load balancing losses.

While load balancing losses in MoE aim to en-
sure uniform training across experts, our objective
is solely focused on learning sparse activation pat-
terns. Furthermore, unlike MoE which typically en-
forces a fixed number of active experts, our method
allows for flexible activation patterns determined
by the learned gating mechanism.

5 Experiments

5.1 Dataset

We gathered datasets from various domains to con-
tinually pre-train the base model. For the general
domain, we used the Fineweb-edu dataset, which
consists of high-quality educational web pages
filtered from the Fineweb dataset (Penedo et al.,
2024). In the math and coding domains, we se-
lected the OpenWebMath (Paster et al., 2024) and
StarCoder (Li et al., 2023) datasets respectively.
The OpenWebMath dataset contains high-quality
mathematical text data extracted from web pages,
while the StarCoder dataset offers a diverse range
of code data and has been demonstrated to effec-
tively pre-train well-behaved code models. Fur-
thermore, it has been demonstrated that incorpo-
rating synthetic data enhances model pre-training
performance (Abdin et al., 2024). Therefore, we
introduced the Cosmopedia dataset to leverage this
advantage(Ben Allal et al., 2024).

Furthermore, we mixed datasets from different

Model Hellaswag LAMBADA PIQA SIQA StoryCloze Wino GSMS8K TriviaQA WebQs NatrualQs
LLaMA-1B 64.09 61.05 75.51 42.47 72.58 60.85 4.85 12.52 36.08 22.49
LLaMA-7B 76.39 72.34 79.05 44.67 79.15 70.87 14.70 26.28 61.89 32.82
LLaMA-IB

LLM-Pruner-channel 53.44 45.04 71.43 40.94 68.67 58.45 1.44 6.98 17.46 14.56
LLM-Pruner-block 51.05 46.28 71.71 41.04 68.62 56.27 1.36 7.28 18.46 14.56
SparseGPT 54.01 56.49 71.10 40.68 68.05 57.30 1.51 5.29 14.44 11.61
MoE 49.06 44.84 70.02 41.05 65.47 55.64 1.62 5.76 13.49 11.27
DSMokE(ours) 50.92 48.12 72.36 41.14 68.78 56.35 1.67 8.17 25.52 18.21
LLaMA-7B

LLM-Pruner-channel 66.41 61.63 74.97 43.19 75.30 66.85 4.85 12.63 36.02 20.57
LLM-Pruner-block 67.93 62.02 76.22 44.26 75.46 63.53 1.81 12.96 38.77 21.65
SparseGPT 73.60 67.43 77.36 4421 76.37 70.48 8.33 17.61 47.83 24.90
MoE 63.89 60.49 74.10 43.29 72.90 61.17 3.26 11.58 31.25 19.09
DSMokE(ours) 70.22 67.61 78.12 44.31 76.37 66.77 6.41 22.04 57.94 29.92

Table 2: Performances of language models on downstream tasks. The best score is marked in bold.

domains. Due to computational resource limita-
tions, we set the total amount of training data to 10
billion tokens. Finally, we used the tokenizers from
LLaMA to segment the data, limiting the maximum
sample length to 1024 tokens for each. We ran-
domly sampled 5,000 non-overlapping instances
from each dataset as the validation set, ensuring no
intersection with the training set.

5.2 Experimental Setup

We evaluate DSMoE on two pre-trained models of
different scales: Llama-7B' and Llama-1B?. For
our method’s hyperparameters, we simply set the
activation threshold 7 = 0.5 and the sparsity regu-
larization coefficient A = 1.0.

We compare our approach with several baselines:
the channel-wise and block-wise methods from
LLM-Pruner (a structured pruning approach), and
SparseGPT (an unstructured pruning method). To
ensure fair comparison, we first measure the FLOPs
of our trained model, then estimate the pruning
ratio for baseline methods to maintain a slightly
higher FLOPs than our method. The FLOPs metric
directly corresponds to the number of parameters
involved in computation, providing a standardized
measure of computational efficiency.

Additionally, we explore an alternative approach
by applying the same FFN partitioning scheme but
training it as a traditional MoE architecture (with
fixed expert selection and standard MoE training
objectives) to investigate whether the conventional
MoE framework better accommodates the warm-
starting paradigm.

"https://huggingface.co/meta-1lama/Llama-2-7b
2h'ctps ://huggingface.co/meta-1lama/Llama-3.
2-1B

5.3 Main Results

We first present the model’s perplexity on the vali-
dation set. Following previous work(Touvron et al.,
2023; Brown et al., 2020; Su et al., 2024; Dai
et al., 2024), we then evaluate the model’s perfor-
mance on downstream benchmarks, which includes
zero-shot accuracy testing on HellaSwag(Zellers
et al., 2019), LAMBADA (Paperno et al., 2016),
SIQA(Sap et al., 2019), PIQA(Bisk et al., 2020),
StoryCloze(Mostafazadeh et al., 2016), and Wino-
grande(Sakaguchi et al., 2021). Additionally,
we conduct 5-shot evaluation measuring exact
match performance on TriviaQA(Joshi et al.,
2017), WebQuestions (WebQs)(Berant et al., 2013),
GSMS8K(Cobbe et al., 2021), and Natural Ques-
tions (NaturalQs)(Kwiatkowski et al., 2019).

5.3.1 Perplexity Results

Table 1 presents the perplexity results of the base-
line dense model and its pruned, sparsified variants.
The results demonstrate that DSMoE consistently
outperforms baseline models under equivalent ac-
tivation constraints. Since SparseGPT accelera-
tion requires specific pruning ratios and hardware
support, we conducted our comparative analysis
only on models with equivalent parameter prun-
ing levels. Our experimental results indicate that
DSMOoE achieves superior efficiency compared to
static parameter pruning. Furthermore, DSMoE
exhibits better performance than fixed-activation
methods like MoE, which can be attributed to the
fact that knowledge from all experts contributes to
the model’s learning process, enabling it to develop
the ability to flexibly select activations based on in-
put. Additionally, DSMoE exhibits distinctive fea-
ture processing capabilities, learning layer-specific

https://huggingface.co/meta-llama/Llama-2-7b
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/meta-llama/Llama-3.2-1B

activation patterns that naturally emerge from the
input complexity. We will examine these emergent
patterns in detail in the analysis section.

In conclusion, DSMoE demonstrates consistent
superiority across models of two different scales,
highlighting its robust advantages.

5.3.2 Benchmark Results

Table 2 presents the benchmark performance of var-
ious pruning methods, traditional MoE approaches,
and DSMoE. DSMoE achieved the best perfor-
mance in 7 out of 10 benchmarks for both LLaMA-
1B and LLaMA-7B model architectures, demon-
strating superior effectiveness over existing sparsi-
fication methods across most evaluation metrics.

Specifically, DSMoE exhibited excellent perfor-
mance on inference tasks (i.e., the first 6 bench-
marks), achieving the best results on PIQA, SIQA,
and StoryCloze test sets. While not achieving top
performance on Hellaswag, LAMBADA, and Wino
test sets, DSMOoE still ranked among the leading
models. For generation tasks (i.e., the last 4 bench-
marks), DSMoE demonstrated remarkable effec-
tiveness. Apart from slightly lower performance on
GSMSK with LLaMA-7B compared to SparseGPT,
it significantly outperformed other sparse methods
on all other test sets, with performance only a few
points below the dense model. These results high-
light DSMoE’s potential, particularly in generation
tasks.

Furthermore, we observed that the performance
gap between DSMOoE and other sparse approaches
was more pronounced in LLaMA-7B compared
to LLaMA-1B. This may be attributed to greater
model redundancy at larger parameter scales, en-
abling DSMoE to more effectively prune unneces-
sary information. This observation suggests the po-
tential scalability of DSMoE to models with larger
parameter counts.

6 Analyses

6.1 Ablation Study: Removing
Straight-Through Estimator

To validate the necessity of the straight-through
estimator mechanism in DSMoE, we conduct an
ablation study by removing this component. Specif-
ically, instead of using Equation (11) for training,
we employ Equation (7). We perform this compar-
ative analysis on the LLaMA-1B model.

As shown in Table 3, the model without straight-
through estimator significantly underperforms the

Model DSMoE w/o S(z)
Hellaswag 50.92 32.29
LAMBADA 48.12 27.79
PIQA 72.36 62.73
SIQA 41.14 39.30
StoryCloze 68.67 57.14
Wino 56.35 50.83
GSMS8K 1.67 0.38
TriviaQA 8.17 2.47
WebQs 25.52 2.95
NatrualQs 18.21 1.00
PPL 7.41 12.75

Table 3: Ablation study of DMoE against the model
without direct estimation function S(x), where G(x) is
employed in place of S(x).

complete model in terms of both perplexity and
benchmark performance. This substantial degrada-
tion occurs because routing parameters for non-
activated experts receive zero gradients during
backpropagation, preventing these routes from be-
ing adjusted to utilize more of the pre-trained
knowledge inherited from the dense model. With-
out the ability to adaptively modify routing deci-
sions, potentially valuable knowledge encoded in
these experts becomes permanently inaccessible,
leading to significant performance loss.

6.2 Ablation Study: Training without
Piecewise Function G(x)

To validate the necessity of incorporating piecewise
function learning during training, we conduct an
ablation study by removing the piecewise function
G(x) and using the following formula for training:

n

hl = Zoi * U(l;in)
i=1

(20)

Prior to inference, we determine the appropriate
activation level by adjusting the threshold value on
the validation set, with a step size of 0.05. Figure
2 illustrates the relationship between perplexity
and the average number of activated experts on the
validation set.

The results clearly demonstrate that as the thresh-
old increases, perplexity rises rapidly while the av-
erage number of activated experts decreases corre-
spondingly. This observation indicates that without
the piecewise function G(x), all experts participate
in computation and gradient updates. Under the
constraint of sparsity loss, the model tends to dis-
tribute activation values uniformly across all ex-
perts rather than learning to distinctively identify
more important experts. This leads to two conse-

log PPL and Activated Number vs T

log PPL (w/o G(x))
—&— Activated Number (w/o G(x))

 log PPL (DSMoE)
% Activated Number (DSMoE)

Figure 2: During the training phase, G(x) is not utilized.
In the inference phase, G(x) is employed for activation.
The model’s perplexity and the number of activated ex-
perts vary with the threshold 7. The pentagram markers
indicate the perplexity and number of activated experts
achieved by DSMoE.

quences: first, the activation values for each expert
are suppressed to a relatively low level, and second,
the learned importance of each expert becomes
relatively uniform. Under the same activation con-
straints as DSMoE, the approach without the piece-
wise function G(x) exhibits higher perplexity, high-
lighting how this training-inference inconsistency
significantly degrades model performance.

6.3 Layer-wise Activation Patterns Analysis

B 538 534 572 534 5

L15 S28538 1.73 R2i45Ee2550
L14 S286EN 1.99 2.03 1.99
L13-2.48 2.08 1.67 1.58
L12
L11
L10
L9
L8 #SI08N 2.48 EEsEy 2.69
L7-2.47 209 266 2.30

N 2.72 239

3.45

«

Layer
Layer
IS

w

Number of Active Experts

16-250 230 2.62 230
15-234 236 256 227
14-211 225 245 216
13- 193 211 238 2.06 25
12-169 192 242 222

Avg. - 335 3.03 3.13 2.84

Number of Active Experts

~

Dataset Dataset

(a) Heatmap for 1B model (b) Heatmap for 7B model

Figure 3: Heatmap visualization of expert activation
counts across different layers and average expert activa-
tions for LLaMA-7B and LLaMA-1B models on various
validation sets.

We evaluated DSMOE across different validation

sets and generated heatmaps to visualize the distri-
bution of activated experts across network layers.
Both model sizes exhibit a distinctive activation
pattern: higher activation counts at both input and
output layers, elevated activation in middle layers,
and lower activation in remaining layers - forming
a “W-shaped" pattern.

The bottom layers, which typically encode fun-
damental features, demonstrate high expert activa-
tion. This suggests the model’s tendency to acti-
vate multiple experts in parallel to process multi-
dimensional input features, potentially serving as
an “information preservation mechanism" to re-
tain critical base-level information. The top layers,
responsible for final decision-making and output
generation, show increased expert activation to en-
hance output robustness by reducing individual ex-
pert bias through collective decision-making. The
elevated activation in middle layers suggests these
layers serve as critical zones for feature transfor-
mation, integration, and processing of long-range
dependencies. This bottom-middle-top activation
pattern forms a complete information processing
pipeline: bottom layers for extensive collection
and processing of basic features, middle layers for
feature transformation and information integration,
and top layers for comprehensive decision-making
and output generation.

Furthermore, we observed significant variations
in both the average number of activated experts
and activation patterns across different test sets.
This indicates that DSMoE implements dynamic
regulation mechanisms specific to different inputs
rather than converging to a homogeneous learning
pattern.

These observations provide novel insights for
future MoE architectures, suggesting that expert
activation counts can be strategically varied across
different layers of the network.

7 Conclusion

This paper presents DSMoE, a novel approach that
achieves model sparsification by partitioning pre-
trained FFN layers into computational blocks. Ex-
periments on LLaMA models demonstrate supe-
rior performance over existing pruning and MoE
approaches under equivalent computational con-
straints, while revealing distinctive layerwise acti-
vation patterns for future MoE designs.

8 Limitations

Due to computational resource constraints, we
were only able to evaluate DSMoE on language
models up to 7B parameters. Future work with
access to larger computational resources could ex-
plore the scalability and effectiveness of our ap-
proach on larger model architectures, which may
reveal additional insights about the relationship
between model scale and dynamic sparsification
patterns.

References

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien
Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J] Hewett, Mojan Javaheripi, Piero
Kauffmann, et al. 2024. Phi-4 technical report. arXiv
preprint arXiv:2412.08905.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: A family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805, 1.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gen-
nari do Nascimento, Torsten Hoefler, and James
Hensman. 2024. Slicegpt: Compress large language
models by deleting rows and columns. arXiv preprint
arXiv:2401.15024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,
Thomas Wolf, and Leandro von Werra. 2024. Cos-
mopedia.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533-1544.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
USVSN Sai Prashanth, Edward Raff, et al. 2023.
Pythia: A suite for analyzing large language mod-
els across training and scaling. In International
Conference on Machine Learning, pages 2397-2430.
PMLR.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqga: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432-7439.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi.
2024. A survey on deep neural network pruning: Tax-
onomy, comparison, analysis, and recommendations.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

Damai Dai, Li Dong, Shuming Ma, Bo Zheng, Zhifang
Sui, Baobao Chang, and Furu Wei. 2022. Stablemoe:
Stable routing strategy for mixture of experts. arXiv
preprint arXiv:2204.08396.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Determine Filters’Importance. 2016. Pruning filters for
efficient convnets.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in one-
shot.(2023). URL https://arxiv. org/abs/2301.00774.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2020. Transformer feed-forward layers are key-
value memories. arXiv preprint arXiv:2012.14913.

Song Han, Huizi Mao, and William J Dally. 2015. Deep
compression: Compressing deep neural networks
with pruning, trained quantization and huffman cod-
ing. arXiv preprint arXiv:1510.00149.

Quzhe Huang, Zhenwei An, Nan Zhuang, Mingxu Tao,
Chen Zhang, Yang Jin, Kun Xu, Liwei Chen, Song-
fang Huang, and Yansong Feng. 2024. Harder tasks
need more experts: Dynamic routing in moe models.
CoRR, abs/2403.07652.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, et al. 2024.
Mixtral of experts. arXiv preprint arXiv:2401.04088.

https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://doi.org/10.48550/ARXIV.2403.07652
https://doi.org/10.48550/ARXIV.2403.07652
https://doi.org/10.48550/ARXIV.2403.07652

Peng Jin, Bo Zhu, Li Yuan, and Shuicheng Yan. 2024.
Moe++: Accelerating mixture-of-experts methods
with zero-computation experts. arXiv preprint
arXiv:2410.07348.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaga: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453—
466.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. 2018. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint
arXiv:1810.02340.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason T. Stiller-
man, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur-
vashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Na-
dav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Mufioz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! Trans. Mach. Learn. Res., 2023.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun
Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin Chen,

10

Wenming Yang, Qingmin Liao, and Wayne Zhang.
2021. Group fisher pruning for practical network
compression. In International Conference on Ma-
chine Learning, pages 7021-7032. PMLR.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. 2017.
Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE
international conference on computer vision, pages

5058-5066.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. Advances in neural information pro-
cessing systems, 36:21702-21720.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang,
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng
Chen. Shortgpt: Layers in large language models
are more redundant than you expect, 2024. URL
https://arxiv. org/abs/2403.03853.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and evaluation framework for deeper under-
standing of commonsense stories. arXiv preprint
arXiv:1604.01696.

Manuel Nonnenmacher, Thomas Pfeil, Ingo Steinwart,
and David Reeb. 2021. Sosp: Efficiently capturing
global correlations by second-order structured prun-
ing. arXiv preprint arXiv:2110.11395.

Denis Paperno, German Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.0603 1.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayeyv,
and Jimmy Ba. 2024. Openwebmath: An open
dataset of high-quality mathematical web text. In
The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Guilherme Penedo, Hynek Kydlicek, Anton Lozhkov,
Margaret Mitchell, Colin Raffel, Leandro Von Werra,
Thomas Wolf, et al. 2024. The fineweb datasets:
Decanting the web for the finest text data at scale.
arXiv preprint arXiv:2406.17557.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu
https://openreview.net/forum?id=jKHmjlpViu

Zhenpeng Su, Xing Wu, Zijia Lin, Yizhe Xiong, Minx-
uan Lv, Guangyuan Ma, Hui Chen, Songlin Hu,
and Guiguang Ding. 2024. Cartesianmoe: Boost-
ing knowledge sharing among experts via cartesian
product routing in mixture-of-experts. arXiv preprint
arXiv:2410.16077.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico
Kolter. 2023. A simple and effective pruning ap-
proach for large language models. arXiv preprint
arXiv:2306.11695.

Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruobing
Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen Yang,
Jonny Han, Xiaobo Shu, et al. 2024. Hunyuan-
large: An open-source moe model with 52 billion
activated parameters by tencent. arXiv preprint
arXiv:2411.02265.

Yehui Tang, Yunhe Wang, Yixing Xu, Yiping Deng,
Chao Xu, Dacheng Tao, and Chang Xu. 2021. Mani-
fold regularized dynamic network pruning. In Pro-
ceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 5018-5028.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. Advances in neural informa-
tion processing systems, 29.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and
Ping Wang. 2019. Gate decorator: Global filter prun-
ing method for accelerating deep convolutional neu-
ral networks. Advances in neural information pro-
cessing systems, 32.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

11

	Introduction
	Related Work
	Background
	Method
	MLP Partitioning
	Straight-Through Estimator
	Sparse Loss

	Experiments
	Dataset
	Experimental Setup
	Main Results
	Perplexity Results
	Benchmark Results

	Analyses
	Ablation Study: Removing Straight-Through Estimator
	Ablation Study: Training without Piecewise Function G(x)
	Layer-wise Activation Patterns Analysis

	Conclusion
	Limitations

