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Abstract

As large language models continue to scale,001
computational costs and resource consumption002
have emerged as significant challenges. While003
existing sparsification methods like pruning re-004
duce computational overhead, they risk los-005
ing model knowledge through parameter re-006
moval. This paper proposes DSMoE (Dynamic007
Sparse Mixture-of-Experts), a novel approach008
that achieves sparsification by partitioning pre-009
trained FFN layers into computational blocks.010
We implement adaptive expert routing using011
sigmoid activation and straight-through estima-012
tors, enabling tokens to flexibly access differ-013
ent aspects of model knowledge based on input014
complexity. Additionally, we introduce a spar-015
sity loss term to balance performance and com-016
putational efficiency. Extensive experiments017
on LLaMA models demonstrate that under018
equivalent computational constraints, DSMoE019
achieves superior performance compared to ex-020
isting pruning and MoE approaches across lan-021
guage modeling and downstream tasks, partic-022
ularly excelling in generation tasks. Analysis023
reveals that DSMoE learns distinctive layer-024
wise activation patterns, providing new insights025
for future MoE architecture design.026

1 Introduction027

Large Language Models(LLM) have demonstrated028

remarkable performance across various down-029

stream tasks(Touvron et al., 2023; Dai et al., 2022;030

Anil et al., 2023; Biderman et al., 2023). How-031

ever, as model sizes continue to expand, computa-032

tional costs and resource consumption grow expo-033

nentially. How to improve computational efficiency034

while maintaining model performance has become035

a pressing challenge(Cheng et al., 2024).036

At the algorithmic level, approaches to model037

efficiency optimization generally follow two038

paradigms: post-training compression and ac-039

celeration of dense models, or training of Mix-040

ture of Experts (MoE) architectures. While com- 041

pression methods like pruning achieve efficiency 042

through permanent parameter removal(Ashkboos 043

et al., 2024; Ma et al., 2023; Frantar and Alis- 044

tarh, 2023), they may discard valuable knowl- 045

edge and lack flexibility in handling inputs of 046

varying complexity. Conversely, although ef- 047

fective, MoE approaches—whether trained from 048

scratch(Fedus et al., 2022; Dai et al., 2024; Liu 049

et al., 2024) or warm-started from dense mod- 050

els(Jiang et al., 2024)—cannot reduce the compu- 051

tational cost of the original dense model. Given 052

that the most widely used and effective foundation 053

models still maintain dense architectures (such as 054

LLaMA(Touvron et al., 2023), Qwen(Bai et al., 055

2023)), there is a crucial need to optimize these 056

widely-adopted dense models for better efficiency 057

without sacrificing their performance 058

To address these limitations, we propose 059

DSMoE, which achieves model sparsification by 060

partitioning pre-trained FFN layers into smaller 061

computational blocks. Unlike existing approaches, 062

DSMoE preserves all model parameters, eliminat- 063

ing the risk of knowledge loss, while achieving 064

lower computational overhead than the original 065

dense model through dynamic routing mechanisms. 066

This design maintains the model’s complete knowl- 067

edge while improving computational efficiency. 068

Extensive experiments conducted on LLaMA- 069

1B and LLaMA-7B models demonstrate encour- 070

aging results. Under equivalent computational 071

constraints, our method achieves significant im- 072

provements in language modeling perplexity and 073

downstream task performance compared to exist- 074

ing pruning and MoE approaches. Notably superior 075

performance is observed in reasoning and question- 076

answering tasks, particularly in generation tasks. 077

The main contributions of this work include: 078

• proposing a novel approach that enables tran- 079

sition from dense to dynamically sparse mod- 080
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Figure 1: The Overview of DSMoE versus Traditional MoE Framework Architectures. The structure shown in the
figure is a simplified representation of the transformer backbone. We have simplified the MLP layer structure here;
the MLP layer also includes a gating matrix with dimensions matching the upper matrix, which performs Hadamard
multiplication with the upper matrix without affecting our partitioning scheme. In the MLP layer, we partition
matrices along the intermediate dimension, where portions corresponding to the original matrix multiplication form
new expert MLP layers.

els by preserving and partitioning pre-trained081

knowledge, enabling different tokens to adap-082

tively access varying portions of model knowl-083

edge.084

• validating the method’s effectiveness across085

multiple benchmarks through extensive exper-086

imentation, providing new insights for MoE087

large model optimization.088

2 Related Work089

Model pruning is an effective approach to achiev-090

ing sparse LLMs while maintaining model func-091

tionality. Pruning methods can be categorized into092

two main types: unstructured and structured prun-093

ing. Unstructured pruning operates at the weight094

level, allowing for arbitrary weight removal (Lee095

et al., 2018). In large language models, pruned096

weights are set to zero (Frantar and Alistarh, 2023;097

Sun et al., 2023). However, this method requires098

specialized hardware and software support for ac-099

celeration(Han et al., 2015; Wen et al., 2016; Fil-100

ters’Importance, 2016; Tang et al., 2021). Struc-101

tured pruning takes a coarser-grained approach by102

removing complete structural units such as convo-103

lution kernels, channels, attention heads, or entire104

layers (You et al., 2019; Ashkboos et al., 2024; Liu105

et al., 2021; Ma et al., 2023; Men et al.). Its main106

advantage is the ability to directly produce regu-107

lar, narrow model architectures that can achieve108

acceleration without specialized sparse computa-109

tion libraries (Luo et al., 2017; Liu et al., 2021; Fil- 110

ters’Importance, 2016; Nonnenmacher et al., 2021). 111

However, both approaches face a fundamental lim- 112

itation: achieving efficiency through permanent pa- 113

rameter removal may discard valuable knowledge 114

and lose the ability to adapt computation based on 115

input complexity. 116

In recent years, there has been growing interest 117

in exploring sparse computation in large language 118

models. Mixture-of-Experts (MoE) represents a 119

pioneering approach that demonstrates how sparse 120

activation can effectively balance model capacity 121

and computational efficiency. In MoE architec- 122

tures, only a subset of FFN modules (experts) are 123

activated for each input token (Fedus et al., 2022; 124

Lepikhin et al., 2021; Huang et al., 2024). This 125

foundational idea of conditional computation has 126

inspired various innovations in expert activation 127

strategies. Some works explore heterogeneous ex- 128

pert architectures (Sun et al., 2024) or introduce 129

zero-computation experts (Jin et al., 2024) to fur- 130

ther optimize computational efficiency. These ad- 131

vances in MoE architectures demonstrate the po- 132

tential of sparse computation and motivate our ex- 133

ploration of applying similar principles within indi- 134

vidual FFN layers. 135

3 Background 136

For simplicity, we focus on the prevalent archi- 137

tecture of generative large language models while 138

maintaining a concise mathematical formulation. 139
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In autoregressive generation tasks, given a se-140

quence X = (x1, x2, ..., xT ) of length T , the141

model iteratively produces a probability distribu-142

tion over the vocabulary for each position condi-143

tioned on preceding tokens. This process can be144

formulated as:145

P·,t = softmax(EHL
·,t)

HL = Transformer(x1, x2, ..., xT−1)
(1)146

Here, L denotes the number of layers in the147

Transformer architecture. For any position t, P·,t148

represents the probability distribution over the vo-149

cabulary, derived from the t-th column of the150

hidden state matrix hL. Specifically, HL =151

[hL1 , h
L
2 , ..., h

L
T−1] contains the hidden representa-152

tions from the final layer, where hLt is the contex-153

tual embedding at position t. The probability of the154

ground-truth token xt+1 is denoted as Pxt+1,t in155

the distribution P ·, t. The transformation from hid-156

den states to probability distributions is achieved157

through a linear projection matrix E, followed by158

a softmax operation.159

In typical scenarios, we employ cross-entropy160

loss for autoregressive learning, which can be ex-161

pressed as:162

LLM = −
T−1∑
t=1

logP (xt+1|x≤t) (2)163

The Transformer architecture consists of multi-164

ple layer-wise submodules, where each layer com-165

prises a self-attention module and a Feed-Forward166

Network (FFN) module. The simplified mathemat-167

ical formulation can be expressed as:168

ĥlt = Attn([hl−1
1 , hl−1

2 , ..., hl−1
t ]) (3)169

170

hlt = FFN(ĥlt) (4)171

FFN modules typically consist of two matrix172

transformations with a non-linear activation func-173

tion. In modern language models, the most preva-174

lent FFN implementation uses SwiGLU activation,175

which involves three essential matrices: the up-176

projection matrix Uup, the down-projection ma-177

trix Vdown, and the gate matrix Wgate. The up-178

projection matrix transforms the input to a higher179

dimensional space for richer feature representation,180

the down-projection matrix compresses the infor-181

mation back to the original dimension, and the gate182

matrix controls information flow through adaptive183

feature weighting. The FFN output is computed 184

through the following operation: 185

hlt = (act(ĥltWgate)⊙ (ĥltUup))Vdown (5) 186

In this formulation, act(·) represents the activa- 187

tion function and ⊙ denotes Hadamard product. 188

4 Method 189

Although our method is termed DSMoE, its train- 190

ing approach differs from traditional MoE methods 191

such as Switch Transformer (Fedus et al., 2022) 192

and DeepSeeKMoE (Dai et al., 2024). Our ob- 193

jective is to achieve sparsity through partitioning 194

pre-trained models, where each expert inherits a 195

distinct portion of the original model’s knowledge. 196

Our approach is based on the principle that the 197

model should learn to selectively utilize different 198

aspects of pre-trained knowledge based on input 199

complexity, rather than routing tokens among in- 200

dependently trained experts. To implement this 201

insight, we present our method in three modules. 202

4.1 MLP Partitioning 203

The widespread adoption of MoE architectures in- 204

spires our exploration of sparsity in FFN layers, 205

suggesting that different parts of computation can 206

be dynamically activated based on input patterns. 207

Previous work has further revealed that FFN layers 208

essentially operate as key-value memories, where 209

different portions of the layer specialize in detect- 210

ing and processing distinct input patterns(Geva 211

et al., 2020). Building on these insights, we pro- 212

pose to directly partition pre-trained FFN layers. 213

As shown in Equation 5, we partition the matrices 214

U, V, and W into n groups along the intermedi- 215

ate dimension, where each group can be viewed as 216

an “expert" that inherits a portion of the original 217

transformation capabilities. When summing all ex- 218

pert outputs, this partitioned form yields identical 219

results to the original MLP computation: 220

hlt = (act(ĥlt
[
W1 · · · Wn

]
)⊙

(ĥlt
[
U1 · · · Un

]
))

V1
...
Vn


= (act(ĥltW1)⊙ ĥltU1)V1 + · · ·

+(act(ĥltWn)⊙ ĥltUn)Vn

(6) 221
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We can structurally split the original MLP layer222

matrix into multiple small MLP matrices. To en-223

able dynamic expert activation based on input, we224

employ a gating network that determines which225

experts should be activated. The expert’s output226

is propagated to the subsequent layer only when227

the corresponding gating activation value exceeds228

a certain threshold τ . This can be formulated as:229

oi = (act(ĥltWi)⊙ ĥltUi)Vi

hlt =

n∑
i=1

oi ∗G(σ(ĥltYi))

G(x) =

{
x if x > τ

0 others

(7)230

where Y = [Y1, . . . ,Yn] ∈ Rd×n represents the231

parameters of the gating network, and σ(·) denotes232

the sigmoid activation function.233

To maintain consistent output norm regardless of234

the number of active experts, similar to dropout, we235

scale hlt by the ratio of total expert count n to the236

number of activated experts. This normalization237

can be expressed as:238

hlt =
n · hlt∑n

i=1 I[σ(ĥltYk) > τ ]
(8)239

4.2 Straight-Through Estimator240

A key challenge in converting dense models to241

sparse ones is maintaining the learning capability242

of all experts. During the forward pass, experts243

with activation values below the threshold τ do not244

participate in computation, as defined by the gating245

function G(x) in Equation 7. However, this thresh-246

olding operation creates a critical problem during247

backpropagation - experts that are not activated248

receive zero gradients:249

∂hlt
∂Vi

=
∂hlt
∂Wi

=
∂hlt
∂Ui

=

∂hlt
∂Yi

= 0, if σ(ĥltYi) ≤ τ

(9)250

This gradient blocking prevents non-activated251

experts from receiving training signals, leading252

to a “dead expert" problem where these experts253

become permanently inactive. Unlike traditional254

MoE models that train experts from scratch, our255

experts inherit pre-trained knowledge that we wish256

to preserve and adapt. To address this issue, we257

employ the straight-through estimator technique, 258

which allows gradient flow through non-activated 259

experts while maintaining thresholded activation 260

during the forward pass: 261

S(x) = sg(G(x)) + x− sg(x) (10) 262
263

hlt =
n∑

i=1

oi · S(σ(ĥltYk)) (11) 264

where the operator “sg(·)" is the “stop gradient" 265

operator to prevent gradient back propagation. The 266

partial derivatives for experts and their gates below 267

the threshold are as follows. Let: 268

ai = act(ĥltWi)

a′i = act′(ĥltWi)

gi = σ(ĥltYi)

ui = ĥltUi

(12) 269

The gradients for expert parameters and their 270

gates can be derived as: 271

∂hl
t

∂Vi
=

{
(ai ⊙ ui)

⊤ · gi if gi > τ

0 if gi ≤ τ
(13) 272

273
∂hl

t
∂Wi

=

{
(ĥlt)

⊤ ⊙ a′i · ((ui ⊙Vi) · gi) if gi > τ

0 if gi ≤ τ
(14) 274

275

∂hl
t

∂Ui
=

{
(ĥlt)

⊤ · (ai ⊙Vi · gi) if gi > τ

0 if gi ≤ τ
(15) 276

277
∂hlt
∂Yi

= (ĥlt)
⊤ · (oi · σ′(ĥltYi)) (16) 278

The gradient dynamics reveal an important prop- 279

erty: since σ′(ĥltYi) > 0, an expert that produces 280

meaningful output oi for an input (ĥlt)
⊤ will re- 281

ceive gradients that increase its activation probabil- 282

ity for similar inputs in future iterations, regardless 283

of its current activation status. This adaptive mech- 284

anism ensures that experts can learn to specialize in 285

processing specific input patterns while maintain- 286

ing their inherited knowledge from pre-training. 287

4.3 Sparse Loss 288

Since our experts inherit from a dense model, the 289

model naturally tends to activate all experts to ac- 290

cess complete knowledge. However, this conflicts 291

with our goal of sparse computation. We introduce 292

a sparsity loss term that creates an adversarial ef- 293

fect with expert gate gradients, encouraging the 294
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Model Configuration Params Activated Params FLOPs PPL (↓)

LLaMA-1B d=2048, D=8192 1.24B 1.24B 2.53 T 5.67
LLaMA-7B d=4096, D=11008 6.74B 6.74B 13.53 T 3.40

LLaMA-1B

LLM-Pruner-channel d=1215, D=8192 889M 889M 1.50 T 7.51
LLM-Pruner-block d=2048, D=3896.4 735M 735M 1.50 T 7.46
SparseGPT d=2048, D=8192 1.24B 1.24B 2.53 T 9.82
MoE d=2048, D=1024 ×8, topK=3 1.24B 736M 1.50 T 7.45
DSMoE(ours) d=2048, D=1024 ×8 1.24B 735M 1.50 T 7.41

LLaMA-7B

LLM-Pruner-channel d=2401, D=11008 3.95B 3.95B 7.93 T 4.01
LLM-Pruner-block d=11008, D=6256.5 3.94B 3.94B 7.93 T 4.01
SparseGPT d=4096, D=11008 6.74B 6.74B 13.53 T 3.96
MoE d=2048, D=1376 ×8, topK=3 6.74B 3.98B 7.99 T 4.12
DSMoE(ours) d=2048, D=1376 ×8 6.74B 3.93B 7.91 T 3.91

Table 1: Results of perplexity (PPL) across different language models. The bold values indicate the best-performing
method among various acceleration approaches. The Configuration column describes the specific model architecture,
where d represents the hidden dimension, D denotes the expansion dimension in MLP layers (for LLM-Pruner-block
method, this represents the average value), × n indicates the use of n parallel MLP layers, and topK specifies the
number of activated experts per layer in the MoE architecture. The Params column shows the total number of model
parameters, while Activated Params indicates the average number of parameters activated during inference. FLOPs
(Floating Point Operations) represents the average number of floating-point operations per sample.

model to learn which knowledge is truly necessary295

for different inputs.296

L = LLM + λLsparse (17)297

where Lsparse denotes the sparsity loss term, which298

we abbreviate as Ls in subsequent equations. The299

hyperparameter λ controls the strength of spar-300

sity regularization, with larger values encouraging301

sparser activation patterns.302

L = LLM +
λ

LN

L∑
l=1

N∑
n=1

Ls(G(σ(ĥltYn))) (18)303

We employ L1 norm as the sparsity function Ls.304

Given that our activation function σ(x) > 0, our305

final loss function becomes:306

L = LLM +
λ

LN

L∑
l=1

N∑
n=1

G(σ(ĥltYn)) (19)307

The gradients introduced by this sparse loss term308

create an adversarial effect with the gate gradients,309

encouraging the model to actively suppress the out-310

put of less important experts across different layers.311

It is worth noting that our approach differs fun-312

damentally from the MoE framework and therefore313

does not require auxiliary load balancing losses.314

While load balancing losses in MoE aim to en- 315

sure uniform training across experts, our objective 316

is solely focused on learning sparse activation pat- 317

terns. Furthermore, unlike MoE which typically en- 318

forces a fixed number of active experts, our method 319

allows for flexible activation patterns determined 320

by the learned gating mechanism. 321

5 Experiments 322

5.1 Dataset 323

We gathered datasets from various domains to con- 324

tinually pre-train the base model. For the general 325

domain, we used the Fineweb-edu dataset, which 326

consists of high-quality educational web pages 327

filtered from the Fineweb dataset (Penedo et al., 328

2024). In the math and coding domains, we se- 329

lected the OpenWebMath (Paster et al., 2024) and 330

StarCoder (Li et al., 2023) datasets respectively. 331

The OpenWebMath dataset contains high-quality 332

mathematical text data extracted from web pages, 333

while the StarCoder dataset offers a diverse range 334

of code data and has been demonstrated to effec- 335

tively pre-train well-behaved code models. Fur- 336

thermore, it has been demonstrated that incorpo- 337

rating synthetic data enhances model pre-training 338

performance (Abdin et al., 2024). Therefore, we 339

introduced the Cosmopedia dataset to leverage this 340

advantage(Ben Allal et al., 2024). 341

Furthermore, we mixed datasets from different 342
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Model Hellaswag LAMBADA PIQA SIQA StoryCloze Wino GSM8K TriviaQA WebQs NatrualQs

LLaMA-1B 64.09 61.05 75.51 42.47 72.58 60.85 4.85 12.52 36.08 22.49
LLaMA-7B 76.39 72.34 79.05 44.67 79.15 70.87 14.70 26.28 61.89 32.82

LLaMA-1B

LLM-Pruner-channel 53.44 45.04 71.43 40.94 68.67 58.45 1.44 6.98 17.46 14.56
LLM-Pruner-block 51.05 46.28 71.71 41.04 68.62 56.27 1.36 7.28 18.46 14.56
SparseGPT 54.01 56.49 71.10 40.68 68.05 57.30 1.51 5.29 14.44 11.61
MoE 49.06 44.84 70.02 41.05 65.47 55.64 1.62 5.76 13.49 11.27
DSMoE(ours) 50.92 48.12 72.36 41.14 68.78 56.35 1.67 8.17 25.52 18.21

LLaMA-7B

LLM-Pruner-channel 66.41 61.63 74.97 43.19 75.30 66.85 4.85 12.63 36.02 20.57
LLM-Pruner-block 67.93 62.02 76.22 44.26 75.46 63.53 1.81 12.96 38.77 21.65
SparseGPT 73.60 67.43 77.36 44.21 76.37 70.48 8.33 17.61 47.83 24.90
MoE 63.89 60.49 74.10 43.29 72.90 61.17 3.26 11.58 31.25 19.09
DSMoE(ours) 70.22 67.61 78.12 44.31 76.37 66.77 6.41 22.04 57.94 29.92

Table 2: Performances of language models on downstream tasks. The best score is marked in bold.

domains. Due to computational resource limita-343

tions, we set the total amount of training data to 10344

billion tokens. Finally, we used the tokenizers from345

LLaMA to segment the data, limiting the maximum346

sample length to 1024 tokens for each. We ran-347

domly sampled 5,000 non-overlapping instances348

from each dataset as the validation set, ensuring no349

intersection with the training set.350

5.2 Experimental Setup351

We evaluate DSMoE on two pre-trained models of352

different scales: Llama-7B1 and Llama-1B2. For353

our method’s hyperparameters, we simply set the354

activation threshold τ = 0.5 and the sparsity regu-355

larization coefficient λ = 1.0.356

We compare our approach with several baselines:357

the channel-wise and block-wise methods from358

LLM-Pruner (a structured pruning approach), and359

SparseGPT (an unstructured pruning method). To360

ensure fair comparison, we first measure the FLOPs361

of our trained model, then estimate the pruning362

ratio for baseline methods to maintain a slightly363

higher FLOPs than our method. The FLOPs metric364

directly corresponds to the number of parameters365

involved in computation, providing a standardized366

measure of computational efficiency.367

Additionally, we explore an alternative approach368

by applying the same FFN partitioning scheme but369

training it as a traditional MoE architecture (with370

fixed expert selection and standard MoE training371

objectives) to investigate whether the conventional372

MoE framework better accommodates the warm-373

starting paradigm.374

1https://huggingface.co/meta-llama/Llama-2-7b
2https://huggingface.co/meta-llama/Llama-3.

2-1B

5.3 Main Results 375

We first present the model’s perplexity on the vali- 376

dation set. Following previous work(Touvron et al., 377

2023; Brown et al., 2020; Su et al., 2024; Dai 378

et al., 2024), we then evaluate the model’s perfor- 379

mance on downstream benchmarks, which includes 380

zero-shot accuracy testing on HellaSwag(Zellers 381

et al., 2019), LAMBADA(Paperno et al., 2016), 382

SIQA(Sap et al., 2019), PIQA(Bisk et al., 2020), 383

StoryCloze(Mostafazadeh et al., 2016), and Wino- 384

grande(Sakaguchi et al., 2021). Additionally, 385

we conduct 5-shot evaluation measuring exact 386

match performance on TriviaQA(Joshi et al., 387

2017), WebQuestions (WebQs)(Berant et al., 2013), 388

GSM8K(Cobbe et al., 2021), and Natural Ques- 389

tions (NaturalQs)(Kwiatkowski et al., 2019). 390

5.3.1 Perplexity Results 391

Table 1 presents the perplexity results of the base- 392

line dense model and its pruned, sparsified variants. 393

The results demonstrate that DSMoE consistently 394

outperforms baseline models under equivalent ac- 395

tivation constraints. Since SparseGPT accelera- 396

tion requires specific pruning ratios and hardware 397

support, we conducted our comparative analysis 398

only on models with equivalent parameter prun- 399

ing levels. Our experimental results indicate that 400

DSMoE achieves superior efficiency compared to 401

static parameter pruning. Furthermore, DSMoE 402

exhibits better performance than fixed-activation 403

methods like MoE, which can be attributed to the 404

fact that knowledge from all experts contributes to 405

the model’s learning process, enabling it to develop 406

the ability to flexibly select activations based on in- 407

put. Additionally, DSMoE exhibits distinctive fea- 408

ture processing capabilities, learning layer-specific 409
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activation patterns that naturally emerge from the410

input complexity. We will examine these emergent411

patterns in detail in the analysis section.412

In conclusion, DSMoE demonstrates consistent413

superiority across models of two different scales,414

highlighting its robust advantages.415

5.3.2 Benchmark Results416

Table 2 presents the benchmark performance of var-417

ious pruning methods, traditional MoE approaches,418

and DSMoE. DSMoE achieved the best perfor-419

mance in 7 out of 10 benchmarks for both LLaMA-420

1B and LLaMA-7B model architectures, demon-421

strating superior effectiveness over existing sparsi-422

fication methods across most evaluation metrics.423

Specifically, DSMoE exhibited excellent perfor-424

mance on inference tasks (i.e., the first 6 bench-425

marks), achieving the best results on PIQA, SIQA,426

and StoryCloze test sets. While not achieving top427

performance on Hellaswag, LAMBADA, and Wino428

test sets, DSMoE still ranked among the leading429

models. For generation tasks (i.e., the last 4 bench-430

marks), DSMoE demonstrated remarkable effec-431

tiveness. Apart from slightly lower performance on432

GSM8K with LLaMA-7B compared to SparseGPT,433

it significantly outperformed other sparse methods434

on all other test sets, with performance only a few435

points below the dense model. These results high-436

light DSMoE’s potential, particularly in generation437

tasks.438

Furthermore, we observed that the performance439

gap between DSMoE and other sparse approaches440

was more pronounced in LLaMA-7B compared441

to LLaMA-1B. This may be attributed to greater442

model redundancy at larger parameter scales, en-443

abling DSMoE to more effectively prune unneces-444

sary information. This observation suggests the po-445

tential scalability of DSMoE to models with larger446

parameter counts.447

6 Analyses448

6.1 Ablation Study: Removing449

Straight-Through Estimator450

To validate the necessity of the straight-through451

estimator mechanism in DSMoE, we conduct an452

ablation study by removing this component. Specif-453

ically, instead of using Equation (11) for training,454

we employ Equation (7). We perform this compar-455

ative analysis on the LLaMA-1B model.456

As shown in Table 3, the model without straight-457

through estimator significantly underperforms the458

Model DSMoE w/o S(x)

Hellaswag 50.92 32.29
LAMBADA 48.12 27.79
PIQA 72.36 62.73
SIQA 41.14 39.30
StoryCloze 68.67 57.14
Wino 56.35 50.83
GSM8K 1.67 0.38
TriviaQA 8.17 2.47
WebQs 25.52 2.95
NatrualQs 18.21 1.00

PPL 7.41 12.75

Table 3: Ablation study of DMoE against the model
without direct estimation function S(x), where G(x) is
employed in place of S(x).

complete model in terms of both perplexity and 459

benchmark performance. This substantial degrada- 460

tion occurs because routing parameters for non- 461

activated experts receive zero gradients during 462

backpropagation, preventing these routes from be- 463

ing adjusted to utilize more of the pre-trained 464

knowledge inherited from the dense model. With- 465

out the ability to adaptively modify routing deci- 466

sions, potentially valuable knowledge encoded in 467

these experts becomes permanently inaccessible, 468

leading to significant performance loss. 469

6.2 Ablation Study: Training without 470

Piecewise Function G(x) 471

To validate the necessity of incorporating piecewise 472

function learning during training, we conduct an 473

ablation study by removing the piecewise function 474

G(x) and using the following formula for training: 475

hlt =

n∑
i=1

oi ∗ σ(ĥltYi) (20) 476

Prior to inference, we determine the appropriate 477

activation level by adjusting the threshold value on 478

the validation set, with a step size of 0.05. Figure 479

2 illustrates the relationship between perplexity 480

and the average number of activated experts on the 481

validation set. 482

The results clearly demonstrate that as the thresh- 483

old increases, perplexity rises rapidly while the av- 484

erage number of activated experts decreases corre- 485

spondingly. This observation indicates that without 486

the piecewise function G(x), all experts participate 487

in computation and gradient updates. Under the 488

constraint of sparsity loss, the model tends to dis- 489

tribute activation values uniformly across all ex- 490

perts rather than learning to distinctively identify 491

more important experts. This leads to two conse- 492
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Figure 2: During the training phase, G(x) is not utilized.
In the inference phase, G(x) is employed for activation.
The model’s perplexity and the number of activated ex-
perts vary with the threshold τ . The pentagram markers
indicate the perplexity and number of activated experts
achieved by DSMoE.

quences: first, the activation values for each expert493

are suppressed to a relatively low level, and second,494

the learned importance of each expert becomes495

relatively uniform. Under the same activation con-496

straints as DSMoE, the approach without the piece-497

wise function G(x) exhibits higher perplexity, high-498

lighting how this training-inference inconsistency499

significantly degrades model performance.500

6.3 Layer-wise Activation Patterns Analysis501

(a) Heatmap for 1B model (b) Heatmap for 7B model

Figure 3: Heatmap visualization of expert activation
counts across different layers and average expert activa-
tions for LLaMA-7B and LLaMA-1B models on various
validation sets.

We evaluated DSMoE across different validation502

sets and generated heatmaps to visualize the distri- 503

bution of activated experts across network layers. 504

Both model sizes exhibit a distinctive activation 505

pattern: higher activation counts at both input and 506

output layers, elevated activation in middle layers, 507

and lower activation in remaining layers - forming 508

a “W-shaped" pattern. 509

The bottom layers, which typically encode fun- 510

damental features, demonstrate high expert activa- 511

tion. This suggests the model’s tendency to acti- 512

vate multiple experts in parallel to process multi- 513

dimensional input features, potentially serving as 514

an “information preservation mechanism" to re- 515

tain critical base-level information. The top layers, 516

responsible for final decision-making and output 517

generation, show increased expert activation to en- 518

hance output robustness by reducing individual ex- 519

pert bias through collective decision-making. The 520

elevated activation in middle layers suggests these 521

layers serve as critical zones for feature transfor- 522

mation, integration, and processing of long-range 523

dependencies. This bottom-middle-top activation 524

pattern forms a complete information processing 525

pipeline: bottom layers for extensive collection 526

and processing of basic features, middle layers for 527

feature transformation and information integration, 528

and top layers for comprehensive decision-making 529

and output generation. 530

Furthermore, we observed significant variations 531

in both the average number of activated experts 532

and activation patterns across different test sets. 533

This indicates that DSMoE implements dynamic 534

regulation mechanisms specific to different inputs 535

rather than converging to a homogeneous learning 536

pattern. 537

These observations provide novel insights for 538

future MoE architectures, suggesting that expert 539

activation counts can be strategically varied across 540

different layers of the network. 541

7 Conclusion 542

This paper presents DSMoE, a novel approach that 543

achieves model sparsification by partitioning pre- 544

trained FFN layers into computational blocks. Ex- 545

periments on LLaMA models demonstrate supe- 546

rior performance over existing pruning and MoE 547

approaches under equivalent computational con- 548

straints, while revealing distinctive layerwise acti- 549

vation patterns for future MoE designs. 550

8



8 Limitations551

Due to computational resource constraints, we552

were only able to evaluate DSMoE on language553

models up to 7B parameters. Future work with554

access to larger computational resources could ex-555

plore the scalability and effectiveness of our ap-556

proach on larger model architectures, which may557

reveal additional insights about the relationship558

between model scale and dynamic sparsification559

patterns.560
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