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ABSTRACT

The goal of model extraction (ME) on Graph Neural Networks (GNNs) is to steal
the functionality of GNN models. Defense against extracting GNN models faces
several challenges: (1) Existing defense primarily designed for defense against
convolutional neural networks without considering the graph structure of GNNs;
(2) Watermarked-based defense is typically passive without preventing model
extraction from happening and can only identify a model stealing after extraction
has occurred; (3) They either require entirely defensive training from scratch or
expensive computation during inference. To address these limitations, we propose
an effective defense method that can reprogram the model with graph structure-
based and layer-wise noise to prevent ME for GNNs while maintaining model
utility. Specifically, we reprogram the target model to: (1) introduce graph structure-
based disturbances that prevent the attacker from fully learning its functionality; (2)
incorporate data-specific, layer-wise noise into the target model to enhance defense
while maintaining utility. Therefore, we can prevent the attacker from extracting
the reprogrammed target model and preserve the model’s utility with improved
inference efficiency. Extensive experiments and analysis on defending against both
hard-label and soft-label ME for GNNs demonstrate that our strategy can lessen
the effectiveness of existing attack strategies while maintaining the model utility of
the target model for benign queries.

1 INTRODUCTION

In recent years, Graph Neural Networks (GNNs) Kipf & Welling (2016); Hamilton et al. (2017);
Veličković et al. (2017) have been heavily used in critical domains, including the API services.
Pretrained graph models are also used with third parties for various downstream tasks Liu et al.
(2023); Long et al. (2022). However, GNNs are vulnerable to ME attacks. ME attacks on GNNs
DeFazio & Ramesh (2019); Wu et al. (2022a); Shen et al. (2022); Zhuang et al. (2024) involve an
adversary attempting to replicate a target GNN’s functionality by systematically querying it and
using the responses to train a surrogate model. GNNs, designed to operate on graph-structured
data, pose unique challenges and opportunities for attackers due to their complex architectures and
interdependencies among nodes and edges. Many web services, including recommendation systems
Wu et al. (2022b), fraud detection platforms Liu et al. (2021), and social media Li et al. (2023), rely
on graph data and GNNs for efficient and accurate predictions. Consequently, defending against
model extraction attacks on GNNs is critical for maintaining both security and intellectual property.

While prior work has made progress in defending against model extraction attacks, there remains a
significant gap: most defenses are either reactive or computationally demanding, and few consider
the specific properties of graph-structured data. This raises a central research question:

Q: How can we design an active defense for GNNs that prevents model extraction while
maintaining high utility for benign queries, leveraging graph structure and layer-wise noise?

In this work, we address a specific scientific challenge in the web domain, focusing on the vulnerability
of GNNs used in web-based applications and protecting the intellectual property of GNNs.

There are numerous studies on defense against model extraction attacks. Current research of model
extraction defense methods generally falls into the following categories Wang et al. (2023): (1)
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Passive defenses: they aim to monitor and detect ongoing extraction attempts Juuti et al. (2019);
Pal et al. (2021) or verify whether the target model has been stolen Jia et al. (2021); Szyller et al.
(2021); Maini et al. (2021). These methods focus on observing query patterns and identifying unusual
activities that may include extraction behaviors. Nevertheless, it often fails to prevent adaptive
attackers who can analyze and circumvent these defenses over time; (2) Active defenses: they aim
to prevent model extraction attacks from happening Orekondy et al. (2019b); Kariyappa & Qureshi
(2020); Kariyappa et al. (2021b); Mazeika et al. (2022); Wang et al. (2023). These methods focus on
maximually reducing the accuracy of the clone model.

In this work, our method belongs to the category of active defense. Existing defenses are either compu-
tationally intensive, requiring costly test-time optimization that limits their practicality Orekondy et al.
(2019b); Mazeika et al. (2022), or memory intensive, increasing deployment complexity Kariyappa
et al. (2021b). Additionally, existing defense methods are primarily designed for image data using
CNNs and fail to account for graph-structured information.

Model Reprogramming Chen (2024); Jing et al. (2023) typically involves adapting a pre-trained
model to perform a different task without modifying its underlying architecture or weights. Inspired
by model reprogramming, we reprogram the pre-trained target model to perform correct predictions
for legitimate users but produce misleading or less informative results for adversarial queries. In this
work, we propose an effective defense method that can reprogram the model with graph structure-
based and layer-wise noise to prevent ME for GNNs while maintaining model utility. Specifically,
we design learnable layer-wise noises into the hidden layers in the GNNs that can maintain utility
on in-distribution benign queries and decrease the performance on out-of-distribution attack queries.
Besides, we apply the graph-structure features to modify the layer-wise noise range to enhance the
defense ability to prevent the attacker from stealing the functionality of the victim model.

In summary, our main contributions are three-fold:

• We propose an efficient active defense framework through model reprogramming to efficiently
defend against model extraction on GNNs without needing full retraining or expensive computation
during testing.

• We propose to leverage the graph structure of GNNs to further enhance our defense effectiveness.
• We provide detailed theoretical analysis and support for our proposed defense, guaranteeing the

performance of our defense method.
• Extensive experiments on defending against model extraction for GNNs show that our method can

maintain high model utility for benign attacks and reduce inference time cost.

2 RELATED WORKS

2.1 MODEL EXTRACTION ATTACK

Model Extraction (ME), also known as model stealing, refers to the process of replicating a target
machine learning model by either extracting its parameters or approximating its functional utility
Orekondy et al. (2019a); Papernot et al. (2017); Truong et al. (2021); Oliynyk et al. (2023).

The attacker’s goal in ME is to create a clone model that performs similarly to the target model
without having direct access to its internal structure or training data. The objective for extracting a
model from MLaaS system is multiple, including stealing exact model such as the learned parameters
Reith et al. (2019), training hyperparameters Wang & Gong (2018), or the architecture of the target
model Oh et al. (2019). Besides, the objective can also be stealing model behavior, including copying
the target model that reaches the same level of effectiveness and approximating the behavior of
producing the same outputs with the target model. In this research, we will focus on the attack that
recovers the same level of functionality of the target model with a different architecture.

ME attacks can be broadly categorized into two main types: (1) Data-Based Model Extraction
(DBME) Kariyappa et al. (2021a); Correia-Silva et al. (2018); Papernot et al. (2017) involves an
attacker querying the target model with a set of input data to gather corresponding output responses.
Using these input-output pairs, the attacker trains a clone model that approximates the behavior of the
target model. This method relies on the availability of data and the ability to query the model multiple
times. (2) Data-Free Model Extraction (DFME) Kariyappa et al. (2021a); Truong et al. (2021);
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Wang et al. (2023) involves an attacker extracting the target model’s functionality with artificial data
rather than relying on any real input data. DFME is particularly challenging because it does not
assume access to the original training data or similar datasets, making it a more sophisticated attack
method.

ME attacks can also be grouped in to two categories based on the query outputs of the MLaaS: (1) The
soft-label ME will only evaluate the probability logits difference between the output of target model
and clone model under in-distribution settings. (2) The hard-label ME will have less information on
output for queries, it only provides the class with the maximum probability in classification tasks.
Besides, it will be much more challenging to train the reprogrammed target model since the objective
is different.

There are also a few recent works on model extraction attacks for GNNs DeFazio & Ramesh (2019);
Wu et al. (2022a); Shen et al. (2022); Zhuang et al. (2024). Specifically, Wu et al. (2022a) applies
discrete graph structure learning to construct a connected substitute graph using these node attributes;
Shen et al. (2022) initializing the graph structure with kNN based on node attributes and updating
it using a graph structure learning framework. Zhuang et al. (2024) is a data-free model extraction
attack framework that can applied to several graph tasks.

2.2 MODEL EXTRACTION DEFENSE

Model extraction defenses can be broadly categorized into two classes: (1) Passive Defenses, which
focus on monitoring and detecting extraction attempts without modifying the model’s behavior
Jia et al. (2021); Szyller et al. (2021); Maini et al. (2021). These methods analyze query patterns,
distributions, frequency, and timing to identify suspicious activities. Standard techniques include
logging and anomaly detection. (2) Active Defenses, which aim to prevent model extraction (ME)
attacks by proactively modifying the model’s responses or access mechanisms Orekondy et al.
(2019b); Kariyappa & Qureshi (2020); Kariyappa et al. (2021b); Mazeika et al. (2022); Wang et al.
(2023). Strategies include Prediction Obfuscation Orekondy et al. (2019b), which alters model outputs
to reduce informativeness; Perturbation Techniques Kariyappa & Qureshi (2020); Kariyappa et al.
(2021b); Wang et al. (2023), which introduce noise to hinder accurate extraction; and Query Limitation
Mazeika et al. (2022), which restricts query rates or adds variability to responses. Additionally,
Behavior-Based Defenses Wang et al. (2023); Zhuang et al. (2024) dynamically adjust responses
based on user behavior analysis and query pattern detection to counter extraction attempts effectively.

Model extraction defense on GNNs can be challenging since the graph data can include node features,
edge features, entity information, and structures; Current model extraction defense methods may
not perform well on GNNs as they do not incorporate the structure of GNNs. Our work proposes a
new pipeline to protect GNN stealing, emphasizing graph-structure sensitivity and adaptive layer-
wise noise for the unique construction of Graph-based models. Our research based on model
reprogramming will mainly focus on active defense since they can prevent ME before their occurrence
and thus reduce clone probability. To our knowledge, this is the first study to explore model extraction
defenses for GNNs.

2.3 MODEL REPROGRAMMING

Model reprogramming Chen (2024) enables the efficient reuse of pre-trained models across different
tasks without changing original model parameters. This approach leverages the model’s inherent
generalization capabilities to handle new tasks by adjusting the input or output interpretation by
reprogramming a model trained on a source domain for tasks in a target domain. This method provides
a resource-efficient alternative to traditional transfer learning, making it suitable for scenarios where
rapid deployment or adaptation to new tasks is needed. Model reprogramming can also be applied
to graphs: Jing et al. (2023) allows reprogramming pre-trained GNN models to perform new tasks
by adding learnable perturbations to the input graph data without modifying the original model
architecture or parameter. By applying model reprogramming, we can adaptively fine-tune the model
parameters without retraining, thereby reducing the time cost during the inference stage.
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(b) w/ reprogramming

Figure 1: (a) The architectures without reprogramming for benign queries and attack queries. The
benign input graph (with orange ground truth label) will receive the correct prediction, while the attack
input graph (with blue ground truth label) will also get the correct prediction. (b) The architectures
with reprogramming for benign queries and attack queries. The model undergoes reprogramming,
transforming into different schemes with data-specific graph and structure features. This changes the
prediction probabilities, leading to the benign query achieving a correct prediction (orange), while
the attack query receives a misled prediction (green).

3 PRELIMINARY

3.1 DATASET

A graph G is defined with node (vertices) set V and edge set E, as G = (V,E). For a graph with
n nodes, it can also be represented as x = (A,X), where A ∈ Rn×n is adjacency matrix and
X ∈ Rn×d is node feature, d is dimension for graph features.

A dataset for graph classification tasks is given as D = (xi, yi)
N
i=1, sampled from a distribution

D, with the graph distribution being G. We use D for the data distribution and use D for datasets
(data-label pairs) in this work.

In DBME defense tasks, the defender (target model) utilizes both in-distribution (private) data from
Did and out-of-distribution (public) data from Dood. Conversely, the attacker uses a model with a
different architecture under mainly out-of-distribution data to clone the functionality of the target
model. Under the settings of DFME for GNNs, the clone model can also use a graph generator to
generate node features and an adjacency matrix. In practice, the dataset can be split into disjoint sets,
D = Did ∪ Dood, where private data is sampled from Did, and synthetic or OOD data belongs to
Dood. Similarly, for graph data, we have G = Gid ∪ Good.

3.2 MODEL

On the defender side, the target model (victim model) is defined as ŷ = T (x; θT ), where T maps the
graph data x to the class set Y . On the attacker side, the clone model is represented as ŷ = C(x; θC),
with C mapping out-of-distribution graph data Good to the class set Y . Additionally, the attacker uses
a data generator fgen to generate graph data, mapping from an unspecified domain to G.

3.3 ATTACKER’S GOAL AND KNOWLEDGE

The attacker’s goal is to optimize the clone model parameters, denoted as θC , by minimizing
the divergence between the clone model C(·; θC) and the target model T (·; θT ) over OOD query
data from the output space Dood. Specifically, the attacker minimizes the Kullback-Leibler (KL)
divergence between the clone model’s output and the target model’s output:

min
θC

E(x,y)∼Dood
DKL [C(x; θC) ∥ T (x; θ∗T )] (1)

where θ∗T is the optimal parameter for the target model. The loss function guides clone model training,
with KL divergence measuring how one probability distribution diverges from another. Minimizing
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this divergence helps the attacker align the clone model’s output with the target model’s, capturing its
behavior.

Following Wang (2021); Wang et al. (2023), the attacker can hardly access the original training data
distribution of the target model; they can either use natural (DBME) or synthetic OOD data (DFME)
from Dood to query the target model to extract the functionality. Besides, the attacker does not know
the architecture and model parameters of the target model, so the attacker is assumed to be trained
and tested under OOD data with another model architecture. In the score-based settings (soft-label),
the target model delivers all the probabilities of different classes to the clone model. In contrast, in
the decision-based setting (hard-label), the attacker can only get the top-1 class prediction from the
clone model.

The training objective of the clone model is to simulate the functionality of the target model, while
the final goal of the attacker is to train a clone model C with parameters θC that can reach high test
accuracy on ID test data from Dtest

id .

The defender assumes that the attacker’s query data can be classified as out-of-distribution (OOD)
data concerning the training dataset of the target model Wang (2021); Kariyappa et al. (2021a);
Wang et al. (2023). This assumption is based on the premise that the attacker’s inputs will differ
significantly from the distribution of data the model was trained on.

3.4 DEFENDER’S GOAL AND KNOWLEDGE

The defender’s primary goal is to maximize the test accuracy of the target model on the test ID
data, which reduces the effectiveness of the attack. Suppose we use l as the classification loss (e.g.,
cross-entropy loss lCE)

min
θT

E(x,y)∼Did
[lCE(T (x, θT ), y)] (2)

Besides, the defender’s goals include minimizing the test accuracy that the attacker can achieve
and preserving the utility. We also hope that the defense procedure will be memory-efficient and
computation-efficient. In order to train the target model for better defense ability, we also apply an
OOD dataset other than the ID dataset for training and evaluation.

To achieve this, the defender must proactively understand the attacker’s behavior and adapt the
target model accordingly. The defender possesses knowledge about the attacker’s possible strategies,
including the types of queries that may be used to extract information from the target model. This
understanding allows the defender to anticipate potential vulnerabilities and implement countermea-
sures.

We have also discuss the assumption of considering the attack queries as as OOD data in section B.4.

4 METHOD

This section presents the architecture of our method in Figure 1b: Graph Structure-Aware Layer-
Wise Reprogramming.

We present how our design will use graph data to defend against model extraction in a layer-wise
manner in Section 4.2. We then discuss how graph structure will be applied in defensive learning in
Section 4.3. We will illustrate the algorithm for the clone model (attacker) and the defensive training
algorithm against model extraction for the target model (defender) in Section 4.4.

4.1 OVERVIEW OF PIPELINE

The GNN model without model reprogramming is demonstrated in Figure 1a. The attack query will
still achieve the correct label through the target model since the model is not trained with different
objectives for attack and benign queries.

In comparison, the main architecture of the proposed pipeline is shown in Figure 1b. The proposed
method shows different processing for queries from different distributions: When the input graph is
sampled from the in-distribution data, the model will be modified according to its structural similarity

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

with the in-distribution data, and the final output label will remain the same with the correct label,
thus not affecting the classification utility on benign queries, While the input graph is sampled from
OOD data, the model will be reprogrammed, and the output will become different, especially the
output labels.

The notations are summarized in Table 2 in Section B in Appendix.

4.2 REPROGRAMMING GRAPH MODELS USING DATA-DRIVEN APPROACHES

An ideal goal of defense against ME is to disturb the label attack queries so that the outputs will
mislead the clone model, and thus, the clone model will learn modified information about the input
graph and labels. However, the reprogrammed model can also affect the results of the benign data.
Thus, the reprogramming will affect the result since the parameters of the target model have been
changed, resulting in much difficulty when effectively defending against ME.

Confronting these challenges, we propose a pipeline that augments the robustness of GNN by
introducing trainable noise into each graph convolution layer. This solution has the potential to
significantly bolster the resilience of GNNs against attacks, offering hope for a more secure future in
machine learning. For example, in graph property prediction tasks, a regular graph neural network
can be classified as message-passing, hidden, and read-out layers, as shown in Eqn. 3. The graph
feature can be summarized in zG.


h
(0)
i = Xi, vi ∈ V

h
(l)
i = σ

(∑
j∈N (i)

1
cij

W(l)h
(l−1)
j + b(l)

)
, vi ∈ V, l = 1, 2, . . . , L

zG = Readout({h(L)
i , vi ∈ V })

(3)

In order to let the model reflect different functionalities based on different distributions of the input
data for defense, we reprogram the pre-trained target model by injecting layer-wise learnable noise
into the output of hidden layers in Eqn. 4,

h
(l)
i = σ

 ∑
j∈N (i)

1

cij
W(l)h

(l−1)
j + b(l)

+ ξ(l), (4)

where the layer-wise noise ξ(l) is learnable noise based on different distributions of the benign queries
and can be trained based on the performance of input data, i.e., ξ ∼ q(·|G; θn). In practice, the defense
performance can update the noise using a gradient descent on Eqn. 6. Thus, the reprogrammed target
model is TR(x; θT , ξ).

Since the target model needs to be trained to perform well on graph classification tasks on benign
queries, we can define the task loss for graph inputs with cross-entropy loss to compare the outputs
of target models and ground truth.

Ltask = E(x,y)∼Did
[lCE(TR(x; θT , ξ), y)] , (5)

By minimizing the task loss Ltask, the model can have high classification accuracy on in-distribution
benign queries.

Besides, the target model should be reprogrammed with layer-wise noise to evaluate different data
distributions. Since a larger distributional difference of model outputs between benign queries and
attack queries can be considered a proper attack, we can design the defense loss for training target
model:

Ldefense = −E(x,y)∼Dood
[DKL(TR(x; θT , ξ) ∥ T (x; θT ))], (6)

By minimizing the loss, the data will maximize the distribution difference between the original
pre-trained model and the reprogrammed model on OOD data.

4.3 ENHANCE THE DEFENSE WITH GRAPH STRUCTURES

In the model extraction defense pipeline for GNN, the target model not only needs to consider the
GNN reprogramming itself, but we also need to consider the data-specific feature of input graphs.
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Graph structures can be considered as particular information about distribution. In order to derive
the distribution of input graphs, it can be effective to collect graph structure information to identify
whether the input graph structure matches the benign queries’ graph style. Incorporating graph
structure into GNN model extraction defense enhances protection by enabling tailored perturbations
that exploit the inherent structural properties of graph data, making it harder for attackers to replicate
the model’s functionality without degrading its utility for legitimate use.

Thus, we define the normalized graph features fG as a concatenation of different graph information
considering the average degree distribution, clustering coefficient, graph diameter, and spectral
features. This can also form a structure distribution of a specific input distribution as Dfeat. Since
the input graph is more similar to the in-distribution graph, it should be more likely to be a benign
query. In comparison, lower similarity should be considered a higher probability that the input graph
is sampled from Dood. Therefore, we can modify the noise accordingly with the cosine similarity :

α = sim(Ginput, Gid) = E(x,y)∼Din

[
cos∠

(
fGinput

, fx
)]

.

where fGinput
means the structure feature for input graph, and fx means a selected sample from

in-distribution data.

Since the in-distribution graph’s structure feature should have a higher similarity with the features
selected from training data from the target model, the injected layer-wise noise should be scaled in a
lower range. In contrast, the OOD input graph should reprogram the model with a larger scale of
layer-wise noise. Details for the structure features and similarity factor are introduced in Section B.3
in Appendix.

4.4 DEFENSIVE TRAINING ALGORITHM FOR ME

Based on the previous analysis, the total loss for the defensive training of the target model against
ME can be concluded as follows:

L =Ltask + λ1Ldefense

=E(x,y)∼Did
[lCE(TR(x; θT , (1− α)/2 · ξ), y)]

− λ1 · E(x,y)∼Dood
[DKL(TR(x; θT , (1− α)/2 · ξ) ∥ T (x; θT ))], (7)

which combines the primary task loss with a regularization term for the layer-wise noise parameters
ξ, thereby enabling the calculation of gradients for the noise alongside the model weights and biases
during back propagation.

Reiterating the learning objective, we can confidently conclude the algorithms for training the clone
model and the target model. The algorithm for training attackers under the Data-Based Model
Extraction (DBME) setting is shown in Algorithm 1. The algorithm includes both hard-label and
soft-label settings in model extraction, and the model parameter of the clone model is trained to
minimize the output difference with the target model.

The algorithm for training attackers under the Data-Free Model Extraction (DFME) setting is shown
in Algorithm 3 in Section B.5 in Appendix. Compared to Algorithm 1, this algorithm includes a
graph generator fgen since the clone model can only use synthetic data under the DFME setting. The
graph generator is trained in a GAN-like scheme Goodfellow et al. (2020).

Training for defender (target model) is shown in Algorithm 2 in Appendix. In the algorithm, we spend
half of the time budget on training the target model with in-distribution data, while the reprogrammed
model needs to be trained with both ID data and OOD data with the remaining half-time budget B/2.

4.5 THEORETICAL ANALYSIS

In this section, we provide a brief overview of the theoretical justification for the defense ability
of our method. Intuitively, the proposed method reduces the attacker’s test performance on benign
queries by reprogramming the target model to increase the difficulty for clone models.

The key result is summarized in Theorem A.1 in Section A, which states that the proposed objective
increases the loss disparity between the clone model and the reprogrammed target model on in-
distribution data, effectively lowering the quality of the clone model. Detailed derivations, definitions
of distributions, and the proof of Theorem A.1 are provided in the Appendix (Section A.2).

7
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Algorithm 1: DBME Attack Algorithm
Input: input graphs batches {(xi)} , pre-trained target model T with parameter θT , classifier
parameters θC
Output: Trained clone model C and its parameter θC

1: Sample input graphs xi ∼ Dood ;
2: Get target model labels ŷi ∼ T (xi; θT );
3: Initialize θC for clone model;
4: for (xi, yi) in training batches do
5: Compute label ỹi = C(xi, θC);

For hard-label settings ;
6: Compute hard-label loss LQ = lCE(ŷ, ỹ);

For soft-label settings ;
7: Compute soft-label loss LQ = lMSE(ŷ, ỹ);
8: Update θC using ∂LQ/∂θC ;
9: end for

Table 1: Clone model accuracy after applying defense methods on MUTAG and ENZYMES with
G_Inception as target model

Attack Defense MUTAG Clone Model Architecture ENZYMES Clone Model Architecture

GraphSAGE GIUNET GIC GraphSAGE GIUNET GIC

Soft-label
Attack

undefended ↓ 0.7651 0.9342 0.9043 0.5612 0.6855 0.6098
RandP ↓ 0.7341 0.8527 0.8351 0.5272 0.6323 0.5726
P-poison ↓ 0.7426 0.8843 0.8756 0.5223 0.6412 0.5813
GRAD ↓ 0.7438 0.8741 0.8321 0.5196 0.6401 0.5627
AM ↓ 0.7223 0.8661 0.8827 0.5146 0.6335 0.5517
MeCo ↓ 0.7121 0.8234 0.8134 0.4822 0.6197 0.5526
Ours ↓ 0.6032 0.7829 0.7506 0.3640 0.5754 0.5453

Hard-label
Attack

undefended ↓ 0.7346 0.8835 0.8657 0.4874 0.6557 0.5880
RandP ↓ 0.7012 0.8087 0.7564 0.4475 0.5821 0.5517
P-poison ↓ ↓ 0.7089 0.8231 0.8054 0.4682 0.5967 0.5458
GRAD ↓ 0.7120 0.8193 0.7901 0.4626 0.5919 0.5530
AM ↓ 0.6957 0.8125 0.7627 0.4587 0.5830 0.5462
MeCo ↓ 0.6135 0.7974 0.7456 0.4251 0.5724 0.5407
Ours ↓ 0.5721 0.7531 0.7238 0.3421 0.5447 0.5223

5 EXPERIMENTS

In this section, we evaluate our method and compare it with previous defense methods. We briefly
introduce the settings in Section 5.1 and summarize the main results, including defensive performance
against different attacks, adaptive attack settings, and ablation studies, in Sections 5.2–5.3.

5.1 SETTINGS

We perform experiments on standard graph classification datasets Morris et al. (2020), including
MUTAG, ENZYMES, NCI1, and PROTEINS. We consider KnockoffNet Orekondy et al. (2019a)
as the main query strategy and evaluate our defense against soft-label and hard-label attacks. The
target models and defense baselines are briefly described here, with extended details, attacker and
defender settings, and dataset partitioning provided in the Appendix (Section C.3.1).

5.2 PERFORMANCE

5.2.1 CLONE MODEL ACCURACY

We show the results on four datasets in Table 1 and Table 3 (in Appendix) for the soft-label model
extraction attack and hard-label attack setting. The results show that our method can reduce the
effectiveness of model extraction methods by up to 17%. The proposed method is much more effective
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since: (1) RandP randomly perturbs output possibilities without the data-dependent information,
while this may keep the utility for all query data without distributional information misleading; (2)
P-poison uses a random surrogate attacker model to work; (3) GRAD: The surrogate model has a
large model gap with the ME attacker model; (4) AM applies a distributional detection on input data
while it only disturbs the data outputs. (5) MeCo uses the distributional robust training on the model
and applies random perturbation based on the distribution, which may not be effective on graph
structures.

These results demonstrate that our method performs well compared to recent model defense research
against model extraction attacks. Compared to the other information, the layer-wise noise can
reprogram the model and lead to misinformation in the output data and the hidden outputs.

5.2.2 TARGET MODEL UTILITY

After applying the defense strategy, we evaluate the model utility by target test accuracy on test ID
datasets Dtr

id. We use l1 norm between the reprogrammed target model and the original target model,
i.e., E(x,y)∼Dtest

∥T (x, θT )− TR(x, θT , ξ)∥1.

According to the results shown in Table 4 in Appendix, our method can outperform some defense
methods in utility. At the same time, the test accuracy on benign data may be lower since the
layer-wise noise can affect the model on parameter levels. However, according to the l1-norm, our
method can outperform other defense methods. This means our method has a much better ability to
output probabilities. The defense baselines have a large l1-norm since they apply perturbation on all
queries with the same magnitude. The decrease in test dataset accuracy is a trade-off between dataset
performance and preservation of original target model outputs.

Besdies, We also propose an experiment on a large-scale graph dataset, and the results are shown in
Table 7 in Appendix. We also compare the defense ability of our method against other graph model
extraction attack, and the results are shown in Table 8 in Appendix.

We also briefly evaluate the efficiency and robustness of our method in the Appendix. Our method
introduces additional computation for the structure feature extractor and noise generator, which
slightly increases inference time compared to simple output perturbation baselines, but remains
efficient overall. We also test against adaptive attackers who are aware of our defense strategy; results
show that our method effectively misleads clone models, even when attackers adapt their training with
partial knowledge of the defense. Detailed measurements and results are provided in the Appendix
(Table 6 and 12).

5.3 ABLATION STUDIES

We also do the ablation studies of key components in our method, and the details are shown in Section
C.6. Specifically, we study the effect of learnable layer-wise noise and graph structure features, the
impact of different query budgets for attackers, and hyperparameter choices such as the number of
layers adding noise. Our method consistently outperforms baselines under all settings. Detailed
results are reported in Table 9 and Table 10 in the Appendix, showing the superiority of learnable
noise over random noise, improved defense under limited query budgets, and the influence of noise
layer number on clone model accuracy.

6 CONCLUSIONS

In this paper, we proposed a defense mechanism for Graph Neural Networks (GNNs) against
model extraction (ME) attacks, addressing the limitations of existing defenses. Our approach
utilizes distributional detection and adaptive reprogramming to protect GNNs without compromising
performance on benign queries. By modifying layer outputs and parameters according to input data
distributions, we effectively reduce the success of ME attacks, both hard-label and soft-label, while
maintaining model utility. Extended experimental results show that our defense strategy significantly
weakens the effectiveness of various ME attacks and keeps the defense model’s utility. Future work
includes improving robustness on diverse graph datasets and optimizing the trade-off between security
and utility, while extending the defense to other neural networks and adversarial settings.
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Table 2: Notations related to data and model
Variable Explanation
G Graph
G = (V,E) vertex (node) set V and edge set E
x Graph data in vector and matrix
A Adjacency Matrix, A ∈ Rn×n, where n = |V |
X Node features matrix, X ∈ Rn×d, where d is input dimension
y, Y Graph classification label, label set
D D = {xi, yi}Ni=1, graph classification dataset

D, G Distribution of (graph) data and labels, D = Did ∪ Dood

Did, Gid In-distribution (ID) graph data, only defender have access to it
Dood, Good Out-of Distribution (OOD) data, attacker trains the clone model with OOD data
Dtr

id, Dte
id Train / Test ID dataset

C(·; θC) Clone model
θC , θ∗C Model parameter of clone model
T (·; θT ) Target model
θT , θ∗T Model parameter of target model

vi The ith node chosen from node set V
N (i) The neighbour node set of node vi
h
(l)
i Hidden layer feature of node vi in lth layer

ξ(l) layer-wise noise in the lth layer
W(l), b(l) Weight and bias in the lth layer
zG Graph feature
TR(·; θT , ξ) The reprogrammed target model
α Similarity factor

lCE Cross-Entropy loss for classification
DKL KL divergence for modeling difference
Ltask Loss to improve classification accuracy
Ldefense Loss to improve defense effectiveness

A DETAILS OF THEORETICAL ANALYSIS

In this section, we propose the theoretical analysis of the defense ability of the proposed method. We
will prove that the objective will decrease the clone model’s quality on benign queries, which means
the proposed method will reduce the attacker’s test performance on benign data.

A.1 DEFENSE ABILITY AGAINST MODEL EXTRACTION

Given two distribution P an Q and there probability density function p(x) and q(x), the total variation
distance between P and Q is defined as: TV(P,Q) = Ex[∥p(x)−q(x)∥]/2. The attacker’s objective
can be denoted by l(C(x, θC), y), which is assumed to be non-negative. The function should be
minimized during the training period of the clone model, aiming at increasing the similarity between
the output of clone model C(x, θC) and output y (the output of the target model). During the model
extraction attack, the attacker finds proper θC to minimize the following objective:

E(x,y)∼Dout
[l(C(x, θC), y)]

where y = TR(x, θT , ξ).

Considering the layer-wise analysis, the attacker minimizes the following objective:

LDood
(C) = Ex∼Dood

Eξ∼q(ξ|x)[l(C(x, θC), T
R(x, θT , ξ))]. (8)

The goal of model extraction for attackers is to reach high test accuracy with clone models on benign
queries. To measure the effectiveness of model extraction, we use the disparity in loss between the
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clone model and the reprogrammed target model on ID data as:

Q(C, TR) = E(x,y)∼Din
[l(C(x, θC), y)− l(T (x, θT ), y)],

where higher Q(C, T ) means worse clone model quality.

We can conclude the following theorem on attackers’ quality: Assuming the attacker uses cross-
entropy loss l, we have

Q(C, TR) ≥ E(x,y)∼Dood
[Eξ∼q(ξ|x)[DKL(T (x, θT ) ∥ TR(x, θT , ξ))]]−D (9)

where D is a fixed constant only based on the target model. The proof of Theorem A.1 is in Section
A.2. Theorem A.1 demonstrates that maximizing the KL divergence on OOD data during the model
reprogramming training procedure will increase Q(C, TR), decreasing the quality of the clone model.

A.2 PROOF OF THEOREM A.1

Theorem A.1 is based on the theoretical analysis in Wang et al..

Suppose l is the loss function. If sup l ≤ A, we have

Q(C, T ) ≥ E(x,y)∼Dood
[l(C(x, θC), y)]− 4ATV(Dood,Did)

Proof. Firstly, we may consider the difference between ID loss and OOD loss on clone model:

|E(x,y)∼Did
[l(C(x, θC), y)]− E(x,y)∼Dood

[l(C(x, θC), y)]|
=|E(x,y)[l(C(x, θC), y)pid(x, y)]

− E(x,y)[l(C(x, θC), y)pood(x, y)]|
=|E(x,y)[l(C(x, θC), y) · (pid(x, y)− pood(x, y))]|
≤E(x,y)[|l(C(x, θC), y)| · |pid(x, y)− pood(x, y)|]
≤| sup l| · E(x,y)[|pid(x, y)− pood(x, y)|]
=2ATV(Dood,Did).

Similarly, we have

|E(x,y)∼Did
[l(T (x, θT ), y)]− E(x,y)∼Dood

[l(T (x, θT ), y)]|
≤2ATV(Dood,Did).

With the results on target model and clone model, we have

Q(C, T ) =E(x,y)∼Did
[l(C(x, θC), y)− l(T (x, θT ), y)]

≥E(x,y)∼Dood
[l(C(x, θC), y)]− 2ATV(Dood,Did)

− E(x,y)∼Dood
[l(T (x, θT ), y)]− 2ATV(Dood,Did).

Since in our settings, the clone model aims at stealing the functionality of target model on OOD data,
we have y = T (x, θT ), thus E(x,y)∼Dood

[l(T (x, θT ), y)] = 0. We have

Q(C, T ) ≥E(x,y)∼Dood
[l(C(x, θC), y)]− 4ATV(Dood,Did)

Under our settings with layer-wise noise, the attacker will minimize the objective in Eqn. 8. When
we assume the attacker use cross-entropy as learning objective l, we have The optimal solution of
Eqn. 8 with cross-entropy objective is ∀x,

C(x, θC) = Eξ∼q(ξ|x)[T
R(x, θT , ξ)].

Proof. Apply the cross-entropy to l in Eqn. 8, we have change the optimization problem to

min
θC

E(x,y)∼Dood
Eξ∼q(ξ|x)[−TR(x, θT , ξ) · logC(x, θC)],

14
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here · means the inner-product of the output vectors.

Assuming the representation ability of the clone model is infinitely large, thus we have

min
θC

E(x,y)∼Dood
Eξ∼q(ξ|x)[−TR(x, θT , ξ) · logC(x, θC)]

=E(x,y)∼Dood

[
min
θC

Eξ∼q(ξ|x)[−TR(x, θT , ξ) · logC(x, θC)]

]
=E(x,y)∼Dood

[
min
θC

−TR(x, θT , ξ) · Eξ∼q(ξ|x)[logC(x, θC)]

]
To solve the problem, we can derive that the solution of θC is

C(x, θ∗C) = Eξ∼q(ξ|x)[T
R(x, θT , ξ)].

This means the clone model can learn the full ability of the reprogrammed target model.

Assuming the attacker achieve optimal model extraction solution in Lemma A.2, we have

E(x,y)∼Dood
[l(C(x, θC), y)]

≥E(x,y)∼Dood
Eξ∼q(ξ|x)DKL(T (x,θT )∥TR(x,θT ,ξ)) −D,

where D is a constant only related to target model T .

Proof. With the optimal solution C(x, θ∗C) = Eξ∼q(ξ|x)[T
R(x, θT , ξ)] from A.2, We have

E(x,y)∼Dood
[l(C(x, θC), y)]

=E(x,y)∼Dood
[l(C(x, θC), T (x, θT ))]

=E(x,y)∼Dood
[−T (x, θT ) · logC(x, θC)]

=E(x,y)∼Dood
[−T (x, θT ) · logEξ∼q(ξ|x)[T

R(x, θT , ξ)]].

To simplify it, we have

E(x,y)∼Dood
[l(C(x, θC), y)]

=E(x,y)∼Dood
[−T (x, θT ) · logEξ∼q(ξ|x)[T

R(x, θT , ξ)]]

(1)

≥E(x,y)∼Dood
[−T (x, θT ) · Eξ∼q(ξ|x)[log T

R(x, θT , ξ)]]

=E(x,y)∼Dood
Eξ∼q(ξ|x)[−T (x, θT ) · log TR(x, θT , ξ)]

(2)
=E(x,y)∼Dood

[Eξ∼q(ξ|x)[DKL(T (x, θT ) ∥ TR(x, θT , ξ))]]−D

where (1) is based on Jensen’s inequality and (2) is based on the definition of KL divergence
DKL(P ∥ Q) :=

∫
p(x)[log p(x) − log q(x)]dx. D := E(x,y)∼Dood

[T (x, θT ) · log T (x, θT )] is a
constant based on target model , which is fixed during the training procedure of model extraction
attack.

Combining Lemma A.2 and A.2, we can derive the Theorem A.1.

B DETAILS OF METHOD

B.1 NOTATION TABLE

We summarize the notations for analysis and experiments in this work in Table 2.

B.2 A SIMPLE DBME SETTING

For DBME, there is a simple class-based division for a simple dataset with multiple labels, e.g.,
let Yid = {0, 1, 2, 3} and let Yood = {4, 5, 6, 7}. The distribution separation can be defined as :
Did = {(Gi, yi) | yid ∈ Yid}, and we have Gid = {Gi | yid ∈ Yid}. Of course, Good had better to be
chosen from other datasets.
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B.3 GRAPH STRUCTURE SIMILARITY

B.3.1 GRAPH FEATURE fG

Graph feature for the fG is based on the train ID dataset Dtrain
id , which can only be accessed by the

defender, which is also the training data for target model. fG is used to show the graph structure of a
group of input graphs. In our experiment, the graph features of Dtrain

id is trained to fit the structure,
the input is average degree distribution, clustering coefficient, graph diameter, and spectral features.
After that, the graph features is trained with GNNs with unsupervised learning Liu et al. (2022); the
graph feature of Dtrain

ood , which is given by the graph neural network is inferenced by the trained
model.

B.3.2 GRAPH SIMILARITY FOR DISTRIBUTION

While the graph similarity can be computed as the following:

α = sim(Ginput, Gid) = E(x,y)∼Din

[
cos∠

(
fGinput

, fx
)]

.

where fGinput represents the structural feature of the input graph, and fx denotes a selected sample
from the in-distribution data.

In the experiment, we refined α to α = {α(0), α(1), . . . , α(L)}, which is computed using a normalized
inner product applied to the layer-wise noise in each layer of the GNN target model, as the impact
factor may vary across different layers. This approach enables the injection of graph structure
differences into the model with layer-specific distinctions.

B.4 ASSUMPTION OF ATTACK QUERY DATA AS OOD DATA

One critical assumption the attacker and defender make is that the attack query data can be treated
as out-of-distribution (OOD) data. This assumption is based on the idea that the attacker’s queries
are typically drawn from a different distribution than the data used to train the target model. By
recognizing the attacker’s input as OOD, the defender can focus on identifying and mitigating the
impact of these queries on the model’s performance.

The reason behind this assumption is two-fold: (1) Modern machine learning models (API) require
large amounts of labeled data for training, but such data is expensive and typically needs to be fully
released in labeled form. This limitation means that attackers cannot access the in-distribution (ID)
labeled data for training the target model. As a result, the queries they generate are likely to be
OOD concerning the target model’s training data. (2) Some data used to train the target model may
originate from online users with privacy concerns, preventing the release of data distributions or
labels tied to these users. Therefore, without access to this ID data, it is reasonable to assume that all
attack queries fall under the category of OOD data.

Thus, we can assume that the attacker can only achieve OOD data to approximate the behavior of the
target model.

B.5 MODEL EXTRACTION ALGORITHM

The Data-based Model Extraction Defense algorithm is shown in Algorithm 2; The Data-Free Model
Extraction algorithm for attacker is shown in Algorithm 3.

C DETAILS OF EXPERIMENTS

C.1 EXTENDED EXPERIMENTAL DETAILS

C.1.1 DATASETS

Detailed descriptions of MUTAG, ENZYMES, NCI1, and PROTEINS datasets, including statistics
and preprocessing steps.
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Algorithm 2: Defender Algorithm
Input: In-distribution input graphs xi, out-of-distribution graph x′

i, model parameters θT ,
layer-wise noise ξ, regularization coefficient λ1, time budget B.
Output: Updated model parameters θT

1: Sample xi ∼ Did, x′
i ∼ Dood ;

2: Get prediction outputs with T (x, θT ) ;
With half time budget B/2 ;

3: for (xi, yi) in training batches do
4: Update θT with Ltask in Eqn. 5 ;
5: end for
6: Copy θT to initialize TR(x, θT , ξ) ;

With half time budget B/2
7: for (xi, yi) and (x′

i, y
′
i) in training batches do

8: Update θT with ∂L/∂θT in Eqn. 7 ;
9: Update ξ with ∂L/∂ξ with Eqn. 7 ;

10: end for

Algorithm 3: DFME Attack Algorithm
Input: Input graph {xi}, target model T with parameter θT , classifier parameters θC , data
generator fgen parameters θG
Output: Trained parameters θC .

1: Generate input graphs xi ∼ fgen(·, θG) ;
2: Get target model labels ŷi = T (xi, θT );
3: Initialize θC for clone model;
4: for (xi, yi) in training batches do
5: Compute label ỹi = C(xi, θC);

For hard-label settings ;
6: Compute hard-label loss LQ = DKL(ŷ, ỹ);

For soft-label settings ;
7: Compute soft-label loss LQ = lMSE(ŷ, ỹ);
8: Update θC using LQ ;
9: Update θG using LG = −LQ;

10: end for

C.1.2 ATTACK AND DEFENSE METHOD

Query division We use KnockoffNet Orekondy et al. (2019a) with natural data and describe the
specific dataset splits for attack and defense here.

Attacker settings We will use two attack methods for training the clone model: (1) Soft-label
attack, mainly using standard cross-entropy for training the clone model with the probability logits
output of the target model and OOD graph data, using soft-label settings; (2) Hard-label attack, only
the hard-label (top-1 of the output) will be used for training the clone model. We use GraphSAGE
Hamilton et al. (2017), GIUNET Amouzad et al. (2024), and GIC Jiang et al. (2019) as different
clone models to steal the functionality of the target model.

Defender settings As for target models, we use G_Inception Zhao et al. (2018) for MUTAG and
ENZYMES and use DUGNN Hayes & Danezis (2018) for NCI1 and PROTEINS. We compared to:
(1) Undefended: the target model will not be reprogrammed for OOD data without using any defense
strategy; (2) Random Perturb (RandP) Orekondy et al. (2019b): it randomly perturbs the output
probabilities of target model; (3) P-poison Orekondy et al. (2019b): it introduces small perturbation
to the model’s output predictions; (4) GRAD Mazeika et al. (2022): a defense method based on
gradient redirection defense; (5) Adaptive Misinformation (AM) Kariyappa & Qureshi (2020): An
OOD detection mechanism is combined with the prediction perturbation, only misleading the OOD
query data with a misinformation function. (6) MeCo Wang et al. (2023): a recent defense work on
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robust model defense against model extraction, we add noise after the first layer of the input graph
queries.

Evaluations We mainly evaluate the defense ability through the clone model’s test accuracy and
the target model’s accuracy (utility) on ID data. Besides, we set a large l1 perturbation to 1.0 for the
other baselines, that is, ∥y − ŷ∥1 ≤ 1.0 where y is the modified output probabilities, and ŷ are the
unmodified probabilities Wang et al. (2023).

C.2 SETTINGS

C.2.1 HARDWARE AND SOFTWARE ENVIRONMENT

We implement models with PyTorch 1.12 and run experiments on a 64-core Ubuntu 20.04 server with
NVIDIA GeForce RTX A5000 GPU with 24 GB memories each. It takes 3.5-4 hours to search on a
dataset with one million records.

C.2.2 ATTACKER AND DEFENDER SETTINGS

In our experimental setup, the attacker (clone model) uses an OOD dataset to query the victim model.
This OOD dataset differs from the OOD dataset used for reprogramming the target model. The ID
data can be divided into a training set and a test set, ensuring that the two sets do not overlap; The
train ID dataset can only be accessed by the defender for training target model, and it is not visible
to the attacker; The test ID data is used for evaluating the clone quality of the clone model and the
utility of the target model; The query data for the attacker uses a different OOD dataset and queries
the results from the target model. Then, the attacker uses the query data to train the clone model but
tests the clone model on the ID test dataset.

C.3 EXTENDED PERFORMANCE RESULTS

C.3.1 PERFORMANCE

Some results of defense performance is shown in Table 3 and Table 4. 1 .

Table 3: Clone model accuracy after applying defense methods on NCI1 and PROTEINS with
DUGNN as target model

Attack Defense NCI1 Clone Model Architecture PROTEINS Clone Model Architecture

GraphSAGE GIUNET GIC GraphSAGE GIUNET GIC

Soft-label
Attack

undefended ↓ 0.6352 0.7876 0.8207 0.7196 0.7578 0.7523
RandP ↓ 0.6034 0.7623 0.7993 0.6788 0.6824 0.6727
P-poison ↓ 0.6036 0.7651 0.8026 0.6861 0.7025 0.7035
GRAD ↓ 0.6055 0.7628 0.8133 0.6801 0.7126 0.7394
AM ↓ 0.6101 0.7578 0.7981 0.6790 0.7103 0.7125
MeCo ↓ 0.5862 0.6832 0.7363 0.6578 0.6837 0.6737
Ours ↓ 0.5219 0.6564 0.6826 0.6302 0.6538 0.6521

Soft-label
Attack

undefended 0.6073 0.7425 0.7824 0.6951 0.7164 0.7135
RandP ↓ 0.5735 0.7144 0.7459 0.6592 0.6455 0.6820
P-poison ↓ 0.5752 0.7120 0.7634 0.6536 0.6837 0.6852
GRAD ↓ 0.5731 0.7146 0.7661 0.6492 0.6902 0.6813
AM ↓ 0.5675 0.7235 0.7653 0.6473 0.6923 0.6793
MeCo ↓ 0.5435 0.6946 0.6837 0.5864 0.6771 0.6527
Ours ↓ 0.5024 0.6137 0.6547 0.5003 0.6287 0.6325

1The code for our experiments can be accessed at https://anonymous.4open.science/r/
GraphModelExtraction-3BEB.
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Table 4: Target model utility (test accuracy) and l1 norm of the output difference

Defense MUTAG ENZYMES NCI1 PROTEINS

Accuracy ↑ l1 norm ↓ Accuracy ↑ l1 norm ↓ Accuracy ↑ l1 norm ↓ Accuracy ↑ l1 norm ↓
undefended 0.9452 0.0 0.6629 0.0 0.8453 0.0 0.8012 0.0

RandP 0.9250 1.0 0.6451 1.0 0.8115 1.0 0.7864 1.0
P-poison 0.9324 1.0 0.6324 1.0 0.8134 1.0 0.7823 1.0
GRAD 0.9276 1.0 0.6467 1.0 0.8072 1.0 0.7825 1.0

AM 0.9335 1.0 0.6352 1.0 0.8025 1.0 0.7924 1.0
MeCo 0.9297 0.3572 0.6327 0.0649 0.8107 0.1240 0.7871 0.1956
Ours 0.9319 0.2351 0.6467 0.0567 0.8155 0.0762 0.7885 0.1320

Table 5: Clone model accuracy after applying adaptive attack on MUTAG with G_Inception as target
model

Attack Defense Clone Model Architecture

GraphSAGE GIUNET GIC

Hard-label
Attack

undefended ↓ 0.7651 0.9342 0.9043
Ours ↓ 0.6032 0.7829 0.7506
Ours, Adaptive, unknown architecture ↓ 0.5220 0.6334 0.6101
Ours, Adaptive, known architecture ↓ 0.5725 0.6672 0.6502

Soft-label
Attack

undefended ↓ 0.7346 0.8835 0.8657
Ours ↓ 0.5721 0.7531 0.7238
Ours, Adaptive, unknown architecture ↓ 0.5023 0.5942 0.5731
Ours, Adaptive, known architecture ↓ 0.5495 0.6247 0.5986

C.3.2 INFERENCE TIME

We evaluated the inference time during test time under the same query budget. The results are shown
in Table 6, using GraphSAGE as the clone model architecture on the MUTAG dataset. We find
that our inference time is higher than that of the undefended model due to the additional layers
for the structure feature extractor and noise generator in our method. Compared to RandP, our
inference time is still slightly higher because RandP only applies perturbations to the model’s output.
Compared to AM, our design does not have a surrogate model; thus, it will be less time costly. To
summarize, despite the additional processing steps, our method achieves superior inference time
efficiency compared to other defense methods.

C.4 ADAPTIVE ATTACKS

We analyze the robustness of our method against the attacker’s adaptive countermeasures. Specifically,
we consider the situation where attackers know about our defense and have considered the same
model reprogramming scheme when training the clone model without having access to the OOD
graph inputs.

According to the results in Table 5, our method can mislead the clone model on the in-distribution
data. Besides, the clone models with adaptive attack training perform worse. The reason is that the
adaptive attacker can learn the reprogramming scheme while neglecting the robustness of model
performance between ID and OOD data.

We also experimented on adaptive attack on data, where the clone model has access to both a subset
of in-distribution (ID) data and out-of-distribution (OOD) data for training. From the results in Table
12, we can see that the clone accuracy in the "ID & OOD" setting is higher than in the previous
"OOD" setting, as the model can now learn the graph structure from the target model’s training data
distribution.

C.4.1 LARGE-SCALE GRAPH TEST

We compared our defense method to a new large-scale dataset for multi-label graph classification,
COLLAB, used in social science research. The dataset used for this experiment is a subset of
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Table 6: Inference time comparison
Defense Method Inference Time (s)

Undefended 52.31
RandP 54.72
P-poison 432.17
AM 115.57
Ours 56.42

COLLAB, consisting of 3 classes and 1,000 graphs, with an average node count of 74.5 per graph.
We conducted a new experiment focusing on model extraction and defense, using GraphSAGE as the
clone model architecture. The clone model’s accuracy results are as follows: The results in Table 7
show that our method performs effectively on large-scale graph data, maintaining strong model utility
while providing robust defense against model extraction.

Table 7: Defense performance on large-scale graph dataset
Defense Method Clone Accuracy Test Accuracy

Undefended 0.6978 0.6987
RandP 0.6742 0.6389
P-poison 0.6523 0.6420
AM 0.6426 0.6524
Ours 0.6245 0.6972

C.4.2 GRAPH MODEL EXTRACTION TEST

We compared our method to different defense methods we use in our work under the GNN-specific
attack in Wu et al. (2022a) and Zhuang et al. (2024).

For both of the experiments, we pretrain the target model with architecture of G_Inception on
MUTAG. We use GraphSAGE as architecture of clone model, and we evaluate the defense quality on
MUTAG. For the attack methods introduced in Wu et al. (2022a), we adapt Attack-2 and Attack-3
to our settings. Specifically, we remove the node attributes from the original graphs, and we use a
different subgraph as training and test data for the clone model; For the data-free model extraction
attack in StealGNN Zhuang et al. (2024), we adapt Type-III and design a trainable graph generator as
inputs for queries.

From these results demonstrated in Table 8, we can see that our method performs well in comparison
to other model defense methods against model extraction attacks introduced in Wu et al. (2022a) and
Zhuang et al. (2024).

Table 8: Defense performance against graph model extraction attacks

Defense Attack-2 Attack-3 Type-III

Undefended 0.8214 0.8430 0.7932
RandP 0.7835 0.7921 0.7591
P-poison 0.7576 0.7782 0.7455
AM 0.7362 0.7495 0.7347
Ours 0.6457 0.6649 0.6376

C.5 ADAPTIVE ATTACK

C.5.1 STRONGER ADAPTIVE ATTACK: ARCHITECTURE

The results in Table 5 demonstrate that the adaptive method with a known architecture achieves
higher accuracy than the original method and the adaptive attack with an unknown architecture. This
is because the target model’s architecture is better suited for the task than a randomly selected clone
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Table 9: Clone model accuracy on MUTAG with G_Inception as target model

Attack Defense Clone Model Architecture

GraphSAGE GIUNET GIC

Soft-label
Attack

undefended 0.7651 0.9342 0.9043
w/ random noise 0.6820 0.7623 0.7409
w/o structure feature 0.5732 0.6953 0.6725
Ours 0.5220 0.6334 0.6101

Hard-label
Attack

undefended 0.7346 0.8835 0.8657
w/ random noise 0.6433 0.6954 0.6793
w/o structure feature 0.5421 0.6430 0.6334
Ours 0.5023 0.5942 0.5731

Table 10: Sensitivity analysis of layer number on MUTAG with G_Inception as target model

Attack Defense Clone Model Architecture

GraphSAGE GIUNET GIC

Soft-label
Attack

LR = 1 0.6725 0.6872 0.6701
LR = 2 0.5426 0.6642 0.6532
LR = 3 0.5327 0.6723 0.6823
Ours 0.5220 0.6334 0.6101

Hard-label
Attack

LR = 1 0.6531 0.6726 0.6502
LR = 2 0.5312 0.6447 0.6319
LR = 3 0.5156 0.6289 0.5920
Ours 0.5023 0.5942 0.5731

model architecture. Despite this, the results show that our defense method effectively counters even
the more advanced adaptive attack.

C.5.2 STRONGER ADAPTIVE ATTACK: DATA

We have concluded the statement in the introduction: "It is reasonable to assume that all attack queries
fall under the category of OOD data," To test this assumption, we conducted an experiment where the
clone model has access to both a subset of in-distribution (ID) and out-of-distribution (OOD) data for
training. Specifically, we use GraphSAGE as the architecture for the clone model, with a subset of
MUTAG (as ID data) and ENZYMES (as OOD data) for model training, where 10% of the data is
ID data. We use G_Inception as the architecture for the target model, and we train the target model
on the full MUTAG dataset. The clone accuracy results for the previous and new settings under this
stronger attack assumption are in Table 12.

From the results in Table 12, we can see that the clone accuracy in the "ID & OOD" setting is higher
than in the previous "OOD" setting, as the model can now learn the graph structure from the target
model’s training data distribution.

Nevertheless, the results demonstrate that our method still provides an effective defense against the
updated model extraction attack, even when the clone model has access to both ID and OOD data
during training.

C.6 DETAILS OF ABLATION STUDY

C.6.1 EFFECT OF MODEL DESIGN

We evaluate the effectiveness of learnable layer-wise noise and graph structure features in our method,
and the performance results are shown in Table 9 in Appendix. Our method, when compared
to the addition of random noise to different layers, demonstrates a clear superiority. This is due
to the fact that random noise, akin to a fix-size model injection, lacks the discerning ability to
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Table 11: Query budgets on MUTAG with G_Inception as target model

Attack Defense Query budget (thousand)

GraphSAGE GIUNET GIC

Soft-label
Attack

undefended ↓ 213 114 123
RandP ↓ 245 135 185
P-poison ↓ 224 133 135
AM ↓ 264 141 134
Ours ↓ 278 170 230

Table 12: Defense performance on adaptive data attack
Defense Method OOD ID & OOD

Undefended 0.7651 0.8174
RandP 0.7341 0.7763
P-poison 0.7426 0.7695
AM 0.7223 0.7570
Ours 0.6032 0.6358

differentiate between ID and OOD data, a capability our method excels in. Similarly, the graph
structure information also contributes to the ability to detect input graphs.

C.6.2 EFFECT OF DIFFERENT QUERY BUDGETS FOR ATTACKERS

We record the query budgets when the clone model reaches an accuracy of 70% on dataset MUTAG
in Table 11 in Section ??. Our method outperforms various defense methods. This is because the
reprogrammed model makes it harder for the clone model to reach high accuracy.

C.6.3 HYPERPARAMETER CHOICES

One hyperparameter of the target model is the number of layers adding noise LR. In the setting of
our methods, it is set to be L, which is the layer number of GNNs. While LR = 1, we only add
noise into the last layer of the GNNs, when LR = 2, only the last two layers are added layer-wise
noise, etc. The results for the layer number analysis are shown in Table 10 . We can derive from the
results that the number of layers with noise will affect the clone model accuracy. When LR grows
more significant, the clone model’s performance worsens since reprogramming introduces more
disturbance into the model.
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