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ABSTRACT

We propose a new probabilistic method for unsupervised recovery of corrupted
data. Given a large ensemble of degraded samples, our method recovers accurate
posteriors of clean values, allowing the exploration of the manifold of possible
reconstructed data and hence characterising the underlying uncertainty. In this set-
ting, direct application of classical variational methods often gives rise to collapsed
densities that do not adequately explore the solution space. Instead, we derive
our novel reduced entropy condition approximate inference method that results
in rich posteriors. We test our model in a data recovery task under the common
setting of missing values and noise, demonstrating superior performance to existing
variational methods for imputation and de-noising with different real data sets. We
further show higher classification accuracy after imputation, proving the advantage
of propagating uncertainty to downstream tasks with our model.

1 INTRODUCTION

Data sets are rarely clean and ready to use when first collected. More often than not, they need
to undergo some form of pre-processing before analysis, involving expert human supervision and
manual adjustments (Zhou et al., 2017; Chu et al., 2016). Filling missing entries, correcting noisy
samples, filtering collection artefacts and other similar tasks are some of the most costly and time
consuming stages in the data modeling process and pose an enormous obstacle to machine learning at
scale (Munson, 2012). Traditional data cleaning methods rely on some degree of supervision in the
form of a clean dataset or some knowledge collected from domain experts. However, the exponential
increase of the data collection and storage rates in recent years, makes any supervised algorithm
impractical in the context of modern applications that consume millions or billions of datapoints.
In this paper, we introduce a novel variational framework to perform automated data cleaning and
recovery without any example of clean data or prior signal assumptions.

The Tomographic auto-encoder (TAE), is named in analogy with standard tomography. Tomographic
techniques for signal recovery aim at reconstructing a target signal, such as a 3D image, by algorith-
mically combining different incomplete measurements, such as 2D images from different view points,
subsets of image pixels or other projections (Geyer et al., 2015). The TAE extends this concept to
the reconstruction of data manifolds; our target signal is a clean data set, where corrupted data is
interpreted as incomplete measurements. Our aim is to combine these to reconstruct the clean data.

More specifically, we are interested in performing Bayesian recovery, where we do not simply
transform degraded samples into clean ones, but recover probabilistic functions, with which we can
generate diverse clean signals and capture uncertainty. Uncertainty is considerably important when
cleaning data. If we are over-confident about specific solutions, errors are easily ignored and passed
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Figure 1: (a) Example of Bayesian recovery from corrupted data with a Tomographic Auto-Encoder
(TAE) on corrupted MNIST. The TAE recovers posterior probability densities q(x|yi) for each
corrupted sample yi. We can draw from these to explore different possible clean solutions. (b) Two
dimensional Bayesian recovery experiment. (i) Observed set of corrupted data Y , with the point
we are inferring from yi highlighted. (ii) Ground truth hidden clean data with the target point xi
highlighted, along with the posterior q(x|yi) reconstructed by a VAE. (iii) Posterior q(x|yi) recovered
with our TAE. While the VAE posterior collapses to a single point, the TAE reconstructs a rich
posterior that adjusts to the data manifold.

on to downstream tasks. For instance, in the example of figure 1(a), some corrupted observations
are consistent with multiple digits. If we were to impute a single possibility for each sample, the
true underlying solution may be ignored early on in the modeling pipeline and the digit will be
consistently mis-classified. If we are instead able to recover accurate probability densities, we can
remain adequately uncertain in any subsequent processing task.

Several variational auto-encoder (VAE) models have been proposed for applications that can be
considered special cases of this problem (Im et al., 2017; Nazabal et al., 2018; Ainsworth et al., 2018)
and, in principle, they are capable of performing Bayesian reconstruction. However, we show that
surrogating variational inference (VI) in a latent space with VAEs results in collapsed distributions
that do not explore the different possibilities of clean samples, but only return single estimates. The
TAE performs approximate VI in the space of recovered data instead, through our reduced entropy
condition method. The resulting posteriors adequately explore the manifold of possible clean samples
for each corrupted observation and, therefore, adequately capture the uncertainty of the task.

In our experiments we focus on data recovery from noisy samples and missing entries. This is one
of the most common data corruption settings being encountered in a wide range of domains with
different types of data (White et al., 2011; Kwak & Kim, 2017). By testing our approach in this
prevalent scenario, we can closely compare with recently proposed VAE approaches (Nazabal et al.,
2018; Dalca et al., 2019; Mattei & Frellsen, 2019). We show how the existing VAE models exhibit
the posterior collapse problem while the TAE produces rich posteriors that capture the underlying
uncertainty. We further test TAEs on classification subsequent to imputation, demonstrating superior
performance to existing methods in these downstream tasks. Finally, we use a TAE to perform
automated missing values imputation on raw depth maps from the NYU rooms data set.

2 METHOD

In order to frame the problem and understand the issues with standard variational methods in this
context, we view the task from a signal reconstruction prospective. The final scope of a Bayesian
data recovery method is to build and train a parametric probability density function (PDF) q(x|y),
which takes as inputs corrupted samples y and generates different possible corresponding clean data
x ∼ q(x|y) through sampling. There are two aspects we need to design: i) the structure of this
conditional PDF and ii) the way it will be trained to perform the recovery task.

Regarding the former, as natural data often lies on highly non-linear manifolds, we need the condi-
tional PDF to capture complicated modalities, e.g. the distribution of plausible images consistent
with one of the corrupted observations in figure 1(a). A suitable recovery PDF q(x|y) needs to be
able to capture such complexity. A natural choice to achieve high capacity and tractability is to
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Figure 2: Training LVMs for data recovery. (a) Structure of the reconstruction LVM used to infer
approximate posteriors q(x|y) of clean data x from corrupted observations y as conditional inputs. (b)
Training of q(x|y) using a VAE. A prior in the latent space z is introduced as a regulariser, however
no explicit regularisation is imposed in x. (c) Training of q(x|y) using our TAE model. An empirical
prior p(x) =

∫
p(zp)p(x|zp)dzp is instead introduced in clean data space x.

construct q(x|y) as a conditional latent variable model (LVM). Conditional LVM neural networks
have achieved efficient and expressive variational inference in many recovery settings, capturing
complex solution spaces in high dimensional problems, such as image reconstruction (Nguyen
et al., 2017; Mirza & Osindero, 2014; Adler & Öktem, 2018). The conditional LVM consists of
a first conditional distribution q(z|y) mapping input corrupted data y to latent variables z, and a
second inference q(x|z, y) mapping latent variables to output clean data x. The resulting PDF is
q(x|y) =

∫
q(z|y)q(x|z, y)dz, where both q(z|y) and q(x|z, y) are simple distributions, such as

isotropic Gaussians, whose moments are inferred by neural networks taking the respective conditional
arguments as inputs. Figure 2(a) shows a graphical model for the conditional LVM.

While the choice of structure is fairly straightforward, the main difficulty lies in training the recovery
LVM in the absence of clean ground truths x. In the supervised case, several established methods
exist; the observed distributions of clean data x conditioned on paired observations y can be matched
by parametric ones through a VAE or GAN training strategy (Sohn et al., 2015; Adler & Öktem,
2018; Tonolini et al., 2020). However, we are instead interested in the unsupervised situation, where
we only have corrupted data Y = {y1:N} and a functional form for the corrupted data likelihood
p(y|x), e.g., missing values and additive noise. Training a conditional LVM to fit posteriors without
any ground truth examples x is rather challenging, as we do not have data to encode from, in the case
of VAE architectures, or adversarially compare with, in the case of GAN models.

2.1 VAES AND THE POSTERIOR COLLAPSE PROBLEM

Variational auto-encoders (VAEs) have been proposed for several problems within this definition
of unsupervised reconstruction (Dalca et al., 2019; Im et al., 2017; Ainsworth et al., 2018). These
methods lead to good single estimates of the underlying targets. However, they easily over-fit their
posteriors resulting in collapsed PDFs q(x|y). Put differently, they are often unable to explore
different possible solutions to the recovery problem and return single estimates instead. Figure 1(b-ii)
shows this pathology in a two dimensional experiment.

The reason for this can be explained considering what the reconstruction LVM q(x|y) is and how
it is trained when directly employing a VAE in the unsupervised recovery scenario. The VAE
encodes latent vectors z from corrupted observations y with an encoder q(z|y) and reconstructs clean
data x with a decoder p(x|z). These two functions constitute the reconstruction LVM q(x|y) =∫
q(z|y)p(x|z)dz. As we do not have clean ground truths x, data likelihood is maximised by

mapping reconstructed clean samples x back to corrupted samples y with a corruption process
likelihood p(y|x), e.g. zeroing out missing entries, to maximise reconstruction of the observations y.
Concurrently, regularisation in the latent space is induced with a user defined prior p(z) (e.g. a unit
Gaussian). The resulting lower bound to be maximised during training can be expressed as follows:

LV AE = Eq(z|y) log p(y|z)−KL(q(z|y)||p(z)), (1)

where the observations likelihood is p(y|z) =
∫
p(x|z)p(y|x)dx and in some cases, such as for

missing values and additive noise, it is analytical. A derivation is given in supplementary A.1.
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Viewing the VAE training from a signal reconstruction prospective, where our reconstruction model is
q(x|y) =

∫
q(z|y)p(x|z)dz, we can see that we are not introducing any prior directly on the hidden

targets x, but only in the LVM latent space z. While regularising only in z may be computationally
desirable, if the decoder p(x|z) is of sufficient capacity, the model can learn to collapse regularised
distributions in z to single estimates in x, failing to capture uncertainty. In fact, this is induced by
the objective function of equation 1; the model finds broad distributions in the latent space q(z|y),
which minimise the KL divergence with p(z), but the generator p(x|z) can learn to collapse them
back to single maximum likelihood solutions in x, maximising Eq(z|y) log

∫
p(x|z)p(y|x)dx. This

effect may be counteracted by reducing the capacity of p(x|z) or the dimensionality of z, but doing
so also reduces the capacity of the reconstruction model q(x|y), resulting in an undesirable coupling
between regularisation and posterior capacity.

2.2 SEPARATING POSTERIOR AND PRIOR: THE TOMOGRAPHIC AUTO-ENCODER

The premise of our model to address the aforementioned problem is simple: Introduce a prior p(x)
in the hidden clean signal space. In particular, we propose to use an empirical prior, having itself
the form of an LVM p(x) =

∫
p(zp)p(x|zp)dzp. In this way, we perform approximate variational

inference in clean data space x, instead of surrogating it to the reconstruction function’s latent space
z. By doing so, we can control the capacity of the prior p(x) to induce regularisation independently
of the capacity of our reconstruction model q(x|y) =

∫
q(z|y)q(x|z, y)dz. For this framework, We

can formulate the following ELBO:

LTAE = Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(x|y)).

The above ELBO is derived in detail in supplementary section A.2. The main technical challenge and
focus of this paper is how to compute and maximise the self entropy of the approximate posterior
H(q(x|y)), as this conditional distribution is an LVM of the form q(x|y) =

∫
q(z|y)q(x|z, y)dz.

Reduced Entropy Condition: Direct computation of the entropy of an LVM model q(x|y) =∫
z
q(z|y)q(x|z, y)dz is intractable in the general case. Titsias & Ruiz (2019) proposed an approximate

inference method to compute the gradient of the LVM’s entropy for variational inference in latent
spaces. However, this involves multiple samples to be drawn and evaluated with the LVM, which is
expected to scale in complexity as the dimensionality and capacity of the target distribution increase.

In our case, we aim to approximately compute and optimise the entropy H(q(x|y)) for a distribution
capturing natural data, which can be high-dimensional and lie on complicated manifolds. In order to
maintain efficiency in the entropy estimation, we propose a new strategy; we identify a class of LVM
posteriors for which the entropy reduces to a tractable form and then approximately constrain the
posterior to such a class in our optimisation. Our main result is summarized in the following theorem:

Theorem 1 If q(z|x,y)
q(z|y) = Bδ(z − g(x, y)), where δ( · ) is the Dirac Delta function, B is a

real positive parameter and g(x, y) is a deterministic function, then H(q(x|y)) = H(q(z|y)) +
Eq(z|y)H(q(x|z, y)).

We detail the proof in supplementary A.3. Theorem 1 states that if the posterior over latent variables
q(z|x, y) is infinitely more localised than the latent conditional q(z|y), then the LVM entropy
H(q(x|y)) has the tractable form given above. This condition imposes the LVM posterior to present
non-overlapping conditionals q(x|z, y) for different latent variables z, but does not impose any
explicit restriction to the capacity of the model. We can also formulate the condition as follows:

Eq(x,z|y) log
q(z|x, y)
q(z|y)

= C, C →∞. (2)

The proof is provided in supplementary section A.4. To train our posterior q(x|y), we aim to maximise
the ELBO LTAE with the reduced entropy, while enforcing the condition of equation 2:

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y)), s.t. Eq(x,z|y) log

q(z|x, y)
q(z|y)

= C, C →∞.
(3)
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While the ELBO is now amenable to stochastic optimization, the constraint is intractable since
C →∞ and the posterior q(z|x, y) is intractable.

Relaxed Constraint: To render the constraint tractable, we firstly relax C to be a positive hyper-
parameter. The higher the value of C, the more localised q(z|x, y) is imposed to be compared to
q(z|y) and the closest the reduced entropy is to the true one.

To address the intractability of the posterior q(z|x, y), we employ a variational approximation with a
parametric function r(z|x, y). In fact, for any valid probability density r(z|x, y), we can prove that

Eq(x,z|y) log
q(z|x, y)
q(z|y)

≥ Eq(x,z|y) log
r(z|x, y)
q(z|y)

. (4)

The proof is given in supplementary section A.5. The above bound implicates the following:

Eq(x,z|y) log
r(z|x, y)
q(z|y)

= C ⇒ Eq(x,z|y) log
q(z|x, y)
q(z|y)

≥ C.

This means that imposing the condition with a parametric distribution r(z|x, y), which is trained
along with the rest of the model, ensures deviation from the set condition only by excess. As the
exact condition is met only at Eq(x,z|y) log q(z|x)

q(z|y) →∞, we can never relax the constraint more than
already set by the finite value of C.

The TAE Objective Function: Having defined a tractable ELBO and a tractable condition, we need
to perform the constrained optimisation

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y)), s.t. Eq(x,z|y) log

r(z|x, y)
q(z|y)

= C.
(5)

We use the commonly adopted penalty function method (Zangwill, 1967; Phuong et al., 2018) and
relax equation 5 to an unconstrained optimisation with the use of a positive hyper-parameter λ:

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+H(q(z|y)) + Eq(z|y)H(q(x|z, y))− λ

∣∣∣∣Eq(z,x|y) log r(z|x, y)q(z|y)
− C

∣∣∣∣ . (6)

To train the model, we perform the maximisation of equation 6 using the ADAM optimiser. Once the
model is trained, we can generate diverse reconstructions from a corrupt observation yi by sampling
from the posterior q(x|yi). Details of our optimisation are reported in supplementary B.1. We
describe how we handle parameters of the corruption process p(y|x) in supplementary B.2.

3 RELATED WORK

3.1 SUPERVISED BAYESIAN RECONSTRUCTION

The reconstruction of posterior densities from incomplete measurements has been recently investi-
gated in supervised situations, where examples of clean data are available. In particular, conditional
generative models were demonstrated with high dimensional data (Parmar et al., 2018). These
methods work by exploiting an LVM to generate diverse realisations of targets conditioned on associ-
ated observations (Isola et al., 2017; Nguyen et al., 2017). Both conditional generative adversarial
networks (CGANs) (Mirza & Osindero, 2014; Isola et al., 2017) and conditional VAEs (CVAEs)
(Sohn et al., 2015; Nguyen et al., 2017) have been studied in this context. In both cases, the samples
generated by conditioning on an observation can be interpreted as samples from the corresponding
conditional posterior densities.

These approaches proved successful in a range of recovery tasks: reconstruction of images with
missing groups of pixels (Nguyen et al., 2017), super-resolution (Parmar et al., 2018), medical
computed tomography reconstructions (Adler & Öktem, 2018) and semi supervised situations, where
examples of clean data and conditions are available in different amounts (Kingma et al., 2014; Denton
et al., 2016; Tonolini et al., 2020). Other works reconstruct manifolds of solutions from observations
only, but can be considered supervised, as they exploit pre-trained generators (Anirudh et al., 2018).
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These works make the important observation that when learning to recover data from corrupted or
partial observations, there is not a single right solution, but many differently likely ones. We aim to
extend this ability to completely unsupervised scenarios, where no clean data examples are available.

3.2 UNSUPERVISED BAYESIAN RECONSTRUCTION

Reconstructing posteriors in the unsupervised case is largely still an open problem. However,
several tasks that fall within this definition have been recently approached with Bayesian machine
learning methods. Arguably the most investigated is de-noising. Several works solve this problem by
exploiting the natural tendency of neural networks to regularise outputs (Lehtinen et al., 2018; Krull
et al., 2019a;b). Other methods build LVMs that explicitly model the noise process in their decoder,
retrieving clean samples upon encoding and generation (Im et al., 2017; Creswell & Bharath, 2018).

A second notable example is that of missing value imputation. Corrupted data corresponds to samples
with missing entries. Recent works have explored the use of LVMs to perform imputation, both
with GANs (Li et al., 2019; Yoon et al., 2018; Luo et al., 2018) and VAEs (Nazabal et al., 2018;
Mattei & Frellsen, 2019; Ma et al., 2018). In the former, the discriminator of the GAN is trained to
distinguish real values from imputed ones, such that the generator is induced to synthesise realistic
imputations. In the latter, the encoder of a VAE maps incomplete samples to a latent space, to then
generate complete samples. Successful unsupervised Bayesian missing value imputation has also
been demonstrated with neural processes, where a global latent representation is learned to generate
input-output models used to impute in each example (Garnelo et al., 2018).

Finally, Bayesian LVM methods have been used on other unsupervised tasks that can be cast as
special cases of data recovery problems. Amongst these, we find Multi-view generation (Shang et al.,
2017; Ainsworth et al., 2018), where the target clean data includes all views for each samples, but the
observed data only presents subsets. Blind source separation can also be cast as a recovery problem
and has been approached with GANs and VAEs (Kameoka et al., 2018; Hoshen, 2019).

These models proved to be successful at reconstructing data in their specific domain. However, in
our work, we show how exploiting a standard VAE inference structure, similarly to several of the
aforementioned methods, often leads to posteriors of clean data that collapse on single estimates,
sacrificing the probabilistic capability of LVMs.

3.3 POSTERIOR COLLAPSE IN VARIATIONAL INFERENCE

The posterior collapse problem we approach with the reduced entropy condition method presented
in this paper has some analogy with the latent posterior collapse encountered when using implicit
distributions in variational inference to obtain flexible recognition models. The main issue in training
these models successfully without collapse is the computation of density rations between the latent
prior and the implicit variational posterior. This problem is analogous to the difficulty in estimating
the LVM entropy in our method. Yin & Zhou (2018) proposed to use a further lower bound on the
ELBO and add a term encouraging diversity to avoid collapse. This term is obtained by drawing K
Gaussian components from the LVM posterior and computing the KL divergence of an individual
component with the mixture distribution, i.e. the sum of the drawn Gaussians. Titsias & Ruiz (2019)
build on this work by deriving an unbiased estimator for the ELBO gradient, instead of using a
surrogate lower bound.

These methods rely on estimating the LVM posterior through sampling and aggregating K explicit
distribution components. This was demonstrated to work well for posteriors in artificial latent space
by drawing only a few components. However, in our data recovery setting, we need to capture the
posteriors in clean data space, rather than a latent space. Posteriors capturing the uncertainty in
natural data are expected to be much more complex and higher dimensional, leading to the number K
of drawn Gaussians needed to approximate the true LVM with these methods to become rather large,
making optimisation inefficient or even intractable in extreme cases. The reduced entropy condition
method we derive in this paper avoids the posterior collapse without having to estimate the LVM
posterior through sampling and is therefore specially suited for the data recovery setting, where we
are required to capture posteriors in clean data space.
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Figure 3: MNIST data recovery from missing entries and noise. (a) Recoveries using an MVAE and
our TAE, showing average reconstruction and samples from the trained posteriors. (b) PSNR between
ground truths and mean reconstruction. (c) ELBO assigned by the recovered posteriors to the ground
truth data. The mean inference performance is very similar for the two models (PSNR values), while
the probabilistic performance (ELBO values) is significantly higher for our TAE model. We can see
evidence of this difference in the reconstruction examples. The MVAE and TAE return similarly
adequate mean solutions, but the MVAE posterior’s draws are all very similar, suggesting that the
posterior has collapsed on a particular reconstruction. Contrarily, the posteriors returned by the TAE
explore different possible solutions that are consistent with the associated corrupted observation.

Table 1: Bayesian recovery from noisy data with different percentages of missing entries. Table
shows the ELBO assigned by the retrieved posteriors to the ground truth clean data. Our TAE model
consistently returns higher ELBO values compared to the competing variational methods, as it is able
to retrieve rich posteriors that adequately sample the solution space. More values in supp. D.3.

MNIST Fashion-MNIST UCI HAR
50% 80% 50% 80% 50% 80%

MVAE 870± 6 803± 15 757± 1 723± 7 585± 4 471± 10
MIWAE 917± 4 780± 6 800± 7 766± 8 613± 6 584± 8
TAE 1719± 7 1536± 14 1326± 7 1094± 13 1014± 6 854± 52

4 EXPERIMENTS

4.1 POSTERIOR RECOVERY

We corrupt the MNIST dataset (Deng, 2012) by introducing missing values and additive Gaussian
noise on the observed entry. We then train both a missing value imputation VAE (MVAE), analogous
to those presented in (Nazabal et al., 2018) and (Dalca et al., 2019), and our TAE model with the
corrupted data sets. The VAE and TAE are constructed such that the structure of their posteriors
q(x|y), i.e. the functions mapping corrupted data to distributions of clean data at test time, are
exactly the same. In this way, we can ensure that differences in performance are due to the variational
inference method employed and not the choice of posterior model. The resulting variational posteriors
are used to perform data recovery from the corrupted samples. Fig. 3(a) shows examples of mean
reconstruction and posterior draws. See analogous experiments for grouped missings in suppl. D.2.

We evaluate the accuracy of mean reconstruction at different ratios of observed entries by measuring
the peak signal to noise ratio (PSNR) between the ground truth data and mean recoveries (Figure
3(b)). To evaluate probabilistic performance we approximately measure the likelihood assigned by
the recovered posteriors to the ground truth data through a reconstruction ELBO, by training a new
inference function with the clean ground truths, but leaving the posterior fixed, as is common for
evaluating ELBOs in unsupervised settings (Cremer et al., 2018; Mattei & Frellsen, 2018; 2019). A
detailed description of this approach is given in supplementary C.3. We also carry out analogous
experiments testing de-noising and missing value imputation separately. THese results are reported
in supplementary D.4 and D.5. Results are shown in figure 3(c). We further evaluate our TAE with
Fashion-MNIST – 28 × 28 grey-scale images of clothing (Xiao et al., 2017), and the UCI HAR
dataset, which consists of filtered accelerometer signals from mobile phones worn by different people
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Figure 4: Propagating uncertainty to a classification task. Draws from the MVAE posterior are
all very similar to each other. As a result, the imputed images are almost always classified in the
same way and the uncertainty of the task is underestimated. The TAE posterior explores varied
possible solutions to the recovery task. These can be recognised as different classes, resulting in less
concentrated distributed probabilities that better reflect the associated uncertainty.

during common activities (Anguita et al., 2012). As before, we test the recovery of these data sets
from a version affected by missing values and additive noise. In addition to the MVAE baseline, we
compared against the recently proposed missing values importance weighted auto encoder (MIWAE)
(Mattei & Frellsen, 2019), which optimises an importance weighted ELBO in place of the standard
one. For each model and settings we compute the ELBO assigned to the ground truth data. Results
are shown in Table 2. Experimental details in Sec. C of suppl. mat.

4.2 DOWNSTREAM TASKS

To investigate the advantage of capturing complex uncertainties with our TAE model, we are interested
in testing performance in downstream tasks. We test classification performance on subsets of the
MNIST and Fashion-MNIST data sets, after recovery with our TAE. With both sets, we consider
situations in which 10.000 examples are available, but corrupted with missing entries and noise.
1, 000 of these are labelled with one of 10 possible classes and we wish to classify the remaining
9, 000. To do so, we first train the TAE model on the full set, then use the recovered posteriors to
generate multiple possible cleaned data for the labelled sub-set and use them to train a classifier.

Figure 5: Classification accuracy after imputation. Classifying using TAE imputations gives an
advantage in this downstream task over using raw corrupted data and MVAE imputations, especially
when the number of missing entries is high. This is because the MVAE collapses on single imputations,
while the TAE generates diverse samples for each corrupted observation. The TAE classifier trains
with data augmentations consistent with observed corrupted images, instead of single estimates.

To perform classification on the 9, 000 remaining examples, we generate multiple possible cleaned
data with the variational posteriors. Then, for each posterior sample, we perform classification and
histogram the results. Examples are shown in figure 4. To evaluate the performance, we take the
class with the largest histogram as the inferred one. We repeat this experiment for different ratios of
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missing values and several repetitions, varying the subsets of labelled and unlabelled data to be used.
Classification accuracy results are shown in figure 5.

4.3 MISSING VALUES IN THE NYU DEPTH MAPS

As a final practical application, we use a convolutional version of our TAE to perform structured
missing value imputation on depth maps of indoors rooms collected with a Kinect depth sensor. Miss-
ing entries are very common in depth maps recorded with such structured light sensors (Scharstein &
Szeliski, 2003). We use raw depth data from the NYU rooms dataset, commonly used to test various
computer vision systems (Silberman & Fergus, 2011; Silberman et al., 2012; Dollár & Zitnick, 2013;
Chang et al., 2018). A large portion of the set is available only as raw data, which presents missing
entries. These are especially concentrated around objects’ edges and reflecting surfaces, breaking the
common assumption of missing at random, making this task particularly challenging. We train our
TAE with a subset of this raw data set to perform imputation. Examples of results are shown in figure
11. Additional examples are shown in supplementary section D.6.
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Figure 6: Unsupervised missing value imputation with our TAE on raw depth maps from the NYU
rooms data set, compared with a median filter approach and the standard MVAE. Missing pixels in
the observed images are in white. The median filter results in overly smoothed images and is unable
to fill pixels that are surrounded by large missing areas. The MVAE returns adequate reconstructions,
however, it over-fits to inaccurate solutions in certain locations, returning low uncertainty. The TAE
returns good reconstructions and assigns high uncertainty to locations where reconstructions are most
inaccurate, as shown by the marginal standard deviations.

5 CONCLUSION

We presented tomographic auto-encoders; a variational inference method for recovering posterior
distributions of clean data from a corrupted data set alone. We derive the reduced entropy condition
method; a novel inference strategy that results in rich distributions of clean data given corrupted
observations, thereby capturing the uncertainty of the task, while standard variational methods often
collapse on single answers. In our experiments, we demonstrate this capability and show the advantage
of capturing uncertainty with the TAE in downstream tasks, outperforming the state-of-the-art VAE
based recovery methods.
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Tomographic Auto-Encoder - Supplementary material

A PROOFS AND DERIVATIONS

A.1 DERIVATION OF VAE ELBO FOR DATA RECOVERY

We aim to maximise the log likelihood of the observed corrupted data y

log p(y) = log

∫
x

∫
z

p(z)p(x|z)dz︸ ︷︷ ︸
p(x)

p(y|x)dx.
(7)

We can introduce a variational distribution in both clean data space and latent space q(x, z|y) and
define a lower bound as

log p(y) ≥
∫
x

∫
z

q(x, z|y) log p(z)p(x|z)dz
q(x, z|y)

dzdx

+

∫
x

∫
z

q(x, z|y) log p(y|x)dzdx.
(8)

To obtain the VAE ELBO used in data recovery settings, the choice of the variational posterior is
q(x, z|y) = q(z|y)p(x|z). The ELBO can then be simplified to give

log p(y) ≥
∫
x

∫
z

q(z|y)p(x|z) log p(z)p(x|z)dz
q(z|y)p(x|z)

dzdx

+

∫
x

∫
z

q(z|y)p(x|z) log p(y|x)dzdx

=

∫
x

p(x|z)dx︸ ︷︷ ︸
=1

∫
z

q(z|y) log p(z)dz
q(z|y)

dz

+

∫
x

∫
z

q(z|y)p(x|z)dz log p(y|x)dx

(9)

For situations in which the observations’ likelihood
∫
x
p(x|z)p(y|x)dx has a closed form, such as

additive noise and missing entries, we can define a tighter bound to the likelihood by moving the
integral in x in the second term inside the logarithm

log p(y) ≥
∫
z

q(z|y) log p(z)dz
q(z|y)

dz

+

∫
z

q(z|y) log
[∫

x

p(y|x)p(x|z)dx
]
dz

=−KL(q(z|y)||p(z)) + Eq(z|y) log p(y|z)dx.

(10)

Because p(x|z) simplifies in the KL term, this ELBO avoids variational inference in the space of
clean data x.

A.2 DERIVATION OF TAE ELBO

In our TAE model we defined separate LVMs for prior and posterior. To distinguish between the
posterior latent variable and the prior latent variable, we name the former z and the latter zp. The
likelihood we aim to maximise is

log p(y) = log

∫
x

∫
zp

p(zp)p(x|zp)dzp︸ ︷︷ ︸
p(x)

p(y|x)dx.
(11)
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Similarly to the VAE ELBO case, we define a variational posterior q(x, zp|y) to find a lower bound

log p(y) ≥
∫
x

∫
zp

q(x, zp|y) log
p(zp)p(x|zp)dzp

q(x, zp|y)
dzpdx

+

∫
x

∫
zp

q(x, zp|y) log p(y|x)dzpdx.
(12)

However, in our model we do not make the assumption that the variational posterior has the special
form described in section A.1 and instead set it to have the form q(x, zp|y) = q(x|y)q(zp|x),
separating posterior inference from observations y to clean data x and inference of prior latent
variables zp. The resulting lower bound is

log p(y) ≥
∫
x

∫
zp

q(x|y)q(zp|x) log
p(zp)p(x|zp)
q(x|y)q(zp|x)

dzpdx+

∫
x

∫
zp

q(x|y)q(zp|x) log p(y|x)dzpdx

=

∫
x

q(x|y)
∫
zp

q(zp|x) log
p(zp)p(x|zp)
q(zp|x)

dzp︸ ︷︷ ︸
≥log p(x)

dx+

∫
x

∫
zp

q(zp|x)︸ ︷︷ ︸
=1

dzpq(x|y) log p(y|x)dx

−
∫
x

∫
zp

q(zp|x)dzp︸ ︷︷ ︸
=1

q(x|y) log q(x|y)dx

=Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))

]
+ Eq(x|y) log p(y|x) +H(q(x|y)).

(13)

A.3 PROOF OF THEOREM 1

q(z|x, y)
q(z|y)

= Bδ(z − g(x, y)) =⇒ q(z|x, y)
q(z|y)

q(z′|x, y)
q(z′|y)

= 0, ∀x, z 6= z′

=⇒ q(x|z, y)
q(x|y)

q(x|z′, y)
q(x|y)

= 0, ∀x, z 6= z′

=⇒ q(x|z, y)q(x|z′, y) = 0, ∀x, z 6= z′

=⇒ q(x|z′, y) = 0, ∀x ∼ q(x|z, y), z 6= z′

(14)

Using the result of equation 14, we can derive the form of the entropy H(q(x|y)) for this special case
as the following:

H(q(x|y)) =−
∫
x

[∫
z

q(z|y)q(x|z, y)dz
]
· log

[ ∫
z′
q(z′|y)q(x|z′, y)dz′

]
dx

=−
∫
x

∫
z

q(z|y)q(x|z, y) · log
[ ∫

z′=z

q(z′|y)q(x|z′, y)dz′

+

∫
z′ 6=z

q(z′|y)q(x|z′, y)dz′︸ ︷︷ ︸
eq.14 =⇒ =0

]
dzdx

= −
∫
z

∫
x

q(z|y)q(x|z, y) log [q(z|y)q(x|z, y)] dxdz

= −
∫
z

∫
x

q(z|y)q(x|z, y) log q(z|y)dxdz −
∫
z

∫
x

q(z|y)q(x|z, y) log q(x|z, y)dxdz

= −
∫
z

q(z|y) log q(z|y)dz −
∫
z

q(z|y)
∫
x

q(x|z, y) log q(x|z, y)dxdz

= H(q(z|y)) + Eq(z|y)H(q(x|z, y)).

(15)
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A.4 PROOF OF THE EQUIVALENCE BETWEEN CONDITIONS

proof of necessary condition:

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
z

q(z|y)
∫
x

q(x|z, y) log q(z|x, y)
q(z|y)

dxdz

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)
q(z|y)

dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|y)dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
x

q(x|z, y)dx︸ ︷︷ ︸
=1

∫
z

q(z|y) log q(z|y)dz

=Eq(x|y)
∫
z

q(z|x, y) log q(z|x, y)dz︸ ︷︷ ︸
−H(q(z|x,y))

−
∫
z

q(z|y) log q(z|y)dz︸ ︷︷ ︸
−H(q(z|y))

.

(16)

If the above expression tends to infinity, either H(q(z|x, y))→ −∞ or H(q(z|y))→∞, meaning
that either q(z|x, y)→ a Delta function, or q(z|y)→ uniform. Either condition implies q(z|x,y)

q(z|y) =

Bδ(z − g(x, y)).
proof of sufficient condition:

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)
q(z|y)

dzdx

=

∫
x

q(x|y)
∫
z

q(z|y)q(z|x, y)
q(z|y)

log
q(z|x, y)
q(z|y)

dzdx.

(17)

Now we set q(z|x,y)q(z|y) = Bδ(z − g(x, y)):

∫
x

q(x|y)
∫
z

q(z|y)Bδ(z − g(x, y)) logBδ(z − g(x, y))dzdx

=

∫
x

q(x|y)q(g(x, y)|y) logB δ(g(x, y)− g(x, y))︸ ︷︷ ︸
→∞,∀x

dx.
(18)

Therefore, q(z|x,y)q(z|y) = Bδ(z − g(x, y)) is a sufficient condition for Eq(x,z|y) log q(z|x,y)
q(z|y) →∞.
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A.5 PROOF OF EQUATION 6

Eq(x,z|y) log
q(z|x, y)
q(z|y)

=

∫
z

∫
x

q(x, z|y) log q(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

=

∫
x

q(x|y)
∫
z

q(z|x, y) log q(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

≥
∫
x

q(x|y)
∫
z

q(z|x, y) log r(z|x, y)dzdx

−
∫
z

∫
x

q(x, z|y) log q(z|y)dzdx

=Eq(x,z|y) log
r(z|x, y)
q(z|y)

,

(19)

Where the inequality derives from the positivity of the KL divergence KL(q(z|x, y)||r(z|x, y)).

B ALGORITHM

B.1 DETAILS OF TRAINING

As detailed in section 3.2, to train our variational posterior q(x|y), we maximise through gradient
ascent the TAE ELBO with the reduced entropy penalty function

argmax Eq(x|y) log p(y|x) + Eq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))︸ ︷︷ ︸

Prior ELBO, ≥p(x)

]

+H(q(z|y)) + Eq(z|y)H(q(x|z, y))− λ
∣∣∣∣Eq(z,x|y) log r(z|x, y)q(z|y)

− C
∣∣∣∣ .

(20)

All expectations in the above expression are computed and optimised by sampling the corresponding
conditional distributions using the re-parametrisation trick characteristic of VAEs.

Because the prior LVM p(x) =
∫
p(zp)p(x|zp)dzp is training entirely with samples from the posterior

LVM, which is also training, the model can easily obtain high values for the prior ELBO by generating
collapsed samples x with the posterior and get stuck in an unfavourable local minimum. TO avoid
this, we employ a warm up strategy. We define a positive parameter γ that multiplies the expectation
of the prior ELBO and the entropy H(x|z, y):

argmax Eq(x|y) log p(y|x) + γEq(x|y)
[
Eq(zp|x) log p(x|zp)−KL(q(zp|x)||p(zp))︸ ︷︷ ︸

Prior ELBO, ≥p(x)

]

+H(q(z|y)) + γEq(z|y)H(q(x|z, y))− λ
∣∣∣∣Eq(z,x|y) log r(z|x, y)q(z|y)

− C
∣∣∣∣ .

(21)

The value of γ is initially set to zero. After a set number of iterations it is linearly increased to reach
one and kept constant for the remaining training iterations.

B.2 COMPLETE OBJECTIVE FUNCTION

Observation Parameters: In the general case, the corruption process p(y|x), mapping clean data
x to degraded samples y, is controlled by parameters that differ from sample to sample. We can
distinguish these into observed parameters α and unobserved parameters β. For example, in the
case of missing values and noise, the indexes of missing entries in each sample are often observed
parameters, while the noise level is an unobserved parameter. The complete form of the corruption
likelihood for a clean sample xi is then p(y|xi, αi, βi).
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Objective Function: With the parameters conditionals described in subsection 3.2.4 and explicitly
showing the parameters to be optimised, the objective function we maximise is the following

argmax
θ,φ

Eqφ(x,β|y,α) log p(y|x, α, β)

+γEqφ(x|y,α)
[
Eqφ3 (zp|x) log pθ(x|zp)−KL(qφ3(zp|x)||p(zp))

]
+H(qφ1

(z|y, α)) + γEqφ1 (z|y,α)H(qφ2
(x|z, y, α))

−λ
∣∣∣∣Eqφ(z,x|y,α) log rφ4

(z|x)
qφ1

(z|y, α)
− C

∣∣∣∣ ,
(22)

qφ(x, β|y, α) =
∫
z
qφ1(z|y, α)qφ2(x|z, y, α)qφ5(β|z, y, α)dz, qφ(x|y, α) =∫

z
qφ1(z|y, α)qφ2(x|z, y, α)dz, qφ(z, x|y, α) = qφ1(z|y, α)qφ2(x|z, y, α), φ = {φ1:5} are

the parameters of the inference models and θ are the parameter of the prior model.

B.3 PSEUDO-CODE

B.4 POSTERIOR COLLAPSE IN VARIATIONAL INFERENCE

The posterior collapse problem we approach with the reduced entropy condition method presented
in this paper has some analogy with the latent posterior collapse encountered when using implicit
distributions in variational inference to obtain flexible recognition models. The main issue in training
these models successfully without collapse is the computation of density rations between the latent
prior and the implicit variational posterior. This problem is analogous to the difficulty in estimating
the LVM entropy in our method. Yin & Zhou (2018) proposed to use a further lower bound on the
ELBO and add a term encouraging diversity to avoid collapse. This term is obtained by drawing K
Gaussian components from the LVM posterior and computing the KL divergence of an individual
component with the mixture distribution, i.e. the sum of the drawn Gaussians. Titsias & Ruiz (2019)
build on this work by deriving an unbiased estimator for the ELBO gradient, instead of using a
surrogate lower bound.

These methods rely on estimating the LVM posterior through sampling and aggregating K explicit
distribution components. This was demonstrated to work well for posteriors in artificial latent space
by drawing only a few components. However, in our data recovery setting, we need to capture the
posteriors in clean data space, rather than a latent space. Posteriors capturing the uncertainty in
natural data are expected to be much more complex and higher dimensional, leading to the number K
of drawn Gaussians needed to approximate the true LVM with these methods to become rather large,
making optimisation inefficient or even intractable in extreme cases. The reduced entropy condition
method we derive in this paper avoids the posterior collapse without having to estimate the LVM
posterior through sampling and is therefore specially suited for the data recovery setting, where we
are required to capture posteriors in clean data space.

C EXPERIMENTAL DETAILS

C.1 MODELS’ ARCHITECTURES

In all experiments we carry out comparing our TAE with competitive methods, we make the in-
dependence assumption q(x|z, y) = q(x|z), consequentially making r(z|x, y) = r(z|x). In this
way, the reconstruction posterior LVMs q(x|y) we compare between TAE, MVAE and MIWAE all
present identical structure and differences in performance are a result of the model constructed to
train them alone. However, we note that, unlike the two competing method, the TAE is not formally
limited to this choice and can infer conditionals q(x|z, y) in the general case. We hereafter detail the
architecture used for all quantitative experiments of section 4.1 and 4.2.

MVAE and MIWAE models: The MVAE model is built as an LVM having a unit Gaus-
sian prior in the latent space p(z) = N (z;0,1) and isotropic Gaussian clean data likelihood
p(x|z) = N (x;µx, σ

2
x), where the moments µx and σ2

x are outputs of a neural network having
as input the latent variables z. Because we only observe corrupted data y, rather than clean data
x, the recognition model q(z|y) is conditioned on observed corrupted data y and also has the form
of an isotropic Gaussian q(z|y) = N (z;µz, σ

2
z), where the moments µz and σ2

z are outputs of a
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Algorithm 1 Training the TAE Model

Inputs: Corrupted observations Y = {y1:N}; Observed Parameters A = {α1:N} initial model
parameters, {θ(0), φ(0)}; user-defined posterior latent dimensionality, J ; user-defined prior latent
dimensionality, Jp; user-defined condition strength λ; user-defined condition parameter C; user-
defined latent prior p(zp); user-defined initial warm-up coefficient γ0; user-defined final warm-up
coefficient γf ; warm-up start Nw0; warm-up end Nwf ; user-defined number of iterations, Niter.

1: γ(k=0) ← γ0
2: for the k’th iteration in [0 : Niter − 1]
3: for the i’th observation
4: zi ∼ qφ(k)

1
(z|yi, αi)

5: xi ∼ qφ(k)
2

(x|zi, yi, αi)
6: βi ∼ qφ(k)

5
(β|zi, yi, αi)

7: zp,i ∼ qφ(k)
3

(zp|xi)

8: E(k)
i ← log p(yi|xi, βi)

9: P(k)
i ← log pθ(k)(xi|zp,i)

10: K(k)
i ← DKL(qφ(k)

3
(zp|xi)||p(zp))

11: Hz(k)i ← H(q
φ
(k)
1

(z|yi, αi))

12: Hx(k)i ← H(q
φ
(k)
2

(x|zi, yi, αi))

13: R(k)
i ← log r

φ
(k)
4

(zi|xi, yi, αi)

14: Q(k)
i ← log q

φ
(k)
1

(zi|yi, αi)
15: end

16: F(k) =
∑
i

(
E(k)
i + γ(k)

[
P(k)
i −K(k)

i + Hx(k)i

]
17: +Hz(k)i − λ

∣∣∣R(k)
i −Q(k)

i − C
∣∣∣ )

18: θ(k+1), φ(k+1) ← argmax(F(k))

19: if k > Nw0 and k < Nwf
20: γ(k+1) ← γ(k) + (γf − γ0)/(Nwf −Nw0)
21: else
22: γ(k+1) ← γ(k)

23: end
24: end

neural network having as input the corrupted observations y. The corrupt data likelihood p(y|z) is
obtained by simply selecting the likelihood p(x|z) over the observed indexes, i.e. for missing values
corruption the integral p(y|z) =

∫
p(x|z)p(y|x)dx simply masks out the unobserved entries. The

model is then trained by maximising the ELBO of equation 1. The MIWAE is built with the same
structure, but instead of optimising the MVAE ELBO of equation 1, an importance weighted lower
bound is maximised, as described in (Mattei & Frellsen, 2019). The precise architectures used for
the neural networks are described for the different experiments throughout the rest of this section.
One important point to notice is that, in each experiments, the structures of p(x|z) and q(z|y) are
chosen such that the resulting reconstruction model after training, i.e. the model taking as input a test
corrupt observation y and generating clean samples x, is identical for the TAE and the two tested
competing models. That is

∫
q(z|y)p(x|z)dz for the MVAE and MIWAE have identical structure to∫

q(z|y)q(x|z)dz for the TAE. In this way, performance differences can be attributed solely to the
difference in inference strategy and not reconstruction model’s capacity.
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Posteriors structure: The posterior parametric components are qφ1
(z|y, α) and qφ2

(x|z) (pφ2
(x|z)

in the case of the MVAE and MIWAE). qφ1
(z|y, α) consists in a fully connected two layers neural

network with leaky ReLu non-linearities, taking as input concatenated corrupted observations y and a
binary mask that labels the missing entries α and returning as output a vector of latent means and a
vector of latent log variances. The two intermediate deterministic layers have 400 hidden units, while
the latent space z is 20-dimensional.

qφ2
(x|z), and pφ2

(x|z) in the case of the MVAE and MIWAE, are similarly constructed, consisting
in a fully connected two layers neural network with leaky ReLu non-linearities, taking as input latent
variables z and returning a vector of means and a vector of log variances of clean samples x. The two
intermediate deterministic layers have 400 hidden units.

TAE Prior LVM Structure: The TAE prior encoder qφ3(zp|x) has the same general structure as
the posterior encoder, with two fully connected layers and leaky ReLu non-linearities, taking as
input generated clean data x and returning as outputs a vector of latent means and a vector of latent
log variances for the prior latent variable zp. As this model has less capacity than the posterior
LVM, the two deterministic hidden layers have 50 hidden units each and the latent variables zp are
5-dimensional.

pθ(x|zp) is similarly constructed, consisting in a fully connected two layers neural network with
leaky ReLu non-linearities, taking as input latent variables zp and returning a vector of means and a
vector of log variances of clean samples x. The two intermediate deterministic layers have 50 hidden
units.

Approximate Latent Posterior Structure: The approximate latent posterior r(z|x) has the same
structure as the posterior encoder, consisting in a fully connected two layers neural network with
leaky ReLu non-linearities, taking as input generated clean data x and returning as outputs a vector
of latent means and a vector of latent log variances. The two intermediate deterministic layers have
400 hidden units.

Convolutional TAE Structure: For the imputation of NYU missing data we use convolutional
conditionals in our model, instead of fully connected ones. In this version. we do not make the
independence assumption, using q(x|z, y) and r(z|x, y). q(z|y, α) takes concatenated y and α and
passes them through 4 recurrent convolutional layers with filters of size 3× 3 and 5 channels, each
time down-sampling by two. the last layer is mapped to means and standard deviation of latent images
z, which are 1/32 of the original size in each axis and have 10 channels, through two convolutional
filter banks with strieds 1 × 1. q(x|z, y, α) is built to mirror this structure, with the addition of
accepting inputs from y and α. Three recurrent transpose convolutional layers with 3× 3 filters, 5
channels and 2× 2 upsampling each map z to a deterministic layer with 1/2× 1/2 of the original
images size. concatenated y and α are mapped to the same size with a single convolutional layer,
downsampling it by 1/2× 1/2 and 5 channels. The two are concatenated and the resulting layer is
finally upsampled to inferred clean image x by a last convolution with a filter bank. All non-linearities
are Elu.

The prior networks are built in a similar way, but with shallower structures to give less capacity.
q(zp|x) passes x through 2 convolutional layers, each with down-sampling of 4× 4 and 5 channels.
as before, mens and standard deviations of latent images zp are generated from this last layers with
2 × 2 down-sampling and, in this case, 5 channels. The prior generator p(x|zp) is built to exactly
mirror this structure. r(z|x, y, α) has the same structure as q(z|y, α), with the only difference being
that it accepts as input concatenated x, y and α.

C.2 EXPERIMENTAL CONDITIONS

Posterior Recovery: All posterior recovery experiments, with each of the three data sets tested,
are performed on samples that have been re-scaled from 0 to 1. In all cases, the sets are injected
with additive Gaussian noise having standard deviation 0.1. Subsequently, random binary masks are
generated to block out some entries, resulting in missing values. The proportion of missing entries in
the masks was set as described in the main body in each case.

Experiments were repeated with re-generated binary masks 5 times. The means and error bars shown
in figure 4 and the uncertainty reported in table 1 were computed from these. The MIWAE was
trained with 20 weights per sample. After training, all posteriors q(x|y) have identical structure and
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are tested in the same way, by training an inference network on the test set to compute the ELBO
values.

Classification Experiments: The TAE models for the MNIST and Fashion-MNIST experiments
were trained in the conditions described above. In each case, a random subset of 10, 000 samples is
taken from the corrupted set and the TAE and MVAE models are trained with it. A random subset of
1, 000 of these is selected and ground-truth lables for these samples are made available.

A classifier consisting in a single fully connected layer with leaky ReLu non-linearity is trained
to perform classification on this subset. For each stochastic training iteration of this classifier, we
generate samples associated with the corrupted observations and provide the associated labels. After
the classifier is trained, we test classification performance on the remaining 9, 000 examples, by
running the train classifier 400 times per sample, each time generating clean data from a corrupted
observation with the TAE and the MVAE. The histograms shown in figure 5 are built by aggregating
the resulting classification.

The above procedure is repeated 15 times. The resulting means and standard deviations of the tested
classification performance are shown in figure 6.

Training Conditions: Hyper-parameters of optimisation for the models were cross validated with
the MNIST data set at a proportion of missing entries of 0.9. Hyper-parameters common to all
models were determined by obtaining best performance with the MVAE model. Hyper- parameters
specific to the TAE model were obtained by fixing the common parameters and cross validating
these. The resulting optimal hyper parameters were then used in all other experiments of section
4.1 and 4.2, including those with different data sets. Common parameters are as follows: 500, 000
iterations with the ADAM optimiser in Tensorflow, an initial training of 2−4 and batch size of 20. The
hyper-parameters specific to the TAE are instead: γ initially set to 0.01 and then linearly increased
to 1 between 50, 000 and 100, 000 iterations, λ = 2 and C = 10. All experiments were performed
using a TitanX GPU.

NYU Rooms Experiments: For these experiments, we take a subset of 3612 depth maps from the
NYU raw data set. We slightly crop these in one dimension to be 480×608 images. The convolutional
TAE and MVAE to obtain the results of figure 7, were trained for 100, 000 iterations using the ADAM
optimiser in Tensorflow, with a batch size of 20 images and an initial training rate of 2× 10−2. For
the warm up, we initially set γ = 0.01 and linearly increase it to 1 between 10, 000 and 20, 000
iterations. For these experiments, λ = 2 and C = 15.

C.3 EVALUATION ELBO

To evaluate the probabilistic performance of our method compared to others, we compute an evaluation
ELBO which relies on test ground truths. After each model is trained unsupervisedly, we obtain
a posterior of the form q(x|y) =

∫
q(z|y)q(x|z)dz, where for the MVAE and MIWAE, q(x|z) =

p(x|z). Given the a test set of paired clean and corrupted samples xt and yt, we construct a new
parametric recognition model, which encodes latent distributions from ground-truths qη(z|x). We
then optimise the following:

argmax
η

Eqη(z|xt) log q(xt|z) +KL(qη(z|xt)|q(z|yt)). (23)

The above is a conditional VAE ELBO with conditional prior q(z|y) and is a lower bound to the
test likelihood we are interested in q(xt|yt). Note that we optimise over η only, therefore the new
recognition model q(z|x) is the only one which is affected by this optimisation and the components
of our reconstruction model q(z|y) and q(x|z) remain the same as trained with the unsupervised
training set. As a result, this new optimisation only tightens the bound, rather than maximising the
likelihood, which we want to evaluate as trained previously.

D ADDITIONAL EXPERIMENTS

D.1 C AND λ CROSS-VALIDATION

C and λ in equation 22 are hyper-parameters of our inference algorithm and need to be user defined.
In our experiments, we determine the optimal values by cross-validation, as described in section C.
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We report in figure 7 a cross validation study where we measure the TAE ELBO for MNIST with
90% missing values and additive noise.

Figure 7: ELBO for MNIST with 90% missing values and additive noise as a function of chosen
hyper-parameters C and λ (in log scale). The performance of TAE exceeds that of a standard VAE
approach over a broad range of values. If the values are too large, the model collapses during
optimisation, making such situation easy to diagnose.

As shown in figure 7, the performance of TAEs is robust to variations in hyper-parameters C and λ
over a broad range of values. They also have an intuitive meaning that helps in their selection. In
practice, C controls the final value of localisation and is desirable to be as high as stability of the
optimisation allows. λ controls how fast we are imposing the model to approach C.

D.2 STRUCTURED MISSINGS

We test a TAE in a situation analogous to that shown in figure 4 of section 4, but with structured
missing values instead of randomly missing ones. For each sample in MNIST, we only make visible
a small 10 × 10 pixels window, randomly placed in each example, while the rest of the images
remain hidden. In addition, the values in the observed window are subject to additive Gaussian noise,
similarly to the missing-at-random case. Reconstructions with the comparative MVAE and our TAE
are shown in figure 8.

Similarly to the missing-at-random case, the MVAE collapses on single solutions, giving draws from
the posterior that are all very similar to each other. Contrarily, the TAE gives more variation in the
possible solutions exploring more appropriately the uncertainty in the solution space. The MVAE
ELBO over the clean data for this problem is 428, while the TAE one is 638. The performance
improvement provided by the TAE is analogous to that observed with missing-at-random experiments.
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Figure 8: Examples of Bayesian reconstructions with MVAE and TAE on structured missing values.
the MVAE returns good mean reconstructions, but its posteriors collapse on single solutions, giving
draws that are very similar to each other. The TAE returns posteriors which more broadly explore the
different possible clean samples associated with the corrupted observations, giving more variation in
the posterior’s draws.

D.3 MORE ELBO EVALUATIONS

Table 2: ELBO assigned by the retrieved posteriors to the ground truth clean data.

MVAE MIWAE TAE
MNIST, 883± 2 940± 3 1831± 8
20% missing
MNIST, 870± 6 917± 4 1719± 7
50% missing
MNIST, 803± 15 780± 6 1536± 14
80% missing
Fashion-MNIST, 775± 4 815± 4 1407± 24
20% missing
Fashion-MNIST, 757± 1 800± 7 1326± 7
50% missing
Fashion-MNIST, 723± 7 766± 8 1094± 13
80% missing
UCI HAR, 611± 3 628± 10 1039± 11
20% missing
UCI HAR, 585± 4 613± 6 1014± 6
50% missing
UCI HAR, 471± 10 584± 8 854± 52
80% missing

D.4 IMPUTATION WITHOUT NOISE

We carry out experiments on MNIST analogous to those shown in figure 3, but in the absence of
noise, in order to test performance on imputation alone. Each tested ratio of observed entries is

22



Published as a conference paper at ICLR 2021

repeated three times, re-generating the patterns of missings each repeat in order to obtain error bars.
Results are shown in figure 10.

Figure 9: Missing value imputation performance on MNIST in the absence of noise. As in the
noisy case, the PSNR values between the MVAE and the TAE are very similar. The TAE presents
significantly superior ELBO values at low ratios of observed entries, but in this case, the gap is
reduced as more entries are observed. This is because in the noiseless case, the solution space when
most entries are observed is much more localised than in the noisy case, and therefore the MVAE
collapsed posteriors do not fail as much to capture it.

D.5 DE-NOISING

We carry out experiments on MNIST analogous to those shown in figure 3, but testing fully observed
images at different levels of noise. Each tested ratio of observed entries is repeated three times,
re-generating the patterns of missings each repeat in order to obtain error bars. Results are shown in
figure 10.

Figure 10: De-noising performance on MNIST. As in the missing value imputtion case, the MVAE
and TAE perform very similarly in their mean reconstructions, but the TAE presents significantly
better performance in capturing the distributions of clean solutions, as the test ELBO values are
higher.
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D.6 NYU ROOMS RECOVERY EXAMPLES
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Figure 11: Unsupervised missing value imputation with our TAE on raw depth maps from the NYU
rooms data set, compared with a median filter approach and the standard MVAE. Missing pixels in
the observed images are in white. The median filter results in overly smoothed images and is unable
to fill pixels that are surrounded by large missing areas. The MVAE returns adequate reconstructions,
however, it over-fits in certain locations and its uncertainty is largely over-estimated. The TAE
returns good reconstructions and assigns high uncertainty to locations where reconstruction is most
inaccurate, as shown by the marginal standard deviations.
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